CHAPTER

Woman teaching
geometry, from a
fourteenth-century
edition of Euclid’s
geometry book.

Inner Product Spaces

In making the definition of a vector space, we generalized the linear structure
(addition and scalar multiplication) of R? and R3. We ignored other important
features, such as the notions of length and angle. These ideas are embedded
in the concept we now investigate, inner products.

Our standing assumptions are as follows:

6.1 Notation F, TV

e F denotes R or C.

e I/ denotes a vector space over F.

LEARNING OBJECTIVES FOR THIS CHAPTER

Cauchy—Schwarz Inequality

Gram—-Schmidt Procedure

m linear functionals on inner product spaces

calculating minimum distance to a subspace
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164 CHAPTER 6 Inner Product Spaces

6.A | Inner Products and Norms

Inner Products

To motivate the concept of inner prod-

(x> x) uct, think of vectors in R? and R3 as
x arrows with initial point at the origin.
The length of a vector x in R? or R3
\ is called the rorm of x, denoted |x]|.
Thus for x = (x1,x2) € R%, we have

The length oj;thzs vezctOr X is x| = m
VX1 X Similarly, if x = (x1, x2,x3) € R3,
then ||x|| = v/x12 + x22 + x32.
Even though we cannot draw pictures in higher dimensions, the gener-
alization to R” is obvious: we define the norm of x = (x1,...,x,) € R”
by

Ixl = Vxi2 + - + x2.

The norm is not linear on R”. To inject linearity into the discussion, we
introduce the dot product.

6.2 Definition dot product
For x, y € R”, the dot product of x and y, denoted x - y, is defined by
Xy =X1y1+ -+ Xnyn,

where x = (x1,...,xz)and y = (y1,..., Yn).

If we think of vectors as points in- Note that the dot product of two vec-
stead of arrows, then ||x|| should tors in R” is a number, not a vector. Ob-
be interpreted as the distance from viously x - x = ||x||? for all x € R".
the origin to the point x. The dot product on R” has the follow-

ing properties:

x-x > 0forall x € R";

e x-x =0ifand only if x = 0O;

for y € R” fixed, the map from R” to R that sends x € R* to x - y is
linear;

e x-y=y-xforall x,y € R".
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SECTION 6.A Inner Products and Norms 165

An inner product is a generalization of the dot product. At this point you
may be tempted to guess that an inner product is defined by abstracting the
properties of the dot product discussed in the last paragraph. For real vector
spaces, that guess is correct. However, so that we can make a definition that
will be useful for both real and complex vector spaces, we need to examine
the complex case before making the definition.

Recall that if A = a + bi, where a, b € R, then

e the absolute value of A, denoted |A[, is defined by |A| = +a? + b?;
e the complex conjugate of A, denoted A, is defined by A =a—bi;
o |12 = AN

See Chapter 4 for the definitions and the basic properties of the absolute value
and complex conjugate.
For z = (z1,...,zn) € C", we define the norm of z by

Izl = 21 + -+ lzal2.

The absolute values are needed because we want ||z|| to be a nonnegative
number. Note that
I11? = 2127 + -+ + zuZn.

We want to think of ||z||? as the inner product of z with itself, as we
did in R®. The equation above thus suggests that the inner product of
w= (Wi,...,wy) € C" with z should equal

Wi1Z1 + -+ WnZy.

If the roles of the w and z were interchanged, the expression above would
be replaced with its complex conjugate. In other words, we should expect
that the inner product of w with z equals the complex conjugate of the inner
product of z with w. With that motivation, we are now ready to define an
inner product on V, which may be a real or a complex vector space.

Two comments about the notation used in the next definition:

e If A is a complex number, then the notation A > 0 means that A is real
and nonnegative.

e We use the common notation (u, v), with angle brackets denoting an
inner product. Some people use parentheses instead, but then (u, v)
becomes ambiguous because it could denote either an ordered pair or
an inner product.
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166 CHAPTER 6 Inner Product Spaces

6.3 Definition inner product
An inner product on V is a function that takes each ordered pair (u, v) of
elements of V' to a number (u,v) € F and has the following properties:
positivity

(v,v) > O0forallveV;

definiteness
(v,v) = 0if and only if v = 0;

additivity in first slot
(u+v,w) = (u,w) + (v,w) forallu,v,w e V;

homogeneity in first slot
(Au,v) = Au,v) forall A € Fandall u,v € V;

conjugate symmetry
(u,v) = (v,u) forallu,v e V.

Although most mathematicians de- Every real number equals its com-
fine an inner product as above, plex conjugate. Thus if we are dealing
many physicists use a definition with a real vector space, then in the last
that requires homogeneity in the condition above we can dispense with
second slot instead of the first slot. the complex conjugate and simply state

that (u,v) = (v,u) forallv,w e V.

6.4 Example inner products

(a)  The Euclidean inner product on F" is defined by

<(W1,---,Wn), (Zl’---’Zn)) = WIE—"_ tee + an
(b) Ifecy,...,cy are positive numbers, then an inner product can be defined
on F” by
(W1, ...own), (21,...,zn)) = C1W1Z1 + -+ 4+ CaWnZn.

(¢)  An inner product can be defined on the vector space of continuous
real-valued functions on the interval [—1, 1] by

1
(f.8) = /_1 f(x)g(x)dx.
(d)  An inner product can be defined on P(R) by
(p.a) = [ Pl dx.

Linear Algebra Done Right, 3" edition, by Sheldon Axler



SECTION 6.A Inner Products and Norms 167

6.5 Definition inner product space
An inner product space is a vector space V' along with an inner product

on V.

The most important example of an inner product space is F”* with the
Euclidean inner product given by part (a) of the last example. When F” is
referred to as an inner product space, you should assume that the inner product
is the Euclidean inner product unless explicitly told otherwise.

So that we do not have to keep repeating the hypothesis that V' is an inner
product space, for the rest of this chapter we make the following assumption:

6.6 Notation V

For the rest of this chapter, V' denotes an inner product space over F.

Note the slight abuse of language here. An inner product space is a vector
space along with an inner product on that vector space. When we say that
a vector space V' is an inner product space, we are also thinking that an
inner product on V is lurking nearby or is obvious from the context (or is the
Euclidean inner product if the vector space is F").

6.7 Basic properties of an inner product

(a)  For each fixed u € V, the function that takes v to (v, u) is a linear
map from V to F.

(b) (0,u) =0foreveryu € V.
(¢)  (u,0) =0foreveryu € V.
d (u,v+w)=(u,v) + (u,w) forallu,v,w e V.

(e) (u,Av) = A{u,v)forallA e Fandu,ve V.

Proof

(a) Part (a) follows from the conditions of additivity in the first slot and
homogeneity in the first slot in the definition of an inner product.

(b)  Part (b) follows from part (a) and the result that every linear map takes
0toO.
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168 CHAPTER 6 Inner Product Spaces
(c)  Part (c) follows from part (a) and the conjugate symmetry property in
the definition of an inner product.
(d)  Suppose u,v,w € V. Then
(u,v+w) = v+ w,u)

(
= (v,u) + (w,u)

() Suppose A € Fandu,v € V. Then
(u, Av) = (Av,u)

as desired. n

Norms

Our motivation for defining inner products came initially from the norms of
vectors on R? and R3. Now we see that each inner product determines a
norm.

