The Ring

Definition 1: Let R be a non empty set, let $*, \circ$ be tow binary operation on R, then $(R, *, \circ)$ is called a ring iff:-

- 1- (R,*) is comm. group.
- 2- (R, \circ) is semi- group.
- 3- ∘ is distribution over *

i.e
$$(x * y) \circ z = (x \circ z) * (y \circ z)$$
$$z \circ (x * y) = (z \circ x) * (z \circ y) \quad \forall x, y \in R$$

Ex 1: $(R, +, \cdot)$, $(Z, +, \cdot)$, $(Q, +, \cdot)$, $(Z_n, +, \cdot)$ are Rings.

Ex 2: Is $(Z,*,\circ)$ a ring such that

$$a * b = a + b - 1$$

 $a \circ b = a + b - 2$ $\forall a, b \in Z$

Ex 3: $R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} , a, b, c, d \in R \right\}$ then $(R, +, \cdot)$ is a ring.

Ex 4: Let $R = \{ a + b\sqrt{3} \mid a, b \in Z \}$ then $(R, +, \cdot)$ is a ring.

Remark: let $(R, +, \cdot)$ is a ring where

- + is called addition
- · is called multiplication

<u>Definition 2</u>: A ring R is called commutative ring (com. ring) only if

$$a \cdot b = b \cdot a \quad \forall a, b \in R$$

Ex 1: $(R, +, \cdot)$ is com. ring where R is real number.

<u>Definition 3:</u> A ring R with multiplication identity 1 such that $1 \cdot a = a \cdot 1 = a \quad \forall a \in R$ then R is called **a ring with unity**.

Ex 1: $(R, +, \cdot)$, $(Z, +, \cdot)$ is a ring with unity =1.

Ex 2:
$$R = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, +, \cdot \right\}$$
 is a ring with unity $= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Ex 3: $(Z_e, +, \cdot)$ is a ring with out unity

Because $1 \notin Z$

Definition 4: An element (a) in a ring R is called unit if

$$\exists \ a^{-1} \in R \ s.t \ a \cdot a^{-1} = a^{-1} \cdot a = 1$$

Ex 1: $(R, +, \cdot)$ Every non zero element in R is unit.

Ex 2: The unit elements in $(Z, +, \cdot)$ are only (1) and (-1)

$$1 \cdot 1 = 1$$
 and $(-1) \cdot (-1) = 1$

Some properties of ring بعد خواص الحلقات

Theorem 1: Let $(R, +, \cdot)$ is a ring with additive identity=0 then: 1- $\mathbf{a} \cdot \mathbf{0} = \mathbf{0} \cdot \mathbf{a} = \mathbf{0}$.

$$a \cdot 0 = a \cdot (0 + 0)$$

 $\Rightarrow a \cdot 0 = a \cdot 0 + a \cdot 0$
 $[a \cdot 0 + (-a \cdot 0)] = a \cdot 0 + [a \cdot 0 + (-a \cdot 0)]$ {R is a ring
 $\forall a \in R \exists -a \in R$ }
 $0 = a \cdot 0 + 0$ { $a + (-a) = 1.e$
 $0 = a \cdot 0$

$$2 - a(b) = -(ab) = (-a)b$$

Pf:

$$a(-b) + (ab)$$
 R is a ring have $N.e$ { (ab) is a ring have $N.e$ { (ab) is a ring have $A.e$ } { (ab) is a ring hav

$$3-a+b=a+c \rightarrow b=c$$

$$-a + (a + b) = -a + (a + c)$$
 {R is a ring have N. e}

$$\Rightarrow$$
 $(-a+a)+b=(-a+a)+c$ {is ass}

$$\Rightarrow 0 + b = 0 + c$$
 {R is a ring have I.e $(a \pm a = 0)$

$$\Rightarrow b = c$$

$$4 - (-a) = a$$

Pf:

$$-a \text{ is inverse } (a) \leftrightarrow -a+a=0$$

$$-(-a)$$
 is inverse $(-a) \leftrightarrow -(-a) + -a = 0$

$$-(-a) + -a = 0$$

$$\Rightarrow$$
 $-(-a) + -a + a = 0 + a$

$$\Rightarrow -(-a) + 0 = a$$

$$\Rightarrow -(-a) = a$$

$$5 - (-a) \cdot (-b) = ab$$

$$=-(a\cdot(-b)$$

$$= -(-(ab)) \qquad \{ R \text{ is } a \text{ ring } -(-a) = a \}$$

$$= ab$$

6-
$$-(a + b) = (-a) + (-b)$$

 $-(a + b) + (a + b) = (-a) + (-b) + (a + b) \{(a + b)\}$
 $0 = -a + (-b + a) + b \{R \text{ is a ring is ass } \&a \in R \exists -a \in R\}$
 $= -a + (a + -b) + b \{+ \text{ is com}\}$
 $= (-a + a) + (-b + b) \{\text{ is ass}\}$
 $= 0 + 0 \{0 \text{ is I.e } (a + -a = 0)$
 $= 0$
 $\therefore -(a + b) = (-a) + (-b)$

Example1: let $R = \{(a, b): a, b \in R\}$ we defined "+", "·"

$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b)\cdot(c,d)=(ac,bd)$$

(R, +) is com group prove that $(R, +, \cdot)$ is com ring?

Sol:

1-
$$(a,b)\cdot(c,d)\in R$$
 is clouser

2- Ass.

$$[(a,b)\cdot(c,d)]\cdot(e,f)=(a,b)\cdot[(c,d)\cdot(e,f)]$$

$$(ac,bd)\cdot(e,f)=(a,b)\cdot(ce,df)$$

$$(ace, bdf) = (ace, bdf)$$

$$\therefore (R,\cdot)$$
 is $semi-group$

$$3-(a,b) \cdot [(c,d) + (e,f)] = (a,b) \cdot (c,d) + (a,b) \cdot (e,f)$$
$$(a,b) \cdot (c+e,d+f) = (ac,bd) + (ae,bf)$$
$$(ac+ae,bd,bf) = (ac+ae,bd+bf)$$

$$4-[(c,d)+(e,f)]\cdot (a,b) = (c,d)\cdot (a,b) + (e,f)\cdot (a,b)$$

 \therefore $(R, +, \cdot)$ is a ring

5-
$$(a,b)\cdot(c,d) = (c,d)\cdot(a,b)$$

 $(ac,bd) = (ca,db)$
 $(ac,bd) = (ac,bd)$ {· is com}

 \therefore (R, +,·) is com ring

If we want ring with unity

$$(a,b) \cdot (c,d) = (a,b)$$
$$(ac,bd) = (a,b)$$
$$ac = a \dots \dots (1)$$
$$bd = b \dots \dots (2)$$

