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Introduction

The study of the discrete structures used to represent discrete objects
« Many discrete structures are built using sets

Sets = collection of objects

Examples of discrete structures built with the help of sets:

» Combinations

* Relations

* Graphs

Set

A set isa (unordered) collection of objects. Theseobjects are sometimes called e ements
or member s of the set. The ordering of the elementsis not important and repetition of
elementsisignored, for example{1, 3,1, 2, 2,1} ={1, 2, 3}.

One usually uses capital letters, A,B,X, Y, ..., to denote sets, and lowercase letters, a, b,
X,Y, ..., todenote elements of sets.

Below you'll see just a sampling of items that could be considered as sets:

Theitemsin astore
The English a phabet
Even numbers

A set could have as many entries as you would like. It could have one entry, 10 entries,
15 entries, infinite number of entries, or even have no entries at all! For example, in the
above list the English alphabet would have 26 entries, while the set of even numbers
would have an infinite number of entries.

Each entry in a set isknown as an element or member

Sets are written using curly brackets "{" and "}", with their elements listed in between.
For example the English alphabet could be written as



{ab,c,d,ef,g,h,i,jk,lmn,op,q,rstuv,wxy,z}, and even numbers could be
{0,2,4,6,8,10,...}

Note: the dots at the end indicating that the set goes on infinitely .

Principles:
€belong to
¢not belong to
C subset

cproper subset, For example, {a, b} isaproper subset of {a, b, c}, but {a, b, c} isnot a
proper subset of {a, b, c}.

Znot subset

So we could replace the statement "ais belong to the aphabet” witha {alphabet} and
replace the statement "3 is not belong to the set of even numbers' with3 {Even
numbers}

Now if we named our sets we could go even further. Give the set consisting of the
alphabet the name A, and give the set consisting of even number s the name E.

We could now write

ac A

and 3¢ E.

Problem

LeteA={23,45 andC={123,..., 8 9}, Show that A isaproper subset of C.
Answer

Each element of A belongsto C so AC C. Ontheother hand, 1 € Chut 1 ¢ A. Hence A #
C. Therefore A is aproper subset of C.

There are three ways to specify a particular set:

1) By list its members separated by commas and contained in braces{ }, (if itis
possible), for example, A= {a,e,i,o,u}



2) By state those properties which characterize the elements in the set, for example,
A={x:x isaletter in the English alphabet, x is a vowel}

3) Venn diagram: ( A graphical representation of sets).

Example (1)

A={x:x isaletter in the English alphabet, x is a vowel}
ec A (eisbelongto A)

fe A (fisnot belongto A)

Example (2)

X isthe set{1,3,5,7,9}

3eX

and4 ¢ X

Example (3)

Lt E={x|x2-3x+2=0} — (X-2)(x-1)=0 - x=2 & x=1
E={21},and2e E

Universal set, empty set:

In any application of the theory of sets, the members of al sets under investigation
usually belong to some fixed large set called the universal set. For example, in human



population studies the universal set consists of all the people in the world. We will let the
symbol U denotes the universal set.

The set with no elements is called the empty set or null set and is denoted by @ or {}

Subsets:

Every element in aset A isaso an element of aset B, then A is called asubset of B. We
also say that B contains A. This relationship iswritten:

AcBorBoA

If A isnot asubset of B, i.e. if at |east one element of Adose not belong to B,
wewrite A ¢ B.

Example 4.

Consider the sets. A ={1,3,4,5,8,9} B={1,2,3,5,7} and C ={1,5}

Then Cc A and C c B since 1 and 5, the element of C, are also members of A and B.

But B ¢ A since some of its elements, e.g. 2 and 7, do not belong to A. Furthermore,
since the elements of A,B and C must also belong to the universal set U, we have that U
must at least the set {1,2,3,4,5,7,8,9}.

Al B:{" xl Ap xI B
AEB :{$xI Abutxl B
" Forall X

$: There exists Ji¥lsleas 5

The notion of subsetsis graphically illustrated below:



e
>
\___ B

A isentirely within B so Al B.

—C

A and B aredisjoint or (A C B = /) sowe could write A E B and B E A.

Set of numbers:
Several sets are used so often, they are given special symbols.

N = the set of natural numbers or positive integers

N = {D,1,2,3,...}

Z =theset of al integers. ...,—2,-1,0,1, 2, ...

Z=Nu{..,—-2,-1}

Q = the set of rational numbers

Q=Zu{...,-1/3,-1/2,1/2,1/3,...,2/3,2/5,.. .}
WhereQ={ a@b:a,beZ, b=+ 0}
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R = the set of real numbers
R=QuU{...,—7,—V2,V2r,. .}
C = the set of complex numbers
C=RU{,1+i1—iV2+ui,...}
WhereC={ x +iy ;x,y1 R; i =01}

Observethat N1 Z1 QI RI C.

Theorem 1:
For any set A, B, C:
1- £1 Al U.

2-Al A.
3-IfAl BandBI C,thenAl C.

4-A=Bifandonlyif Al BandB1 A.
Set operations:

A issaid to be asubset of B if and only if every element of A isaso an
element of B,in which case wewrite A € B. A isastrict subset of B if A isa
subset of B and A isnot equal to B, which is denoted by Al B. For example,
{4,23} 1 {2,4,17, 23} {2, 4,17, 23}.

Two sets A and B are considered equal if and only if they have the same
elements.Thisisdenoted by A = B. Moreformally, A =B if and only if A
cB and B cA.For two sets A and B, the operations of union, intersection,
difference ,complement andSymmetric differencearedefined as follows:

1) UNION:
The union of two sets A and B, denoted by AE B, isthe set of al elements
whichbelong to A or to B;

AEB={x:xT Aorxl B}



ExampleA={1,2,3,4,5} B={5,7,9,11,13}
AE B={1234,5,791113}

2) INTERSECTION

The intersection of two sets A and B, denoted by AN B, isthe set of elements
which belong to both Aand B;

ACB={x:xT AandxT B}.
Example 1A={1,3,5,7,9} B={2,3,4,5,6}

The elements they have in common are 3 and 5
A CB={35}

Example 2A={ The English alphabet} B={vowels}

So A C B ={vowels}
Example 3A={1,2,3,4,5} B={6,7,8,9,10}

In thiscase A and B have nothing in common.
ACB=A&

3) THE DIFFERENCE:
The difference of two sets A\B or A-B is those elements which belong to A
butwhich do not belong to B.

