
CHAPTER

6
Woman teaching
geometry, from a
fourteenth-century
edition of Euclid’s
geometry book.

Inner Product Spaces

In making the definition of a vector space, we generalized the linear structure
(addition and scalar multiplication) of R2 and R3. We ignored other important
features, such as the notions of length and angle. These ideas are embedded
in the concept we now investigate, inner products.

Our standing assumptions are as follows:

6.1 Notation F, V

� F denotes R or C.

� V denotes a vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

Cauchy–Schwarz Inequality

Gram–Schmidt Procedure

linear functionals on inner product spaces

calculating minimum distance to a subspace
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164 CHAPTER 6 Inner Product Spaces

6.A Inner Products and Norms

Inner Products

x

Hx , x L1 2

The length of this vector x isp
x12 C x22.

To motivate the concept of inner prod-
uct, think of vectors in R2 and R3 as
arrows with initial point at the origin.
The length of a vector x in R2 or R3
is called the norm of x, denoted kxk.
Thus for x D .x1; x2/ 2 R2, we have
kxk D

p
x12 C x22.

Similarly, if x D .x1; x2; x3/ 2 R3,
then kxk D

p
x12 C x22 C x32.

Even though we cannot draw pictures in higher dimensions, the gener-
alization to Rn is obvious: we define the norm of x D .x1; : : : ; xn/ 2 Rn
by

kxk D
p
x12 C � � � C xn2:

The norm is not linear on Rn. To inject linearity into the discussion, we
introduce the dot product.

6.2 Definition dot product

For x; y 2 Rn, the dot product of x and y, denoted x � y, is defined by

x � y D x1y1 C � � � C xnyn;

where x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/.

If we think of vectors as points in-
stead of arrows, then kxk should
be interpreted as the distance from
the origin to the point x.

Note that the dot product of two vec-
tors in Rn is a number, not a vector. Ob-
viously x � x D kxk2 for all x 2 Rn.
The dot product on Rn has the follow-
ing properties:

� x � x � 0 for all x 2 Rn;

� x � x D 0 if and only if x D 0;

� for y 2 Rn fixed, the map from Rn to R that sends x 2 Rn to x � y is
linear;

� x � y D y � x for all x; y 2 Rn.
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SECTION 6.A Inner Products and Norms 165

An inner product is a generalization of the dot product. At this point you
may be tempted to guess that an inner product is defined by abstracting the
properties of the dot product discussed in the last paragraph. For real vector
spaces, that guess is correct. However, so that we can make a definition that
will be useful for both real and complex vector spaces, we need to examine
the complex case before making the definition.

Recall that if � D aC bi , where a; b 2 R, then

� the absolute value of �, denoted j�j, is defined by j�j D
p
a2 C b2;

� the complex conjugate of �, denoted N�, is defined by N� D a � bi ;

� j�j2 D � N�.

See Chapter 4 for the definitions and the basic properties of the absolute value
and complex conjugate.

For z D .z1; : : : ; zn/ 2 Cn, we define the norm of z by

kzk D

q
jz1j2 C � � � C jznj2:

The absolute values are needed because we want kzk to be a nonnegative
number. Note that

kzk2 D z1z1 C � � � C znzn:

We want to think of kzk2 as the inner product of z with itself, as we
did in Rn. The equation above thus suggests that the inner product of
w D .w1; : : : ;wn/ 2 Cn with z should equal

w1z1 C � � � C wnzn:

If the roles of the w and z were interchanged, the expression above would
be replaced with its complex conjugate. In other words, we should expect
that the inner product of w with z equals the complex conjugate of the inner
product of z with w. With that motivation, we are now ready to define an
inner product on V, which may be a real or a complex vector space.

Two comments about the notation used in the next definition:

� If � is a complex number, then the notation � � 0 means that � is real
and nonnegative.

� We use the common notation hu; vi, with angle brackets denoting an
inner product. Some people use parentheses instead, but then .u; v/
becomes ambiguous because it could denote either an ordered pair or
an inner product.
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166 CHAPTER 6 Inner Product Spaces

6.3 Definition inner product

An inner product on V is a function that takes each ordered pair .u; v/ of
elements of V to a number hu; vi 2 F and has the following properties:

positivity
hv; vi � 0 for all v 2 V ;

definiteness
hv; vi D 0 if and only if v D 0;

additivity in first slot
huC v;wi D hu;wi C hv;wi for all u; v;w 2 V ;

homogeneity in first slot
h�u; vi D �hu; vi for all � 2 F and all u; v 2 V ;

conjugate symmetry
hu; vi D hv; ui for all u; v 2 V.

Although most mathematicians de-
fine an inner product as above,
many physicists use a definition
that requires homogeneity in the
second slot instead of the first slot.

Every real number equals its com-
plex conjugate. Thus if we are dealing
with a real vector space, then in the last
condition above we can dispense with
the complex conjugate and simply state
that hu; vi D hv; ui for all v;w 2 V.

6.4 Example inner products

(a) The Euclidean inner product on Fn is defined by
h.w1; : : : ;wn/; .z1; : : : ; zn/i D w1z1 C � � � C wnzn:

(b) If c1; : : : ; cn are positive numbers, then an inner product can be defined
on Fn by

h.w1; : : : ;wn/; .z1; : : : ; zn/i D c1w1z1 C � � � C cnwnzn:

(c) An inner product can be defined on the vector space of continuous
real-valued functions on the interval Œ�1; 1� by

hf; gi D

Z 1

�1

f .x/g.x/ dx:

(d) An inner product can be defined on P.R/ by

hp; qi D

Z 1
0

p.x/q.x/e�x dx:
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SECTION 6.A Inner Products and Norms 167

6.5 Definition inner product space

An inner product space is a vector space V along with an inner product
on V.

The most important example of an inner product space is Fn with the
Euclidean inner product given by part (a) of the last example. When Fn is
referred to as an inner product space, you should assume that the inner product
is the Euclidean inner product unless explicitly told otherwise.

So that we do not have to keep repeating the hypothesis that V is an inner
product space, for the rest of this chapter we make the following assumption:

6.6 Notation V

For the rest of this chapter, V denotes an inner product space over F.

Note the slight abuse of language here. An inner product space is a vector
space along with an inner product on that vector space. When we say that
a vector space V is an inner product space, we are also thinking that an
inner product on V is lurking nearby or is obvious from the context (or is the
Euclidean inner product if the vector space is Fn).

6.7 Basic properties of an inner product

(a) For each fixed u 2 V, the function that takes v to hv; ui is a linear
map from V to F.

(b) h0; ui D 0 for every u 2 V.

(c) hu; 0i D 0 for every u 2 V.

(d) hu; vC wi D hu; vi C hu;wi for all u; v;w 2 V.

(e) hu; �vi D N�hu; vi for all � 2 F and u; v 2 V.

Proof

(a) Part (a) follows from the conditions of additivity in the first slot and
homogeneity in the first slot in the definition of an inner product.

(b) Part (b) follows from part (a) and the result that every linear map takes
0 to 0.
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168 CHAPTER 6 Inner Product Spaces

(c) Part (c) follows from part (a) and the conjugate symmetry property in
the definition of an inner product.

(d) Suppose u; v;w 2 V. Then

hu; vC wi D hvC w; ui

D hv; ui C hw; ui

D hv; ui C hw; ui

D hu; vi C hu;wi:

(e) Suppose � 2 F and u; v 2 V. Then

hu; �vi D h�v; ui

D �hv; ui

D N�hv; ui

D N�hu; vi;

as desired.

Norms

Our motivation for defining inner products came initially from the norms of
vectors on R2 and R3. Now we see that each inner product determines a
norm.

