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Introduction   

The study of the discrete structures used to represent discrete objects 

• Many discrete structures are built using sets 

Sets = collection of objects 

Examples of discrete structures built with the help of sets: 

• Combinations 

• Relations 

• Graphs 

Set 

A set is a (unordered) collection of objects. Theseobjects are sometimes called elements 
or members of the set. The ordering of the elements is not important and repetition of 
elements is ignored, for example {1, 3, 1, 2, 2, 1} = {1, 2, 3}. 

One usually uses capital letters, A,B,X, Y, . . . , to denote sets, and lowercase letters, a, b, 
x, y, . . ., to denote elements of sets. 

Below you'll see just a sampling of items that could be considered as sets: 

• The items in a store 
• The English alphabet 
• Even numbers 

A set could have as many entries as you would like. It could have one entry, 10 entries, 
15 entries, infinite number of entries, or even have no entries at all! For example, in the 
above list the English alphabet would have 26 entries, while the set of even numbers 
would have an infinite number of entries. 

Each entry in a set is known as an element or member 

Sets are written using curly brackets "{" and "}", with their elements listed in between. 
For example the English alphabet could be written as 
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{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}, and even numbers could be 
{0,2,4,6,8,10,...} 

Note: the dots at the end indicating that the set goes on infinitely . 

 

Principles: ∈belong to ∉not belong to ⊆ subset ⊂proper subset, For example, {a, b} is a proper subset of {a, b, c}, but {a, b, c} is not a 
proper subset of {a, b, c}. ⊄not subset 

So we could replace the statement "a is belong to the alphabet" with a   {alphabet} and 
replace the statement "3 is not belong to the set of even numbers" with 3   {Even 
numbers} 

Now if we named our sets we could go even further. Give the set consisting of the 
alphabet the name A, and give the set consisting of even numbers the name E. 

We could now write 

a∈ A  

and 3∉ E. 

Problem 

Let A = {2, 3, 4, 5} and C = {1, 2, 3, . . ., 8, 9}, Show that A is a proper subset of C.  

Answer 

Each element of A belongs to C so A⊆ C. On the other hand, 1 ∈ C but 1 ∉ A. Hence A ≠ 
C. Therefore A is a proper subset of C. 

There are three ways to specify a particular set: 

1) By list its members separated by commas and contained in braces { }, (if it is 
possible), for example, A= {a,e,i,o,u} 
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2) By state those properties which characterize the elements in the set, for example, 
A={x:x is a letter in the English alphabet, x is a vowel} 

3) Venn diagram: ( A graphical representation of sets). 

 

 

 

 

 

 

 

 

Example (1) 

A={x:x is a letter in the English alphabet, x is a vowel}  

e∈ A (e is belong to A)  

f∉ A (f is not belong to A) 

Example (2) 

X is the set {1,3,5,7,9}  

3 ∈ X  

and 4 ∉ X 

Example (3) 

Let E = {x | x2 − 3x + 2 = 0} → (x-2)(x-1)=0 → x=2 & x=1 

E = {2, 1}, and 2∈ E 

Universal set, empty set: 

In any application of the theory of sets, the members of all sets under investigation 
usually belong to some fixed large set called the universal set. For example, in human 
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population studies the universal set consists of all the people in the world. We will let the 
symbol U denotes the universal set. 

The set with no elements is called the empty set or null set and is denoted by ∅ or {} 

 

 

 

Subsets: 

Every element in a set A is also an element of a set B, then A is called a subset of B. We 
also say that B contains A. This relationship is written: 

A ⊂ B or B ⊃ A 

If A is not a subset of B, i.e. if at least one element of Adose not belong to B,  

we write A ⊄ B. 

Example 4: 

Consider the sets. A = {1,3,4,5,8,9} B = {1,2,3,5,7} and C ={1,5} 

Then C ⊂ A and C ⊂ B since 1 and 5, the element of C, are also members of A and B. 

But B ⊄ A since some of its elements, e.g. 2 and 7, do not belong to A. Furthermore, 
since the elements of A,B and C must also belong to the universal set U, we have that U 
must at least the set {1,2,3,4,5,7,8,9}. 

A⊂B : {∀ x∈A⇒ x∈B 
 
A⊄B :{∃ x∈A but x∉B 
 
∀: For all لكل 
 
∃: There exists یوجدعلىالاقل 
 
The notion of subsets is graphically illustrated below: 
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A is entirely within B so A⊂ B. 

 

A and B are disjoint or (A ∩ B = ∅) so we could write A ⊄ B and B ⊄ A. 

Set of numbers: 

Several sets are used so often, they are given special symbols. 

N = the set of natural numbers or positive integers 

 

Z = the set of all integers: . . . ,−2,−1, 0, 1, 2, . . . 

 

Q = the set of rational numbers 

 

Where Q ={ a/b : a , b ∈ Z, b ≠ 0} 
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R = the set of real numbers 

 

C = the set of complex numbers 

 

Where C={ x + iy ; x , y ∈R; i = √-1} 
 
Observe that N ⊂ Z ⊂ Q ⊂ R ⊂ C. 

 

Theorem 1: 

For any set A, B, C: 

1- ∅ ⊂ A ⊂ U. 
 
2- A ⊂ A. 
 
3- If A ⊂ B and B ⊂ C, then A⊂ C. 
 
4- A = B if and only if A ⊂ B and B ⊂ A. 

Set operations: 

A is said to be a subset of B if and only if every element of A is also an 
element of B,in which case we write A ⊆ B. A is a strict subset of B if A is a 
subset of B and A isnot equal to B, which is denoted by A⊂B. For example, 
{4, 23} ⊂ {2, 4, 17, 23} ⊆{2, 4, 17, 23}. 
Two sets A and B are considered equal if and only if they have the same 
elements.This is denoted by A = B. More formally, A = B if and only if A ⊆B and B ⊆A.For two sets A and B, the operations of union, intersection,  
difference ,complement andSymmetric differencearedefined as follows: 
 
1) UNION: 
The union of two sets A and B, denoted by A∪ B, is the set of all elements 
whichbelong to A or to B; 
 
A ∪ B = { x : x ∈ A or x ∈ B} 



8 
 

 
ExampleA={1,2,3,4,5} B={5,7,9,11,13} 
A ∪ B = {1,2,3,4,5,7,9,11,13} 

2) INTERSECTION 

The intersection of two sets A and B, denoted by A∩B, is the set of elements 
which belong to both Aand B; 
 
A ∩ B = { x : x ∈A and x ∈B}. 

Example 1A={1,3,5,7,9} B={2,3,4,5,6} 
 
The elements they have in common are 3 and 5 
A ∩ B = {3,5} 
 
Example 2A={The English alphabet} B={vowels} 
 
So A ∩ B = {vowels} 

Example 3A={1,2,3,4,5} B={6,7,8,9,10} 
 
In this case A and B have nothing in common. 
 A ∩ B = ∅ 
 
3) THE DIFFERENCE: 
The difference of two sets A\B or A-B is those elements which belong to A 
butwhich do not belong to B. 
 