AB={x:xTA,xI B}

4) COMPLEMENT OF SET:
Complement of set Aor A, isthe set of elements which belong to U but
which do not belong to A .

A°={x:x1 UxI A}

Example:

let A={1,2,3} B={3,4} U={1,2,3,4,5,6}
Find:

AEB={123 4



ACB={3}
A-B={12
A°={4,5, 6}

5) Symmetric difference of sets
The symmetric difference of sets A and B, denoted by A @ B, consists of
those elements which belong to A or B but not to both. That is,

A®B=(AEB\ANB)orA®B=(A\B)E (B\A)

Example:

SupposeU =N={1, 2, 3,...} istheuniversal set.

Let A={1,234},B={3,4,56,7},C={2,3,8 9},E={2,4,6,8,.. .}
Then:

A°={5,6,7,...},B°={1,2,8,9,10,...},C ={14,56,7,10,...}
E={1,3,5,7,..}

AB={1,2},A\C={1,4}, B\C={4,5 6,7}, AE={1, 3},
B\A={56,7},C\A={8 9}, C\B={2, 8,9, E\A={6,8, 10,12, ..}.

Furthermore:
A®B=(AB)E (B\A)={1,2,5,6,7},B® C={2,4,5,6,7,8, 9},
A® C=(A\C)E (B\C)={1,4,89,A®@E={1,3,6,8,10, .. .}.

Theorem 2:
Al B,ACB=A,AE B=Bareequivalent

Theorem 3: (Algebra of sets)

Sets under the above operations satisfy various laws or identities which are
listed below:

1-AEA=A

ACA=A

2-(AE B)E C=AE (BE C) Associative laws
ACBCC=AC(BGCC)

3- A E B =B E A Commutativity

ACB=BCA



4-AE (BCC)=(AE B)C (AE C)Distributive laws
ACBEC)=(AC B)E(ACC)

5 A E /= A |dentity laws
ACU=A

6- A E U = U Ildentity laws
AC E=/E

7- (A°° = A Double complements

8 AE A°=U Complement intersections and unions
ACA‘ =&

-U‘=£&
A=U
10- (A E B)°= A°C B° De Morgan's laws
(A C B)=A°E B°
We discuss two methods of proving equations involving set operations. The
first isto break down what it means for an object x to be an element of each
side, and the second is to use Venn diagrams.
For example, consider the first of De Morgan's laws:
(A E B)’=A°C B®
We must prove:
1) (A E B)Yl A°C B°
2) A’C Bl (AE B)°
We first show that (A E B)I A°C B®

Let's pick an element at random x T (A E B)°. We don't know anything
about X, it could be a number, afunction. All we do know about X, is that:
xI (A E B)®, s0

xI AEB

Because that's what complement means. Therefore

xI Aandx]| B,
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by pulling apart the union. Applying complements again we get

xI Aandx T B°

Finally, if somethingisin 2 sets, it must be in their intersection, so
xI A°C B°

So, any element we pick at random from: (A E B)is definitely in, A°C B,
so by definition

(A E B A°C B°

Next we show that (A°C BY1 (A E B)°.

Thisfollows avery similar way. Firstly, we pick an element at random from
thefirst set, x I ( A°C B

Using what we know about intersections, that means

xI A®andxl B°

Now, using what we know about complements,

xI Aandxl B.

If something isin neither A nor B, it can't bein their union, so

xI A E B,And finally

\ xT (AEB)°

We have prove that every element of (A E B)° belongsto  A°C B°and that
every eement of  A°C B°belongsto(A E B)°. Together,

These inclusions prove that the sets have the same elements, i.e. that
(A E B)’=A°C B®

Power set

The power set of some set S, denoted P(S), isthe set of all subsets of S
(including Sitself and the empty set)

Examplel: Let A ={ 1,2,3}

Power set of set A =P(A)=[{1} {2} {3} .{1,2} {1,3} {2,3} .{} A]
Example 2: P({0,1})={{} {0} {1} {0,1}}

Classes of sets:
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Collection of subset of a set with some properties

Example: Suppose A ={ 1,2, 3} , let X bethe class of subsets of A which
contain exactly two elements of A. Then class

X=[{12 {13} {23}]

Cardinality

The cardinality of aset S, denoted ||, is ssimply the number of elements a set
has. So [{ a,b,c,d}| = 4, and so on. The cardinality of a set need not be finite:
some sets have infinite cardinality.

The cardinality of the power set

Theorem: If |A| = nthen |P(A)| = 2" (Every set with n elements has 2"
subsets)

Problem set

write the answers to the following questions.
1.K1,2,3,4,5,6,7,8,9,0} |

2.1P{1.2,3})]

3. P{0,1,2})

4. P({1})

Answers

1.10

2.2°=8

3.{{}.{0}{1}.{2}.{0,1}{0,1,2} {0,2} {1,2}}
4. {{}.{1}}

The Cartesian product
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The Cartesian Product of two setsisthe set of all tuples made from elements
of two sets. We write the Cartesian Product of two sets A and B as A x B. It
isdefined as:

AxB—{(ab)lacAand bs B}
It may be clearer to understand from examples;
10,1 x{2,3}1 = {(0,2},(0,3),(1,2), (1,3)}
(a,b} x {o,d} = {(a.<), (a,d), (b,¢), (b,d)}
{0,1,2} x {4,6} = {(0,4),(0,6),(1,4),(1,6),(2,4),(2,6)}

Example:
If A={1,2, 3} and B ={x, y} then

A.B={(1x),@Ly)(2x)(2Y) 3 x), 3y}
B.A={(x1),(x2),(x3)(y, 1), (y. 2, (y, 3)}

It isclear that, the cardinality of the Cartesian product of two sets A and B
is |Ax B| =[A]|B]

A Cartesian Product of two sets A and B can be produced by making tuples
of each element of A with each element of B; this can be visualized asagrid
(which Cartesian implies) or table: if,eg.,,A={ 0,1} andB ={ 2,3}, the
gridis

X A
0 1
B 2 0,2 | (1,2
3 (0,3) | (1,3

Problem set
Answer the following questions:

1.{2,3,4} x{1,3,4}
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2.{0,1} x{0,1}
3. K1,2,3} x{ 0} ]
4. (1,1} x{2,3,4}|
Answers
1.{(2,2),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)}
2.{(0,0),(0,1),(1,0),(1.1)}
3.3
4.6

Partitions of set:

Let S be any nonempty set. A partition (O ) of Sisasubdivision of Sinto
nonoverlapping, nonempty subsets. A partition of Sisacollection { Ai} of non-empty
subsets of S such that:

1) Ait A& wherei=1,23,......