6.8 Definition norm, kvk

For v 2 V, the norm of v, denoted kvk, is defined by

kvk D
p
hv; vi:

6.9 Example norms

(a) If .z1; : : : ; zn/ 2 Fn (with the Euclidean inner product), then

k.z1; : : : ; zn/k D

q
jz1j2 C � � � C jznj2:

(b) In the vector space of continuous real-valued functions on Œ�1; 1� [with
inner product given as in part (c) of 6.4], we have

kf k D

sZ 1

�1

�
f .x/

�2
dx:
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6.10 Basic properties of the norm

Suppose v 2 V.

(a) kvk D 0 if and only if v D 0.

(b) k�vk D j�j kvk for all � 2 F.

Proof

(a) The desired result holds because hv; vi D 0 if and only if v D 0.

(b) Suppose � 2 F. Then

k�vk2 D h�v; �vi

D �hv; �vi

D � N�hv; vi

D j�j2kvk2:

Taking square roots now gives the desired equality.

The proof above of part (b) illustrates a general principle: working with
norms squared is usually easier than working directly with norms.

Now we come to a crucial definition.

6.11 Definition orthogonal

Two vectors u; v 2 V are called orthogonal if hu; vi D 0.

In the definition above, the order of the vectors does not matter, because
hu; vi D 0 if and only if hv; ui D 0. Instead of saying that u and v are
orthogonal, sometimes we say that u is orthogonal to v.

Exercise 13 asks you to prove that if u; v are nonzero vectors in R2, then

hu; vi D kukkvk cos �;

where � is the angle between u and v (thinking of u and v as arrows with initial
point at the origin). Thus two vectors in R2 are orthogonal (with respect to the
usual Euclidean inner product) if and only if the cosine of the angle between
them is 0, which happens if and only if the vectors are perpendicular in the
usual sense of plane geometry. Thus you can think of the word orthogonal as
a fancy word meaning perpendicular.
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We begin our study of orthogonality with an easy result.

6.12 Orthogonality and 0

(a) 0 is orthogonal to every vector in V.

(b) 0 is the only vector in V that is orthogonal to itself.

Proof

(a) Part (b) of 6.7 states that h0; ui D 0 for every u 2 V.

(b) If v 2 V and hv; vi D 0, then v D 0 (by definition of inner product).

The word orthogonal comes from
the Greek word orthogonios,
which means right-angled.

For the special case V D R2, the
next theorem is over 2,500 years old.
Of course, the proof below is not the
original proof.

6.13 Pythagorean Theorem

Suppose u and v are orthogonal vectors in V. Then

kuC vk2 D kuk2 C kvk2:

Proof We have

kuC vk2 D huC v; uC vi

D hu; ui C hu; vi C hv; ui C hv; vi

D kuk2 C kvk2;

as desired.

The proof given above of the
Pythagorean Theorem shows that
the conclusion holds if and only
if hu; vi C hv; ui, which equals
2Rehu; vi, is 0. Thus the converse
of the Pythagorean Theorem holds
in real inner product spaces.

Suppose u; v 2 V, with v ¤ 0. We
would like to write u as a scalar multiple
of v plus a vector w orthogonal to v, as
suggested in the next picture.
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w

u

0

cv

v

An orthogonal decomposition.

To discover how to write u as a scalar multiple of v plus a vector orthogonal
to v, let c 2 F denote a scalar. Then

u D cvC .u � cv/:

Thus we need to choose c so that v is orthogonal to .u � cv/. In other words,
we want

0 D hu � cv; vi D hu; vi � ckvk2:

The equation above shows that we should choose c to be hu; vi=kvk2. Making
this choice of c, we can write

u D
hu; vi
kvk2

vC
�
u �
hu; vi
kvk2

v
�
:

As you should verify, the equation above writes u as a scalar multiple of v
plus a vector orthogonal to v. In other words, we have proved the following
result.

6.14 An orthogonal decomposition

Suppose u; v 2 V, with v ¤ 0. Set c D
hu; vi
kvk2

and w D u�
hu; vi
kvk2

v. Then

hw; vi D 0 and u D cvC w:

French mathematician Augustin-
Louis Cauchy (1789–1857) proved
6.17(a) in 1821. German mathe-
matician Hermann Schwarz (1843–
1921) proved 6.17(b) in 1886.

The orthogonal decomposition 6.14
will be used in the proof of the Cauchy–
Schwarz Inequality, which is our next
result and is one of the most important
inequalities in mathematics.
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172 CHAPTER 6 Inner Product Spaces

6.15 Cauchy–Schwarz Inequality

Suppose u; v 2 V. Then

jhu; vij � kuk kvk:

This inequality is an equality if and only if one of u; v is a scalar multiple
of the other.

Proof If v D 0, then both sides of the desired inequality equal 0. Thus we
can assume that v ¤ 0. Consider the orthogonal decomposition

u D
hu; vi
kvk2

vC w

given by 6.14, where w is orthogonal to v. By the Pythagorean Theorem,

kuk2 D

hu; vikvk2
v
2 C kwk2

D
jhu; vij2

kvk2
C kwk2

�
jhu; vij2

kvk2
:6.16

Multiplying both sides of this inequality by kvk2 and then taking square roots
gives the desired inequality.

Looking at the proof in the paragraph above, note that the Cauchy–Schwarz
Inequality is an equality if and only if 6.16 is an equality. Obviously this
happens if and only if w D 0. But w D 0 if and only if u is a multiple of v
(see 6.14). Thus the Cauchy–Schwarz Inequality is an equality if and only if
u is a scalar multiple of v or v is a scalar multiple of u (or both; the phrasing
has been chosen to cover cases in which either u or v equals 0).

6.17 Example examples of the Cauchy–Schwarz Inequality

(a) If x1; : : : ; xn; y1; : : : ; yn 2 R, then
jx1y1 C � � � C xnynj

2
� .x1

2
C � � � C xn

2/.y1
2
C � � � C yn

2/:

(b) If f; g are continuous real-valued functions on Œ�1; 1�, thenˇ̌̌Z 1

�1

f .x/g.x/ dx
ˇ̌̌2
�

�Z 1

�1

�
f .x/

�2
dx
��Z 1

�1

�
g.x/

�2
dx
�
:
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u + v

v

u

The next result, called the Triangle
Inequality, has the geometric interpreta-
tion that the length of each side of a tri-
angle is less than the sum of the lengths
of the other two sides.

Note that the Triangle Inequality im-
plies that the shortest path between two
points is a line segment.

6.18 Triangle Inequality

Suppose u; v 2 V. Then

kuC vk � kuk C kvk:

This inequality is an equality if and only if one of u; v is a nonnegative
multiple of the other.

Proof We have

kuC vk2 D huC v; uC vi

D hu; ui C hv; vi C hu; vi C hv; ui

D hu; ui C hv; vi C hu; vi C hu; vi

D kuk2 C kvk2 C 2Rehu; vi

� kuk2 C kvk2 C 2jhu; vij6.19

� kuk2 C kvk2 C 2kuk kvk6.20

D .kuk C kvk/2;

where 6.20 follows from the Cauchy–Schwarz Inequality (6.15). Taking
square roots of both sides of the inequality above gives the desired inequality.

The proof above shows that the Triangle Inequality is an equality if and
only if we have equality in 6.19 and 6.20. Thus we have equality in the
Triangle Inequality if and only if

6.21 hu; vi D kukkvk:

If one of u; v is a nonnegative multiple of the other, then 6.21 holds, as
you should verify. Conversely, suppose 6.21 holds. Then the condition for
equality in the Cauchy–Schwarz Inequality (6.15) implies that one of u; v is a
scalar multiple of the other. Clearly 6.21 forces the scalar in question to be
nonnegative, as desired.
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The next result is called the parallelogram equality because of its geometric
interpretation: in every parallelogram, the sum of the squares of the lengths
of the diagonals equals the sum of the squares of the lengths of the four sides.

u + v

u - v

u

u

v v

The parallelogram equality.