A\B = {x : x ∈A, x ∉ B} 

4) COMPLEMENT OF SET: 
Complement of set Acor A', is the set of elements which belong to U but 
which do not belong to A . 
Ac = {x : x ∈ U, x ∉ A} 

Example: 
 let A={1,2,3}             B={3,4}             U={1,2,3,4,5,6} 
Find: 
A ∪ B = {1, 2, 3, 4} 
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A ∩ B = {3} 
A - B = {1, 2} 
Ac = {4, 5, 6} 

5) Symmetric difference of sets 
The symmetric difference of sets A and B, denoted by A ⨁ B, consists of 
those elements which belong to A or B but not to both. That is, 
 
A ⨁ B = (A ∪ B)\(A ∩ B) or A ⨁ B = (A\B) ∪ (B\A) 
 
Example:  
Suppose U = N = {1, 2, 3, . . .} is the universal set. 
Let A = {1, 2, 3, 4}, B= {3, 4, 5, 6, 7}, C= {2, 3, 8, 9}, E= {2, 4, 6, 8,. . .} 
Then: 
Ac = {5, 6, 7, . . .}, Bc = {1, 2, 8, 9, 10, . . .}, Cc ={1,4,5,6,7,10,…}  
Ec={1, 3, 5, 7, ...} 
 
A\B = {1, 2}, A\C = {1, 4}, B\C = {4, 5, 6, 7}, A\E = {1, 3}, 
B\A = {5, 6, 7}, C\A = {8, 9}, C\B = {2, 8, 9}, E\A = {6, 8, 10, 12, ...}. 
 
Furthermore: 
A⨁ B = (A\B) ∪ (B\A) = {1, 2, 5, 6, 7}, B⨁ C = {2, 4, 5, 6, 7, 8, 9}, 
A⨁ C = (A\C) ∪ (B\C) = {1, 4, 8, 9}, A⨁ E = {1, 3, 6, 8, 10, . . .}. 

Theorem 2 : 
A ⊂ B , A ∩ B = A , A ∪ B = B are equivalent 
 
Theorem 3: (Algebra of sets) 
Sets under the above operations satisfy various laws or identities which are 
listed below: 
1- A ∪ A = A 
A ∩ A = A 
2- (A ∪ B) ∪ C = A ∪ (B ∪ C) Associative laws 
(A ∩ B) ∩ C = A ∩ (B ∩ C) 
3- A ∪ B = B ∪ A Commutativity 
A ∩ B = B ∩ A 



10 
 

4- A ∪ ( Β ∩ C ) = (A ∪ Β) ∩ (Α ∪ C) Distributive laws 
A ∩ (Β ∪ C ) = (A ∩  Β) ∪ (Α ∩ C) 

5- A ∪ ∅ = A Identity laws 
A ∩ U = A 
 
6- A ∪ U = U Identity laws 
A ∩ ∅ = ∅ 
 
7- (Ac)c = A Double complements 
 
8- A ∪ Ac= U     Complement intersections and unions 
A ∩ Ac = ∅ 
 
9- U c = ∅ 
     ∅ c= U 
10- (A ∪ B)c= Ac∩ Bc De Morgan's laws 
(A ∩ B)c= Ac∪ Bc 
We discuss two methods of proving equations involving set operations. The 
first is to break down what it means for an object x to be an element of each 
side, and the second is to use Venn diagrams. 
For example, consider the first of De Morgan's laws: 
(A ∪ B)c= Ac∩ Bc 
We must prove: 
 1) (A ∪ B)c⊂ Ac∩ Bc 
2) Ac∩ Bc⊂ (A ∪ B)c 
We first show that (A ∪ B)c⊂ Ac∩ Bc 

Let's pick an element at random x ∈(A ∪ B)c . We don't know anything 
about x, it could be a number, a function. All we do know about x, is that: 
x∈(A ∪ B)c, so 
x∉ A ∪ B 
Because that's what complement means. Therefore 
x∉ A and x ∉ B, 
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by pulling apart the union. Applying complements again we get 
x∈ Acand x ∈Bc 
Finally, if something is in 2 sets, it must be in their intersection, so 
x∈ Ac∩ Bc 

So, any element we pick at random from: (A ∪ B)cis definitely in, Ac∩ Bc , 
so by definition 
(A ∪ B)c⊂ Ac∩ Bc 
Next we show that ( Ac∩ Bc) ⊂ (A ∪ B)c . 
This follows a very similar way. Firstly, we pick an element at random from 
the first set, x ∈ ( Ac∩ Bc) 
Using what we know about intersections, that means 
x∈ Ac and x∈ Bc 
Now, using what we know about complements, 
x∉ A and x∉ B. 
If something is in neither A nor B, it can't be in their union, so 

x∉ A ∪ B,And finally 
∴ x ∈ (A ∪ B)c 
We have prove that every element of (A ∪ B)c  belongs to     Ac∩ Bcand that 
every element of      Ac∩ Bcbelongs to(A ∪ B)c . Together, 

These inclusions prove that the sets have the same elements, i.e. that  

(A ∪ B)c= Ac∩ Bc 

Power set 
 
The power set of some set S, denoted P(S), is the set of all subsets of S 
(including S itself and the empty set) 
Example 1: Let A = { 1,2,3} 
Power set of set A = P(A) = [{1},{2},{3},{1,2},{1,3},{2,3},{},A] 
Example 2: P({0,1})={{},{0},{1},{0,1}} 

Classes of sets: 
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Collection of subset of a set with some properties 
Example: Suppose A = { 1,2, 3} , let X be the class of subsets of A which 
contain exactly two elements of A. Then class  
X = [{1,2},{1,3},{2,3}] 
 
Cardinality 
 
The cardinality of a set S, denoted |S|, is simply the number of elements a set 
has. So |{a,b,c,d}| = 4, and so on. The cardinality of a set need not be finite: 
some sets have infinite cardinality. 
 
The cardinality of the power set 
 
Theorem: If |A| = n then |P(A)| = 2n (Every set with n elements has 2n 
subsets) 

Problem set  

write the answers to the following questions.  

1. |{1,2,3,4,5,6,7,8,9,0}|  

2. |P({1,2,3})|  

3. P({0,1,2})  

4. P({1})  

Answers  

1. 10  

2. 23=8 

 3. {{},{0},{1},{2},{0,1},{0,1,2},{0,2},{1,2}}  

4. {{},{1}} 

The Cartesian product 



13 
 

The Cartesian Product of two sets is the set of all tuples made from elements 
of two sets. We write the Cartesian Product of two sets A and B as A × B. It 
is defined as: 

 

It may be clearer to understand from examples; 

 

 

 

 
Example:  
If A = {1, 2, 3} and B = {x, y} then 
 
A . B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)} 
B . A = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)} 
 

It is clear that, the cardinality of the Cartesian product of two sets A and B 

is:  

A Cartesian Product of two sets A and B can be produced by making tuples 
of each element of A with each element of B; this can be visualized as a grid 
(which Cartesian implies) or table: if, e.g., A = { 0, 1 } and B = { 2, 3 }, the 
grid is 

 

x A 
0 1 

B 2 (0,2) (1,2) 
3 (0,3) (1,3) 

Problem set 

Answer the following questions:  

1. {2,3,4}×{1,3,4} 
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 2. {0,1}×{0,1}  

3. |{1,2,3}×{0}|  

4. |{1,1}×{2,3,4}|  

Answers  

1. {(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)} 

 2. {(0,0),(0,1),(1,0),(1,1)} 

 3. 3  

4. 6 

 

Partitions of set: 
Let S be any nonempty set. A partition ( ∏ ) of S is a subdivision of S into 
nonoverlapping, nonempty subsets. A partition of S is a collection {Ai} of non-empty 
subsets of S such that: 
1) Ai ≠∅, where i=1,2,3,…… 
2) The sets of {Ai } are mutually disjoint 
orAi ∩ Aj = ∅ where i ≠ j. 
3) UAi= S, where A1  ∪ A2  ∪ ..................  ∪ Ai = S 
The partition of a set into five cells, A1, A2,A3,A4,A5, can be represented by Venn 
Diagram 
 
Example 1:  
let A = {1,2,3,n} 
A1 = {1}, A2 = {3,n}, A3 = {2} 
Π = {A1, A2, A3} is a partition on A because it satisfy the three above conditions. 
 