2) Thesetsof {Ai } are mutually digoint

orAi N Aj = Ewherei ! .

3) UAi=S,where A1 E A2 E ... EA=S

The partition of aset into five cells, A1, A2,A3,A4,A5, can be represented by Venn
Diagram

Example 1.

let A={1,2,3n}

Al={1},A2={3,n},A3={2}

IMT={A1, A2, A3} isapartition on A because it satisfy the three above conditions.

Example 2 :

Consider the following collections of subsets of S={1,2,3,4,5,6,7,8,9}

() [{1.35}.{2,6},{4.89}]

(i) [{1,3,5}.{2,4,6,8} {5,7,9}]

(i) [{1,3,5} {2,4,6,8} { 7,9} ]

Then

() isnot apartition of Ssince 7 in S does not belong to any of the subsets.
(if) is not a partition of Ssince{1,3,5} and {5,7,9} are not digoint.

(iii) isapartition of S.

FINITE SETS, COUNTING PRINCPLE:
A set issaid to befinite if it contains exactly m distinct e ements where m denotes
some nonnegative integer. Otherwise, aset is said to beinfinite. For example, the
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empty set A and the set of letters of English alphabet are finite sets, whereas the set of
even positive integers, {2,4,6,.....}, isinfinite.

If aset A isfinite, welet n(A) or #(A) denote the number of elements of A.

Example: If A ={1,2,a,w} then

n(A) =#A)=|A|=4

Lemma: If A and B are finite sets and disjoint Then A E B isfinite set and:

n(A E B) =n(A) + n(B)

Theorem (I nclusion—-Exclusion Principle): Suppose A and B arefinite sets. Then
AE BandA N B arefiniteand

IAE B|=|A[+B|-|A C B

That is, we find the number of elementsin A or B (or both) by first adding n(A) and n(B)
(inclusion) and then subtracting n(A N B) (exclusion) since its elements were counted
twice.

We can apply this result to obtain asimilar formulafor three sets.

Corollary:

If A,B,C arefinite setsthen
IAEBEC|=|A|+[B|+|C|-|[ACB|-IACC|-BCC[+|ACBCC]|
Example (2) :

A={12,3}

B= {34}

C={5,6}

AEB E C={12345,6}
IAEB EC|=6

|A|=3,B|=2,|C|=2

ACB={3},|ACB|=1

AGCC={}.|IACC|=0

BCC={}.,IBCC|=0

ACB g:Cz{} ,JACBCC|=0
IAEBEC|=]|A|+B|+|[C|-|ACB|-IACC|-BCC|[+|ACBCC]|
AEBEC|=3+2+42-1-0-0+0=6

Example (2):

Suppose alist A contains the 30 students in a mathematics class, and alist B contains the
35 studentsin an English class, and suppose there are 20 names on both lists. Find the
number of students:

(@ only onlist A

(b) only on list B

() onlissAE B

Solution:

(@) List A has 30 names and 20 are on list B; hence 30 — 20 = 10 names are only on list
A.

(b) Similarly, 35 — 20 = 15 are only on list B.

(c) We seek n(A E B). By inclusion—exclusion,

n(A E B) =n(A) + n(B) — n(A N B) =30+ 35— 20 = 45.

Example (3):
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Suppose that 100 of 120 computer science students at a college take at least one of
languages. French, German, and Russian and:

65 study French (F).

45 study German (G).

42 study Russian (R).

20 study French & German F C G.

25 study French & Russian FC R.

15 study German & Russian G C R.

Find the number of students who study:

1) All threelanguages (FC G C R)

2) The number of studentsin each of the eight regions of the Venn diagram

/Ny

IFE GER|=|F+IG|+RI-IFCG|-FCRI-[GCR|+|[FCGCR|
100=65+45+42-20-25-15+|FC GC R|
100=92+|FC GCR|

\ |F € G C R| = 8 students study the 3 languages
20-8=12(FCG)-R

25-8=17(FCR)-G

15-8=7(GCR)-F

65— 12 — 8 — 17 = 28 students study French only
45 — 12 — 8 7 = 18 students study German only

42 — 17 — 8 7 = 10 students study Russian only
120 - 100 = 20 students do not study any language

20

Relations
Binary relation:
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There are many relations in mathematics :"lessthan” , "isparallel to ","is a subset of",
etc. These relations consider the existence or nonexistence of a certain connection
between pairs of objects taken in a definite order. We define arelation ssmply in terms of
ordered pairs of objects.

Product sets:

Consider two arbitrary sets A and B. The set of all ordered pairs (a,b) whereal A and
bl B iscalled the product, or cartesian product, of A and B.

AxB={(ab):a Aandbl B}

Example: Let A ={1,2} and B ={a,b,c} then

A xB={(13), (1b),(1,0).(2,8),(2,b),(2,)}

Also, A xA={(1,1),(1,2),(21), (2 2}

- The order in which the sets are considered isimportant, so AxB # B xA.

Let A and B be sets. A binary relation, R, from A to B isasubset of AxB. If (x,y) T R, we
say that x is R-related to y and denote this by xRy

if )x,y) I R, we write x

y and say that x isnot R-related to y .

if Risarelationfrom A to A ,i.e. Risasubset of A x A, then we say that R isarelation
onA.