From (1)
$$\frac{1}{a}$$
 $ac = \frac{1}{a}$ $ac = \frac{1}{a}$ $c = 1$

From (2)
$$\frac{1}{b}bd = \frac{1}{b}b$$

$$d = 1$$

$$: I.e = (1,1)$$

If we want ring with unit

$$(a,b)\cdot(a^{-1},b^{-1})=(1,1)$$

$$(aa^{-1},bb^{-1})=(1,1)$$

$$aa^{-1} = 1 \dots \dots (1)$$

$$bb^{-1} = 1 \dots \dots (2)$$

From (1)
$$\frac{1}{a}aa^{-1} = \frac{1}{a} \cdot 1$$
 $\{a \perp aa^{-1} = \frac{1}{a}\}$ هو النظير الضربي $a^{-1} = \frac{1}{a}$

From (2)
$$\frac{1}{b}bb^{-1} = \frac{1}{b} \cdot 1$$

$$b^{-1} = \frac{1}{b}$$

$$\therefore unit = \left(\frac{1}{a}, \frac{1}{b}\right)$$

 \therefore (R, +,·) is com ring with unit

Ex: Let $(Z, +, \cdot)$ is comring with unity is $(2Z, +, \cdot)$ ring with unity and (2Z, +) is com. group?

1-clouser

$$2a \cdot 2b = 4(ab) = 2(2ab) \in 2Z$$

2- Ass.

$$(2a \cdot 2b) \cdot 2c = 2a \cdot (2b \cdot 2c)$$

$$3-2a \cdot (2b + 2c) = (2a \cdot 2b) + (2a \cdot 2c)$$

 \therefore (2Z, +,·) is a ring

المحايد But $(2Z, +, \cdot)$ is a ring with out unity

عير موجود في
$$1$$
لان المحايد

Since $1 \notin 2Z$

Ex: Is
$$R = \{(R \times 0, +, \cdot)\}$$
 have unity?

We know that

$$R \times R = (a, b)$$

$$R \times 0 = (a, 0)$$

$$R = \{ (a, 0), a \in R \}$$

$$a \cdot 1 = a$$
 let $I = (b, 0)$

$$(a,0)\cdot(b,0)=(a,o)$$

$$(ab, 0 \cdot 0) = (a, 0)$$

$$(ab, 0) = (a, 0)$$

$$ab = a \Rightarrow \frac{1}{\alpha} \cdot ab = \frac{1}{\alpha} \cdot \alpha \Rightarrow b = 1$$

: I. e =
$$(1,0)$$
 [1 $\in R$]

$$\therefore$$
 $(R \times 0, +, \cdot)$ have unity

Ex: Let $R = R \times R = \{ (x, y) : x, y \in R \}$ we definitiond "+", "."

As following
$$(a,b) + (c,d) = (a+c,b+d)$$

$$(a,b)\cdot(c,d)=(ac,bc+d)$$

Is *R* com.ring with unity

Sol:

$$(a,b)\cdot(c,d)=(c,d)\cdot(a,b)$$

$$(ac, bc + d) \neq (ca, da + b)$$

 $\therefore R$ is not com. ring

$$(a,b)\cdot(c,d)=(a,b)$$

$$(ac,bc+d) = (a,b)$$

$$ac = a \Rightarrow \frac{1}{a} \cdot ac = \frac{1}{a} \cdot a \Rightarrow c = 1$$

$$bc + d = b \Rightarrow d = b - bc$$

$$\Rightarrow$$
 when $c = 1 \Rightarrow d = b - b(1) \Rightarrow d = 0$

$$: I.e = (1,0)$$

 \therefore R is a ring with unity

Ex: Let $(A_{2\times 2}, +, \cdot)$ is a ring is are com. ring with untiy

We know that
$$(A_{2\times 2}, +, \cdot)$$
 have unity $= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

But is are not com.ring since

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} e & f \\ g & h \end{bmatrix} \neq \begin{bmatrix} e & f \\ g & h \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

(H.w) نترك للطالب اثبات ذلك

Ex: Is $(Z, +, \cdot)$ has unit?

Sol:

غط الواحد والسالب واحد يمتلك نظير 1,-1 has unit only

$$1^{-1} = \frac{1}{1} = 1$$

$$-1^{-1} = -1$$

Th: Let *R* be a ring with unity, then can not divided by zero.

Pf:

We get $x \in R$ (x وليكن R وأيكن كانخذ عنصر في

Suppose; $\frac{x}{0} \in R$, so we can take x = 1

(R) احد عناصر x=1 احد عناصر (x=1

There for $\frac{1}{0}$ is inverse element of 0

(نظیر الضربي $\frac{1}{9}$ عدد هو مقاوب العدد نظیر العدد 9 هو $\frac{1}{9}$ نظیر العدد 0 هو $\frac{1}{0}$

$$\Rightarrow \left(\frac{1}{0}\right) \cdot (0) = 1$$

ان اي عنصر في نظيره يساوي العنصر المحايد I = 1

But $(a \cdot 0 = 0)$

$$\therefore \left(\frac{1}{0}\right) \cdot (0) = 0$$

$$\Rightarrow 1 = 0$$
 CL

: We can not divided by zero.

Subring

<u>Definition:</u> Let $(Z, +, \cdot)$ be a ring and let $\emptyset \neq S \subseteq R$ then S is subring of $R \leftrightarrow (S, +, \cdot)$ is a ring itself.

Ex: $(R, +, \cdot)$ is a ring $\emptyset \neq Z \subseteq R$ then

 $(Z, +, \cdot)$ is subring of R.