6.22 Parallelogram Equality

Suppose u; v 2 V. Then

kuC vk2 C ku � vk2 D 2.kuk2 C kvk2/:

Proof We have

kuC vk2 C ku � vk2 D huC v; uC vi C hu � v; u � vi

D kuk2 C kvk2 C hu; vi C hv; ui

C kuk2 C kvk2 � hu; vi � hv; ui

D 2.kuk2 C kvk2/;

as desired.

Law professor Richard Friedman presenting a case before the U.S.
Supreme Court in 2010:

Mr. Friedman: I think that issue is entirely orthogonal to the issue here
because the Commonwealth is acknowledging—

Chief Justice Roberts: I’m sorry. Entirely what?
Mr. Friedman: Orthogonal. Right angle. Unrelated. Irrelevant.
Chief Justice Roberts: Oh.
Justice Scalia: What was that adjective? I liked that.
Mr. Friedman: Orthogonal.
Chief Justice Roberts: Orthogonal.
Mr. Friedman: Right, right.
Justice Scalia: Orthogonal, ooh. (Laughter.)
Justice Kennedy: I knew this case presented us a problem. (Laughter.)
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EXERCISES 6.A

1 Show that the function that takes
�
.x1; x2/; .y1; y2/

�
2 R2 � R2 to

jx1y1j C jx2y2j is not an inner product on R2.

2 Show that the function that takes
�
.x1; x2; x3/; .y1; y2; y3/

�
2 R3 � R3

to x1y1 C x3y3 is not an inner product on R3.

3 Suppose F D R and V ¤ f0g. Replace the positivity condition (which
states that hv; vi � 0 for all v 2 V ) in the definition of an inner product
(6.3) with the condition that hv; vi > 0 for some v 2 V. Show that this
change in the definition does not change the set of functions from V � V

to R that are inner products on V.

4 Suppose V is a real inner product space.

(a) Show that huC v; u � vi D kuk2 � kvk2 for every u; v 2 V.

(b) Show that if u; v 2 V have the same norm, then uCv is orthogonal
to u � v.

(c) Use part (b) to show that the diagonals of a rhombus are perpen-
dicular to each other.

5 Suppose V is finite-dimensional and T 2 L.V / is such that kT vk � kvk
for every v 2 V. Prove that T �

p
2I is invertible.

6 Suppose u; v 2 V. Prove that hu; vi D 0 if and only if

kuk � kuC avk

for all a 2 F.

7 Suppose u; v 2 V. Prove that kauC bvk D kbuC avk for all a; b 2 R
if and only if kuk D kvk.

8 Suppose u; v 2 V and kuk D kvk D 1 and hu; vi D 1. Prove that u D v.

9 Suppose u; v 2 V and kuk � 1 and kvk � 1. Prove thatq
1 � kuk2

q
1 � kvk2 � 1 � jhu; vij:

10 Find vectors u; v 2 R2 such that u is a scalar multiple of .1; 3/, v is
orthogonal to .1; 3/, and .1; 2/ D uC v.
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11 Prove that

16 � .aC b C c C d/

�
1

a
C
1

b
C
1

c
C
1

d

�
for all positive numbers a; b; c; d .

12 Prove that
.x1 C � � � C xn/

2
� n.x1

2
C � � � C xn

2/

for all positive integers n and all real numbers x1; : : : ; xn.

13 Suppose u; v are nonzero vectors in R2. Prove that

hu; vi D kukkvk cos �;

where � is the angle between u and v (thinking of u and v as arrows with
initial point at the origin).

Hint: Draw the triangle formed by u, v, and u � v; then use the law of
cosines.

14 The angle between two vectors (thought of as arrows with initial point at
the origin) in R2 or R3 can be defined geometrically. However, geometry
is not as clear in Rn for n > 3. Thus the angle between two nonzero
vectors x; y 2 Rn is defined to be

arccos
hx; yi

kxkkyk
;

where the motivation for this definition comes from the previous exercise.
Explain why the Cauchy–Schwarz Inequality is needed to show that this
definition makes sense.

15 Prove that � nX
jD1

aj bj

�2
�

� nX
jD1

jaj
2
�� nX
jD1

bj
2

j

�
for all real numbers a1; : : : ; an and b1; : : : ; bn.

16 Suppose u; v 2 V are such that

kuk D 3; kuC vk D 4; ku � vk D 6:

What number does kvk equal?
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17 Prove or disprove: there is an inner product on R2 such that the associated
norm is given by

k.x; y/k D maxfjxj; jyjg

for all .x; y/ 2 R2.

18 Suppose p > 0. Prove that there is an inner product on R2 such that the
associated norm is given by

k.x; y/k D .jxjp C jyjp/1=p

for all .x; y/ 2 R2 if and only if p D 2.

19 Suppose V is a real inner product space. Prove that

hu; vi D
kuC vk2 � ku � vk2

4

for all u; v 2 V.

20 Suppose V is a complex inner product space. Prove that

hu; vi D
kuC vk2 � ku � vk2 C kuC ivk2i � ku � ivk2i

4

for all u; v 2 V.

21 A norm on a vector space U is a function k kW U ! Œ0;1/ such
that kuk D 0 if and only if u D 0, k˛uk D j˛jkuk for all ˛ 2 F
and all u 2 U, and ku C vk � kuk C kvk for all u; v 2 U. Prove
that a norm satisfying the parallelogram equality comes from an inner
product (in other words, show that if k k is a norm on U satisfying the
parallelogram equality, then there is an inner product h ; i on U such
that kuk D hu; ui1=2 for all u 2 U ).

22 Show that the square of an average is less than or equal to the average
of the squares. More precisely, show that if a1; : : : ; an 2 R, then the
square of the average of a1; : : : ; an is less than or equal to the average
of a12; : : : ; an2.

23 Suppose V1; : : : ; Vm are inner product spaces. Show that the equation

h.u1; : : : ; um/; .v1; : : : ; vm/i D hu1; v1i C � � � C hum; vmi

defines an inner product on V1 � � � � � Vm.
[In the expression above on the right, hu1; v1i denotes the inner product
on V1, . . . , hum; vmi denotes the inner product on Vm. Each of the spaces
V1; : : : ; Vm may have a different inner product, even though the same
notation is used here.]
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24 Suppose S 2 L.V / is an injective operator on V. Define h�; �i1 by

hu; vi1 D hSu; Svi

for u; v 2 V. Show that h�; �i1 is an inner product on V.

25 Suppose S 2 L.V / is not injective. Define h�; �i1 as in the exercise above.
Explain why h�; �i1 is not an inner product on V.

26 Suppose f; g are differentiable functions from R to Rn.

(a) Show that

hf .t/; g.t/i0 D hf 0.t/; g.t/i C hf .t/; g0.t/i:

(b) Suppose c > 0 and kf .t/k D c for every t 2 R. Show that
hf 0.t/; f .t/i D 0 for every t 2 R.

(c) Interpret the result in part (b) geometrically in terms of the tangent
vector to a curve lying on a sphere in Rn centered at the origin.

[For the exercise above, a function f W R ! Rn is called differentiable
if there exist differentiable functions f1; : : : ; fn from R to R such that
f .t/ D

�
f1.t/; : : : ; fn.t/

�
for each t 2 R. Furthermore, for each t 2 R,

the derivative f 0.t/ 2 Rn is defined by f 0.t/ D
�
f1
0.t/; : : : ; fn

0.t/
�
.]