The domain of arelation R isthe set of all first elements of the ordered pairs which
belong to R, and the range of R isthe set of second elements.

Example 1.

Let A={1,2, 3,4}. Definearelation R on A by writing (x,y) T Rif x<y. Then
R={(1,2),(173),(14),(273).(24), 3 4}

Example 2:

let A={123} andR={(1,2),(1,3),(3,2)}. Then Risarelation on A sinceit is a subset
of AxA with respect to this relation:

1R2,1R3,3R2but (1,1)| R& (2,1)I R

Thedomainof Ris{1,3} and

Therange of Ris{2,3}

Example 3:

Let A={1,2, 3}. Definearelation R on A by writing (x,y) T R, such that &b, list the
element of R

aRb«— &b, abl A

\' R={(11),(23), (2,2), (3,2), (3,2), (3,3)}.

Example 4:
A relation on the set Z of integersis “m divides n.” A common notation for this relation
isto write mjn when m divides n. Thus 6 | 30 but 7* 25.

Representation of relations:

1) By language
2) By ordered pairs
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3) By arrow form
4) By matrix form
5) By coordinates
6) By graph form

Example:
Let A ={1,2,3}, therelation R on A such that: aRb « a>b; abl A

1) By language:
R={(ab) : abl A and aRb « a>b}

2) By ordered pairs
R={(21).31).3.2)}

3) By arrow form

4) By matrix form

1 2 3
1 0 0 0
2 1 0 0
311 1 0

5) By coordinates
!

3 L
2 1
1

1 k4 1

6) By graph form
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TYPESOF RELATIONS:
Propertiesof relations

Let R bearelation ontheset A
1) Reflexive: Risreflexiveif : " al A® aRaor(aal R;" a bl A..ThusRisnot
reflexiveif there existsal A suchthat (a, a1 R.

2) Symmetric :aRb® bRa" abl A.if whenever (a, b) ERthen (b, a) ER.
Thus Ris not symmetric if there existsa, b €A such that (a, b) ERbut (b, a) | R.

3) Transitive :aRbUbRc® aRc. that is, if whenever (a, b), (b, ¢) €R
then(a, ¢) R Thus Risnot transitive if thereexist a, b, c R such that (a, b), (b, ¢) R
but (a,c) T R

4) Equivaencerelation : it is Reflexive & Symmetric & Transitive. That is, Risan
equivalence relation on Sif it has the following three properties:

a- Foreverya €S aRa.

b- If aRb, then bRa.

c- If aRband bRc, then aRc.

5) Irreflexive:" al A (a1 R

6) AntiSymmetric : if aRb and bRa® a=b
therelations? ,£ and | are antisymmetric

Example5:

Consider therelation of C of set inclusion on any collection of sets:

1) AT Aforanyset,sol isreflexive

2)A1l BdosenotimplyBl A,sol isnotsymmetric

3)IfAl BandBi CthenAl C,sol istransitive

4)1 isreflexive, not symmetric & transitive, so 1 is not equivalence relations
5)A1 A,sol isnot Irreflexive

6)IfAl BandBIl AthenA=B,sol isanti-symmetric

Example6:
If A={1,23} and R={(1,1),(1,2),(2,1),(2,3)} Is R equivalence relation ?
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1) 2isinAbut (2,2) | R, soRisnot reflexive

2)(2,3)1 Rbut(3,2)1 R, soRisnot symmetric

3)(1,2)T Rand(2,3)T Rbut(1,3)1 R, soRisnot transitive
So Ris not Equivalence relation

Example 7 :

What is the properties of the relation =?

1) a=afor any elemental A, so = isreflexive

2) If a=bthenb =g, so =issymmetric

3) If a=band b= cthena=c, so=istransitive

4) = is (reflexive + symmetric + transitive), so = is equivaence
5) a=a, so =isnot Irreflexive

6) If a=band b =athen a= Db, so =isanti-symmetric

Remark:

The properties of being symmetric and being ant symmetric are not negatives of each
other. For example, therelation R= {(1, 3), (3, 1), (2, 3)} isneither symmetric nor
antisymmetric. On the other hand, therelation R= {(1, 1), (2, 2)} isboth symmetric and
antisymmetric.

-Reflexive Closures

Let Rbe arelation on aset A. Then:

RE {(a, a)|al A} isthereflexive closure of R. In other words, r eflexive(R) is obtained
by simply adding to R those elements (a, a) in the diagonal which do not already belong
toR.

-Symmetric Closures
RE R-1isthe symmetric closure of R. in other words, symmetric(R) is obtained by
adding to Rall pairs (b, a) whenever (a, b) belongsto R.

EXAMPLE :

Consider therelation R={(1, 1), (1, 3), (2, 4), (3, 1), (3, 3), (4, 3)} ontheset A={1, 2,
3,4}.Then

reflexive(R) = RE {(2, 2), (4, 4)} and

symmetric(R) = RE {(4, 2), (3, 4)}

-Transitive Closure
R* isthetransitive closure of R, where:
R*=RE R2E R3E ....E Rnand R2 = R'R and Rn= Rn—1°R

Theorm: Suppose Aisafinite set with n elements and Let R be arelation on aset A with
n elements. Then : transitive(R) =RE R2E R3E ....E Rn

EXAMPLE :
Consider therelation R={(1, 2), (2, 3), (3, 3)} on A={1, 2, 3}. Then:
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R =RR={(1 3), (2 3), (3, 3)} and
R =R-R={(1, 3), (2 3), (3, 3)} then
transitive(R) = {(1, 2), (2, 3), (3, 3), (1, 3)}

Inversereations:

R'={(ba): (ab)1 R}

Example1:

Let R be thefollowing relation on A ={1,2,3}
R={(12),(1,3),(2.3)}

\ R'={(2,1),(31).,(32)}

Thematrix for R :

0 1 1

MR = 0 0 1

0 0 0

And
1 0 0 0
ME- —

1 0 0
1 1 0

MR is the transpose of matrix R

Composition of relations:

Let A, B, Chesetsand let :

R:A® B(RI A" B)

S:B® C(SI B"Q)

Thereisarelation from A to C denoted by

R ° S (compositionof RandS): A® C
R°S={(ac):$bl Bforwhich(ab)l Rand(bc)l S}

Example: let A ={1,2,3,4}
B={ab,cd}

C={xy,2}
R={(1,a),(2,d),(3,8),(3,d).(3,0)}
S={(bx),(b.2),(c,y).(d,2)}
FindR°S?