Ex: Let $(Z_6, +_6, \cdot_6)$ is a ring and let $H = {\overline{0}, \overline{2}, \overline{4}}$

Is $(H, +_6, \cdot_6)$ subring of Z_6

+6	$\bar{0}$	2	<u>4</u>
$\overline{0}$	$\overline{0}$	$\bar{2}$	$\bar{4}$
2	2	$\bar{4}$	$\bar{0}$
4	<u>4</u>	$\bar{0}$	2

' 6	$\bar{0}$	2	4
$\frac{\overline{0}}{\overline{0}}$	$\bar{0}$	$\bar{0}$	$\bar{0}$
$\bar{2}$	$\bar{0}$	<u>4</u>	$\bar{2}$
$\bar{4}$	$\bar{0}$	2	4

1- is closure

$$\bar{a}+_{6}\bar{b}\in H$$

2- is ass

$$\left(\bar{a} +_6 \bar{b}\right) +_6 \bar{c} = \bar{a} +_6 (\bar{b} +_6 \bar{c})$$

$$3-I.e=0$$

4- *N*.
$$e = \bar{0}$$

$$\bar{2} = \bar{4}$$

$$\bar{4} = \bar{2}$$

5- is com
$$\bar{a} +_6 \bar{b} = \bar{b} +_6 \bar{a}$$

6- is closure

$$\bar{a} \cdot_6 \bar{b} \in H$$

7- is ass

$$\left(\bar{a}\cdot_{6}\bar{b}\right)\cdot_{6}\bar{c} = \bar{a}\cdot_{6}\left(\bar{b}\cdot_{6}\bar{c}\right)$$

$$8 - \bar{a} \cdot_6 (\bar{b} +_6 \bar{c}) = (\bar{a} \cdot_6 \bar{b}) +_6 (\bar{a} \cdot_6 \bar{c})$$

 \therefore $(H, +_6, \cdot_6)$ is subring of Z_6

Th: Let $(R, +, \cdot)$ is a ring $\emptyset \neq S \subseteq R$ then S is subring \Leftrightarrow iff

1.
$$a - b \in S$$

$$2.a \cdot b \in S$$

Pf: \Rightarrow (S, +, \cdot) subring

1- subring $\Rightarrow \forall b \in S \exists -b \in S$, $a \in S$

$$a + (-b) \in S$$
 (+ is clousre)

$$a-b \in S$$
 $2 - a \cdot b \in S$ [Is subring $\rightarrow \cdot$ is closure]
 $\Leftrightarrow 1 - a, b \in S \Rightarrow a, -a \in S$
 $a-a \in S$
 $0 \in S$ $(I.e +)$
 $2 - a - b \in S \Rightarrow 0 - b \in S \Rightarrow -b \in S$ $[N.e +]$
 $3 - a - (-b) \in S \Rightarrow a + b \in S$ $[is closure]$
 $4 - S$ is ass $[S \subseteq R, R \text{ is a ring } \therefore R \text{ is ass } \Rightarrow S \text{ is ass}]$
 $\Rightarrow S \text{ is ass } [S \subseteq R, R \text{ is a ring } \Rightarrow R \text{ is com } \Rightarrow S \text{ is com}]$
 $\Rightarrow S \text{ is com } [a, b \in R, R \text{ is a ring } \Rightarrow R \text{ is com } \Rightarrow S \text{ is com}]$
 $\Rightarrow (S, +, \cdot) \text{ is com group}$
 $6 - a \cdot b \in S$, $(S, +, \cdot) \text{ is com group}$
 $6 - a \cdot b \in S$, $(S, +, \cdot) \text{ is a subring of } R \text{ is a sass } \Rightarrow S \text{ is ass}]$
 $\Rightarrow S \text{ is a sass } S$

. Is
$$(H, +_6, \cdot_6)$$
 subring of Z_6 نفس المثال السابق سوف نطبق عليه المبر هنة اعلاه

Sol:

1-
$$a - b = a + (-b) \in H$$

+6	$\overline{0}$	<u>4</u>	2
$\overline{0}$	$\overline{0}$	$\bar{4}$	$\bar{2}$
2	2	$\bar{0}$	$\bar{4}$
$\bar{4}$	<u> </u>	2	$\overline{0}$

' 6	$\bar{0}$	2	$\bar{4}$
$\overline{0}$	$\bar{0}$	$\overline{0}$	$\overline{0}$
$\bar{2}$	$\bar{0}$	$\bar{4}$	2
<u>4</u>	$\bar{0}$	2	<u>4</u>

$$\bar{0}^{-1} = \bar{0}$$

$$\bar{2}^{-1} = \bar{4}$$

$$\bar{4}^{-1} = \bar{2}$$

2-
$$a \cdot b \in H$$

$$\therefore$$
 $(H, +_6, \cdot_6)$ is a subring of Z_6

Th: If *R* is a ring with unity, then this unity 1 is the only multiplication identity.

Pf: let 1, 1' are tow multiplication identities

$$1' \cdot 1 = 1 \cdot 1' = 1'$$
 [هو عنصر محايد $1'$ هو عنصر عادي $1 \cdot 1' = 1' \cdot 1 = 1$ [هو عنصر محايد $1 \cdot 1' = 1' \cdot 1 = 1$ [$1' = 1$] $1' = 1$] $1' = 1$ CL

: Ring you have only multiplication identity.

Th: If $(R, +, \cdot)$ be a ring with unity then $1 \neq 0$

(identity of addition ≠ identity of multiplication)

Pf:

Suppose
$$1 = 0$$

$$x \in R$$
 , $x \neq 0$

$$x \cdot 1 = x \cdot 0$$
 $(1 = 0)$ $x = 0$ CL $1 \neq 0$ $1 \neq$

In general $1 \neq 0$

$$R=\{0\}$$
 الآ في حالة كان $0\cdot 0=0\cdot 1$ فان $0=0$ $1=0$

Remark: Let $(R, +, \cdot)$ be a ring, $(S, +, \cdot)$ be a subring then:

1-If R has unity, and then it's not necessary that S has unity.

Sol: ex: $(Z, +, \cdot)$ ring with unity = 1

$$2Z = \{0, \mp 2, \mp 4, \mp 6, \dots\}$$

 $(2Z, +, \cdot)$ is a subring of Z

But is a subring with out unity

2- If R, S have unity, then it is not necessary that

identity of R = identity of S

Ex: let $(Z, +, \cdot)$ ring with unity

Then $(Z + 1, +, \cdot)$ subring with out unity

Ex2: $(Z_6, +, \cdot)$ ring with unity=1

$$S = \{\bar{0}, \bar{2}, \bar{4}\}$$

' 6	$\bar{0}$	2	$\bar{4}$
$\overline{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$
2	$\overline{0}$	$\bar{4}$	2
<u>4</u>	$\bar{0}$	2	$\bar{4}$

S subring with unity =4

3- If ring without unity then subring with unity.