Example 2 : 
Consider the following collections of subsets of S = {1,2,3,4,5,6,7,8,9} 
(i) [{1,3,5},{2,6},{4,8,9}] 
(ii) [{1,3,5},{2,4,6,8},{5,7,9}] 
(iii) [{1,3,5},{2,4,6,8},{7,9}] 
Then 
(i) is not a partition of S since 7 in S does not belong to any of the subsets. 
(ii) is not a partition of S since {1,3,5} and {5,7,9} are not disjoint. 
(iii) is a partition of S. 
 
FINITE SETS, COUNTING PRINCPLE: 
A set is said to be finite if it contains exactly m distinct elements where m denotes 
some nonnegative integer. Otherwise, a set is said to be infinite. For example, the 
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empty set ∅ and the set of letters of English alphabet are finite sets, whereas the set of 
even positive integers, {2,4,6,…..}, is infinite. 
If a set A is finite, we let n(A) or #(A) denote the number of elements of A. 
Example: If A ={1,2,a,w} then 
n(A) = #(A) = |A| = 4 
Lemma: If A and B are finite sets and disjoint Then A ∪ Β  is finite set and: 
n(A ∪ B) = n(A) + n(B) 
Theorem (Inclusion–Exclusion Principle): Suppose A and B are finite sets. Then 
A ∪ B and A ∩ B are finite and 
|A ∪ B| = |A| + |B| - | A ∩ B| 
That is, we find the number of elements in A or B (or both) by first adding n(A) and n(B) 
(inclusion) and then subtracting n(A ∩ B) (exclusion) since its elements were counted 
twice. 
We can apply this result to obtain a similar formula for three sets: 
Corollary: 
If A,B,C are finite sets then 
|A ∪ B ∪ C | = |A| + |B| + |C| - | A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C| 
Example (1) : 
A= {1,2,3} 
B= {3,4} 
C= {5,6} 
A ∪ B  ∪ C = {1,2,3,4,5,6} 
|A  ∪ B  ∪ C| = 6 
|A| =3 , |B| = 2 , |C| = 2 
 Α ∩ B = {3} , | Α ∩ B | = 1 
Α ∩ C = { } , | Α ∩ C | = 0 
B ∩ C = { } , | Β ∩ C | = 0 
Α ∩ B  ∩ C ={} , | Α ∩ B ∩ C | = 0 
|A ∪ B ∪ C | = |A| + |B| + |C| - | A ∩ B| - |A ∩ C| - |B ∩ C| + |A ∩ B ∩ C| 
|A ∪ B ∪ C | = 3 + 2 +2 -1 – 0 – 0 + 0 = 6 
Example (2): 
Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 
35 students in an English class, and suppose there are 20 names on both lists. Find the 
number of students: 
(a) only on list A 
(b) only on list B 
(c) on list A ∪ B 
Solution: 
(a) List A has 30 names and 20 are on list B; hence 30 − 20 = 10 names are only on list 
A. 
(b) Similarly, 35 − 20 = 15 are only on list B. 
(c) We seek n(A ∪ B). By inclusion–exclusion, 
n(A ∪ B) = n(A) + n(B) − n(A ∩ B) = 30 + 35 − 20 = 45. 
Example (3): 
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Suppose that 100 of 120 computer science students at a college take at least one of 
languages: French, German, and Russian and: 
65 study French (F). 
45 study German (G). 
42 study Russian (R). 
20 study French & German F ∩ G. 
25 study French & Russian F ∩ R. 
15 study German & Russian G ∩ R. 
Find the number of students who study: 
1) All three languages ( F∩  G ∩ R)  
2) The number of students in each of the eight regions of the Venn diagram 

 
Solution: 
|F  ∪  G  ∪ R| = |F| + |G| + |R| - |F ∩ G| - |F ∩ R| - |G ∩ R| + |F ∩ G ∩ R| 
100 = 65 + 45 + 42 - 20 - 25 - 15 + |F ∩ G ∩ R| 
100 = 92 + |F ∩ G ∩ R| 
∴|F ∩ G ∩ R| = 8 students study the 3 languages 
20 – 8 = 12 (F ∩ G) - R 
25 – 8 = 17 (F ∩ R) - G 
15 – 8 = 7 (G ∩ R) - F 
65 – 12 – 8 – 17 = 28 students study French only 
45 – 12 – 8 7 = 18 students study German only 
42 – 17 – 8 7 = 10 students study Russian only 
120 – 100 = 20 students do not study any language 
 
Relations 
Binary relation: 
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There are many relations in mathematics :"less than" , "is parallel to ","is a subset of", 
etc. These relations consider the existence or nonexistence of a certain connection 
between pairs of objects taken in a definite order. We define a relation simply in terms of 
ordered pairs of objects. 
 
Product sets: 
Consider two arbitrary sets A and B. The set of all ordered pairs (a,b) where a∈A and 
b∈B is called the product, or cartesian product, of A and B. 
A × B = {(a,b) : a∈A and b∈B} 
Example: Let A = {1,2} and B = {a ,b ,c} then 
A × B = {(1,a), (1,b),(1,c),(2,a),(2,b),(2,c)} 
Also, A × A = {(1, 1), (1, 2), (2, 1), (2, 2)} 
- The order in which the sets are considered is important, so A×B ≠ B ×A. 
Let A and B be sets. A binary relation, R, from A to B is a subset of A×B. If (x,y) ∈R, we 
say that x is R-related to y and denote this by xRy 
if )x,y) ∉R, we write x 
y and say that x is not R-related to y . 
if R is a relation from A to A ,i.e. R is a subset of A × A, then we say that R is a relation 
on A. 
The domain of a relation R is the set of all first elements of the ordered pairs which 
belong to R, and the range of R is the set of second elements. 
Example 1: 
Let A = {1, 2, 3, 4}. Define a relation R on A by writing (x, y) ∈ R if x < y. Then 
R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. 
 
Example 2: 
let A = {1,2,3} and R = {(1,2),(1,3),(3,2)}. Then R is a relation on A since it is a subset 
of A×A with respect to this relation: 
1R2, 1R3, 3R2 but (1,1)∉R & (2,1)∉R 
The domain of R is {1,3} and 
The range of R is {2,3} 
 
Example 3: 
Let A = {1, 2, 3}. Define a relation R on A by writing (x, y) ∈ R , such that a≥b, list the 
element of R 
aRb ↔ a≥b , a,b∈A 
∴ R = {(1,1),(2,1), (2,2), (3,1), (3,2), (3,3)}. 
 
Example 4: 
A relation on the set Z of integers is “m divides n.” A common notation for this relation 
is to write m|n when m divides n. Thus 6 | 30 but 7*25. 
 