27 Suppose u; v;w 2 V. Prove that

kw � 1
2
.uC v/k2 D

kw � uk2 C kw � vk2

2
�
ku � vk2

4
:

28 Suppose C is a subset of V with the property that u; v 2 C implies
1
2
.uC v/ 2 C . Let w 2 V. Show that there is at most one point in C

that is closest to w. In other words, show that there is at most one u 2 C
such that

kw � uk � kw � vk for all v 2 C .

Hint: Use the previous exercise.

29 For u; v 2 V, define d.u; v/ D ku � vk.

(a) Show that d is a metric on V.
(b) Show that if V is finite-dimensional, then d is a complete metric

on V (meaning that every Cauchy sequence converges).
(c) Show that every finite-dimensional subspace of V is a closed

subset of V (with respect to the metric d ).
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30 Fix a positive integer n. The Laplacian �p of a twice differentiable
function p on Rn is the function on Rn defined by

�p D
@2p

@x21
C � � � C

@2p

@x2n
:

The function p is called harmonic if �p D 0.

A polynomial on Rn is a linear combination of functions of the
form x1

m1 � � � xn
mn , where m1; : : : ; mn are nonnegative integers.

Suppose q is a polynomial on Rn. Prove that there exists a harmonic
polynomial p on Rn such that p.x/ D q.x/ for every x 2 Rn with
kxk D 1.
[The only fact about harmonic functions that you need for this exercise
is that if p is a harmonic function on Rn and p.x/ D 0 for all x 2 Rn
with kxk D 1, then p D 0.]

Hint: A reasonable guess is that the desired harmonic polynomial p is of
the form q C .1 � kxk2/r for some polynomial r . Prove that there is a
polynomial r on Rn such that q C .1 � kxk2/r is harmonic by defining
an operator T on a suitable vector space by

T r D �
�
.1 � kxk2/r

�
and then showing that T is injective and hence surjective.

31 Use inner products to prove Apollonius’s Identity: In a triangle with
sides of length a, b, and c, let d be the length of the line segment from
the midpoint of the side of length c to the opposite vertex. Then

a2 C b2 D 1
2
c2 C 2d2:

c

a bd
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6.B Orthonormal Bases

6.23 Definition orthonormal

� A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all the other vectors in the list.

� In other words, a list e1; : : : ; em of vectors in V is orthonormal if

hej ; eki D

(
1 if j D k,
0 if j ¤ k.

6.24 Example orthonormal lists

(a) The standard basis in Fn is an orthonormal list.

(b)
�
1p
3
; 1p

3
; 1p

3

�
;
�
�

1p
2
; 1p

2
; 0
�

is an orthonormal list in F3.

(c)
�
1p
3
; 1p

3
; 1p

3

�
;
�
�

1p
2
; 1p

2
; 0
�
;
�
1p
6
; 1p

6
;� 2p

6

�
is an orthonormal list

in F3.

Orthonormal lists are particularly easy to work with, as illustrated by the
next result.

6.25 The norm of an orthonormal linear combination

If e1; : : : ; em is an orthonormal list of vectors in V, then

ka1e1 C � � � C amemk
2
D ja1j

2
C � � � C jamj

2

for all a1; : : : ; am 2 F.

Proof Because each ej has norm 1, this follows easily from repeated appli-
cations of the Pythagorean Theorem (6.13).

The result above has the following important corollary.

6.26 An orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.
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Proof Suppose e1; : : : ; em is an orthonormal list of vectors in V and
a1; : : : ; am 2 F are such that

a1e1 C � � � C amem D 0:

Then ja1j2 C � � � C jamj2 D 0 (by 6.25), which means that all the aj ’s are 0.
Thus e1; : : : ; em is linearly independent.

6.27 Definition orthonormal basis

An orthonormal basis of V is an orthonormal list of vectors in V that is
also a basis of V.

For example, the standard basis is an orthonormal basis of Fn.

6.28 An orthonormal list of the right length is an orthonormal basis

Every orthonormal list of vectors in V with length dimV is an orthonormal
basis of V.

Proof By 6.26, any such list must be linearly independent; because it has the
right length, it is a basis—see 2.39.

6.29 Example Show that�
1
2
; 1
2
; 1
2
; 1
2

�
;
�
1
2
; 1
2
;�1

2
;�1

2

�
;
�
1
2
;�1

2
;�1

2
; 1
2

�
;
�
�
1
2
; 1
2
;�1

2
; 1
2

�
is an orthonormal basis of F4.

Solution We have�1
2
; 1
2
; 1
2
; 1
2

� Dq�1
2

�2
C
�
1
2

�2
C
�
1
2

�2
C
�
1
2

�2
D 1:

Similarly, the other three vectors in the list above also have norm 1.
We have˝�
1
2
; 1
2
; 1
2
; 1
2

�
;
�
1
2
; 1
2
;�1

2
;�1

2

�˛
D

1
2
�
1
2
C

1
2
�
1
2
C

1
2
�
�
�
1
2

�
C

1
2
�
�
�
1
2

�
D 0:

Similarly, the inner product of any two distinct vectors in the list above also
equals 0.

Thus the list above is orthonormal. Because we have an orthonormal list of
length four in the four-dimensional vector space F4, this list is an orthonormal
basis of F4 (by 6.28).
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In general, given a basis e1; : : : ; en of V and a vector v 2 V, we know that
there is some choice of scalars a1; : : : ; an 2 F such that

v D a1e1 C � � � C anen:

The importance of orthonormal
bases stems mainly from the next
result.

Computing the numbers a1; : : : ; an that
satisfy the equation above can be diffi-
cult for an arbitrary basis of V. The
next result shows, however, that this is
easy for an orthonormal basis—just take
aj D hv; ej i.

6.30 Writing a vector as linear combination of orthonormal basis

Suppose e1; : : : ; en is an orthonormal basis of V and v 2 V. Then

v D hv; e1ie1 C � � � C hv; enien

and
kvk2 D jhv; e1ij2 C � � � C jhv; enij2:

Proof Because e1; : : : ; en is a basis of V, there exist scalars a1; : : : ; an such
that

v D a1e1 C � � � C anen:

Because e1; : : : ; en is orthonormal, taking the inner product of both sides of
this equation with ej gives hv; ej i D aj . Thus the first equation in 6.30 holds.

The second equation in 6.30 follows immediately from the first equation
and 6.25.

Now that we understand the usefulness of orthonormal bases, how do we
go about finding them? For example, does Pm.R/, with inner product given
by integration on Œ�1; 1� [see 6.4(c)], have an orthonormal basis? The next
result will lead to answers to these questions.

Danish mathematician Jørgen
Gram (1850–1916) and German
mathematician Erhard Schmidt
(1876–1959) popularized this algo-
rithm that constructs orthonormal
lists.

The algorithm used in the next proof
is called the Gram–Schmidt Procedure.
It gives a method for turning a linearly
independent list into an orthonormal list
with the same span as the original list.
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6.31 Gram–Schmidt Procedure

Suppose v1; : : : ; vm is a linearly independent list of vectors in V. Let
e1 D v1=kv1k. For j D 2; : : : ; m, define ej inductively by

ej D
vj � hvj ; e1ie1 � � � � � hvj ; ej�1iej�1
kvj � hvj ; e1ie1 � � � � � hvj ; ej�1iej�1k

:

Then e1; : : : ; em is an orthonormal list of vectors in V such that

span.v1; : : : ; vj / D span.e1; : : : ; ej /

for j D 1; : : : ; m.

Proof We will show by induction on j that the desired conclusion holds. To
get started with j D 1, note that span.v1/ D span.e1/ because v1 is a positive
multiple of e1.