Ex: It may be that S has identity but R has no identity

Let
$$(Z \times 2Z, +, \cdot) = \{(a, 2a), +, \cdot\}$$
 s.t $a \in Z$ ring $\subseteq Z \times Z$

1-clouser
$$(a, 2a) + (b, 2b) = (a + b, 2(a + b)) \in (Z \times 2Z)$$

2- ass

3-com

$$4-(a,2a)+(0,0)=(a,2a)$$

$$5-(a,2a)+(-a,-2b)=(0,0)$$

6- ass
$$[(a, 2a) \cdot (b, 2b)] \cdot (c, 2c) = (a, 2a) \cdot [(b, 2b) \cdot (c, 2c)]$$

7- closure
$$(a, 2a) \cdot (b, 2b) = (ab, 2(2ab))$$

$$\therefore$$
 $(Z \times 2Z, +, \cdot)$ is ring with out unity

Let
$$\exists (c,d) \in Z \times 2Z \ s.t$$

$$(a,2b)\cdot(c,d)=(a,2b)$$

$$(ac, 2bd) = (a, 2b)$$

$$ac = a \Rightarrow c = 1 \in Z$$

$$2bd = 2b \Rightarrow d = 1 \notin 2Z$$

$$(1,1) \notin Z \times 2Z$$

 $(Z \times \{0\}), +,\cdot)$ is subring with unity

$$(a,0)$$
 s.t $a \in Z$

$$(a,0)\cdot(c,d)=(a,0)$$

$$(ac, 0) = (a, 0)$$

$$ac = a \Rightarrow c = 1$$

$$I.e = (1,0) \in Z \times \{0\}$$

4- If R is com. ring, then $(S, +, \cdot)$ is com. subring

Sol: let
$$a, b \in S$$
 $T.P$ $a \cdot b = b \cdot a$

$$a \cdot b = b \cdot a$$
 $(a, b \in R, R \text{ is a ring})$

5- If *S* is com. ring, then it is not necessary that *R* is com. ring?

Sol: **Ex:** Let $(A_{2\times 2}, +, \cdot)$ ring but not com. ring

$$S = \left\{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, +, \cdot \right\}$$
 is subring

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} -a & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S$$

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} ab & 0 \\ 0 & 0 \end{pmatrix} \in S$$

 \therefore (S, +,·) is subring

$$\begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} ab & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} ba & 0 \\ 0 & 0 \end{pmatrix}$$

Is com. ring

Th: Let $(R, +, \cdot)$ be any S, T tow subring of $(R, +, \cdot)$ then $S \cap T$ subring of R.

Pf: Let
$$a, b \in S \cap T$$

$$\rightarrow a, b \in S \land a, b \in S$$

[since S, T subring] 1. $a - b \in S$ \land $a - b \in T$

$$\Rightarrow a - b \in S \cap T$$

$$2 - a \cdot b \in S$$
 \land $a \cdot b \in T$ [since S, T subring]

$$\Rightarrow a \cdot b \in S \cap T$$

$$\therefore$$
 1. $a - b \in S \cap T$

$$2.a \cdot b \in S \cap T$$

$$\therefore$$
 $S \cap T$ is subring by R [by th:]

Remark: The union of tow subring is not necessary subring.

Ex: consider the ring $(Z, +, \cdot)$

$$(2Z, +, \cdot)$$
 be subring of $(Z, +, \cdot)$

$$(3Z, +, \cdot)$$
 be subring of $(Z, +, \cdot)$

$$2Z = \{0, \mp 2, \mp 4, ...\}$$

$$3Z = \{0, \mp 3, \mp 6, \dots\}$$

But $(2Z \cup 3Z, +, \cdot)$ is not subring of $(Z, +, \cdot)$

$$2Z \cup 3Z = \{0, \mp 2, \mp 3, \mp 4, \mp 6, \dots\}$$

$$3.2 \in 2Z \cup 3Z \ but \ 3 - 2 = 1 \notin 2Z \cup 3Z$$

 \therefore 2*Z* \cup 3*Z* is not subring

Ex: Let $(R, +, \cdot)$ is a ring

And let $(Q, +, \cdot)$ is a subring of R

& $(Z, +, \cdot)$ is a subring of R

 $\therefore Q \cap Z = Z$ is subring

Th: Let S, T be tow subring of $(R, +, \cdot)$ then $(S \cup T)$ is subring iff $S \subseteq T$ or $T \subseteq S$.

Pf: H.W

Cancellation law

$$4 \cdot x = 0 \Rightarrow x = 0$$
 why?

$$\frac{1}{4} \cdot 4x = \frac{1}{4} \cdot 0 \qquad [x \in R, R \text{ is a ring } \frac{1}{4} \text{ is unit } 0f \text{ 4}]]$$

$$1 \cdot x = 0$$
 [1 is unity]

$$x = 0 \qquad [a \cdot 0 = 0]$$

Ex: solve the equation:

$$5x = 0 \rightarrow x = 0 \quad ; \quad x \in Z_6$$

5x = 0 [we must find inverse of 5 in Z_6

$$Z_6$$
 يجب ايجاد النظير الضربي لمعامل x وهو 5 في

$$5 \cdot 5x = 5 \cdot 0$$
 [5 inverse 5 since $25 - 24 = 1$ in Z_6]

$$25x = 0$$
 [$25 - 24 = 1 \text{ unity}$]

$$1 \cdot x = 0$$
 [1 is unity $a \cdot 1 = a$]

$$\therefore x = 0$$

Ex3: solve the equation:

$$2x = 4$$
 ; $x \in Z_6$

Cannot find inverse of 2 in Z_6 [$2 \cdot m = 1$]

$$Z_6$$
 الا يوجد نظير ضربي لمعامل x وهو

 \therefore not find solution in equation in Z_6

$$(Z_n$$
 لا يوجد حل للمعادلة في Z_6 (ربما يوجد حل للمعادلة في

Ex: solve the equation:

$$2x = 4$$
 ; $x \in \mathbb{Z}_7$

$$4 \cdot 2x = 4 \cdot 4$$
 [4 inverse 2 in Z_7 since $4 \cdot 2 = 8 - 7 = 1$]

$$1 \cdot x = 2$$
 [1 is unity $a \cdot 1 = a$]

$$x = 2$$

Zero diviser

<u>Defi:</u> Let $(R, +, \cdot)$ be a ring, $a \neq 0$ and $b \neq 0$ are two elements of R such that $a \cdot b = 0$ then a and b is called *diviser of zero*.

Ex1: $(Z, +, \cdot)$, $(R, +, \cdot)$, $(Q, +, \cdot)$, $(C, +, \cdot)$ has no zero diviser.