Representation of relations: 
1) By language 
2) By ordered pairs 
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3) By arrow form 
4) By matrix form 
5) By coordinates 
6) By graph form 
 
Example: 
Let A = {1,2,3}, the relation R on A such that: aRb ↔ a>b; a,b∈A 
 
1) By language: 
R={(a,b) : a,b∈A and aRb ↔ a>b} 
 
2) By ordered pairs 
R = {(2,1),(3,1),(3,2)} 

 

3) By arrow form 

 
 
4) By matrix form 

 
 
5) By coordinates 

 
 

6) By graph form 
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TYPES OF RELATIONS: 
Properties of relations: 
 
Let R be a relation on the set A 
1) Reflexive : R is reflexive if : ∀ a ∈A→ aRa or (a,a) ∈ R ; ∀ a, b ∈A. . Thus R is not 
reflexive if there exists a ∈ A such that (a, a) ∉ R. 
 
2) Symmetric :aRb→ bRa∀ a,b∈A. if whenever (a, b) ∈R then (b, a) ∈R. 
Thus R is not symmetric if there exists a, b ∈A such that (a, b) ∈R but (b, a) ∉ R. 
 
3) Transitive :aRb∧ bRc→ aRc. that is, if whenever (a, b), (b, c) ∈R 
then(a, c) ∈R. Thus R is not transitive if there exist a, b, c ∈R such that (a, b), (b, c) ∈R 
but (a, c) ∉ R. 
 
4) Equivalence relation : it is Reflexive & Symmetric & Transitive. That is, R is an 
equivalence relation on S if it has the following three properties: 
a - For every a ∈S, aRa. 
b- If aRb, then bRa. 
c- If aRband bRc, then aRc. 
 
5) Irreflexive :∀ a ∈A (a,a) ∉ R 
 
6) AntiSymmetric : if aRb and bRa→ a=b 
the relations ≥,≤ and ⊆ are antisymmetric 
 
Example 5:  
Consider the relation of C of set inclusion on any collection of sets: 
1) A ⊂ A for any set, so ⊂ is reflexive 
2) A ⊂ B dose not imply B ⊂ A, so ⊂ is not symmetric 
3) If A ⊂ B and B ⊂ C then A⊂ C, so ⊂ is transitive 
4) ⊂ is reflexive, not symmetric & transitive, so ⊂ is not equivalence relations 
5) A ⊂ A, so ⊂ is not Irreflexive 
6) If A ⊂ B and B ⊂ A then A = B, so ⊂ is anti-symmetric 
 
Example 6:  
If A ={1,2,3} and R={(1,1),(1,2),(2,1),(2,3)}Is R equivalence relation ? 
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1) 2 is in A but (2,2) ∉ R, so R is not reflexive 
2) (2,3) ∈ R but (3,2) ∉ R, so R is not symmetric 
3) (1,2) ∈ R and (2,3) ∈ R but (1,3) ∉ R, so R is not transitive 
So R is not Equivalence relation 
Example 7 : 
What is the properties of the relation =? 
1) a=a for any element a ∈ A, so = is reflexive 
2) If a = b then b = a, so = is symmetric 
3) If a = b and b = c then a = c, so = is transitive 
4) = is (reflexive + symmetric + transitive), so = is equivalence 
5) a = a, so = is not Irreflexive 
6) If a = b and b = a then a = b, so = is anti-symmetric 
 
Remark: 
The properties of being symmetric and being ant symmetric are not negatives of each 
other. For example, the relation R = {(1, 3), (3, 1), (2, 3)} is neither symmetric nor 
antisymmetric. On the other hand, the relation R = {(1, 1), (2, 2)} is both symmetric and 
antisymmetric. 
 
-Reflexive Closures 
Let R be a relation on a set A. Then: 
R ∪ {(a, a) | a ∈ A} is the reflexive closure of R. In other words, reflexive(R) is obtained 
by simply adding to R those elements (a, a) in the diagonal which do not already belong 
to R. 
 
-Symmetric Closures 
R ∪ R−1 is the symmetric closure of R. in other words, symmetric(R) is obtained by 
adding to R all pairs (b, a) whenever (a, b) belongs to R. 
 
EXAMPLE : 
Consider the relation R = {(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3)} on the set A = {1, 2, 
3, 4}.Then 
reflexive(R) = R ∪ {(2, 2), (4, 4)} and 
symmetric(R) = R ∪ {(4, 2), (3, 4)} 
 
-Transitive Closure 
R* is the transitive closure of R, where: 
R*= R ∪ R2 ∪ R3 ∪ …. ∪ Rn and R2 = R◦R and Rn= Rn−1◦R 
 
Theorm: Suppose A is a finite set with n elements and Let R be a relation on a set A with 
n elements. Then : transitive (R) = R ∪ R2 ∪ R3 ∪ …. ∪ Rn 
 
 
 
EXAMPLE : 
Consider the relation R = {(1, 2), (2, 3), (3, 3)} on A = {1, 2, 3}. Then: 
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R2 = R◦R = {(1, 3), (2, 3), (3, 3)} and 
R3 = R2◦R = {(1, 3), (2, 3), (3, 3)} then 
transitive(R) = {(1, 2), (2, 3), (3, 3), (1, 3)} 
 
Inverse relations: 
R-1 = {(b,a) : (a,b) ∈ R} 
Example 1 : 
Let R be the following relation on A ={1,2,3} 
R = {(1,2),(1,3),(2,3)} 
∴ R-1 = {(2,1),(3,1),(3,2)} 
The matrix for R : 

 
And 

 
MR-1 is the transpose of matrix R 
 
Composition of relations: 
Let A, B, C be sets and let : 
R : A → B ( R⊂ A × B) 
S : B → C (S ⊂ B ×C) 
There is a relation from A to C denoted by 
R ° S (composition of R and S) : A → C 
R ° S = {(a,c) : ∃ b ∈ B for which (a,b) ∈ R and (b,c) ∈ S} 
 
Example : let A ={1,2,3,4} 
B = {a, b, c, d} 
C = {x, y, z} 
R = {(1,a),(2,d),(3,a),(3,d),(3,b)} 
S = {(b,x),(b,z),(c,y),(d,z)} 
Find R ° S ? 
Solution : 
1) The first way by arrow form 
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There is an arrow (path) from 2 to d which is followed by an arrow from d to z 
2Rd and dSz⇒ 2(R ° S) z 
and 3(R◦S)x and 3(R◦S)z 
so R ° S = {(3,x),(3,z),(2,z)} 
 
2) The second way by matrix: 
 

 

 
R ° S = MR .MS = 

 
R ° S = {(2,z),(3,x),(3,z)} 
 
Theorem 2.1:  
Let A, B, C and D be sets. Suppose R is a relation from A to B, S is a relation from B to 
C,andT is a relation from C to D. Then 
(R ◦ S) ◦ T = R ◦ (S ◦ T ) 
 
 
n-ARY RELATIONS 
All the relations discussed above were binary relations. By an n-ary relation, we mean a 
set of ordered n-tuples. For any set S, a subset of the product set Snis called an n-ary 
relation on S. In particular, a subset of S3 is called a ternary relation on S. 
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EXAMPLE 
(a) Let L be a line in the plane. Then “betweenness” is a ternary relation R on the points 
of L; that is, (a, b, c) ∈ R, if b lies between a andc on L. 
 
(b) The equation x2 +y2 +z2 = 1 determines a ternary relation T on the set R of real 
numbers. That is, a triple (x, y, z) belongs to T if (x, y, z) satisfies the equation, which 
means (x, y, z) is the coordinates of a point in R3 on the sphere S with radius 1 and center 
at the origin O = (0, 0, 0). 
 