Suppose 1 < j < m and we have verified that

6.32 span.v1; : : : ; vj�1/ D span.e1; : : : ; ej�1/:

Note that vj … span.v1; : : : ; vj�1/ (because v1; : : : ; vm is linearly indepen-
dent). Thus vj … span.e1; : : : ; ej�1/. Hence we are not dividing by 0 in the
definition of ej given in 6.31. Dividing a vector by its norm produces a new
vector with norm 1; thus kej k D 1.

Let 1 � k < j . Then

hej ; eki D

�
vj � hvj ; e1ie1 � � � � � hvj ; ej�1iej�1
kvj � hvj ; e1ie1 � � � � � hvj ; ej�1iej�1k

; ek

�
D

hvj ; eki � hvj ; eki
kvj � hvj ; e1ie1 � � � � � hvj ; ej�1iej�1k

D 0:

Thus e1; : : : ; ej is an orthonormal list.
From the definition of ej given in 6.31, we see that vj 2 span.e1; : : : ; ej /.

Combining this information with 6.32 shows that

span.v1; : : : ; vj / � span.e1; : : : ; ej /:

Both lists above are linearly independent (the v’s by hypothesis, the e’s by
orthonormality and 6.26). Thus both subspaces above have dimension j , and
hence they are equal, completing the proof.
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6.33 Example Find an orthonormal basis of P2.R/, where the inner prod-
uct is given by hp; qi D

R 1
�1 p.x/q.x/ dx.

Solution We will apply the Gram–Schmidt Procedure (6.31) to the basis
1; x; x2.

To get started, with this inner product we have

k1k2 D

Z 1

�1

12 dx D 2:

Thus k1k D
p
2, and hence e1 D

q
1
2

.
Now the numerator in the expression for e2 is

x � hx; e1ie1 D x �
�Z 1

�1

x

q
1
2
dx
�q

1
2
D x:

We have

kxk2 D

Z 1

�1

x2 dx D 2
3
:

Thus kxk D
q
2
3

, and hence e2 D
q
3
2
x.

Now the numerator in the expression for e3 is

x2 � hx2; e1ie1 � hx
2; e2ie2

D x2 �
�Z 1

�1

x2
q
1
2
dx
�q

1
2
�

�Z 1

�1

x2
q
3
2
x dx

�q
3
2
x

D x2 � 1
3
:

We have

kx2 � 1
3
k
2
D

Z 1

�1

�
x4 � 2

3
x2 C 1

9

�
dx D 8

45
:

Thus kx2 � 1
3
k D

q
8
45

, and hence e3 D
q
45
8

�
x2 � 1

3

�
.

Thus q
1
2
;

q
3
2
x;

q
45
8

�
x2 � 1

3

�
is an orthonormal list of length 3 in P2.R/. Hence this orthonormal list is an
orthonormal basis of P2.R/ by 6.28.
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Now we can answer the question about the existence of orthonormal bases.

6.34 Existence of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Proof Suppose V is finite-dimensional. Choose a basis of V. Apply the
Gram–Schmidt Procedure (6.31) to it, producing an orthonormal list with
length dimV. By 6.28, this orthonormal list is an orthonormal basis of V.

Sometimes we need to know not only that an orthonormal basis exists, but
also that every orthonormal list can be extended to an orthonormal basis. In
the next corollary, the Gram–Schmidt Procedure shows that such an extension
is always possible.

6.35 Orthonormal list extends to orthonormal basis

Suppose V is finite-dimensional. Then every orthonormal list of vectors
in V can be extended to an orthonormal basis of V.

Proof Suppose e1; : : : ; em is an orthonormal list of vectors in V. Then
e1; : : : ; em is linearly independent (by 6.26). Hence this list can be extended to
a basis e1; : : : ; em; v1; : : : ; vn of V (see 2.33). Now apply the Gram–Schmidt
Procedure (6.31) to e1; : : : ; em; v1; : : : ; vn, producing an orthonormal list

6.36 e1; : : : ; em; f1; : : : ; fnI

here the formula given by the Gram–Schmidt Procedure leaves the first m
vectors unchanged because they are already orthonormal. The list above is an
orthonormal basis of V by 6.28.

Recall that a matrix is called upper triangular if all entries below the
diagonal equal 0. In other words, an upper-triangular matrix looks like this:0B@ � �

: : :

0 �

1CA ;
where the 0 in the matrix above indicates that all entries below the diagonal
equal 0, and asterisks are used to denote entries on and above the diagonal.
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In the last chapter we showed that if V is a finite-dimensional complex
vector space, then for each operator on V there is a basis with respect to
which the matrix of the operator is upper triangular (see 5.27). Now that we
are dealing with inner product spaces, we would like to know whether there
exists an orthonormal basis with respect to which we have an upper-triangular
matrix.

The next result shows that the existence of a basis with respect to which
T has an upper-triangular matrix implies the existence of an orthonormal
basis with this property. This result is true on both real and complex vector
spaces (although on a real vector space, the hypothesis holds only for some
operators).

6.37 Upper-triangular matrix with respect to orthonormal basis

Suppose T 2 L.V /. If T has an upper-triangular matrix with respect to
some basis of V, then T has an upper-triangular matrix with respect to
some orthonormal basis of V.

Proof Suppose T has an upper-triangular matrix with respect to some basis
v1; : : : ; vn of V. Thus span.v1; : : : ; vj / is invariant under T for each j D
1; : : : ; n (see 5.26).

Apply the Gram–Schmidt Procedure to v1; : : : ; vn, producing an orthonor-
mal basis e1; : : : ; en of V. Because

span.e1; : : : ; ej / D span.v1; : : : ; vj /

for each j (see 6.31), we conclude that span.e1; : : : ; ej / is invariant under T
for each j D 1; : : : ; n. Thus, by 5.26, T has an upper-triangular matrix with
respect to the orthonormal basis e1; : : : ; en.

German mathematician Issai Schur
(1875–1941) published the first
proof of the next result in 1909.

The next result is an important appli-
cation of the result above.

6.38 Schur’s Theorem

Suppose V is a finite-dimensional complex vector space and T 2 L.V /.
Then T has an upper-triangular matrix with respect to some orthonormal
basis of V.

Proof Recall that T has an upper-triangular matrix with respect to some basis
of V (see 5.27). Now apply 6.37.
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Linear Functionals on Inner Product Spaces

Because linear maps into the scalar field F play a special role, we defined a
special name for them in Section 3.F. That definition is repeated below in
case you skipped Section 3.F.

6.39 Definition linear functional

A linear functional on V is a linear map from V to F. In other words, a
linear functional is an element of L.V;F/.

6.40 Example The function ' W F3 ! F defined by

'.z1; z2; z3/ D 2z1 � 5z2 C z3

is a linear functional on F3. We could write this linear functional in the form

'.z/ D hz; ui

for every z 2 F3, where u D .2;�5; 1/.

6.41 Example The function ' W P2.R/! R defined by

'.p/ D

Z 1

�1

p.t/
�
cos.�t/

�
dt

is a linear functional on P2.R/ (here the inner product on P2.R/ is multi-
plication followed by integration on Œ�1; 1�; see 6.33). It is not obvious that
there exists u 2 P2.R/ such that

'.p/ D hp; ui

for every p 2 P2.R/ [we cannot take u.t/ D cos.�t/ because that function
is not an element of P2.R/].

The next result is named in honor of
Hungarian mathematician Frigyes
Riesz (1880–1956), who proved
several results early in the twen-
tieth century that look very much
like the result below.