Ex2: $(Z_{12}, +_{12}, \cdot_{12})$ is a ring

$$\overline{2} \cdot \overline{6} = \overline{0}$$
 $(\overline{2} \neq \overline{0}, \overline{6} \neq \overline{0})$

$$\bar{3} \cdot \bar{4} = \bar{0}$$

$$\overline{4} \cdot \overline{8} = \overline{0}$$

Then $(\overline{2}, \overline{6}, \overline{3}, \overline{4}, \overline{8})$ are Zero diviser 0f Z_{12} .

Th1: The cancellation law hold in a ring R iff R has no $Zero\ diviser$.

Th2: $(Z_n, +_n, \cdot_n)$ has no Zero diviser iff n is prime number.

Ex: $(Z_5, +_5, \cdot_5)$ has no Zero diviser.

Remark:- If a is Zero diviser of Z_n

$$\rightarrow g.c.d(a,n) \neq 1$$

If a is not Zero diviser of Z_n

$$\rightarrow g.c.d(a,n) = 1$$

Ex: $(Z_4, +_4, \cdot_4)$ is a ring

2 is Zero diviser since $2 \cdot 2 = 0$

$$g.c.d(2,4) \neq 1$$

3 is not Zero diviser since $3 \cdot a \neq 0$, $a \neq 0$

$$g.c.d(3,4) = 1$$

Q1/ Find the diviser 0f Zero in

$$1 - Z_{12}$$

Sol:

$$1 - Z_{12} = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11} \}$$

Since 12 is not prime then Z_{12} has divisers of Zero, which is the element are not relatively prime to 12.

لان 12 عدد غير اولي فأن
$$Z_{12}$$
 يملك قواسم للصفر وان قواسم الصفر في Z_{12} هي العناصر التي لها عامل مشترك مع العدد 12 .

$$\overline{2} \cdot_{12} \overline{6} = \overline{0} \Rightarrow \overline{2}, \overline{6} \text{ are diviser of Zero.}$$

$$\bar{3} \cdot_{12} \bar{4} = 0 \Rightarrow \bar{3}, \bar{4} \text{ are diviser of Zero.}$$

 $\overline{3} \cdot_{12} \overline{8} = 0 \Rightarrow \overline{3}, \overline{8} \text{ are diviser of Zero.}$

 $\bar{4} \cdot_{12} \bar{6} = 0 \Rightarrow \bar{4}, \bar{6}$ are diviser of Zero.

 $\overline{4} \cdot_{12} \overline{9} = 0 \Rightarrow \overline{4}, \overline{9}$ are diviser of Zero.

 $\bar{6} \cdot_{12} \bar{8} = 0 \Rightarrow \bar{6}, \bar{8}$ are diviser of Zero.

 $\overline{6} \cdot_{12} \overline{10} = 0 \Rightarrow \overline{6}, \overline{10}$ are diviser of Zero.

 $\overline{8} \cdot_{12} \overline{9} = 0 \Rightarrow \overline{8}, \overline{9} \text{ are diviser of Zero.}$

 \therefore The diviser of Zero in Z_{12} are $\{\overline{2}, \overline{3}, \overline{4}, \overline{6}, \overline{8}, \overline{9}, \overline{10}\}$

2- $Z_{11} = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10} \}$

Since 11 is prime, then Z_{11} has no diviser of Zero

لان (11) عدد غير أولي فأن Z_{11} لا يملك قواسم للصفر.

الحلقة التامةIntegral domain

<u>Def.:</u> Let $(R, +, \cdot)$ be a com.ring with unity then $(R, +, \cdot)$ is called an integral domain iff R has no Z ero diviser.

i.e: $(R, +, \cdot)$ is integral domain if

- 1- Is com.
- 2- With unity
- 3- Has no Zero diviser

Ex: $(\mathcal{R}, +, \cdot)$ is an integral domain

Because \mathcal{R} is com.ring with unity and has no Zero diviser

Ex: $(A_{n\times n}, +, \cdot)$ is not an integral domain because $(A_{n\times n}, +, \cdot)$ is not com.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} e & f \\ g & h \end{pmatrix} \neq \begin{pmatrix} e & f \\ g & h \end{pmatrix} \cdot \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Note: $(Z_n, +_n, \cdot_n)$

If n is prime number $\rightarrow Z_n$ is an integral domain

If n is not prime number $\rightarrow Z_n$ is not an integral domain, since Z_n has $Zero\ diviser$

H.w: Is $A_{2\times 2}$, +,·) have Zero diviser

Th: Let $(R, +, \cdot)$ be a ring with unity then R is an integral domain $a \cdot b = ac$, $a \neq 0$ then b = c.

Sol:

$$\Rightarrow$$
 R is I.D (تامة حلقة) \longleftrightarrow unity
No Zero diviser

$$a \cdot b = ac$$
 , $a \neq 0$

$$ab + (-ac) = ac + (-ac)$$
 [R is a ring]

$$ab + (-ac) = 0$$
 [R is a ring $a + (-a) = 0$ (I.e)]

$$a(b + (-c)) = 0$$

$$\therefore$$
 (no Zero diviser), $a \neq 0$

أذن يجب ان يكون احد العددين يساوي صفر

$$b + (-c) = 0$$

$$b + (-c) + c = 0 + c$$
 [نظائر جمعیة لانها حلقة]

$$b + 0 = c$$

$$\therefore b = c$$

$$\Leftarrow a \neq 0$$

$$com + unity +$$

$$a \cdot b = 0$$
 , $b \in R$

$$a \neq 0 \Rightarrow b = 0$$

$$\therefore$$
 R has no Zero diviser \therefore (R, +, ·) is I.D

Ex: prove or dis prove :

*Every subring of a ring with unity has unity?

Sol: ex:
$$(Z, +, \cdot)$$
 have unity = 1

$$(2Z, +, \cdot)$$
 with out unity

(المثالي) Ideal

Defi: Let $(R, +, \cdot)$ be a ring, $\emptyset \neq I \subseteq R$ then I is an ideal iff

1-
$$I$$
 is subring $\longrightarrow a - b \in I$ $[\forall a, b \in R]$
 $a \cdot b \in I$

2-
$$a \cdot r \in I$$
 , $r \cdot a \in I \ \forall a \in I, r \in R$

Ex:- Let $(Z_{12}, +_{12}, \cdot_{12})$ be a ring and let $I = \{\overline{0}, \overline{3}, \overline{6}, \overline{9}\}$

Is *I* is an ideal.