Function: 
Function is an important class of relation. 
Definition: 
Let A,B be two nonempty sets, a function F: AB is a rule which associates with each 
element of A aunique element in B. 
The set A is called the domain of the function, and the set B is called the range of the 
function. 
Example 1: 
Consider the function f (x) = x3, i.e., f assigns to each real number its cube. Then the 
image of 2 is 8, and so we may write f (2) = 8. 
Example2 : 
consider the following relation on the set A={1,2,3} 
F = {(1,3),(2,3),(3,1)} 
F is a function 

 

G = {1,2},(3,1)} 
G is not a function from A to A 

 

H = {(1,3),(2,1),(1,2),(3,1)} 
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H is not a function 

 

 

 

 

 
One-to-one ,onto and invertible functions : 
 
1) One –to-one : a function F:A→B is said to be one-to-one if different elements in the 
domain (A) have distinct images. 
Or If F(a) =F(a’) ⇒ a = a’ 
 
2) Onto : F:A→B is said to be an onto function if each element of B is the image of some 
element of A. 
∀ b∈B∃ a ∈ A:F(a) = b 
 
3) Invertible (One-to-one correspondence) 
F:A→ B is invertible if its inverse relation f-1 is a function F:B →A 
F:A→ B is invertible if and only if F is both one-to-one and onto 
F-1:{(b,a) ∀ (a,b) ∈ F} 

 

one to one but not onto (3∈B but it is not the image under f1) 
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both one to one & onto 
(or one to one correspondence between A and B) 

 

not one to one & onto 

 

not one to one & not onto 
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Graph of a function: 
By a real polynomial function, we mean a function f: R → R of the form 

 
where the aiare real numbers. Since R is an infinite set, it would be impossible to plot 
each point of the graph. However, the graph of such a function can be approximated by 
first plotting some of its points and then drawing a smooth curve though these points. The 
table points are usually obtained from a table where various values are assigned to x and 
the corresponding value of f(x) computed. 
Example 1 : let f:R→R and f(x)= x3 , find f(x) 
f(3) = 33 = 27 
f(-2) = (-2)3 = -8 

 

Example 2: let f: R→R and f (x) = x2 − 2x – 3, , find f(x) 

 

Geometrical Characterization of One-to-One and Onto Functions 
For the functions of the form f : R →R. the graphs of such functions may be plotted in the 
Cartesian plane and functions may be identified with their graphs, so the concepts of 
being one-to-one and onto have some geometrical meaning : 
(1) f :R →R is said to be one-to-one if there are no 2 distinct pairs (a1,b) and (a2,b) in the 
graph one-to-one or if each horizontal line intersects the graph of f in at most one point. 
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(2) f :R →R is an onto function if each horizontal line intersects the graph of f at one or 
more points (at least once) 

 
(3) if f is both one-to-one and onto, i.e. invertible, then each horizontal line will intersect 
the graph of f at exactly one point. 

 

 
F(x) NOT (ONE-TO-ONE) & NOT (ONTO) 

Factorial Function 
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The product of the positive integers from 1 to n, inclusive, is called “n factorial” and is 
usually denoted by n!. That is, 
n! = n(n − 1)(n − 2) ・・・3 ・2 ・1 
where 0! = 1, so that the function is defined for all nonnegative integers. Thus: 
0! = 1,1! = 1, 
2! = 2.1 = 2,3! = 3.2.1 = 6, 
4! = 4.3.2.1 = 24 5! = 5.4.3.2.1 = 120 
6! = 6.5.4.3.2.1 = 720 
This is true for every positive integer n; that is, 
n! = n ・(n − 1)! 
Accordingly, the factorial function may also be defined as follows: 
Definition of Factorial Function: 
(a) If n = 0, then n! = 1. 
(b) If n >0, then n! = n ・(n − 1)! 
The definition of n! is recursive, since it refers to itself when it uses (n − 1)!. However: 
(1) The value of n! is explicitly given when n = 0 (thus 0 is a base value). 
(2) The value of n! for arbitrary n is defined in terms of a smaller value of n which is 
closer to the base value 0. 
Accordingly, the definition is not circular, or, in other words, the function is well-defined. 
 
EXAMPLE :the 4! Can be calculated in 9 steps using the recursive definition . 

 
 
Fibonacci Sequence 
The Fibonacci sequence (usually denoted by F0, F1, F2, . . .) is as follows: 
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . 
That is, F0 = 0 and F1 = 1 and each succeeding term is the sum of the two preceding 
terms. For example, the next two terms of the sequence are 
34 + 55 = 89 and 55 + 89 = 144 
Fibonacci Sequence can be defined: 
(a) If n = 0, or n = 1, then Fn = n. 
(b) If n > 1, then Fn = Fn-2 + Fn-1. 
Where : The base values are 0 and 1, and the value of Fn is defined in terms of smaller 
values of n which are closer to the base values. 
Accordingly, this function is well-defined. 
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Vectors:- 

vector, u, means a list (or n-tuple) of numbers: 

u = (u1, u2, . . . , un) 
 
whereui are called the components of u. If all the ui are zero i.e., ui = 0, then u is called 
the zero vector. 
 
Given vectors u and v are equal i.e., u = v, if they have the same number of components 
and if corresponding components are equal.  

Addition of Two Vectors 

If two vectors, u and v, have the number of components, their sum, u + v, is the vector 
obtained by adding corresponding components from u and v. 

        u + v = (u1, u2, . . . , un) + (v1, v2, . . . , vn)  
                 = (u1 + v1 + u2 + v2, . . . , un + vn) 
 
Definition.Scalar multiplication of a vector y = (y1, y2, . . . ,yk) and a scalar _ is defined 
to be a new 
vectorz = (z1, z2, . . . , zk), written z = _y or z = y_, whose components are given by z j = 
_y j . 
Definition.Vector addition of two k-dimensional vectors x = (x1, x2, . . . ,xk) and y = (y1, 
y2, . . . , yk) 
is defined as a newvector z = (z1, z2, . . . , zk), denoted z = x+y, with components given by 
z j = x j+y j . 
As an example of scalar multiplication, consider 
4(3, 0,−1, 8) = (12, 0,−4, 32),  
and for vector addition, 
(3, 4, 1,−3) + (1, 3,−2, 5) = (4, 7,−1, 2). 
Using both operations, we can make the following type of calculation: 
(1, 0)x1 + (0, 1)x2 + (−3,−8)x3 = (x1, 0) + (0, x2) + (−3x3,−8x3) 
= (x1 −3x3, x2 −8x3). 
It is important to note that y and z must have the same dimensions for vector addition and 
vector 
comparisons. Thus (6, 2,−1) + (4, 0) is not defined, and (4, 0,−1) = (4, 0) makes no sense 
at all. 

Matrix 

A matrix is a rectangular array of numbers or other mathematical objects for which 
operations such as addition and multiplication are defined. Most commonly, a matrix 
over a fieldF is a rectangular array of scalars each of which is a member of F. Most of 
this article focuses on real and complex matrices, i.e., matrices whose elements are real 



 

numbers or complex numbers, respectively. More general types of entries are discussed 
below. For instance, this is a real matrix:

The numbers, symbols or expressions in the matrix are called its 
The horizontal and vertical lines of entries i
respectively. 

Size 

The size of a matrix is defined by the number of rows and columns that it contains. A 
matrix with m rows and n columns is called an 
and n are called its dimensions. For example, the matrix 

Matrices which have a single row are called 
column are called column vectors
columns is called a square matrix
(or both) is called an infinite matrix
programs, it is useful to consider a matrix with no 
matrix. 