If u 2 V, then the map that sends
v to hv; ui is a linear functional on V.
The next result shows that every linear
functional on V is of this form. Ex-
ample 6.41 above illustrates the power
of the next result because for the linear
functional in that example, there is no
obvious candidate for u.
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6.42 Riesz Representation Theorem

Suppose V is finite-dimensional and ' is a linear functional on V. Then
there is a unique vector u 2 V such that

'.v/ D hv; ui

for every v 2 V.

Proof First we show there exists a vector u 2 V such that '.v/ D hv; ui for
every v 2 V. Let e1; : : : ; en be an orthonormal basis of V. Then

'.v/ D '.hv; e1ie1 C � � � C hv; enien/

D hv; e1i'.e1/C � � � C hv; eni'.en/

D hv; '.e1/e1 C � � � C '.en/eni

for every v 2 V, where the first equality comes from 6.30. Thus setting

6.43 u D '.e1/e1 C � � � C '.en/en;

we have '.v/ D hv; ui for every v 2 V, as desired.
Now we prove that only one vector u 2 V has the desired behavior.

Suppose u1; u2 2 V are such that

'.v/ D hv; u1i D hv; u2i

for every v 2 V. Then

0 D hv; u1i � hv; u2i D hv; u1 � u2i

for every v 2 V. Taking v D u1�u2 shows that u1�u2 D 0. In other words,
u1 D u2, completing the proof of the uniqueness part of the result.

6.44 Example Find u 2 P2.R/ such thatZ 1

�1

p.t/
�
cos.�t/

�
dt D

Z 1

�1

p.t/u.t/ dt

for every p 2 P2.R/.
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Solution Let '.p/ D
R 1
�1 p.t/

�
cos.�t/

�
dt . Applying formula 6.43 from

the proof above, and using the orthonormal basis from Example 6.33, we have

u.x/ D
�Z 1

�1

q
1
2

�
cos.�t/

�
dt
�q

1
2
C

�Z 1

�1

q
3
2
t
�
cos.�t/

�
dt
�q

3
2
x

C

�Z 1

�1

q
45
8

�
t2 � 1

3

��
cos.�t/

�
dt
�q

45
8

�
x2 � 1

3

�
:

A bit of calculus shows that

u.x/ D � 45
2�2

�
x2 � 1

3

�
:

Suppose V is finite-dimensional and ' a linear functional on V. Then 6.43
gives a formula for the vector u that satisfies '.v/ D hv; ui for all v 2 V.
Specifically, we have

u D '.e1/e1 C � � � C '.en/en:

The right side of the equation above seems to depend on the orthonormal
basis e1; : : : ; en as well as on '. However, 6.42 tells us that u is uniquely
determined by '. Thus the right side of the equation above is the same
regardless of which orthonormal basis e1; : : : ; en of V is chosen.

EXERCISES 6.B

1 (a) Suppose � 2 R. Show that .cos �; sin �/; .� sin �; cos �/ and
.cos �; sin �/; .sin �;� cos �/ are orthonormal bases of R2.

(b) Show that each orthonormal basis of R2 is of the form given by
one of the two possibilities of part (a).

2 Suppose e1; : : : ; em is an orthonormal list of vectors in V. Let v 2 V.
Prove that

kvk2 D jhv; e1ij2 C � � � C jhv; emij2

if and only if v 2 span.e1; : : : ; em/.

3 Suppose T 2 L.R3/ has an upper-triangular matrix with respect to
the basis .1; 0; 0/, (1, 1, 1), .1; 1; 2/. Find an orthonormal basis of R3
(use the usual inner product on R3) with respect to which T has an
upper-triangular matrix.
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4 Suppose n is a positive integer. Prove that

1
p
2�
;

cos x
p
�
;

cos 2x
p
�
; : : : ;

cosnx
p
�
;

sin x
p
�
;

sin 2x
p
�
; : : : ;

sinnx
p
�

is an orthonormal list of vectors in C Œ��; ��, the vector space of contin-
uous real-valued functions on Œ��; �� with inner product

hf; gi D

Z �

��

f .x/g.x/ dx:

[The orthonormal list above is often used for modeling periodic phenom-
ena such as tides.]

5 On P2.R/, consider the inner product given by

hp; qi D

Z 1

0

p.x/q.x/ dx:

Apply the Gram–Schmidt Procedure to the basis 1; x; x2 to produce an
orthonormal basis of P2.R/.

6 Find an orthonormal basis of P2.R/ (with inner product as in Exercise 5)
such that the differentiation operator (the operator that takes p to p0)
on P2.R/ has an upper-triangular matrix with respect to this basis.

7 Find a polynomial q 2 P2.R/ such that

p
�
1
2

�
D

Z 1

0

p.x/q.x/ dx

for every p 2 P2.R/.

8 Find a polynomial q 2 P2.R/ such thatZ 1

0

p.x/.cos�x/ dx D
Z 1

0

p.x/q.x/ dx

for every p 2 P2.R/.

9 What happens if the Gram–Schmidt Procedure is applied to a list of
vectors that is not linearly independent?
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10 Suppose V is a real inner product space and v1; : : : ; vm is a linearly inde-
pendent list of vectors in V. Prove that there exist exactly 2m orthonormal
lists e1; : : : ; em of vectors in V such that

span.v1; : : : ; vj / D span.e1; : : : ; ej /

for all j 2 f1; : : : ; mg.

11 Suppose h�; �i1 and h�; �i2 are inner products on V such that hv;wi1 D 0
if and only if hv;wi2 D 0. Prove that there is a positive number c such
that hv;wi1 D chv;wi2 for every v;w 2 V.

12 Suppose V is finite-dimensional and h�; �i1, h�; �i2 are inner products on
V with corresponding norms k � k1 and k � k2. Prove that there exists a
positive number c such that

kvk1 � ckvk2

for every v 2 V.

13 Suppose v1; : : : ; vm is a linearly independent list in V. Show that there
exists w 2 V such that hw; vj i > 0 for all j 2 f1; : : : ; mg.

14 Suppose e1; : : : ; en is an orthonormal basis of V and v1; : : : ; vn are
vectors in V such that

kej � vj k <
1
p
n

for each j . Prove that v1; : : : ; vn is a basis of V.

15 Suppose CR.Œ�1; 1�/ is the vector space of continuous real-valued func-
tions on the interval Œ�1; 1� with inner product given by

hf; gi D

Z 1

�1

f .x/g.x/ dx

for f; g 2 CR.Œ�1; 1�/. Let ' be the linear functional on CR.Œ�1; 1�/

defined by '.f / D f .0/. Show that there does not exist g 2 CR.Œ�1; 1�/

such that
'.f / D hf; gi

for every f 2 CR.Œ�1; 1�/.
[The exercise above shows that the Riesz Representation Theorem (6.42)
does not hold on infinite-dimensional vector spaces without additional
hypotheses on V and '.]
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16 Suppose F D C, V is finite-dimensional, T 2 L.V /, all the eigenvalues
of T have absolute value less than 1, and � > 0. Prove that there exists a
positive integer m such that kTmvk � �kvk for every v 2 V.

17 For u 2 V, let ˆu denote the linear functional on V defined by

.ˆu/.v/ D hv; ui

for v 2 V.

(a) Show that if F D R, then ˆ is a linear map from V to V 0. (Recall
from Section 3.F that V 0 D L.V;F/ and that V 0 is called the dual
space of V.)

(b) Show that if F D C and V ¤ f0g, then ˆ is not a linear map.

(c) Show that ˆ is injective.

(d) Suppose F D R and V is finite-dimensional. Use parts (a) and (c)
and a dimension-counting argument (but without using 6.42) to
show that ˆ is an isomorphism from V onto V 0.