Solution :

1) Thefirst way by arrow form
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R S

Thereis an arrow (path) from 2 to d which is followed by an arrow fromd to z
2Rd and dSzb 2(R° S) z

and 3(R-S)x and 3(R-S)z

so R ° S={(3x),(3,2),(2,2)}

2) The second way by matrix:

a b e d azzz
1 1 0o 0 O MS—b 1 0 1
MR_2[3!(3!01 ¢l 0 1 0
311t 1 0 1 dlo o 1
4|10 0 0 0
R°S=MR.MS=
X ¥ =z
110 0 0O
2|10 0 1
3|1 0 2
4]0 0 0

R°S={(2,2),(3x),(3,2)}

Theorem 2.1:

Let A, B, C and D be sets. Suppose R isarelation from A to B, Sisarelation from B to
C,andT isarelation from C to D. Then

(ReS)T=R-(S°T)

n-ARY RELATIONS

All the relations discussed above were binary relations. By an n-ary relation, we mean a
set of ordered n-tuples. For any set S, a subset of the product set Snis called an n-ary
relation on S In particular, asubset of S3iscaled aternary relationon S,
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EXAMPLE
(@) Let L be alinein the plane. Then “betweenness” isaternary relation R on the points
of L; thatis, (a, b,c) T R, if bliesbetween a andcon L.

(b) The equation x2 +y2 +z2 = 1 determines aternary relation T on the set R of real
numbers. That is, atriple (X, y, 2) belongsto T if (X, y, 2) satisfies the equation, which
means (X, Y, 2) is the coordinates of a point in R3 on the sphere Swith radius 1 and center
at theorigin O = (0, 0, 0).

Function:

Function is an important class of relation.

Definition:

Let A,B be two nonempty sets, afunction F. A[IB isarule which associates with each
element of A aunique element in B.

The set A is called the domain of the function, and the set B is called the range of the
function.

Example 1.

Consider the function f (x) = x°, i.e., f assigns to each real number its cube. Then the
image of 2is 8, and so we may writef (2) = 8.

Example2 :

consider the following relation on the set A={1,2,3}

F={(13).(23).,31)}

Fisafunction

G={12},31)}
G isnot afunction from A to A

”j%b

H={(1,3),(2,1),(1,2),(3,1)}
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Hisnot a function

One-to-one ,onto and invertible functions:

1) One—to-one: afunction F.A® B is said to be one-to-one if different elementsin the
domain (A) have distinct images.
Orif F(a) =F@)p a=a

2) Onto : FA® B issaid to be an onto function if each element of B is the image of some
element of A.
" bl B$al A:F@=b

3) Invertible (One-to-one correspondence)
F.A® Bisinvertibleif itsinverserelation f-1isafunction F-B ® A
F:A® B isinvertibleif and only if Fis both one-to-one and onto

Fu{(ba)" (ab)T F}

one to one but not onto (31 B but it is not the image under f1)
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both one to one & onto
(or one to one correspondence between A and B)

Y 2
8 v
t w
u

fs

not one to one & onto

not one to one & not onto
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Graph of a function:
By areal polynomial function, we mean afunction f: R — R of the form

f(x) =apx" + a.ﬂ—lx”_l +--t+aix+ap

where the gare real numbers. Since R is an infinite set, it would be impossible to plot
each point of the graph. However, the graph of such afunction can be approximated by
first plotting some of its points and then drawing a smooth curve though these points. The
table points are usually obtained from a table where various values are assigned to x and
the corresponding value of f(x) computed.

Example1: let f:R—R and f(x)= x*, find f(x)

f(3)=3*=27
f(-2) = (-2)*=-8
x| e
—a | —&%
- B i)
1 -1
L )
i 1 —-Iq.
2 B
3 27

Geometrical Characterization of One-to-One and Onto Functions

For the functions of theform f : R —R. the graphs of such functions may be plotted in the
Cartesian plane and functions may be identified with their graphs, so the concepts of
being one-to-one and onto have some geometrical meaning :

(D f :R —~Rissaid to be one-to-oneif there are no 2 distinct pairs (a1,b) and (a2,b) in the
graph one-to-one or if each horizontal line intersects the graph of f in at most one point.
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e

fgl-?-'} = 2=

(2) f :R —Risan onto function if each horizontal line intersects the graph of f at one or
more points (at least once)

Falz) = 3 — 22 5,46

(3) if f isboth one-to-one and onto, i.e. invertible, then each horizonta line will intersect
the graph of f at exactly one point.

fi(x) = x°

filx) = =2
F(x) NOT (ONE-TO-ONE) & NOT (ONTO)

Factorial Function
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The product of the positive integersfrom 1 to n, inclusive, is called “n factoriad™” and is
usually denoted by n!. That is,

nNn=nn-1)n-2) -+ »- -3-2-1

where 0! = 1, so that the function is defined for all nonnegative integers. Thus.
o=11=1,

21=21=23'=321=6,

41 =4321=245=54321=120

6! =6.54.321=720

Thisistrue for every positive integer n; that is,

n=n - (n-1)!

Accordingly, the factorial function may also be defined as follows:

Definition of Factorial Function:

@ I1f n=0, thenn! = 1.

(b) If n>0,thenn! =n + (n—1)!

The definition of n! isrecursive, sinceit refersto itself when it uses (n— 1)!. However:
(1) Thevaueof n! isexplicitly given when n = 0 (thus O is a base value).

(2) Thevaueof n! for arbitrary nis defined in terms of asmaller value of nwhichis
closer to the base value 0.

Accordingly, the definition is not circular, or, in other words, the function is well-defined.