Name Size Example 

Row 
vector  

1 × n 
 

A matrix with one row, sometimes used to represent a 
vector
 

Column 
vector  

n × 1 
 

 

A matrix with one column, sometimes used to represent a 
vector

Square 
matrix  

n × n 

 

A matrix with the same number of rows and columns, 
sometimes used to represent a 
vector space to i
shearing

Notation 

Matrices are commonly written in 
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, respectively. More general types of entries are discussed 
. For instance, this is a real matrix: 

 

The numbers, symbols or expressions in the matrix are called its entries or its elements
The horizontal and vertical lines of entries in a matrix are called rows and columns

The size of a matrix is defined by the number of rows and columns that it contains. A 
columns is called an m × n matrix or m-by-n matrix, while 

. For example, the matrix A above is a 3 × 2 matrix.

Matrices which have a single row are called row vectors, and those which have a single 
column vectors. A matrix which has the same number of rows and 

square matrix. A matrix with an infinite number of rows or columns 
infinite matrix. In some contexts, such as computer algebra 

programs, it is useful to consider a matrix with no rows or no columns, called an 

Description 
 

A matrix with one row, sometimes used to represent a 
vector 
 

A matrix with one column, sometimes used to represent a 
vector 

A matrix with the same number of rows and columns, 
sometimes used to represent a linear transformation
vector space to itself, such as reflection, rotation
shearing. 

Matrices are commonly written in box brackets or large parentheses: 

, respectively. More general types of entries are discussed 

elements. 
columns, 

The size of a matrix is defined by the number of rows and columns that it contains. A 
matrix, while m 

 matrix. 

, and those which have a single 
. A matrix which has the same number of rows and 

finite number of rows or columns 
. In some contexts, such as computer algebra 

rows or no columns, called an empty 

A matrix with one row, sometimes used to represent a 

A matrix with one column, sometimes used to represent a 

A matrix with the same number of rows and columns, 
linear transformation from a 

rotation, or 



 

The specifics of symbolic matrix notation vary widely, with some prevailing trends. 
Matrices are usually symbolized using 
above), while the corresponding 
or a1,1), represent the entries. In addition to using upper

Matrix addition 

Two matrices must have an equal number of rows and columns to be added. The sum of two 
matrices A and B will be a matrix which has the same number of rows and columns as do 
B. The sum of A and B, denoted A 
B 

For example: 

We can also subtract one matrix from another, as long as they have the same dimensions. 
A − B is computed by subtracting corresponding elements of 
dimensions as A and B. For example:
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The specifics of symbolic matrix notation vary widely, with some prevailing trends. 
Matrices are usually symbolized using upper-case letters (such as A in the examples 
above), while the corresponding lower-case letters, with two subscript indices (e.g., 

), represent the entries. In addition to using upper-case letters to symbolize matrices 

Two matrices must have an equal number of rows and columns to be added. The sum of two 
will be a matrix which has the same number of rows and columns as do 

 + B, is computed by adding corresponding elements of 

 

We can also subtract one matrix from another, as long as they have the same dimensions. 
by subtracting corresponding elements of A and B, and has the same 

. For example: 

 

The specifics of symbolic matrix notation vary widely, with some prevailing trends. 
in the examples 

letters, with two subscript indices (e.g., a11, 
ymbolize matrices  

Two matrices must have an equal number of rows and columns to be added. The sum of two 
will be a matrix which has the same number of rows and columns as do A and 

, is computed by adding corresponding elements of A and 

 

We can also subtract one matrix from another, as long as they have the same dimensions. 
, and has the same 



 

 

 

 

 

Matrix multiplication 

Schematic depiction of the matrix product 

Multiplication of two matrices is defined if and only if the number of columns of the left 
matrix is the same as the number of rows of the right matrix. If 
B is an n-by-p matrix, then their 
are given by dot product of the corresponding row of 
B: 

where 1 ≤ i ≤ m and 1 ≤ j ≤ p. For example, the underlined entry 
calculated as (2 × 1000) + (3 × 

Matrix multiplication satisfies the rules (
AC+BC as well as C(A+B) = CA
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Schematic depiction of the matrix product AB of two matrices A and B. 

of two matrices is defined if and only if the number of columns of the left 
matrix is the same as the number of rows of the right matrix. If A is an m-by-n 

matrix, then their matrix productAB is the m-by-p matrix whose entries 
of the corresponding row of A and the corresponding column of 

. For example, the underlined entry 2340 in the product is 
 × 100) + (4 × 10) = 2340: 

 

Matrix multiplication satisfies the rules (AB)C = A(BC) (associativity), and (A
CA+CB (left and right distributivity), whenever the size of 

of two matrices is defined if and only if the number of columns of the left 
 matrix and 

matrix whose entries 
and the corresponding column of 

, 

 in the product is 

A+B)C = 
), whenever the size of 



 

the matrices is such that the various products are defined.
defined without BA being defined, namely if 
respectively, and m ≠ k. Even if both products are defined, they need not be equal, i.e., 
generally 

AB ≠ BA, 

i.e., matrix multiplication is not 
complex) numbers whose product is independent of the order of the factors. An example 
of two matrices not commuting with each other is:

whereas 

Besides the ordinary matrix multiplication just described, there exist other less frequently 
used operations on matrices that can be considered forms of multiplication

transpose of a matrixA is another matrix 
any one of the following equivalent actions:

• reflect A over its main diagonal
obtain AT 

• write the rows of A as the columns of 
• write the columns of A as the rows of 

Formally, the ith row, jth column element of 

 

If A is an m × n matrix then AT 

Examples 
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the matrices is such that the various products are defined.[14] The product AB may be 
being defined, namely if A andB are m-by-n and n-by-k matrices, 

. Even if both products are defined, they need not be equal, i.e., 

matrix multiplication is not commutative, in marked contrast to (rational, real, or 
complex) numbers whose product is independent of the order of the factors. An example 

two matrices not commuting with each other is: 

 

 

Besides the ordinary matrix multiplication just described, there exist other less frequently 
used operations on matrices that can be considered forms of multiplication 

is another matrix AT (also written A′, Atr, tA or At) created by 
any one of the following equivalent actions: 

main diagonal (which runs from top-left to bottom-right) to 

as the columns of AT 
as the rows of AT 

th column element of AT is the jth row, ith column element of 

 is an n × m matrix. 

may be 
matrices, 

. Even if both products are defined, they need not be equal, i.e., 

in marked contrast to (rational, real, or 
complex) numbers whose product is independent of the order of the factors. An example 

Besides the ordinary matrix multiplication just described, there exist other less frequently 

) created by 

right) to 

th column element of A: 



 

 

Graphs: 
A graph G consists of two things:
(i) A set V whose elements are vertices, points or nodes.
(ii) A set E of unordered pairs of distinct vertices called edges.
We denote such a graph by G(V,E) .
Vertices u and v are said to be adjacent if there is an edge {u,v}.
Graphs are the most useful model with computer science such as logical design, formal 
languages, communication network, compiler writing and retrieval.
G(V,E) 
V = {V1, V2, V3,V4} 
E = {e1, e2, e3, e4} 
E = {(v1,v2),(v2,v3),(v3,v1),(v3,v4

For example we have in (a) the graph G(V,E) where (i) V consists of four vertices A, B, 
C, D ; and (ii) E consists of five edges e
e5 = {B, D}. 
The diagram in (b) is not a graph but a multigraph . The reason is that e
multiple edges, i.e. edges connecting the same endpoints, and e
whose endpoints are the same vertex. The definition of a graph does not permit
multiple edges or loops. 
Let G(V,E) be a graph. Let V’ be a subset of V and let E’ be subset of E whose end
points belong to V’. Then G(V’,E’) is a graph and is called a subgraph of G(V,E). If E’ 
contains all the edges of E whose endpoints lie in V’,
subgraph generated by V’. 
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of two things: 
(i) A set V whose elements are vertices, points or nodes. 
(ii) A set E of unordered pairs of distinct vertices called edges. 
We denote such a graph by G(V,E) . 
Vertices u and v are said to be adjacent if there is an edge {u,v}. 

the most useful model with computer science such as logical design, formal 
languages, communication network, compiler writing and retrieval. 