[Part (d) gives an alternative proof of the Riesz Representation Theorem
(6.42) when F D R. Part (d) also gives a natural isomorphism (meaning
that it does not depend on a choice of basis) from a finite-dimensional
real inner product space onto its dual space.]
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6.C Orthogonal Complements and
Minimization Problems

Orthogonal Complements

6.45 Definition orthogonal complement, U?

If U is a subset of V, then the orthogonal complement of U, denoted U?,
is the set of all vectors in V that are orthogonal to every vector in U :

U? D fv 2 V W hv; ui D 0 for every u 2 U g:

For example, if U is a line in R3, then U? is the plane containing the
origin that is perpendicular to U. If U is a plane in R3, then U? is the line
containing the origin that is perpendicular to U.

6.46 Basic properties of orthogonal complement

(a) If U is a subset of V, then U? is a subspace of V.

(b) f0g? D V.

(c) V ? D f0g.

(d) If U is a subset of V, then U \ U? � f0g.

(e) If U and W are subsets of V and U � W, then W ? � U?.

Proof

(a) Suppose U is a subset of V. Then h0; ui D 0 for every u 2 U ; thus
0 2 U?.

Suppose v;w 2 U?. If u 2 U, then

hvC w; ui D hv; ui C hw; ui D 0C 0 D 0:

Thus vC w 2 U?. In other words, U? is closed under addition.

Similarly, suppose � 2 F and v 2 U?. If u 2 U, then

h�v; ui D �hv; ui D � � 0 D 0:

Thus �v 2 U?. In other words, U? is closed under scalar multiplica-
tion. Thus U? is a subspace of V.
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(b) Suppose v 2 V. Then hv; 0i D 0, which implies that v 2 f0g?. Thus
f0g? D V.

(c) Suppose v 2 V ?. Then hv; vi D 0, which implies that v D 0. Thus
V ? D f0g.

(d) Suppose U is a subset of V and v 2 U \ U?. Then hv; vi D 0, which
implies that v D 0. Thus U \ U? � f0g.

(e) Suppose U and W are subsets of V and U � W. Suppose v 2 W ?.
Then hv; ui D 0 for every u 2 W, which implies that hv; ui D 0 for
every u 2 U. Hence v 2 U?. Thus W ? � U?.

Recall that if U;W are subspaces of V, then V is the direct sum of U and
W (written V D U ˚W ) if each element of V can be written in exactly one
way as a vector in U plus a vector in W (see 1.40).

The next result shows that every finite-dimensional subspace of V leads to
a natural direct sum decomposition of V.

6.47 Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

V D U ˚ U?:

Proof First we will show that

6.48 V D U C U?:

To do this, suppose v 2 V. Let e1; : : : ; em be an orthonormal basis of U.
Obviously

6.49 v D hv; e1ie1 C � � � C hv; emiem„ ƒ‚ …
u

C v � hv; e1ie1 � � � � � hv; emiem„ ƒ‚ …
w

:

Let u and w be defined as in the equation above. Clearly u 2 U. Because
e1; : : : ; em is an orthonormal list, for each j D 1; : : : ; m we have

hw; ej i D hv; ej i � hv; ej i

D 0:

Thus w is orthogonal to every vector in span.e1; : : : ; em/. In other words,
w 2 U?. Thus we have written v D u C w, where u 2 U and w 2 U?,
completing the proof of 6.48.

From 6.46(d), we know that U \U? D f0g. Along with 6.48, this implies
that V D U ˚ U? (see 1.45).

Linear Algebra Done Right, 3rd edition, by Sheldon Axler



SECTION 6.C Orthogonal Complements and Minimization Problems 195

Now we can see how to compute dimU? from dimU.

6.50 Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

dimU? D dimV � dimU:

Proof The formula for dimU? follows immediately from 6.47 and 3.78.

The next result is an important consequence of 6.47.

6.51 The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

U D .U?/?:

Proof First we will show that

6.52 U � .U?/?:

To do this, suppose u 2 U. Then hu; vi D 0 for every v 2 U? (by the
definition of U?). Because u is orthogonal to every vector in U?, we have
u 2 .U?/?, completing the proof of 6.52.

To prove the inclusion in the other direction, suppose v 2 .U?/?. By
6.47, we can write v D u C w, where u 2 U and w 2 U?. We have
v � u D w 2 U?. Because v 2 .U?/? and u 2 .U?/? (from 6.52), we
have v � u 2 .U?/?. Thus v � u 2 U? \ .U?/?, which implies that v � u
is orthogonal to itself, which implies that v � u D 0, which implies that
v D u, which implies that v 2 U. Thus .U?/? � U, which along with 6.52
completes the proof.

We now define an operator PU for each finite-dimensional subspace of V.

6.53 Definition orthogonal projection, PU

Suppose U is a finite-dimensional subspace of V. The orthogonal
projection of V onto U is the operator PU 2 L.V / defined as follows:
For v 2 V, write v D uC w, where u 2 U and w 2 U?. Then PU v D u.
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The direct sum decomposition V D U ˚ U? given by 6.47 shows that
each v 2 V can be uniquely written in the form v D uC w with u 2 U and
w 2 U?. Thus PU v is well defined.

6.54 Example Suppose x 2 V with x ¤ 0 and U D span.x/. Show that

PU v D
hv; xi
kxk2

x

for every v 2 V.

Solution Suppose v 2 V. Then

v D
hv; xi
kxk2

x C
�

v �
hv; xi
kxk2

x
�
;

where the first term on the right is in span.x/ (and thus in U ) and the second
term on the right is orthogonal to x (and thus is in U?/. Thus PU v equals the
first term on the right, as desired.

6.55 Properties of the orthogonal projection PU

Suppose U is a finite-dimensional subspace of V and v 2 V. Then

(a) PU 2 L.V / ;

(b) PUu D u for every u 2 U ;

(c) PUw D 0 for every w 2 U?;

(d) rangePU D U ;

(e) nullPU D U?;

(f) v � PU v 2 U?;

(g) PU
2
D PU ;

(h) kPU vk � kvk;

(i) for every orthonormal basis e1; : : : ; em of U,

PU v D hv; e1ie1 C � � � C hv; emiem:
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Proof

(a) To show that PU is a linear map on V, suppose v1; v2 2 V. Write

v1 D u1 C w1 and v2 D u2 C w2

with u1; u2 2 U and w1;w2 2 U?. ThusPU v1 D u1 andPU v2 D u2.
Now

v1 C v2 D .u1 C u2/C .w1 C w2/;

where u1 C u2 2 U and w1 C w2 2 U?. Thus

PU .v1 C v2/ D u1 C u2 D PU v1 C PU v2:

Similarly, suppose � 2 F. The equation v D uC w with u 2 U and
w 2 U? implies that �v D �u C �w with �u 2 U and �w 2 U?.
Thus PU .�v/ D �u D �PU v.

Hence PU is a linear map from V to V.

(b) Suppose u 2 U. We can write u D uC 0, where u 2 U and 0 2 U?.
Thus PUu D u.

(c) Suppose w 2 U?. We can write w D 0Cw, where 0 2 U and w 2 U?.
Thus PUw D 0.

(d) The definition of PU implies that rangePU � U. Part (b) implies that
U � rangePU. Thus rangePU D U.

(e) Part (c) implies that U? � nullPU. To prove the inclusion in the other
direction, note that if v 2 nullPU then the decomposition given by 6.47
must be v D 0C v, where 0 2 U and v 2 U?. Thus nullPU � U?.

(f) If v D uC w with u 2 U and w 2 U?, then

v � PU v D v � u D w 2 U?:

(g) If v D uC w with u 2 U and w 2 U?, then

.PU
2/v D PU .PU v/ D PUu D u D PU v:

(h) If v D uC w with u 2 U and w 2 U?, then

kPU vk2 D kuk2 � kuk2 C kwk2 D kvk2;

where the last equality comes from the Pythagorean Theorem.