6.8 Definition norm, ||v||

For v € V, the norm of v, denoted ||v||, is defined by

vl = v {v, v).

6.9 Example norms
(@) If(zy,...,zn) € F" (with the Euclidean inner product), then

11zl = V21 + -+ Lzal2.

(b)  In the vector space of continuous real-valued functions on [—1, 1] [with
inner product given as in part (c) of 6.4], we have

1
If1 = /_ (f)? dx.

1
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SECTION 6.A Inner Products and Norms 169

6.10 Basic properties of the norm

Suppose v € V.

(@ |lvll = 0if and only if v = 0.

(b) ||Av|]| = |A]||v]| forall A € F.
Proof

(a)  The desired result holds because (v, v) = 0 if and only if v = 0.
(b)  Suppose A € F. Then

[AV]I% = (Av, Av)
= A{v, Av)
= AA(v,v)
= APV,
Taking square roots now gives the desired equality. |

The proof above of part (b) illustrates a general principle: working with
norms squared is usually easier than working directly with norms.
Now we come to a crucial definition.

6.11 Definition orthogonal

Two vectors u, v € V are called orthogonal if (u,v) = 0.

In the definition above, the order of the vectors does not matter, because
(u,v) = 0 if and only if (v,u) = 0. Instead of saying that u and v are
orthogonal, sometimes we say that u is orthogonal to v.

Exercise 13 asks you to prove that if u, v are nonzero vectors in R?, then

{u,v) = [lull[lv]lcos 0,

where 0 is the angle between u and v (thinking of u and v as arrows with initial
point at the origin). Thus two vectors in R? are orthogonal (with respect to the
usual Euclidean inner product) if and only if the cosine of the angle between
them is 0, which happens if and only if the vectors are perpendicular in the
usual sense of plane geometry. Thus you can think of the word orthogonal as
a fancy word meaning perpendicular.
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170 CHAPTER 6 Inner Product Spaces
We begin our study of orthogonality with an easy result.

6.12 Orthogonality and 0

(@)  01is orthogonal to every vector in V.

(b)  0is the only vector in V' that is orthogonal to itself.
Proof

(a)  Part (b) of 6.7 states that (0, u) = 0 for every u € V.

(b) IfveVand(v,v) =0,thenv = 0 (by definition of inner product). m

: —_ R2

The word orthogonal comes from For the special case V' = R?, the
the Greek word orthogonios, next theorem is over 2,500 years old.
which means right-angled. Of course, the proof below is not the

original proof.
6.13 Pythagorean Theorem
Suppose u and v are orthogonal vectors in V. Then

2 2 2
e +vI1= = flull™ 4 vl

Proof We have

[|u —I—v||2 ={u+v,u+v)
= (u,u) + (u,v) + (v,u) + (v, v)

2 2

=l + .
as desired. L]
The proof given above of the Suppose u,v € V, with v # 0. We
Pythagorean Theorem shows that would like to write u as a scalar multiple
the conclusion holds if and only of v plus a vector w orthogonal to v, as
if (u,v) + (v,u), which equals suggested in the next picture.

2Re(u,v), is 0. Thus the converse
of the Pythagorean Theorem holds
in real inner product spaces.
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(4%

0

An orthogonal decomposition.

To discover how to write u as a scalar multiple of v plus a vector orthogonal
to v, let ¢ € F denote a scalar. Then

u=cv+ (u—cv).

Thus we need to choose ¢ so that v is orthogonal to (u — cv). In other words,
we want

0= (u—cv,v)= (u,v)—clv|>
The equation above shows that we should choose ¢ to be (i, v)/||v||?>. Making
this choice of ¢, we can write

), (_<u,v>v)
SN TR G A R

As you should verify, the equation above writes u as a scalar multiple of v
plus a vector orthogonal to v. In other words, we have proved the following
result.

6.14 An orthogonal decomposition

Suppose u,v € V, withv # 0. Set ¢ = <|r’”v2) andw = u — (”u,”vz) v. Then
1% 1%

(w,v) =0 and u =cv+w.

The orthogonal decomposition 6.14  [go. i mathematician Augustin-
will be used in the proof of the Cauchy— | Louis Cauchy (1789-1857) proved
Schwarz Inequality, which is our next |6.17(a) in 1821. German mathe-

result and is one of the most important | matician Hermann Schwarz (1843—
1921) proved 6.17(b) in 1886.

inequalities in mathematics.
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6.15 Cauchy—Schwarz Inequality

Suppose u, v € V. Then
(e, )] < Juel 1]

This inequality is an equality if and only if one of u, v is a scalar multiple
of the other.

Proof If v = 0, then both sides of the desired inequality equal 0. Thus we
can assume that v # 0. Consider the orthogonal decomposition

~ {u,v)
B

given by 6.14, where w is orthogonal to v. By the Pythagorean Theorem,

g = | &

V+w

2
2
vil + vl

vl?

[{u,v)|?
= + lw])?

Ivi?

[{u, )2
vl?

Multiplying both sides of this inequality by ||v||? and then taking square roots
gives the desired inequality.

Looking at the proof in the paragraph above, note that the Cauchy—Schwarz
Inequality is an equality if and only if 6.16 is an equality. Obviously this
happens if and only if w = 0. But w = 0 if and only if u is a multiple of v
(see 6.14). Thus the Cauchy—Schwarz Inequality is an equality if and only if
u is a scalar multiple of v or v is a scalar multiple of u (or both; the phrasing
has been chosen to cover cases in which either u or v equals 0). |

6.16

6.17 Example examples of the Cauchy-Schwarz Inequality

(@ Ifxi,....,xn, Y1,-..,Vn € R, then
lx1y1 + "'+an’n|2 = (xl2 + "'+xn2)(J’12 + "'+J’n2)-

(b) If f, g are continuous real-valued functions on [—1, 1], then

| 11 fegwda] = ([ ll(f(X))de)( / 11 (g())* dx).
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The next result, called the Triangle
Inequality, has the geometric interpreta- \
tion that the length of each side of a tri-
angle is less than the sum of the lengths u
of the other two sides.

Note that the Triangle Inequality im-
plies that the shortest path between two
points is a line segment.

u+v

6.18 Triangle Inequality

Suppose u, v € V. Then
e + vl < flaell + [Iv]]-

This inequality is an equality if and only if one of u, v is a nonnegative
multiple of the other.

Proof We have
||u+v||2 (u+v,u+v)
= (u,u) + (v,v) + (u,v) + (v, u)
= (u.u) + (v, v) + (u,v) + (u.v)
= [Jull> + IvI* + 2Re(u. v)

6.19 < full® + VI + 2u, v)|
6.20 < Jull® + I + 20l v
= (|lull + [v])?,

where 6.20 follows from the Cauchy—Schwarz Inequality (6.15). Taking
square roots of both sides of the inequality above gives the desired inequality.

The proof above shows that the Triangle Inequality is an equality if and
only if we have equality in 6.19 and 6.20. Thus we have equality in the
Triangle Inequality if and only if

6.21 (u,v) = Jullllv]l.