Sol:1-
$$a - b \in I$$
, $\forall a, b \in I$

$$a + (-b)$$

+12	$\bar{0}$	9	<u>-</u> 6	3
$\overline{0}$	$\bar{0}$	3	<u></u> 6	9
$\begin{array}{c} +_{12} \\ \hline \overline{0} \\ \hline \overline{3} \end{array}$	3	$\overline{0}$	9	<u></u> 6
6	<u></u> 6	3	$\bar{0}$	<u>6</u> <u>9</u>
9	9	<u></u> 6	3	$\overline{0}$

' 12	$\bar{0}$	3	<u>-</u> 6	9
$\overline{0}$	$\bar{0}$	$\bar{0}$	$\bar{0}$	$\overline{0}$
$\frac{\dot{1}2}{\bar{0}}$	$\bar{0}$	9	<u>6</u> <u>0</u>	3
	$\overline{0}$		$\overline{0}$	0 3 6 9
<u>6</u> <u>9</u>	$\overline{0}$	$\frac{\overline{6}}{\overline{3}}$	<u></u> 6	9

$$2 - a \cdot b \in I$$

: I is a subring

3-
$$a \cdot r \in I$$
, $r \cdot a \in I \quad \forall a \in I$, $r \in R$

12	$\bar{0}$	1	2	3	<u>4</u>	5	<u></u>	7	8	9	<u>10</u>	11
$\overline{0}$	$\bar{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\bar{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
3	$\overline{0}$	3										
<u></u> 6	$\bar{0}$	<u></u> 6										
9	$\bar{0}$	9										

و هكذا نلاحظ ان جميع العناصر الموجودة في

∴ I is an ideal

Ex: Let $R = \{ (a, b), +, : a, b \in Z \}$

$$I = \{(a, 0), +, : a \in Z\}$$

Is I an ideal

1-
$$(a,0)$$
 - $(b,0)$ = $(a-b,0-0)$ = $(a-b,0) \in I$

$$(a, 0) \cdot (b, 0) = (ab, o) \in I$$

2-
$$a \cdot r \in I$$
, $a \in I$ $r \in R$ $(a, 0) \cdot (x, y) = (ax, 0 \cdot y) = (ax, 0) \in I$

∴ I is an ideal

Ex: Let $(R, +, \cdot)$ is a ring and let $(Z, +, \cdot)$ is a subring

Is Z an ideal of R? Why?

Sol:

 $(Z, +, \cdot)$ is not ideal since $a \cdot r \in Z$

$$\frac{1}{2} \in R$$
 , $1 \in Z$

$$\frac{1}{2} \cdot 1 = \frac{1}{2} \notin Z$$

Remark:

- 1- *I* is called left ideal if $r \cdot a \in I \quad \forall a \in I, r \in R$
- 2- *I* is called right ideal if $a \cdot r \in I \quad \forall a \in I, r \in R$

Simple Ring (حلقة بسيطة)

Defi: Let R and $\{0\}$ are only ideals in a ring , then R is called Simple Ring.

Ex: Is $(R, +, \cdot)$ of real number Simple Ring?

Sol: yes, since he have only ideals itself and {0}

Ex: Is $(Z_p, +_p, \cdot_p)$ if p is prime number Simple Ring?

Sol: yes, p is prime number

By th:
$$(Z_p, +_p, \cdot_p)$$
 has no subring only $(Z_p, +_p, \cdot_p)$ & $(\{0\}, +, \cdot)$

Theorem: Let $(R, +, \cdot)$ be a ring with unity =1, let I be an ideal of R, if $a^{-1} \in I$ s. t a^{-1} is inverse element (unit) ,then I = R.

Proof:
$$I = R \longrightarrow I \subseteq R$$

$$R \subseteq I$$

- $1-I \subseteq R$ always
- 2- Let $r \in R$

$$r \cdot 1 \in R$$
 [R is \in ring with unity]

$$r \cdot (a \cdot a^{-1}) \in R$$

$$(\underline{r \cdot a}) \cdot \underline{a}^{-1} \in \mathbb{R} \quad [R \text{ is a ring}]$$

$$\overline{\in R}$$
 $\overline{\in} I$

$$\therefore R \subseteq I$$

$$\therefore$$
 from 1 &2 $R = I$

Remark: Let I be an ideal is a ring R if $1 \in I$ then I = R

Th: if *I* and *J* are tow ideals $\Rightarrow I \cap J$ is ideal.

Proof:

1-
$$I \cap J$$
 is subring [by th: I, J subring $\rightarrow I \cap J$ is subring]

$$2-r, a \in I \cap J$$
 $s.t \ r \in R; a \in I \cap J$

$$r, a \in I \land r, a \in J$$

$$r \cdot a \in I \land r \cdot a \in J$$

$$\therefore r \cdot a \in I \cap I$$

$$: I \cap J$$
 is ideal

Ex: Is $I \cup J$ is ideal?

Sol: No, since

 $(3Z, +, \cdot)$ is ideal

 $(2Z, +, \cdot)$ is ideal

But $2Z \cup 3Z$ is not ideal. Why?

<u>Definition:</u> Let $(R, +, \cdot)$ be a ring with unity=1 let $a \in R$,

let $Ra = \{r \cdot a : r \in R\}$, then Ra is an ideal.

Ex: let $(R, +, \cdot)$ com. Ring with unity and let

$$R\alpha = R2 = \{r \cdot 2 : r \in R\}$$
 is ideal?

$$1-a-b \in R2$$

$$r_1 \cdot 2 - r_2 \cdot 2 = (r_1 - r_2) \cdot 2 \in R2$$
 , $\forall r_1, r_2 \in R$

$$2 - a \cdot b \in R2$$

$$(r_1 \cdot 2)(r_1 \cdot 2) = ((r_1 \cdot r_2) \cdot 2) \cdot 2 \in R2 \quad \forall r_1, r_2 \in R$$

3- Let $r \in R$, $a \in R2$

$$r \cdot a = r \cdot (r_1 \cdot 2) = (r \cdot r_1) \cdot 2 \in R2$$

 \therefore R2 is an ideal.