(i) The formula for PU v follows from equation 6.49 in the proof of 6.47.
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Minimization Problems

The remarkable simplicity of the so-
lution to this minimization problem
has led to many important applica-
tions of inner product spaces out-
side of pure mathematics.

The following problem often arises:
given a subspace U of V and a point
v 2 V, find a point u 2 U such that
kv � uk is as small as possible. The
next proposition shows that this mini-
mization problem is solved by taking
u D PU v.

6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of V, v 2 V, and u 2 U. Then

kv � PU vk � kv � uk:

Furthermore, the inequality above is an equality if and only if u D PU v.

Proof We have

kv � PU vk2 � kv � PU vk2 C kPU v � uk26.57

D k.v � PU v/C .PU v � u/k2

D kv � uk2;

where the first line above holds because 0 � kPU v � uk2, the second
line above comes from the Pythagorean Theorem [which applies because
v� PU v 2 U? by 6.55(f), and PU v� u 2 U ], and the third line above holds
by simple algebra. Taking square roots gives the desired inequality.

Our inequality above is an equality if and only if 6.57 is an equality,
which happens if and only if kPU v � uk D 0, which happens if and only if
u D PU v.

0

v

P vU

U

PU v is the closest point in U to v.
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The last result is often combined with the formula 6.55(i) to compute
explicit solutions to minimization problems.

6.58 Example Find a polynomial u with real coefficients and degree at
most 5 that approximates sin x as well as possible on the interval Œ��; ��, in
the sense that Z �

��

j sin x � u.x/j2 dx

is as small as possible. Compare this result to the Taylor series approximation.

Solution Let CR Œ��; �� denote the real inner product space of continuous
real-valued functions on Œ��; �� with inner product

6.59 hf; gi D

Z �

��

f .x/g.x/ dx:

Let v 2 CR Œ��; �� be the function defined by v.x/ D sin x. Let U denote the
subspace of CR Œ��; �� consisting of the polynomials with real coefficients
and degree at most 5. Our problem can now be reformulated as follows:

Find u 2 U such that kv � uk is as small as possible.

A computer that can perform inte-
grations is useful here.

To compute the solution to our ap-
proximation problem, first apply the
Gram–Schmidt Procedure (using the in-
ner product given by 6.59) to the basis 1; x; x2; x3; x4; x5 of U, producing
an orthonormal basis e1; e2; e3; e4; e5; e6 of U. Then, again using the inner
product given by 6.59, compute PU v using 6.55(i) (with m D 6). Doing this
computation shows that PU v is the function u defined by

6.60 u.x/ D 0:987862x � 0:155271x3 C 0:00564312x5;

where the �’s that appear in the exact answer have been replaced with a good
decimal approximation.

By 6.56, the polynomial u above is the best approximation to sin x on
Œ��; �� using polynomials of degree at most 5 (here “best approximation”
means in the sense of minimizing

R �
�� j sin x � u.x/j2 dx). To see how good

this approximation is, the next figure shows the graphs of both sin x and our
approximation u.x/ given by 6.60 over the interval Œ��; ��.
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-3 3

-1

1

Graphs on Œ��; �� of sin x (blue) and
its approximation u.x/ (red) given by 6.60.

Our approximation 6.60 is so accurate that the two graphs are almost
identical—our eyes may see only one graph! Here the blue graph is placed
almost exactly over the red graph. If you are viewing this on an electronic
device, try enlarging the picture above, especially near 3 or �3, to see a small
gap between the two graphs.

Another well-known approximation to sin x by a polynomial of degree 5
is given by the Taylor polynomial

6.61 x �
x3

3Š
C
x5

5Š
:

To see how good this approximation is, the next picture shows the graphs of
both sin x and the Taylor polynomial 6.61 over the interval Œ��; ��.

-3 3

-1

1

Graphs on Œ��; �� of sin x (blue) and the Taylor polynomial 6.61 (red).

The Taylor polynomial is an excellent approximation to sin x for x near 0.
But the picture above shows that for jxj > 2, the Taylor polynomial is not
so accurate, especially compared to 6.60. For example, taking x D 3, our
approximation 6.60 estimates sin 3 with an error of about 0:001, but the Taylor
series 6.61 estimates sin 3 with an error of about 0:4. Thus at x D 3, the error
in the Taylor series is hundreds of times larger than the error given by 6.60.
Linear algebra has helped us discover an approximation to sin x that improves
upon what we learned in calculus!
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EXERCISES 6.C

1 Suppose v1; : : : ; vm 2 V. Prove that

fv1; : : : ; vmg? D
�
span.v1; : : : ; vm/

�?
:

2 Suppose U is a finite-dimensional subspace of V. Prove that U? D f0g
if and only if U D V.
[Exercise 14(a) shows that the result above is not true without the hy-
pothesis that U is finite-dimensional.]

3 Suppose U is a subspace of V with basis u1; : : : ; um and

u1; : : : ; um;w1; : : : ;wn

is a basis of V. Prove that if the Gram–Schmidt Procedure is applied
to the basis of V above, producing a list e1; : : : ; em; f1; : : : ; fn, then
e1; : : : ; em is an orthonormal basis of U and f1; : : : ; fn is an orthonor-
mal basis of U?.

4 Suppose U is the subspace of R4 defined by

U D span
�
.1; 2; 3;�4/; .�5; 4; 3; 2/

�
:

Find an orthonormal basis of U and an orthonormal basis of U?.

5 Suppose V is finite-dimensional and U is a subspace of V. Show that
PU? D I � PU, where I is the identity operator on V.

6 Suppose U and W are finite-dimensional subspaces of V. Prove that
PUPW D 0 if and only if hu;wi D 0 for all u 2 U and all w 2 W.

7 Suppose V is finite-dimensional and P 2 L.V / is such that P 2 D P and
every vector in nullP is orthogonal to every vector in rangeP . Prove
that there exists a subspace U of V such that P D PU.

8 Suppose V is finite-dimensional and P 2 L.V / is such that P 2 D P

and
kP vk � kvk

for every v 2 V. Prove that there exists a subspace U of V such that
P D PU.

9 Suppose T 2 L.V / and U is a finite-dimensional subspace of V. Prove
that U is invariant under T if and only if PUTPU D TPU.
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10 Suppose V is finite-dimensional, T 2 L.V /, and U is a subspace
of V. Prove that U and U? are both invariant under T if and only
if PUT D TPU.

11 In R4, let
U D span

�
.1; 1; 0; 0/; .1; 1; 1; 2/

�
:

Find u 2 U such that ku � .1; 2; 3; 4/k is as small as possible.

12 Find p 2 P3.R/ such that p.0/ D 0, p0.0/ D 0, andZ 1

0

j2C 3x � p.x/j2 dx

is as small as possible.

13 Find p 2 P5.R/ that makesZ �

��

j sin x � p.x/j2 dx

as small as possible.
[The polynomial 6.60 is an excellent approximation to the answer to this
exercise, but here you are asked to find the exact solution, which involves
powers of � . A computer that can perform symbolic integration will be
useful.]

14 Suppose CR.Œ�1; 1�/ is the vector space of continuous real-valued func-
tions on the interval Œ�1; 1� with inner product given by

hf; gi D

Z 1

�1

f .x/g.x/ dx

for f; g 2 CR.Œ�1; 1�/. Let U be the subspace of CR.Œ�1; 1�/ defined
by

U D ff 2 CR.Œ�1; 1�/ W f .0/ D 0g:

(a) Show that U? D f0g.

(b) Show that 6.47 and 6.51 do not hold without the finite-dimensional
hypothesis.
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