If one of u,v is a nonnegative multiple of the other, then 6.21 holds, as
you should verify. Conversely, suppose 6.21 holds. Then the condition for
equality in the Cauchy—Schwarz Inequality (6.15) implies that one of u, vis a
scalar multiple of the other. Clearly 6.21 forces the scalar in question to be
nonnegative, as desired. ]
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The next result is called the parallelogram equality because of its geometric
interpretation: in every parallelogram, the sum of the squares of the lengths
of the diagonals equals the sum of the squares of the lengths of the four sides.

The parallelogram equality.

6.22 Parallelogram Equality

Suppose u, v € V. Then
4+ w12+l = vl? = 2] + Iv]1?).

Proof We have
4+ vII? + lu=v|* = @ +v,u4+v) + (u—v,u—v)
= [lull® + IVI1* + (u.v) + (v.u)
+ el + VI = () = (v u)
=2(JJu® + [IVII*).

as desired. [

Law professor Richard Friedman presenting a case before the U.S.
Supreme Court in 2010:

Mpr. Friedman: 1 think that issue is entirely orthogonal to the issue here
because the Commonwealth is acknowledging—

Chief Justice Roberts: I'm sorry. Entirely what?

Mr. Friedman: Orthogonal. Right angle. Unrelated. Irrelevant.

Chief Justice Roberts: Oh.

Justice Scalia: What was that adjective? I liked that.

Myr. Friedman: Orthogonal.

Chief Justice Roberts: Orthogonal.

Mpr. Friedman: Right, right.

Justice Scalia: Orthogonal, ooh. (Laughter.)

Justice Kennedy: 1 knew this case presented us a problem. (Laughter.)
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EXERCISES 6.A

10

Show that the function that takes ((x1,x2),(y1.y2)) € R* x R? to
|x1y1] + |x2y2] is not an inner product on R?.

Show that the function that takes ((x1 ,Xx2,x3), (1, y2, y3)) e R?xR3
to x1y1 + X3y3 is not an inner product on R3.

Suppose F = R and V' # {0}. Replace the positivity condition (which
states that (v, v) > 0 for all v € V) in the definition of an inner product
(6.3) with the condition that (v,v) > 0 for some v € V. Show that this
change in the definition does not change the set of functions from V x V/
to R that are inner products on V.

Suppose V is a real inner product space.

(a)  Show that (u +v,u —v) = ||lu||> — ||v||* for every u,v € V.

(b)  Show thatif u, v € V have the same norm, then u 4 v is orthogonal
ou—v.

(¢)  Use part (b) to show that the diagonals of a rhombus are perpen-
dicular to each other.

Suppose V is finite-dimensional and 7 € L£(V) is such that || Tv|| < |v||
for every v € V. Prove that T — /21 is invertible.

Suppose u, v € V. Prove that (1, v) = 0 if and only if
[ull < llu + av]|
foralla € F.

Suppose u, v € V. Prove that ||au + bv|| = ||bu + av|| foralla,b € R
if and only if ||u|| = ||v||.

Suppose u,v € V and ||u|| = ||v|| = 1 and {(u, v) = 1. Prove that u = v.

Suppose u,v € V and |lu|| < 1 and ||v|| < 1. Prove that

VU= Tl 1 = ]2 < 1= ()],

Find vectors u,v € R? such that u is a scalar multiple of (1,3), v is
orthogonal to (1,3), and (1,2) = u + v.
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CHAPTER 6 Inner Product Spaces
Prove that

1 1 1 1
l6§(a+b+0+d)(g+g+;+g)

for all positive numbers a, b, ¢, d.

Prove that
(X1 4+ x0)? <n(x1? + -+ x2)

for all positive integers n and all real numbers x1, ..., x,.

Suppose u, v are nonzero vectors in R2. Prove that
(u,v) = [[ul[|[v]| cos 8,

where 6 is the angle between u and v (thinking of u and v as arrows with
initial point at the origin).

Hint: Draw the triangle formed by u, v, and u — v; then use the law of
cosines.

The angle between two vectors (thought of as arrows with initial point at
the origin) in R? or R? can be defined geometrically. However, geometry
is not as clear in R” for n > 3. Thus the angle between two nonzero
vectors x, y € R" is defined to be

{(x,¥)

arccos ,
[l

where the motivation for this definition comes from the previous exercise.
Explain why the Cauchy—Schwarz Inequality is needed to show that this
definition makes sense.

Prove that
n 2 n n bj2
(Xais) = (Xia?)(X5)
j=1 j=1 Jj=1 J
for all real numbers ay,...,a, and by, ..., by.

Suppose u, v € V are such that
Jull =3, Jlu+vl=4, Ju—-v]=6

What number does ||v| equal?
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SECTION 6.A Inner Products and Norms 177

Prove or disprove: there is an inner product on R? such that the associated
norm is given by

[[Gx, p)IF = max{]x]. [y}
for all (x, y) € R?.

Suppose p > 0. Prove that there is an inner product on R? such that the
associated norm is given by

G, W) = (I[P + [y]P)/P
for all (x, y) € R? if and only if p = 2.

Suppose V is a real inner product space. Prove that

_ vl — e —v)?

(u,v) 2

forallu,veV.

Suppose V' is a complex inner product space. Prove that

I L e e L0 A el LA

uv

(u.7) ;
forallu,ve V.

A norm on a vector space U is a function || ||: U — [0,00) such
that ||u|| = 0 if and only if u = 0, |leu| = |«|||u| for all « € F

and all u € U, and |u + v|| < |lu|| + ||v|| for all u,v € U. Prove
that a norm satisfying the parallelogram equality comes from an inner
product (in other words, show that if || || is a norm on U satisfying the
parallelogram equality, then there is an inner product (, ) on U such
that ||u|| = (u,u)/? forallu € U).

Show that the square of an average is less than or equal to the average
of the squares. More precisely, show that if aq,...,a, € R, then the
square of the average of ay, ..., a, is less than or equal to the average

ofai?, ..., a2

Suppose V1, ..., Vy, are inner product spaces. Show that the equation

(Ui, . oum), (v, ovm)) = (U, ve) + -+ (Um, Vi)

defines an inner product on Vi x -+ X V.

[In the expression above on the right, (u1,v1) denotes the inner product
onVy, ..., (Um, V) denotes the inner product on Vy,. Each of the spaces
Vi, ...,V may have a different inner product, even though the same
notation is used here.]
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Suppose S € L(V) is an injective operator on V. Define (-, )1 by
(u,v)1 = (Su, Sv)
for u,v € V. Show that (-, -)1 is an inner product on V.

Suppose S € L(V) is not injective. Define (-, -)1 as in the exercise above.
Explain why (-, -); is not an inner product on V.

Suppose f, g are differentiable functions from R to R”.

(a)  Show that
(f(1).g®) = (f'().g@)) + (f(1).8'(®)).
(b)  Suppose ¢ > 0 and || f(¢)|| = ¢ for every t € R. Show that
(f'(t), f(t)) =0 foreveryt € R.
(c)  Interpret the result in part (b) geometrically in terms of the tangent

vector to a curve lying on a sphere in R” centered at the origin.

[For the exercise above, a function f: R — R”" is called differentiable
if there exist differentiable functions fi,..., fn from R to R such that
f@) = (f1 @),..., fa (Z))for eacht € R. Furthermore, for eacht € R,

the derivative f'(t) € R" is defined by f'(t) = (f1'(t)..... fa'(1)).]