المثالي الاكبر Maximal ideal

<u>Definition</u>: Let $(R, +, \cdot)$ be a ring and I, J are two ideals then I is called maximal ideal if $I \subseteq J \subseteq R \Rightarrow I = R$

Or
$$I \subseteq J = R$$

Ex: Let $(Z_8, +_8, \cdot_8)$ be a ring and let

$$I = {\overline{0}, \overline{2}, \overline{4}, \overline{6}}$$

$$1-a-b \in I$$
 , $\forall a,b \in I$

+8	$\bar{0}$	<u> </u>	4	2
$\begin{array}{c} +_8 \\ \hline 0 \\ \hline \overline{2} \\ \hline \overline{4} \\ \end{array}$	$\begin{array}{c} 0 \\ \hline \overline{0} \\ \hline \overline{2} \\ \hline \overline{4} \\ \end{array}$	$ \begin{array}{r} \overline{6} \\ \overline{6} \\ \overline{0} \\ \overline{2} \end{array} $	$ \begin{array}{c c} \hline 4\\ \hline \hline 4\\ \hline \hline 6\\ \hline \hline 0\\ \hline \hline 2 \end{array} $	$ \begin{array}{c c} \hline \overline{2} \\ \hline \overline{4} \\ \hline \overline{6} \\ \hline \overline{0} \end{array} $
$\bar{2}$	$\overline{2}$	$\overline{0}$	<u></u> 6	$\bar{4}$
$\bar{4}$	$\bar{4}$	$\bar{2}$	$\overline{0}$	<u></u> 6
<u></u> 6	<u></u> 6	<u>4</u>	2	$\overline{0}$

 $2 - a \cdot b \in I$,

•8	$\bar{0}$	<u></u> 6	$\bar{4}$	2
$ \begin{array}{c} $	$\overline{0}$	$ \begin{array}{c c} \hline \overline{6} \\ \hline \overline{0} \\ \hline \overline{4} \\ \hline \overline{0} \\ \hline \overline{4} \end{array} $	$ \begin{array}{c c} \bar{4} \\ \bar{0} \\ \bar{0} \\ \bar{0} \\ \bar{0} \end{array} $	$\frac{\bar{2}}{\bar{0}}$
$\overline{2}$	$\overline{0}$	$\bar{4}$	$\overline{0}$	$\bar{4}$
$\bar{4}$	$ \overline{0} $ $ \overline{0} $	$\overline{0}$	$\overline{0}$	$\frac{\overline{4}}{\overline{0}}$
<u></u> 6	$\overline{0}$	<u>4</u>	$\overline{0}$	<u>4</u>

3-
$$r \cdot a = a \cdot r \in I$$
 ; $r \in R$, $a \in I$

 \therefore I is an ideal

Let
$$J = {\overline{0}, \overline{4}}$$

$$1 - a - b \in J$$

$$2 - a \cdot b \in J$$

. 8	$\bar{0}$	$\bar{4}$
$\bar{0}$	$\overline{0}$	$\overline{0}$
$\bar{4}$	$\bar{0}$	$\bar{0}$

$$\begin{array}{c|cccc} +_8 & \overline{0} & \overline{4} \\ \hline \overline{0} & \overline{0} & \overline{4} \\ \hline \overline{4} & \overline{4} & \overline{0} \\ \end{array}$$

$$3 - r \cdot a = a \cdot r \in J$$

∴ *J* is an ideal

We see that

$$J \subseteq I \subseteq Z_8$$

\therefore *I* is maximal ideal

Ex: Let $(Z_6, +_6, \cdot_6)$ be a ring and let

$$I = {\overline{0}, \overline{2}, \overline{4}}$$
 be an ideal

$$J = {\overline{0}, \overline{3}}$$
 be an ideal

We see
$$I \nsubseteq J$$
 but $I \subseteq Z_6$, $J \subseteq Z_6$

So I is maximal ideal of Z_6

J is maximal ideal of
$$Z_6$$

Ex: let $(Z, +, \cdot)$ be a com.ring with unity =1

And let
$$4Z = \{0, \mp 4, \mp 8, ...\}$$

$$a = r \cdot 4 \quad r \in Z$$

$$= (r \cdot 2) \cdot 2$$

1-
$$a - b \in 4Z$$

 $r_1 \cdot 4 - r_2 \cdot 4 = (r_1 - r_2) \cdot 4 \in 4Z$
2- $a \cdot b \in 4Z$
 $(r_1 \cdot 4) \cdot (r_2 \cdot 4) = ((r_1 \cdot r_2) \cdot 4) \cdot 4 \in 4Z$
 $\therefore 4Z$ is an ideal Of Z

let $2Z = \{0, \mp 2, \mp 4, \dots\}$ is an ideal of Z

We see $4Z \subseteq 2Z \subseteq Z$

So 2Z is maximal ideal of Z

المثالي الاولى Prime ideal

Definition: Let R be com. Ring with unity=1, I be a proper ideal at R, I is called **prime ideal**.

If
$$a \cdot b \in I \rightarrow a \in I \text{ or } b \in I$$
, $\forall a, b \in R$

Ex: Let $(Z, +, \cdot)$ is com. Ring with unity = 1 and let

$$I = (4) = 4Z = \{0, \mp 4, \mp 8, \mp 12, ...\}$$
 is an ideal of Z

Is I prime ideal of Z

Sol: $4 \in 4Z$

 $2 \cdot 2 \in 4Z$ but $2 \notin 4Z$

∴ I is not prime ideal

حاصل ضرب اي عددين من الحلقة يجب ان ينتمي الى المثالي فيجب ان يكون احد العددين ينتميان الى المثالي

Ex: Let $(Z, +, \cdot)$ be a com. Ring with unity = 1

$$(3) = 3Z = \{0, \mp 3, \mp 6, \mp 9, \dots\}$$

Is 3Z prime ideal

Sol:
$$3 \cdot 1 \rightarrow 3 \in 3Z$$
, $1 \notin 3Z$

$$3 \cdot 2 \in 3Z \rightarrow 3 \in 3Z$$
, $2 \notin 3Z$

 \therefore 3Z is prime ideal

Ex: Let $(Z, +, \cdot)$ be a com. Ring with unity=1

$$I = 2Z = \{0, \mp 2, \mp 4, \mp 6, \dots\}$$
 Is I prime ideal.

Sol: H.w

Ex: prove or dis prove : (H.w)

- 1- 2Z is an ideal in Z.
- 2- Any subring is an ideal of a ring.
- 3- 3Z is a prime ideal in Z.