EXAMPLE :the 4! Can be calculated in 9 steps using the recursive definition .
(1) 4!=4-31
(2) 31=3-21
(3) 201=2-1!
4 I1'=1-0!
(5) 0'=1
(6) N=1-1=1
(7) A=2.1=2
(8) 31=3.2=6
9) 41=4 6=24

Fibonacci Sequence

The Fibonacci sequence (usually denoted by FO, F1, F2, .. .) isasfollows:
0,1,1,23,5,8,13,21, 34,55, ...

That is, FO = 0 and F1 = 1 and each succeeding term is the sum of the two preceding
terms. For example, the next two terms of the sequence are
34+55=89and 55+ 89 =144

Fibonacci Sequence can be defined:

@I1fn=0,orn=1,then F,=n.

(b) If n>1, then F, = Fn2+ Fn-1.

Where : The base values are 0 and 1, and the value of F,, is defined in terms of smaller
values of n which are closer to the base values.

Accordingly, this function is well-defined.
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Vectors:-
vector, u, means alist (or n-tuple) of numbers:
u=(ug Uz, ..., U)

wherey; are called the components of u. If al the u; arezeroi.e, u; =0, then uiscalled
the zero vector.

Given vectorsu and v areequal i.e.,, u =, if they have the same number of components
and if corresponding components are equal.

Addition of Two Vectors

If two vectors, u and v, have the number of components, their sum, u + v, is the vector
obtained by adding corresponding components from u and v.

U+v=_(Up,Uy,...,U)+(Vy, V2, ..., Vp)
=(Uup+vituz+va, ..., U+ Vp)

Definition.Scalar multiplication of avector y = (y1,y2, ... ,yk) and ascalar _isdefined
to be anew

vectorz=(z1, 22, . . ., ZK), writtenz=_yor z=y _, whose components are given by zj =
_vi.

Definition.Vector addition of two k-dimensional vectors x = (x1, X2, ... ,xk) and y = (y1,
y2,...,YK)

is defined as anewvector z= (z1, 22, . . ., ZK), denoted z = x+y, with components given by
Zj =Xjtyj.

As an example of scalar multiplication, consider

4(3,0,-1, 8) = (12, 0,4, 32),

and for vector addition,

3,4,1,-3)+(1,3-2,5=(4,7-1, 2.

Using both operations, we can make the following type of calculation:

(1, 0)xg + (0, D)%z + (—3,—8)X3 = (X1, 0) + (O, X2) + (—3%3,—8%3)

= (X1 —3X3, X2 —8X3).

It isimportant to note that y and z must have the same dimensions for vector addition and
vector

comparisons. Thus (6, 2,—1) + (4, 0) is not defined, and (4, 0,—1) = (4, 0) makes no sense
at all.

Matrix

A matrix isarectangular array of numbers or other mathematical objects for which
operations such as addition and multiplication are defined. Most commonly, a matrix
over afieldF isarectangular array of scalars each of which is a member of F. Most of
this article focuses on real and complex matrices, i.e., matrices whose elements are real
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numbers or complex numbers, respectively. More general types of entries are discussed
below. For instance, thisis areal matrix:

—-13 06
A=1204 55
97 —6.2

The numbers, symbols or expressions in the matrix are caled its entries or its elements.
The horizontal and vertical lines of entriesin amatrix are called rows and columns,
respectively.

Size

The size of amatrix is defined by the number of rows and columnsthat it contains. A
matrix with mrows and n columnsis called an m x n matrix or m-by-n matrix, while m
and n are called its dimensions. For example, the matrix A aboveisa3 x 2 matrix.

Matrices which have asingle row are called row vectors, and those which have asingle
column are called column vectors. A matrix which has the same number of rows and
columnsiscalled asquare matrix. A matrix with an infinite number of rows or columns
(or both) is called an infinite matrix. In some contexts, such as computer algebra
programs, it is useful to consider a matrix with no rows or no columns, called an empty
matrix.

Name Size Example Description

A matrix with one row, sometimes used to represent a
Row
1xn [3 7 2] vector

vector

4
Column nx 1 1 A matrix with one column, sometimes used to represent a
vector ] vector

9 13 5| A matrix with the same number of rows and columns,
Square sometimes used to represent alinear transformation from a
: nxn|l 11 7 . . .
matrix vector space to itself, such as reflection, rotation, or
2 6 3 shearing.
Notation

Matrices are commonly written in box brackets or large parentheses:
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4y iz -+ Oipn fyy dqp - - in
A— A1 G2 +-- Gon | (p1 gz -+ Mg c R™xn
1 Qo et n 1 2 Ut n

The specifics of symbolic matrix notation vary widely, with some prevailing trends.
Matrices are usually symbolized using upper-case letters (such as A in the examples
above), while the corresponding lower-case letters, with two subscript indices (e.g., ai1,
or a; 1), represent the entries. In addition to using upper-case letters to symbolize matrices

Matrix addition

Two matrices must have an equal number of rows and columns to be added. The sum of two
matrices A and B will be a matrix which has the same number of rows and columns as do A and
B. The sum of A and B, denoted A + B, is computed by adding corresponding elements of A and
B

i1y g - fip bir bz oo b,
i f1 e fl b b . b
A 4 B — J.?l :?2 . E_H n 21 22 2n
Tm1 o e Uynn bml bm? e bmn
[ air + bt a2 + b2 0 Ay + bin |
| G2t + boy Qg2 + boa -+ gy + oy
_'ﬂ:‘ml + bml L2 + bm? e Uynn + bmn_
For example:
1 3 0 0 1+0 340 1 3
1 0+ |7 5] =114+7 O04+5]| =1|8 5
1 2 2 1 1+2 241 3 3

We can also subtract one matrix from another, as long as they have the same dimensions.
A — B iscomputed by subtracting corresponding elements of A and B, and has the same
dimensions as A and B. For example:
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1 3 0 0 1-0 3-0 1 3
1 0 - |7 5]|=|1-7 0=-5]=[-6 =5
1 2 2 1 1-2 2-1 -1 1

Matrix multiplication

Al

Schematic depiction of the matrix product AB of two matrices A and B.