Suppose u, v,w € V. Prove that

lw—ul?® + llw—vI>  [lu—v|?

_1 2 _
= 30u 4+ )] . ;

Suppose C is a subset of V' with the property that u,v € C implies
%(u 4+ v) € C. Let w € V. Show that there is at most one point in C
that is closest to w. In other words, show that there is at most one u € C
such that

lw—u| <|w—v| forallveC.

Hint: Use the previous exercise.
For u,v € V, define d(u,v) = ||lu — v||.

(a)  Show that d is a metric on V.

(b)  Show that if V is finite-dimensional, then d is a complete metric
on V' (meaning that every Cauchy sequence converges).

(c)  Show that every finite-dimensional subspace of V is a closed
subset of V' (with respect to the metric d).

Linear Algebra Done Right, 3" edition, by Sheldon Axler



30

31

SECTION 6.A Inner Products and Norms 179

Fix a positive integer n. The Laplacian Ap of a twice differentiable
function p on R” is the function on R” defined by

92 92

il i}

0x3 0x3

The function p is called harmonic if Ap = 0.

Ap =

A polynomial on R" is a linear combination of functions of the
form x;™! ... x,™" where m, ..., my, are nonnegative integers.

Suppose ¢ is a polynomial on R”. Prove that there exists a harmonic
polynomial p on R” such that p(x) = g(x) for every x € R" with
x|l = 1.

[The only fact about harmonic functions that you need for this exercise
is that if p is a harmonic function on R" and p(x) = 0 for all x € R"
with ||x|| = 1, then p = 0.]

Hint: A reasonable guess is that the desired harmonic polynomial p is of
the form ¢ + (1 — ||x||?)r for some polynomial r. Prove that there is a
polynomial  on R” such that ¢ + (1 — ||x||?)r is harmonic by defining
an operator 7' on a suitable vector space by

Tr = A((1— [x])r)
and then showing that T is injective and hence surjective.

Use inner products to prove Apollonius’s Identity: In a triangle with
sides of length a, b, and ¢, let d be the length of the line segment from
the midpoint of the side of length ¢ to the opposite vertex. Then

a’? +b% = %cz +2d>?.
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6.B = Orthonormal Bases

6.23 Definition orthonormal

e A list of vectors is called orthonormal if each vector in the list has
norm 1 and is orthogonal to all the other vectors in the list.

e In other words, a list eq, ..., e;; of vectors in V' is orthonormal if
( ) 1 ifj =k,
ei,er) =
U T

6.24 Example orthonormal lists

(a)  The standard basis in F” is an orthonormal list.

11 1)y (L 1 ; ot in F3
(b) (ﬁﬁﬁ)( ﬁ’ﬁ’o) is an orthonormal list in F~.
11 1)y (L 1L A1 2y ;
() («/53 ﬁﬁ)( ﬁ’ﬁ’o)’(ﬁ’ﬁ’ JE) is an orthonormal list
in F°.

Orthonormal lists are particularly easy to work with, as illustrated by the
next result.

6.25 The norm of an orthonormal linear combination

If ey, ..., em is an orthonormal list of vectors in V, then
later + - - + amem|® = la1|> + -+ + |am|?

forallay,...,am €F.

Proof Because each e; has norm 1, this follows easily from repeated appli-
cations of the Pythagorean Theorem (6.13). ]

The result above has the following important corollary.

6.26 An orthonormal list is linearly independent

Every orthonormal list of vectors is linearly independent.
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Proof  Suppose eq,..., ey is an orthonormal list of vectors in V' and
ai,...,a, € F are such that

arer + -+ amen =0.

Then |aq|?> + -+ + |am|?* = 0 (by 6.25), which means that all the a ;s are 0.
Thus ey, ..., e is linearly independent. ]

6.27 Definition orthonormal basis
An orthonormal basis of V is an orthonormal list of vectors in V' that is

also a basis of V.

For example, the standard basis is an orthonormal basis of F”.

6.28 An orthonormal list of the right length is an orthonormal basis
Every orthonormal list of vectors in V' with length dim V' is an orthonormal

basis of V.

Proof By 6.26, any such list must be linearly independent; because it has the
right length, it is a basis—see 2.39. |

6.29 Example Show that
111 1y¢11 1 1y4¢1 1 11 11 11
(E’5’5’E)’(E’E’_E’_E)’(5’_5’_5’5)’(_5’5’_5’E)
is an orthonormal basis of F4.

Solution ~ We have

2 2 2 2
G353 D=V + 3+ (0 + () =1,
Similarly, the other three vectors in the list above also have norm 1.
We have

111 1y (1l 1 _1 _1\\W_1_ 1_ 1. 1 _ 1 (_1y_ 1 (_1\_
(3222 G2 2=32+32+3(3)+3:(=3) =0
Similarly, the inner product of any two distinct vectors in the list above also
equals 0.

Thus the list above is orthonormal. Because we have an orthonormal list of

length four in the four-dimensional vector space F#, this list is an orthonormal
basis of F* (by 6.28).
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In general, given a basis ey, ..., e, of V and a vector v € V, we know that
there is some choice of scalars ay, ...,a, € F such that

Vv=aie1 +---+ aney.

The importance of orthonormal Computing the numbers ay, ..., a, that
bases stems mainly from the next satisfy the equation above can be diffi-
result. cult for an arbitrary basis of V. The

next result shows, however, that this is
easy for an orthonormal basis—just take
aj =(v.ej).

6.30 Writing a vector as linear combination of orthonormal basis

Suppose ey, ..., e, is an orthonormal basis of V' and v € V. Then

V= (V’el)el + o + (V’e}’l)e}’l

and
2 2 2
IvI© = {v.ex}|” + - + [{v. en)|”.
Proof Because eq, ..., e, is a basis of V, there exist scalars a1, ..., a, such
that
v=ajie1 + -+ aney.
Because ey, ..., e, is orthonormal, taking the inner product of both sides of

this equation with e gives (v, e;) = a;. Thus the first equation in 6.30 holds.
The second equation in 6.30 follows immediately from the first equation
and 6.25. |

Now that we understand the usefulness of orthonormal bases, how do we
go about finding them? For example, does Py, (R), with inner product given
by integration on [—1, 1] [see 6.4(c)], have an orthonormal basis? The next
result will lead to answers to these questions.

Danish mathematician Jgrgen The algorithm used in the next proof
Gram (1850-1916) and German is called the Gram—Schmidt Procedure.

mathematician Erhard Schmidt It gives a method for turning a linearly
(1876-1959) popularized this algo- independent list into an orthonormal list
lr ithm that constructs orthonormal with the same span as the original list.
ists.
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6.31  Gram—-Schmidt Procedure

Suppose v, ...,V is a linearly independent list of vectors in V. Let
e1 = vi/|[v1|. For j =2,...,m, define e; inductively by
v —(vj,e1)er —---—(vj,ej_1)ej—1
ej = .
[vi —(vj.e1)er —---—(vj.ej—1)ej—1]
Then ey, . .., e, is an orthonormal list of vectors in V' such that
span(vi,...,v;) = span(eq,...,e;)

forj =1,...,m.