4)} 

For example we have in (a) the graph G(V,E) where (i) V consists of four vertices A, B, 
C, D ; and (ii) E consists of five edges e1 ={A,B}, e2 = {B,C}, e3 = {C, D}, e4 = {A, C}, 

The diagram in (b) is not a graph but a multigraph . The reason is that e4 and e
multiple edges, i.e. edges connecting the same endpoints, and e6 is a loop, i.e. an edge 
whose endpoints are the same vertex. The definition of a graph does not permit

Let G(V,E) be a graph. Let V’ be a subset of V and let E’ be subset of E whose end
points belong to V’. Then G(V’,E’) is a graph and is called a subgraph of G(V,E). If E’ 
contains all the edges of E whose endpoints lie in V’, then G(V’,E’) is called the 

the most useful model with computer science such as logical design, formal 

 

For example we have in (a) the graph G(V,E) where (i) V consists of four vertices A, B, 
= {A, C}, 

5 are 
 is a loop, i.e. an edge 

whose endpoints are the same vertex. The definition of a graph does not permit such 

Let G(V,E) be a graph. Let V’ be a subset of V and let E’ be subset of E whose end-
points belong to V’. Then G(V’,E’) is a graph and is called a subgraph of G(V,E). If E’ 

then G(V’,E’) is called the 
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Degree : 
The degree of a vertex v, written deg(v), is equal to the number of edges which are 
incident on v. since each edge is counted twice in counting the degrees of the vertices of a 
graph, we have the following result. 
Theorem: The sum of the degrees of the vertices of a graph is equal to twice the number 
of edges. 
 
 
For example, in the figure (a) we have 
deg(A) = 2, 
deg(B) = 3, 
deg(C) = 3, 
deg(D) = 2 

The sum of the degrees equals ten which, as expected, is twice the number of edges. 
A vertex is said to be even or odd according as its degree is an even or odd number. Thus 
A and D are even vertices whereas B and C are odd vertices. 
This theorem also holds for multigraphs where a loop is counted twice towards the degree 
of its endpoint. For example, in Fig (b) we have deg (D) = 4 since the edge e6 is counted 
twice; hence D is an even vertex 
A vertex of degree zero is called an isolated vertex. 

 

Connectivity 
A walk in a multigraph consists of an alternating sequence of vertices and edges of the 
form 
v0, e1,v1, e2, v2,……., en-1,vn-1,en,vn 

Length of walk: is the number n of edges. 
Closed walk: the walk is said to be closed if v0 = vn. Otherwise, we say that the walk is 
from v0 to vn. 
Trail: is a walk in which all edges are distinct. 
Path: is a walk in which all vertices are distinct. 
Cycle: is a closed walk such that all vertices are distinct except v1 = vn 

Example: Consider the following graph, then 
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(P4, P1, P2, P5, P1, P2, P3, P6) 
is a walk from P4 to P6. It is not a trail since the edge {P1,P2} is used twice. 
The sequence: (P4, P1, P5, P3, P5, P6) 
Is not a walk since there is no edge {P2, P6}. 
The sequence: (P4, P1, P5, P2, P3, P5, P6) 
Is a trail since no edge is used twice; but it is not a path since the vertex P5 is used twice. 
The sequence: (P4, P1, P5, P3, P6) 
Is a path from P4 to P6. 
The shortest path from P4 to P6 is (P4, P5, P6) which has length 2 (2 edges only) 
The distance between vertices u & v d(u,v) is the length of the shortest path 
d(P4,P6) = 2 

Connectivity, Connected Components 
A graph G is connected if there is a path between any two of its vertices. The graph in 
Fig.(4) is connected, but the graph in Fig. (5) is not connected since, for example, there is 
no path between vertices D and E. 
Suppose G is a graph. A connected subgraph H of G is called a connected component of 
G if H is not contained in any larger connected subgraph of G. It is clear that any graph G 
can be partitioned into its connected components. For example, the graph G in Fig. (5) 
has three connected components, the subgraphs induced by the vertex sets {A,C,D}, 
{E,F}, and {B}. 
The vertex B in Fig. (5) is called an isolated vertex since B does not belong to any edge 
or, in other words, deg(B) = 0 

 
Distance 
Consider a connected graph G. The distance between vertices u and v in G, written 
d(u,v),is the length of the shortest path between u and v . 
 

PlanarGraphs 

A graph G is planar if it can be drawn in the plane in such a way that no two 
edges meet each other except at a vertex to which they are incident. Any such 
drawing is called a plane drawing of G. 

  



 

For example, the graph K4 is planar, since it can be drawn in the plane without 
edges crossing. 

The three plane drawings of K

  

The five Platonic graphs are all planar.
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The three plane drawings of K4 are: 

 

The five Platonic graphs are all planar. 

 

is planar, since it can be drawn in the plane without 

 

 



 

  

  

On the other hand, the complete bipartite graph K
drawing of K3,3 contains at least one crossing. why? because K
which must appear in any plane drawing.

 

Graph coloring 

it is a special case of graph labeling
"colors" to elements of a graph subject to certain constraints. In its simplest form, it is a 
way of coloring the vertices of a graph such that no two adjacent 
color; this is called a vertex coloring
edge so that no two adjacent edges share the same color, and a 
graph assigns a color to each face or region so that no two faces that share a boundary 
have the same color. 

Vertex coloring is the starting point of the subject, and other coloring problems can be 
transformed into a vertex version
vertex coloring of its line graph, and a face coloring of a 
coloring of its dual. However, non
as is. That is partly for perspective, and partly because some p
non-vertex form, as for instance is edge coloring.

Tree: 
Tree is a connected graph with no cycle
Theorem: 
Let G be graph with more than one vertex. Then the following are equivalence:
1) G is a tree. 
2) G is cycle-free with (n-1) edges.
3) G is connected and has (n-1) edges. (i.
is not connected) 
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On the other hand, the complete bipartite graph K3,3 is not planar, since every 
contains at least one crossing. why? because K3,3 has a cycle 

st appear in any plane drawing. 

graph labeling; it is an assignment of labels traditionally called 
subject to certain constraints. In its simplest form, it is a 

way of coloring the vertices of a graph such that no two adjacent vertices share the same 
vertex coloring. Similarly, an edge coloring assigns a color to each 

edge so that no two adjacent edges share the same color, and a face coloring of a planar 
graph assigns a color to each face or region so that no two faces that share a boundary 

Vertex coloring is the starting point of the subject, and other coloring problems can be 
transformed into a vertex version. For example, an edge coloring of a graph is just a 

, and a face coloring of a plane graph is just a vertex 
. However, non-vertex coloring problems are often stated and studied 

. That is partly for perspective, and partly because some problems are best studied in 
vertex form, as for instance is edge coloring. 