Th: let R be a com. Ring with unity, m be a proper ideal of R then m is maximal ideal of $R \Leftrightarrow$

$$R = m + \langle a \rangle \quad \forall a \in R \quad , \qquad a \notin m$$

Proof:

$$\Rightarrow$$
 m (maximal ideal) $T.P$ $R = m+ < a >$, $a \notin m$
 $m \subseteq m+ < a > \subseteq R$
 $m+ < a > = R$ [be define of $m.I$]

$$\Leftarrow$$
 $m+< a>= R$ $T.P$ m is $m.I$
Suppose J is an ideal of R
And $m \subsetneq J$
Let $a \in I$ $(a \notin m)$
 $m \subseteq m+< a>\subseteq J \subseteq R$

: m is maximal ideal

حلقة محلية Local ring

Definition: Let R be a com. Ring with unity, R is called **Local ring** if R has exactly one maximal ideal.

Ex: Let $(Z_8, +_8, \cdot_8)$ be a com. Ring with unity

$$I = <2>$$
 , $J = <4>$

$$<4>\subseteq<2>\subseteq Z_8$$

 $\therefore < 2 >$ is only maximal ideal

 \therefore Z_8 is maximal ideal

Ex: $(Z, +, \cdot)$ be a com. Ring with unity

2Z is an ideal [is maximal ideal]

3Z is an ideal [is maximal ideal]

 \therefore $(Z, +, \cdot)$ is not Local ring.

Ex: Let $R \times R = \{(a, b), +, \cdot : a, b \in R\}$ be a comring with unity

And Let $I = \{(a, 0), +, \cdot\}$ be an ideal in $R \times R$

$$J = \{(0, b), +, \cdot\}$$
 be an ideal in $R \times R$

 $R \times R$ is not Local ring

Quotient ring حلقة القسمة

Definition: Let $(R, +, \cdot)$ be a ring, $(I, +, \cdot)$ be an ideal of R, let

$$R/_I = \{ a + I \colon a \in R \}$$

Definition: \bigoplus , \odot on R/I

$$(a+I) \oplus (b+I) = (a+b) + I$$
 , $\forall a, b \in R$

$$(a+I)\odot(b+I) = (ab)+I$$
 , $\forall a,b \in R$

R/I is called Quotient ring

Th: prove $\binom{R}{I}$, \oplus , \odot) is a ring?

Proof:

1- ⊕ is closure

$$(a+I) \oplus (b+I) = (a+b) + I \in R/I$$

Is closure

2-
$$[(a+I) \oplus (b+I)] \oplus (c+I)$$

 $[(a+b)+I] \oplus (c+I) = (a+b+c)+I$
 $= (a+I) \oplus [(b+c)+I] = (a+I) \oplus [(b+I) \oplus (c+I)]$
is ass.

3-
$$(a+I) \oplus (b+I) = (a+I)$$

 $(a+b) + I = (a+I)$
 $a+b=a \Rightarrow b=0$
 $e=0+I=I$

$$4- (a + I) \oplus (b + I) = 0 + I$$
$$(a + b) = 0 \Rightarrow a = -b$$

5-
$$(a + I) \oplus (b + I)$$

 $(a + b) + I = (b + a) + I$
 $= (b + I) \oplus (a + I)$

$$(R/I, \oplus)$$
 is com. Ring
6- $(a+I)\odot(b+I) = (ab) + I \in R/I$
 \odot is closure
7- $[(a+I)\odot(b+I)]\odot(c+I)$ $H.W$
8- $(a+I)\odot[(b+I)\oplus(c+I)]$
 $= [(a+I)\odot(b+I)]\oplus[(a+I)\odot(c+I)]$
 $(a+I)\odot[(b+c)+I] = (ab+ac) + I$
 $[(ab)+I]\oplus[(ac)+I] = (ab+ac) + I$

$\therefore R/I$ is a ring

Remark:

$$a + I = b + I \leftrightarrow a - b \in I$$

 $a + I = I \leftrightarrow a \in I$

Ex: Let $(Z_6, +_6, \cdot_6)$ let $I = {\overline{0}, \overline{3}}$ is an ideal.

$$Z_{6}/I = \{a + I, a \in R\}$$
 $\bar{3} + I = \bar{0} + I = I \to \bar{3} \in I$
 $\bar{4} + I = (\bar{1} + \bar{3}) + I = \bar{1} + (\bar{3} + I) = \bar{1} + I$

$$\bar{5} + I = (\bar{2} + \bar{3}) + I = \bar{2} + (\bar{3} + I) = \bar{2} + I$$

$$Z_6/_I = \{I, \bar{1}+I, \bar{2}+I\}$$

+6	I	$\overline{1} + I$	$\overline{2} + I$
I	I	$\overline{1} + I$	$\bar{2} + I$
$\overline{1} + I$	$\bar{1} + I$	$\bar{2} + I$	Ι
$\overline{2} + I$	$\bar{2} + I$	I	$\overline{1} + I$

$$I.e = I$$

•6	I	$\overline{1} + I$	$\bar{2} + I$
I	I	Ι	I
$\overline{1} + I$	I	$\overline{1} + I$	$\bar{2} + I$
$\bar{2} + I$	Ι	$\bar{2} + I$	$\overline{1} + I$

$$unity = \overline{1} + I$$

R/I is com. Ring with unity

Th: Let *I* is prime ideal $\leftrightarrow R/I$ is integral domain.

Proof: $\rightarrow I$ is prime ideal (T.P R/I is integral domain)

 $\therefore R \text{ is } c.r.w.1 \text{ [com.ring with unity]} \Rightarrow R/_{I} c.r.w.1$

Suppose R/I have Zero diviser

$$(a+I)\odot(b+I)=I$$
; $a+I\neq I$, $b+I\neq I$

ملاحظة: حيث I يمثل 0 في R/I حلقة القسمة

$$(ab) + I = I \Rightarrow ab \in I$$

 $: I \text{ is prime} \Rightarrow a \in I \text{ or } b \in I$

$$a+I=I$$
 or $b+I=I$ C! تناقض

 $\therefore R/I$ has no Zero diviser

 $\therefore R/I$ is integral domain

 \leftarrow let $^R/_I$ is $I.D \rightarrow T.P$ I is prime ideal

Suppose I is not prime ideal

$$a \cdot b \in I \rightarrow a \notin I \text{ or } b \notin I$$

$$ab + I = I$$
 $a + I \neq I$, $b + I \neq I$

$$(a+I)\odot(b+I)=I$$

$$a + I = I$$
 or $b + I = I$ C!

 \therefore *I* is prime ideal

م.م. سیف ز هیر