Proof We will show by induction on j that the desired conclusion holds. To
get started with j = 1, note that span(v;) = span(e) because v; is a positive
multiple of e;.

Suppose 1 < j < m and we have verified that

6.32 span(vi,...,vj—1) = span(eq,...,e;j_1).

Note that v; ¢ span(vy,...,v;j—1) (because vy,..., Vs is linearly indepen-
dent). Thus v; ¢ span(eq,...,e;—1). Hence we are not dividing by 0 in the
definition of e; given in 6.31. Dividing a vector by its norm produces a new
vector with norm 1; thus ||e; || = 1.

Let1 <k < j. Then

vi —(vj,er)er —--—(vj,ej_1)ej1
(ej.ex) =< Ler

[vi —(vj.er)er —---—(vj.ej—1)ej-1|

— <Vj’ek) B (Vj’ek>
[vi —(vj.er)er —--—(vj,ej—1)ej—1l

= 0.

Thus ey, ..., e; is an orthonormal list.
From the definition of e; given in 6.31, we see that v, € span(ey,...,e;).

Combining this information with 6.32 shows that
span(vi,...,v;j) C span(eg,...,e;).

Both lists above are linearly independent (the v’s by hypothesis, the e’s by
orthonormality and 6.26). Thus both subspaces above have dimension j, and
hence they are equal, completing the proof. ]
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6.33 Example Find an orthonormal basis of P, (R), where the inner prod-
uct is given by (p,q) = f_ll p(x)g(x)dx.

Solution ~ We will apply the Gram—Schmidt Procedure (6.31) to the basis

1, x,x2.

To get started, with this inner product we have
1

1% = / 12dx = 2.
-1

Thus ||1]| = +/2, and hence e = \/g

Now the numerator in the expression for e; is

x —(x,e1)er =X—(/_11x\/;dx)\/;=

1
2 2 2
12 = [ xax=%

1

We have

Thus [1x]| = /2. and hence e; = /3.
Now the numerator in the expression for es is

x*—(x%. er)er — (x?.e2)es

/ 2\ [Ldx) /4 / 2 3 dx) /3x

|I
W= A

Xz—

We have .
2 192 4 2.2 1 8
||x —§” =\/;1(X —§x +§)dx=E

2 / 4502 1
Thus |x? — 1| = /&, and hence e3 = /% (x2 — 1).

Thus
NERVERRVETER
’ 3

is an orthonormal list of length 3 in 7> (R). Hence this orthonormal list is an
orthonormal basis of P> (R) by 6.28.
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Now we can answer the question about the existence of orthonormal bases.

6.34 Existence of orthonormal basis

Every finite-dimensional inner product space has an orthonormal basis.

Proof Suppose V is finite-dimensional. Choose a basis of V. Apply the
Gram—Schmidt Procedure (6.31) to it, producing an orthonormal list with
length dim V. By 6.28, this orthonormal list is an orthonormal basis of V. m

Sometimes we need to know not only that an orthonormal basis exists, but
also that every orthonormal list can be extended to an orthonormal basis. In
the next corollary, the Gram—Schmidt Procedure shows that such an extension
is always possible.

6.35 Orthonormal list extends to orthonormal basis

Suppose V is finite-dimensional. Then every orthonormal list of vectors
in V' can be extended to an orthonormal basis of V.

Proof Suppose eq, ..., e, is an orthonormal list of vectors in V. Then
e1,...,en islinearly independent (by 6.26). Hence this list can be extended to
abasiser,...,em,v1,...,vy of V (see 2.33). Now apply the Gram—Schmidt
Procedure (6.31)to ey, ..., em,V1,..., Vs, producing an orthonormal list
6.36 e1,...,em,f1,...,fn;

here the formula given by the Gram—Schmidt Procedure leaves the first m
vectors unchanged because they are already orthonormal. The list above is an
orthonormal basis of V' by 6.28. |

Recall that a matrix is called upper triangular if all entries below the
diagonal equal 0. In other words, an upper-triangular matrix looks like this:

* *
0 *

where the 0 in the matrix above indicates that all entries below the diagonal

equal 0, and asterisks are used to denote entries on and above the diagonal.
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In the last chapter we showed that if V' is a finite-dimensional complex
vector space, then for each operator on V there is a basis with respect to
which the matrix of the operator is upper triangular (see 5.27). Now that we
are dealing with inner product spaces, we would like to know whether there
exists an orthonormal basis with respect to which we have an upper-triangular
matrix.

The next result shows that the existence of a basis with respect to which
T has an upper-triangular matrix implies the existence of an orthonormal
basis with this property. This result is true on both real and complex vector
spaces (although on a real vector space, the hypothesis holds only for some
operators).

6.37 Upper-triangular matrix with respect to orthonormal basis

Suppose T € L(V). If T has an upper-triangular matrix with respect to
some basis of V, then T has an upper-triangular matrix with respect to
some orthonormal basis of V.

Proof Suppose 7" has an upper-triangular matrix with respect to some basis

Vi,...,vy of V. Thus span(vy,...,v;) is invariant under 7 for each j =
1,...,n (see 5.26).

Apply the Gram-Schmidt Procedure to vy, .. ., v,, producing an orthonor-
mal basis eq, ..., e, of V. Because

span(eq,...,e;) = span(vy,...,Vv;)

for each j (see 6.31), we conclude that span(eq, ..., e;) is invariant under T
foreach j = 1,...,n. Thus, by 5.26, T has an upper-triangular matrix with
respect to the orthonormal basis ey, ..., ;. [

German mathematician Issai Schur The next result is an important appli-
(1875-1941) published the first cation of the result above.
proof of the next result in 1909.

6.38 Schur’s Theorem

Suppose V is a finite-dimensional complex vector space and 7" € L(V).
Then T has an upper-triangular matrix with respect to some orthonormal
basis of V.

Proof Recall that 7" has an upper-triangular matrix with respect to some basis
of V (see 5.27). Now apply 6.37. ]
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Linear Functionals on Inner Product Spaces

Because linear maps into the scalar field F play a special role, we defined a
special name for them in Section 3.F. That definition is repeated below in
case you skipped Section 3.F.

6.39 Definition linear functional

A linear functional on V is a linear map from V' to F. In other words, a
linear functional is an element of L(V, F).

6.40 Example The function ¢: F3 — F defined by
¢(z1,22,23) = 221 — 522 + Z3
is a linear functional on F3. We could write this linear functional in the form
¢(z) = (z,u)

for every z € F3, where u = (2,-5,1).

6.41 Example  The function ¢: P>(R) — R defined by

1
¢(p) = /_1 p(t)(cos(rt)) dt

is a linear functional on P,(R) (here the inner product on P (R) is multi-
plication followed by integration on [—1, 1]; see 6.33). It is not obvious that
there exists u € P»(R) such that

¢(p) = (p.u)

for every p € P>(R) [we cannot take u(¢) = cos(;r¢) because that function
is not an element of P, (R)].

If u € V, then the map that sends [ 7y, next result is named in honor of
v to (v,u) is a linear functional on V. |Hungarian mathematician Frigyes
The next result shows that every linear |Riesz (1880-1956), who proved
functional on V is of this form. Ex- |several results early in the twen-
ample 6.41 above illustrates the power | ieth century that look very much
of the next result because for the linear Like the result below.
functional in that example, there is no
obvious candidate for u.
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6.42 Riesz Representation Theorem

Suppose V is finite-dimensional and ¢ is a linear functional on V. Then
there is a unique vector ¥ € V such that

p(v) = (v, u)

for every v € V.