 

Tree is a connected graph with no cycle 

Let G be graph with more than one vertex. Then the following are equivalence:

) edges. 
) edges. (i.e: if any edge is deleted then the resulting graph 

is not planar, since every 
has a cycle 

; it is an assignment of labels traditionally called 
subject to certain constraints. In its simplest form, it is a 

share the same 
assigns a color to each 

of a planar 
graph assigns a color to each face or region so that no two faces that share a boundary 

Vertex coloring is the starting point of the subject, and other coloring problems can be 
. For example, an edge coloring of a graph is just a 

is just a vertex 
vertex coloring problems are often stated and studied 

roblems are best studied in 

Let G be graph with more than one vertex. Then the following are equivalence: 

e: if any edge is deleted then the resulting graph 
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Rooted tree: 
A rooted tree R consists of a tree graph together with vertex r called the root of the tree. 

 

Height or depth: The number of levels of a tree 
Leaves: The vertices of the tree that have no child (vertices with degree one) 
Order Rooted Tree (ORT): Whenever draw the digraph of a tree, we assume some 
ordering at each level, by arranging children from left to right. 

 

Degree of tree: The largest number of children in the vertices of the tree 
Binary tree : every vertex has at most 2 children 
Any algebraic expression involving bi

nary operations +, -, ×, ÷ can be represented by an order rooted tree (ORT) 
the binary rooted tree for a+b is : 

 

The variable in the expression a & b appear as leaves and the operations appear as the 
other vertices. 

Polish notation: 
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The polish notation form of an algebraic expression represents the expression 
unambiguously with out the need for parentheses 
 
1) a + b (infix) 
2) + a b (prefix) 
3) a b + (postfix) 
 
example 1:  
infix polish notation is : a + b      
prefix polish notation : + a b 
 
example 2: 
infix polish notation is : a + 2 * b 
prefix polish notation : + a * 2 b 

 

example 3: 
infix polish notation is : 2 * a + b 
prefix polish notation : + * 2 a b 

 

example 4: 
infix polish notation is : (a – b) / (c * d ) + e) 
prefix polish notation : / - a b + * c d e 
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example 5: 
infix polish notation is : (2 * x + y) (5 * a – b )^2 
prefix polish notation : * + * 2 x y ^ - * 5 a b 2 

 

example 6:  
infix polish notation is : (a + 2 * b) ( 2 * a + b^2) 
prefix polish notation : * + a * 2 b + * 2 a ^ b 2 

 



 

Directed graph 

It is a graph, or set of vertices connected by edges, where the edges have a direction 
associated with them. In formal terms, a directed graph is an ordered pair G = (V, A) 
(sometimes G = (V, E)) where 

• V is a set whose elements
• A is a set of ordered pairs

simply edges with the corresponding set named E instead of A), directed arcs, or 
directed lines. 

It differs from an ordinary or undirected graph
unordered pairs of vertices, which are usually called edges, arcs, or lines

A directed graph is called a simple digraph if it has no multiple arrows (two or more 
edges that connect the same two vertices in the same direction) and no loops (edges that 
connect vertices to themselves). A directed graph is called a 
multidigraph if it may have multiple arrows (and sometimes loops). In the latter case the 
arrow set forms a multiset, rather than a set, of ordered pairs of vertices.
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of vertices connected by edges, where the edges have a direction 
associated with them. In formal terms, a directed graph is an ordered pair G = (V, A) 

elements are called vertices, nodes, or points; 
ordered pairs of vertices, called arrows, directed edges (sometimes 

simply edges with the corresponding set named E instead of A), directed arcs, or 

undirected graph, in that the latter is defined in terms of 
of vertices, which are usually called edges, arcs, or lines. 

A directed graph is called a simple digraph if it has no multiple arrows (two or more 
edges that connect the same two vertices in the same direction) and no loops (edges that 
connect vertices to themselves). A directed graph is called a directed multigraph
multidigraph if it may have multiple arrows (and sometimes loops). In the latter case the 

, rather than a set, of ordered pairs of vertices. 

 

 

of vertices connected by edges, where the edges have a direction 
associated with them. In formal terms, a directed graph is an ordered pair G = (V, A) 

of vertices, called arrows, directed edges (sometimes 
simply edges with the corresponding set named E instead of A), directed arcs, or 

, in that the latter is defined in terms of 

A directed graph is called a simple digraph if it has no multiple arrows (two or more 
edges that connect the same two vertices in the same direction) and no loops (edges that 

directed multigraph or 
multidigraph if it may have multiple arrows (and sometimes loops). In the latter case the 



 

Finite state machines (FSM):
We may view a digital computer as a machine which is in a certain “internal state” at any 
given moment. The computer “reads” an input symbol, and then “prints” an output 
symbol and changes its “state”. The output symbol depen
and the internal state of the machine, and the internal state of the machine depends solely 
upon the preceding state of the machine and the preceding input symbol.

A finite state machine FSM (or complete sequential machine) 
(1) A finite set A of input symbols.
(2) A finite set S of internal states.
(3) A finite set Z of output symbols.
(4) A next-state function f 
f: S x A → S 
(5) An output function g 
g: S x A→ Z 
This machine M is denoted by M = (A, 

Example 1: The following defines a FSM with two input symbols, three internal states 
and three output symbols: 
(1) A = {a, b} 
(2) S = {q0, q1, q2} 
(3) Z = {x, y, z} 
(4) Next-state function f: S x A→
f(q0, a) = q1f(q1,a) = q2f(q2,a) = q
f(q0, b) = q2 f(q1, b) = q1 f(q2, b) = q
(5) Output function g: S x A → 
g(q0, a) = x g(q1,a) = x g(q2,a) = z
g(q0, b) = y g(q1, b) = z g(q2, b) = y
There are two ways of representing a fin
by a table called the state table 
graph called the state diagram 
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Finite state machines (FSM): 
We may view a digital computer as a machine which is in a certain “internal state” at any 
given moment. The computer “reads” an input symbol, and then “prints” an output 
symbol and changes its “state”. The output symbol depends solely upon the input symbol 

chine, and the internal state of the machine depends solely 
upon the preceding state of the machine and the preceding input symbol. 

A finite state machine FSM (or complete sequential machine) M consists of five things:
) A finite set A of input symbols. 
) A finite set S of internal states. 
) A finite set Z of output symbols. 

This machine M is denoted by M = (A, S, Z, q0, f, g) where q0 is the initial state.

The following defines a FSM with two input symbols, three internal states 

→ S defined by : 
,a) = q0 

, b) = q1 
 Z defined by 

,a) = z 
, b) = y 

There are two ways of representing a finite state machine in compact form. One way is 
state table of machine, and the other way is by a labeled directed 

state diagram of the machine. 

We may view a digital computer as a machine which is in a certain “internal state” at any 
given moment. The computer “reads” an input symbol, and then “prints” an output 

ds solely upon the input symbol 
chine, and the internal state of the machine depends solely 

M consists of five things: 

is the initial state. 

The following defines a FSM with two input symbols, three internal states 

ite state machine in compact form. One way is 
of machine, and the other way is by a labeled directed 
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Example 2: 
If the input string: abaab ,is given to the machine in example (1), and suppose q0 is the 
initial state of the machine. 
We calculate the string of states and the string of output symbols from the state diagram 
by beginning at the vertex q0 and following the arrows which are labeled with the input 
symbols: 

 

This yields the following strings of states and output symbols: 
State : q0 q1q1 q2 q0 q2 
Output symbols : x z x z y 
 

 