Multiplication of two matricesis defined if and only if the number of columns of the left
matrix is the same as the number of rows of the right matrix. If A isan m-by-n matrix and
B is an n-by-p matrix, then their matrix productAB is the m-by-p matrix whose entries
are given by dot product of the corresponding row of A and the corresponding column of
B:

ABli; = Ai By + AigBoj+ -+ AiuByj = Z Air By j
r=1 ,

wherel <i <mand 1 <j <p. For example, the underlined entry 2340 in the product is
caculated as (2 x 1000) + (3 x 100) + (4 x 10) = 2340:

[2 3 4] [1] 1100000 ) [3 2540
I T 0 1000

Matrix multiplication satisfies the rules (AB)C = A(BC) (associativity), and (A+B)C =
AC+BC aswell as C(A+B) = CA+CB (left and right distributivity), whenever the size of
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the matrices is such that the various products are defined.™ The product AB may be
defined without BA being defined, namely if A andB are m-by-n and n-by-k matrices,
respectively, and m # k. Even if both products are defined, they need not be equdl, i.e.,
generaly

AB # BA,
i.e., matrix multiplication is not commutative, in marked contrast to (rational, real, or

complex) numbers whose product is independent of the order of the factors. An example
of two matrices not commuting with each other is:

R
RIEEE!

Besides the ordinary matrix multiplication just described, there exist other less frequently
used operations on matrices that can be considered forms of multiplication

transpose of amatrixA isanother matrix A" (also written A’, A", 'A or A") created by
any one of the following equivalent actions:

reflect A over its main diagonal (which runs from top-left to bottom-right) to
obtain AT
write the rows of A asthe columnsof AT
write the columns of A astherowsof A"

Formally, theith row, jth column element of AT is the jth row, ith column element of A:
a1
Al = [Alji

If A isan mx nmatrix then AT isan n x mmatrix.

Examples

19T = '1]

1 21" 13
3 4| T |2 4
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Graphs:

A graph G consists of two things:

(i) A set V whose elements are vertices, points or nodes.

(i) A set E of unordered pairs of distinct vertices called edges.

We denote such a graph by G(V,E) .

Verticesu and v are said to be adjacent if thereis an edge {u,v}.
Graphs are the most useful model with computer science such aslogical design, formal
languages, communication network, compiler writing and retrieval.
G(V,E)

V ={Vy, Vy V3V4}

E={e, &, &, &}

E = {(v1,v2),(V2,va),(Va,v1),(Va,v4)}

1 Graph thy Multigraph

For example we havein (a) the graph G(V,E) where (i) V consists of four vertices A, B,
C, D ; and (ii) E consists of five edgese; ={A,B}, e,={B,C}, es={C, D}, e, ={A, C},
& ={B, D}.

The diagramin (b) is not a graph but a multigraph . The reason isthat e4 and es are
multiple edges, i.e. edges connecting the same endpoints, and e6 isaloop, i.e. an edge
whose endpoints are the same vertex. The definition of a graph does not permit such
multiple edges or loops.

Let G(V,E) beagraph. Let V’ be asubset of V and let E’ be subset of E whose end-
points belong to V’. Then G(V’,E’) isagraph and is called a subgraph of G(V ,E). If E’
contains all the edges of E whose endpointslieinV’, then G(V’,E’) iscalled the
subgraph generated by V’.
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Degree:

The degree of avertex v, written deg(v), is equal to the number of edges which are
incident on v. since each edge is counted twice in counting the degrees of the vertices of a
graph, we have the following result.

Theorem: The sum of the degrees of the vertices of agraph is equal to twice the number
of edges.

For example, in the figure (a) we have
deg(A) =2,
deg(B) =3,
deg(C) =3,
deg(D) =2

The sum of the degrees equals ten which, as expected, is twice the number of edges.

A vertex is said to be even or odd according as its degreeis an even or odd number. Thus
A and D are even vertices whereas B and C are odd vertices.

This theorem also holds for multigraphs where aloop is counted twice towards the degree
of its endpoint. For example, in Fig (b) we have deg (D) = 4 since the edge &6 is counted
twice; hence D is an even vertex

A vertex of degree zero is called an isolated vertex.

t1 Graph thy Multigraph

Connectivity

A walk in amultigraph consists of an alternating sequence of vertices and edges of the
form

Vo, €1,V1, €, Vo,....... , €n-1,Vn-1,€n,Vn

Length of walk: isthe number n of edges.

Closed walk: thewalk is said to be closed if v = v,. Otherwise, we say that the walk is
from vg to vp.

Trail: isawak in which all edges are distinct.

Path: isawalk in which all vertices are distinct.

Cycle: isaclosed walk such that all vertices are distinct except vi = v,

Example: Consider the following graph, then
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o P

I ’:l

I3 P, Py

(Pa, Py, P2, Ps, Py, P2, Ps, Ps)

isawalk from P4 to Pe. It isnot atrail since the edge { P1,P,} is used twice.
The sequence: (P4, P, Ps, P, Ps, Ps)

Isnot awalk since thereis no edge { P,, Ps} .

The sequence: (P4, P1, Ps, Py, Ps, Ps, PG)

Isatrail since no edgeis used twice; but it is not a path since the vertex Ps is used twice.
The sequence: (P4, P1, Ps, P3, PG)

Is a path from P4 to P6.

The shortest path from P4 to Ps is (P4, Ps, Ps) which has length 2 (2 edges only)
The distance between verticesu & v d(u,v) isthe length of the shortest path
d(P4,P6) =2

Connectivity, Connected Components

A graph G is connected if there is a path between any two of its vertices. The graph in
Fig.(4) is connected, but the graph in Fig. (5) is not connected since, for example, thereis
no path between vertices D and E.

Suppose G isagraph. A connected subgraph H of G is called a connected component of
Gif Hisnot contained in any larger connected subgraph of G. It is clear that any graph G
can be partitioned into its connected components. For example, the graph G in Fig. (5)
has three connected components, the subgraphs induced by the vertex sets{ A,C,D},
{E,F},and {B}.

Thevertex B in Fig. (5) is called an isolated vertex since B does not belong to any edge
or, in other words, deg(B) =0

Distance
Consider a connected graph G. The distance between verticesu and v in G, written
d(u,v),isthe length of the shortest path betweenu andv .