Proof  First we show there exists a vector u € V' such that ¢(v) = (v, u) for
everyv € V. Letey,..., e, be an orthonormal basis of V. Then

() = p((v,er)er + -+ (v,en)en)
= (V’ €1>§0(€1) + e+ (V, en)(P(en)
= (vael + -+ @len)en)

for every v € V, where the first equality comes from 6.30. Thus setting
6.43 u=gler)er +---+ ¢len)en,

we have ¢(v) = (v, u) for every v € V, as desired.
Now we prove that only one vector u € V has the desired behavior.
Suppose u1,us € V are such that

p(v) = (v,u1) = (v, uz)
for every v € V. Then
0= (V,ul) - (Vv M2> = (v,u1 _u2>

for every v € V. Taking v = u; — u, shows that u1 —u, = 0. In other words,
U1 = up, completing the proof of the uniqueness part of the result. |

6.44 Example Find u € P,(R) such that

1 1
/ p(t)(cos(t)) dt = [ p(Hu(t)dt
-1 ~1

for every p € P2(R).
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Solution  Let ¢p(p) = f_ll p(l)(cos(nt)) dt. Applying formula 6.43 from
the proof above, and using the orthonormal basis from Example 6.33, we have

u(x) = (/;1 \/g(cos(nt)) dt)\/g—i- (/_11 \/gt(cos(nt)) dt) \/gx
/ \/7 cos(frt)) dt) \/7()62 — %)

A bit of calculus shows that

u(x) = 271'2 (x2 - %)

Suppose V is finite-dimensional and ¢ a linear functional on V. Then 6.43
gives a formula for the vector u that satisfies ¢(v) = (v,u) forall v € V.
Specifically, we have

u=geer + -+ ¢len)en.

The right side of the equation above seems to depend on the orthonormal
basis eq, ...,e, as well as on ¢. However, 6.42 tells us that u is uniquely
determined by ¢. Thus the right side of the equation above is the same
regardless of which orthonormal basis ey, ..., e, of V is chosen.

EXERCISES 6.B

1 (a) Suppose § € R. Show that (cos8,sin ), (—sin 6, cos ) and
(cos 8, sin @), (sin 8, — cos @) are orthonormal bases of R?.

(b)  Show that each orthonormal basis of R? is of the form given by
one of the two possibilities of part (a).

2 Suppose ey, ..., ey is an orthonormal list of vectors in V. Letv € V.
Prove that
VI? = v, en)|? + - + [(v.em)?

if and only if v € span(ey, ..., en).

3 Suppose T € L(R3) has an upper-triangular matrix with respect to
the basis (1,0, 0), (1, 1, 1), (1, 1, 2). Find an orthonormal basis of R3
(use the usual inner product on R3) with respect to which 7 has an
upper-triangular matrix.
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Suppose 7 is a positive integer. Prove that

1 COSX COS2x cosnx sinx sin2x sinnx
msﬁ’ ﬁy"'y ﬁ’ﬁ’ ﬁ"..’ ﬁ

is an orthonormal list of vectors in C[—, 7], the vector space of contin-
uous real-valued functions on [—, 7] with inner product

(fig) = /_ " g o) dx.

[The orthonormal list above is often used for modeling periodic phenom-
ena such as tides.]

On P, (R), consider the inner product given by

1
(p.q) = /0 p()q(x) dx.

Apply the Gram—Schmidt Procedure to the basis 1, x, x? to produce an
orthonormal basis of 7P, (R).

Find an orthonormal basis of P, (R) (with inner product as in Exercise 5)
such that the differentiation operator (the operator that takes p to p’)
on P, (R) has an upper-triangular matrix with respect to this basis.

Find a polynomial ¢ € P,(R) such that

1
() = /0 p()q(x) dx

for every p € P2(R).

Find a polynomial ¢ € P,(R) such that

1 1
/ p(x)(cosmx)dx = / p(x)q(x)dx
0 0

for every p € P>(R).

What happens if the Gram—Schmidt Procedure is applied to a list of
vectors that is not linearly independent?
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Suppose V is a real inner product space and vy, ..., vy, is a linearly inde-
pendent list of vectors in V. Prove that there exist exactly 2™ orthonormal
lists eq, ..., e, of vectors in V such that

span(vi,...,v;) = span(eq,...,e;)
forall j € {1,...,m}.

Suppose (-, )1 and (-, -}, are inner products on V such that (v,w); =0
if and only if (v, w), = 0. Prove that there is a positive number ¢ such
that (v,w); = c(v,w), forevery v,w € V.,

Suppose V is finite-dimensional and (-, -)1, (-, -)2 are inner products on
V' with corresponding norms || - |1 and || - ||2. Prove that there exists a
positive number ¢ such that

Ivili = clvil2

for every v € V.

Suppose vy, ..., vy is a linearly independent list in V. Show that there
exists w € V such that (w,v;) > Oforall j € {I,...,m}.
Suppose ey, ..., e, is an orthonormal basis of V and vq,...,v, are

vectors in V' such that

lej —vill < —=

Nz

for each j. Prove that vq,..., v, is a basis of V.

Suppose Cr([—1, 1]) is the vector space of continuous real-valued func-
tions on the interval [—1, 1] with inner product given by

1
(fig) = /_ F0g( dx

for f, g € Cr([—1,1]). Let ¢ be the linear functional on Cr([—1, 1])
defined by ¢( /) = f(0). Show that there does not exist g € Cr([—1, 1])
such that

o(f) = (/.8

forevery f € Cr([-1,1)).

[The exercise above shows that the Riesz Representation Theorem (6.42)
does not hold on infinite-dimensional vector spaces without additional
hypotheses on V and ¢.)

Linear Algebra Done Right, 3™ edition, by Sheldon Axler



192

16

17

CHAPTER 6 Inner Product Spaces

Suppose F = C, V is finite-dimensional, T € L(V), all the eigenvalues
of T have absolute value less than 1, and € > 0. Prove that there exists a
positive integer m such that ||7™v| < ¢||v|| for every v € V.

For u € V, let ®u denote the linear functional on V' defined by

(Pu)(v) = (v, u)
forvelV.

(a)  Show that if F = R, then @ is a linear map from V to V. (Recall
from Section 3.F that V/ = L(V,F) and that V"’ is called the dual
space of V.)

(b)  Show thatif F = C and V # {0}, then ® is not a linear map.
(c)  Show that @ is injective.

(d)  Suppose F = R and V is finite-dimensional. Use parts (a) and (c)
and a dimension-counting argument (but without using 6.42) to
show that @ is an isomorphism from V onto V.

[Part (d) gives an alternative proof of the Riesz Representation Theorem
(6.42) when F = R. Part (d) also gives a natural isomorphism (meaning
that it does not depend on a choice of basis) from a finite-dimensional
real inner product space onto its dual space.)
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6.C = Orthogonal Complements and

Minimization Problems

Orthogonal Complements

6.45 Definition orthogonal complement, U~+

If U is a subset of V, then the orthogonal complement of U, denoted UL,
is the set of all vectors in V' that are orthogonal to every vector in U:

Ut={veV:(vu)=0foreveryu € U}.