PlanarGraphs

A graph Gisplanar if it can be drawn in the plane in such away that no two
edges meet each other except at avertex to which they are incident. Any such
drawing is caled a plane drawing of G.
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For example, the graph K4 is planar, since it can be drawn in the plane without
edges crossing.

The three plane drawings of K, are:

N A ==

Thefive Platonic graphs are al planar.

AD A

@ A
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On the other hand, the compl ete bipartite graph K3 3 is not planar, since every
drawing of K33 contains at least one crossing. why? because K3 3 has acycle
which must appear in any plane drawing.

Graph coloring

it isaspecial case of graph labeling; it is an assignment of labels traditionally called
"colors' to elements of a graph subject to certain constraints. In its simplest form, itisa
way of coloring the vertices of a graph such that no two adjacent vertices share the same
color; thisis called a vertex coloring. Similarly, an edge coloring assigns a color to each
edge so that no two adjacent edges share the same color, and a face coloring of a planar
graph assigns a color to each face or region so that no two faces that share a boundary
have the same color.

Vertex coloring is the starting point of the subject, and other coloring problems can be
transformed into a vertex version. For example, an edge coloring of agraphisjust a
vertex coloring of itsline graph, and aface coloring of a plane graph isjust a vertex
coloring of its dual. However, non-vertex coloring problems are often stated and studied
asis. That is partly for perspective, and partly because some problems are best studied in
non-vertex form, as for instance is edge coloring.

Tree

Treeis a connected graph with no cycle

Theorem:

Let G be graph with more than one vertex. Then the following are equivalence:

1) Gisatree.

2) Giscycle-free with (n-1) edges.

3) Gisconnected and has (n-1) edges. (i.e: if any edgeis deleted then the resulting graph
IS not connected)
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Rooted tree:
A rooted tree R consists of atree graph together with vertex r called the root of the tree.

Height or depth: The number of levels of atree
Leaves. The vertices of the tree that have no child (vertices with degree one)
Order Rooted Tree (ORT): Whenever draw the digraph of atree, we assume some

ordering at each level, by arranging children from left to right.

Degree of tree: The largest number of children in the vertices of the tree
Binary tree: every vertex has at most 2 children
Any algebraic expression involving bi

322

nary operations +, -, * , = can be represented by an order rooted tree (ORT)
the binary rooted tree for atbis:

The variable in the expression a & b appear as leaves and the operations appear as the
other vertices.

Polish notation:
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The polish notation form of an algebraic expression represents the expression
unambiguously with out the need for parentheses

1) a+ b (infix)
2) + ab (prefix)
3) ab + (postfix)

example 1:
infix polish notationis:a+b
prefix polish notation : + ab

example 2:
infix polish notationis:a+2* b
prefix polish notation: +a* 2b

example 3:
infix polish notationis: 2* a+b
prefix polish notation: +* 2ab

example 4:
infix polish notationis: (a—b)/(c* d) +¢€)
prefix polish notation: /-ab+* cde
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example 5:
infix polish notationis: (2* x+y) (5* a—b )2
prefix polish notation: * +* 2xy”~-*5ab2

example 6:
infix polish notationis: (a+2* b) (2* a+ b"2)
prefix polish notation: * + a* 2b+* 2a”b2

41



Directed graph

It isagraph, or set of vertices connected by edges, where the edges have a direction
associated with them. In formal terms, a directed graph is an ordered pair G = (V, A)
(sometimes G = (V, E)) where

V isaset whose elements are called vertices, nodes, or points;

A isaset of ordered pairs of vertices, called arrows, directed edges (sometimes
simply edges with the corresponding set named E instead of A), directed arcs, or
directed lines.

It differs from an ordinary or undirected graph, in that the latter is defined in terms of
unordered pairs of vertices, which are usually called edges, arcs, or lines.

A directed graph is called a simple digraph if it has no multiple arrows (two or more
edges that connect the same two vertices in the same direction) and no loops (edges that
connect vertices to themselves). A directed graph is called a directed multigraph or
multidigraph if it may have multiple arrows (and sometimes loops). In the latter case the
arrow set forms a multiset, rather than a set, of ordered pairs of vertices.

_p.
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Finite state machines (FSM):

We may view adigital computer as a machine which isin acertain “internal state” at any
given moment. The computer “reads” an input symbol, and then “prints” an output
symbol and changes its “state”. The output symbol depends solely upon the input symbol
and the internal state of the machine, and the internal state of the machine depends solely
upon the preceding state of the machine and the preceding input symbol.

A finite state machine FSM (or complete sequential machine) M consists of five things:
(1) A finite set A of input symbols.

(2) A finite set S of internd states.

(3) A finite set Z of output symbols.

(4) A next-state function f

f.SXA—>S

(5) An output function g

g-SxXA—-Z

This machine M isdenoted by M = (A, S, Z, 0o, f, g) where qp isthe initial state.

Example 1: The following definesa FSM with two input symbols, three internal states
and three output symbols:

() A={ab}

(2) S={0o, 1, A}

R Z={xy,.z}

(4) Next-state function f: Sx A— Sdefined by :

f(Qo, @) = ouf(0w,a) = df(02,8) = o

f(Go, b) = a2 (0, b) = 1 f(g2, b) = a1

(5) Output function g: Sx A — Z defined by

(%o, 8) = X 9(0,8) = X 9(02,8) = Z

9(%o, b) =y 9(qs, b) =z g(q2, b) =y

There are two ways of representing afinite state machine in compact form. One way is
by atable called the state table of machine, and the other way is by alabeled directed
graph called the state diagram of the machine.
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Example 2:

If the input string: abaab ,is given to the machine in example (1), and suppose qq is the
initial state of the machine.

We calculate the string of states and the string of output symbols from the state diagram

by beginning at the vertex go and following the arrows which are labeled with the input
symbols:

a,z b=z ax a3 bu
Q"N Q=" " do= 4

This yields the following strings of states and output symbols:

State : go Qi1 02 Go G2
Output symbols: xzx zy
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