For example, if U is a line in R3, then U+ is the plane containing the
origin that is perpendicular to U. If U is a plane in R3, then U~ is the line
containing the origin that is perpendicular to U.

6.46 Basic properties of orthogonal complement

(a)
(b)
(©
(d)
©)
Proof

(a)

If U is a subset of V, then U+ is a subspace of V.
0+ =v.

v+ = {0l

If U is a subset of V, then U N UL C {0}.

If U and W are subsets of V and U C W, then WL c U-L.

Suppose U is a subset of V. Then (0,u) = 0 for every u € U; thus
0eUL.

Suppose v,w € UL. If u € U, then
(v+wu)=wvu)+ (wu)=0+0=0.

Thus v + w € U~L. In other words, U L is closed under addition.
Similarly, suppose A € F and v € UL. If u € U, then

(Av,u) = A(v,u) =A1-0=0.

Thus Av € U~L. In other words, U+ is closed under scalar multiplica-
tion. Thus U is a subspace of V.
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(b)  Suppose v € V. Then (v,0) = 0, which implies that v € {0}. Thus
{0+ =V

(c) Suppose v € VL. Then (v,v) = 0, which implies that v = 0. Thus
v+ = {0

(d)  Suppose U is a subset of VV and v € U N U~L. Then (v,v) = 0, which
implies that v = 0. Thus U N U+ c {0}.

(e) Suppose U and W are subsets of V and U C W. Suppose v € W=,
Then (v,u) = 0 for every u € W, which implies that (v, u) = 0 for
every u € U. Hence v e UL. Thus W' c U+, [

Recall that if U, W are subspaces of V, then V is the direct sum of U and
W (written V = U & W) if each element of V' can be written in exactly one
way as a vector in U plus a vector in W (see 1.40).

The next result shows that every finite-dimensional subspace of V leads to
a natural direct sum decomposition of V.

6.47 Direct sum of a subspace and its orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then

V=UeU".
Proof  First we will show that
6.48 V=U+U"
To do this, suppose v € V. Let ey,..., e, be an orthonormal basis of U.
Obviously
6.49 v = (v,er)er + -+ (v,emlem +v—(v,e1)er — - — (v,em)em .
u w

Let u and w be defined as in the equation above. Clearly u € U. Because
e1,...,en is an orthonormal list, for each j = 1,...,m we have

(w,ej) = (v.ej) —(v.ej)
=0.

Thus w is orthogonal to every vector in span(ey, ..., ey). In other words,
w € UL. Thus we have written v = u + w, where u € U and w € UJ-,
completing the proof of 6.48.

From 6.46(d), we know that U N UL = {0}. Along with 6.48, this implies
that V = U @ U~ (see 1.45). ]
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Now we can see how to compute dim U~ from dim U.

6.50 Dimension of the orthogonal complement

Suppose V is finite-dimensional and U is a subspace of V. Then

dimU+L = dimV — dim U.

Proof The formula for dim U~ follows immediately from 6.47 and 3.78. m

The next result is an important consequence of 6.47.

6.51 The orthogonal complement of the orthogonal complement

Suppose U is a finite-dimensional subspace of V. Then
U= (Ut

Proof First we will show that
6.52 UcUHt.

To do this, suppose u € U. Then (u,v) = 0 for every v € U~ (by the
definition of UL). Because u is orthogonal to every vector in UL, we have
u € (UL)L, completing the proof of 6.52.

To prove the inclusion in the other direction, suppose v € (U+)1. By
6.47, we can write v = u + w, where u € U and w € UL. We have
v—u =w e UL, Because v € (UH)+ and u € (UL)T (from 6.52), we
have v —u € (UL)L. Thus v —u € U+ N (UL)+, which implies that v — u
is orthogonal to itself, which implies that v — u = 0, which implies that
v = u, which implies that v € U. Thus (U+)1 C U, which along with 6.52
completes the proof. |

We now define an operator Py for each finite-dimensional subspace of V.

6.53 Definition orthogonal projection, Py

Suppose U is a finite-dimensional subspace of V. The orthogonal
projection of V onto U is the operator Py € L(V') defined as follows:
Forv € V, write v = u + w, where u € U and w € U~+. Then Pyv = u.
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The direct sum decomposition V = U @ U~ given by 6.47 shows that
each v € V can be uniquely written in the form v = u +w withu € U and
w € UL. Thus Pyv is well defined.

6.54 Example Suppose x € V with x # 0 and U = span(x). Show that

()
HE

for everyv € V.

Solution  Suppose v € V. Then

~ {vx) +(v (v, x) )’

Y= _
11> 11>

where the first term on the right is in span(x) (and thus in U) and the second
term on the right is orthogonal to x (and thus is in U~). Thus Py v equals the
first term on the right, as desired.

6.55 Properties of the orthogonal projection Py
Suppose U is a finite-dimensional subspace of V and v € V. Then
(@ PyeLll);

(b) Pyu =uforeveryu € U;

(¢c) Pyw=0foreveryw € e

(d) range Py = U;

() mnullPy =U";

() v—PyveU;

(@ Pu® = Py;

() N Pyvll < IvIl;

@) for every orthonormal basis eq, ..., e, of U,

Pyv = (v,e1)er + -+ (v,em)em.
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Proof

(a)

(b)

(©)

(d)

(e

()

(2

(h)

@

To show that Py is a linear map on V, suppose vy, v, € V. Write
vi=u;+wi; and vy =us + wy

withui,us € U and wy,wy € U-L. Thus Pyviy = uqand Pyvy = usp.
Now
vi +v2 = (U1 +uz) + (w1 + wa),

where u; + up € U and wi + wp € UL, Thus
Py(vi +v2) =ui +uz = Pyvy + Pyva.

Similarly, suppose A € F. The equation v = u + w with u € U and
w € U+ implies that Av = Au + Aw with Au € U and Aw € U+,
Thus Py (Av) = Au = APyv.

Hence Py is a linear map from V to V.

Suppose u € U. We can write u = u + 0, where u € U and 0 € UL,
Thus Pyu = u.

Suppose w € UL. We can write w = 0+w, where 0 € U andw € U~L.
Thus Pyw = 0.

The definition of Py implies that range Py C U. Part (b) implies that
U C range Py. Thus range Py = U.

Part (c) implies that U C null Py. To prove the inclusion in the other
direction, note that if v € null Py then the decomposition given by 6.47
mustbe v =0+ v, where 0 € U and v € U+, Thus null Py c U-L.

Ifv=u+wwithu e U andw € UJ-,then
v—Ppgv=v—u=we Ut
Ifv=u+wwithu € U andw € U™, then
(Py?)v = Py(Pyv) = Pyu = u = Pyv.
Ifv=u+wwithu € U andw € U™, then
1PuvI? = lul® < flul® + Iwll* = Iv]%,
where the last equality comes from the Pythagorean Theorem.

The formula for Py v follows from equation 6.49 in the proof of 6.47. m
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Minimization Problems

The remarkable simplicity of the so- The following problem often arises:

lution to this minimization problem given a subspace U of V' and a point

has led to many important applica- v € V, find a point u € U such that

tions of inner product spaces out- |[v — ul| is as small as possible. The

side of pure mathematics. next proposition shows that this mini-
mization problem is solved by taking
u = PUV.

6.56 Minimizing the distance to a subspace

Suppose U is a finite-dimensional subspace of V, v € V, and u € U. Then
lv—Pyv| =< llv—ul.
Furthermore, the inequality above is an equality if and only if u = Pyv.

Proof We have

6.57 [v— Pyv|* < lv— Puv|?® + || Pyv — ul?
= ||(v = Pyv) + (Pyv—u)|?
= [lv—ul?

where the first line above holds because 0 < ||Pyv — ul|?, the second
line above comes from the Pythagorean Theorem [which applies because
v— Pyv e UL by 6.55(f), and Pyv —u € U], and the third line above holds
by simple algebra. Taking square roots gives the desired inequality.

Our inequality above is an equality if and only if 6.57 is an equality,
which happens if and only if || Pyv — u|| = 0, which happens if and only if
u = Pyv. ]

0

Py v is the closest point in U to v.
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The last result is often combined with the formula 6.55(i) to compute
explicit solutions to minimization problems.

6.58 Example Find a polynomial u with real coefficients and degree at
most 5 that approximates sin x as well as possible on the interval [—x, ], in
the sense that .
/ | sinx — u(x)|? dx
-7t

is as small as possible. Compare this result to the Taylor series approximation.

Solution  Let Cr[—m, 7] denote the real inner product space of continuous
real-valued functions on [—7, 7] with inner product

6.59 (frg) = /_ F()g(x) dx.

Let v € Cr[—m, 7] be the function defined by v(x) = sin x. Let U denote the
subspace of Cr[—, ] consisting of the polynomials with real coefficients
and degree at most 5. Our problem can now be reformulated as follows:

Find u € U such that ||v — u|| is as small as possible.

To compute the solution to our ap- [4 computer that can perform inte-
proximation problem, first apply the | grations is useful here.

Gram—Schmidt Procedure (using the in-

ner product given by 6.59) to the basis 1, x, x2,x3, x* x° of U, producing
an orthonormal basis eq, e, €3, e4, €5, e of U. Then, again using the inner
product given by 6.59, compute Py v using 6.55(i) (with m = 6). Doing this
computation shows that Py v is the function u defined by

6.60 u(x) = 0.987862x — 0.155271x3 + 0.00564312x7,

where the 7’s that appear in the exact answer have been replaced with a good
decimal approximation.

By 6.56, the polynomial u above is the best approximation to sinx on
[—7, ] using polynomials of degree at most 5 (here “best approximation”
means in the sense of minimizing ffﬂ | sin x — u(x)|? dx). To see how good
this approximation is, the next figure shows the graphs of both sin x and our
approximation u(x) given by 6.60 over the interval [—z, 7].
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1k

Graphs on [—m, 7] of sinx (blue) and
its approximation u(x) (red) given by 6.60.

Our approximation 6.60 is so accurate that the two graphs are almost
identical—our eyes may see only one graph! Here the blue graph is placed
almost exactly over the red graph. If you are viewing this on an electronic
device, try enlarging the picture above, especially near 3 or —3, to see a small
gap between the two graphs.

Another well-known approximation to sin x by a polynomial of degree 5
is given by the Taylor polynomial

6.61 X— =4+ —.

To see how good this approximation is, the next picture shows the graphs of
both sin x and the Taylor polynomial 6.61 over the interval [—, 7].

1+

-1 F

Graphs on [—m, 7] of sinx (blue) and the Taylor polynomial 6.61 (red).

The Taylor polynomial is an excellent approximation to sin x for x near O.
But the picture above shows that for |x| > 2, the Taylor polynomial is not
so accurate, especially compared to 6.60. For example, taking x = 3, our
approximation 6.60 estimates sin 3 with an error of about 0.001, but the Taylor
series 6.61 estimates sin 3 with an error of about 0.4. Thus at x = 3, the error
in the Taylor series is hundreds of times larger than the error given by 6.60.
Linear algebra has helped us discover an approximation to sin x that improves
upon what we learned in calculus!

Linear Algebra Done Right, 3™ edition, by Sheldon Axler



SECTION 6.C Orthogonal Complements and Minimization Problems 201

EXERCISES 6.C

1 Suppose vi,..., v, € V. Prove that
1
{vl,...,vm}l = (span(vl,...,vm)) .

2 Suppose U is a finite-dimensional subspace of V. Prove that UL = {0}
ifandonly if U = V.
[Exercise 14(a) shows that the result above is not true without the hy-
pothesis that U is finite-dimensional.]

3 Suppose U is a subspace of V' with basis uy, ..., u, and
ul,...,um,wl,...,Wn

is a basis of V. Prove that if the Gram—Schmidt Procedure is applied
to the basis of V' above, producing a list ey, ..., em, f1,..., fu, then
€1, ...,en is an orthonormal basis of U and f1,..., fy is an orthonor-
mal basis of UL.

4 Suppose U is the subspace of R* defined by
U = span((1,2,3,—4),(-5.4,3.,2)).
Find an orthonormal basis of U and an orthonormal basis of U=,

5 Suppose V is finite-dimensional and U is a subspace of V. Show that
Py =1 — Py, where [ is the identity operator on V.

6 Suppose U and W are finite-dimensional subspaces of V. Prove that
Py Py = 0Oif and only if (u,w) = 0forallu € U and allw € W.

7 Suppose V is finite-dimensional and P € £(V') is such that P2 = P and
every vector in null P is orthogonal to every vector in range P. Prove
that there exists a subspace U of V such that P = Pyp.

8 Suppose V is finite-dimensional and P € L£(V) is such that P2 = P
and
1Pyl < vl

for every v € V. Prove that there exists a subspace U of V' such that
P = Pyg.

9 Suppose T € L(V) and U is a finite-dimensional subspace of V. Prove
that U is invariant under 7 if and only if Py TPy = T Py.
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10

11

12

13

14
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Suppose V is finite-dimensional, T € L(V), and U is a subspace
of V. Prove that U and U+ are both invariant under 7 if and only
if PyT = TPy.

In R*, let
U = span((1,1,0,0), (1,1, 1,2)).
Find u € U such that ||u — (1,2, 3,4)]| is as small as possible.

Find p € P3(R) such that p(0) = 0, p’(0) = 0, and

1
/ 12 4+ 3x — p(x)|? dx
0

is as small as possible.

Find p € Ps(R) that makes

4
/ |sinx — p(x)|® dx

-7

as small as possible.

[The polynomial 6.60 is an excellent approximation to the answer to this
exercise, but here you are asked to find the exact solution, which involves
powers of w. A computer that can perform symbolic integration will be

useful.]

Suppose Cr([—1, 1]) is the vector space of continuous real-valued func-
tions on the interval [—1, 1] with inner product given by

1
(fig) = /_ F0g( dx

for f,g € Cr([—1,1]). Let U be the subspace of Cr([—1, 1]) defined
by

U={feCr(-1.1]): f(0) =0}
(a)  Show that U+ = {0}.

(b)  Show that 6.47 and 6.51 do not hold without the finite-dimensional
hypothesis.
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