Ring Theory (MA4H8)

Charudatta Hajarnavis
Notes by Florian Bouyer

Abstract

Copyright (C) Bouyer 2011. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license can be found at http://www.gnu.org/licenses/fdl.html

Contents

1 Chapter 1: Rings 4
1.1 Rings 4
1.2 Properties of Addition and Multiplication 4
1.3 Subrings and Ideals 5
1.4 Cosets and Homomorphism 5
1.5 The Isomorphism Theorems 6
1.6 Direct Sums 7
1.7 Division Rings 7
1.8 Modules 7
1.9 Factor Modules and Homomorphisms 8
1.10 The Isomorphism Theorem 9
1.11 Direct Sums of Modules 9
1.12 Products of subsets 9
1.13 A construction 10
1.14 Zorn's Lemma, Well-ordering Principle, The Axiom of Choice 10
2 Chapter 2: The Jacobson Radical 11
2.1 Quasi-regularity 11
2.2 Commutative Local Rings 12
3 Chapter 3: Chain conditions 13
3.1 Finitely Generated Modules 13
3.2 Finiteness Assumption 13
3.3 Nil and Nilpotent Ideals 14
3.4 Nakayama's Lemma and an Application 16
4 Commutative Noetherian Rings 17
4.1 Primary Decomposition 17
4.2 Decomposition of 0 18
4.3 Localisation [Commutative Algebra Section 3] 20
4.4 Localisation of a Module [Commutative Algebra 3.1] 22
4.5 Symbolic Powers 22
4.6 The Rank of a Prime Ideal 22
4.7 Regular Local Ring 24
5 Projective Modules 25
5.1 Free Modules 25
5.2 Exact Sequences 25
5.3 Projective Resolutions and Projective Dimension 29
5.4 Localization and Global Dimension 34
6 Global Dimension of Regular Local Rings 35
6.1 Change of Rings Theorems 35
6.2 Regular Local Ring 37
7 Unique Factorization 39
7.1 Unique Factorization Domain 39
7.2 Stably Free Modules 40

Any reference to Commutative Algebra refer to the 2011-2012 Commutative Algebra Lecture notes. Rings studied will be mostly commutative. We aim to prove:

Theorem (Auslander - Buschsbaum 1959). A regular local ring is a unique factorization domain.
Reason for selecting this theorem as our destination:

1. It requires sophisticated results from the theory of commutative Noetherian rings.
2. It requires methods from homological algebra. All known proofs require this.
3. At a crucial stage it helps to think in terms of non-commutative rings.

Prerequisite: MA3G6 Commutative Algebra
Topics assumed:

1. Basic properties of Noetherian rings and modules.
2. Primary decomposition
3. Technicality of localization

Definition. Let R be a commutative Noetherian local ring with 1 and unique maximal ideal M. Let $M=a_{1} R+\cdots+a_{n} R\left(a_{i} \in M\right)$ be chosen such that n is as minimal as possible. Construct a chain of prime ideals $M \supsetneq P_{1} \supsetneq \cdots \supsetneq P_{r}$ (P_{i} prime) such that r is greatest possible. Then R is regular if $r=n$ (note that $r \leq n$ always in a Noetherian ring)

Local rings arise naturally in geometry. In algebraic geometry points correspond to local rings.
Existence of an identity is not part of our definition of a ring. For us a right, left or (two sided) ideal is a subring (Note that in a non-commutative ring, by ideal we will mean a two sided ideal). So for a right R-module $M, m \cdot 1=m \forall m \in M$ is not a part of our definition. But whenever R has 1 , we shall assume this.

1 Chapter 1: Rings

1.1 Rings

Definition 1.1. Let R be a non-empty set which has tow law of composition defined on it. (we call these law "addition" and "multiplication" respectively and use the familiar notation). We say that R is a ring if the following hold:

1. $a+b \in R$ and $a b \in R \forall a, b \in R$
2. $a+b=b+a \forall a, b \in R$ (Commutativity of addition)
3. $a+(b+c)=(a+b)+c \forall a, b, c \in R$ (Associativity of addition)
4. There exists an element $0 \in R$ such that $a+0=a$ for all $a \in R$
5. Given $a \in R$ there exists an element $-a \in R$ such that $a+(-a)=0$
6. $a(b c)=(a b) c$ for all $a, b, c \in R$ (Associativity of multiplication)
7. $a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ (Distributive Laws)

Thus a ring is an additive Abelian group on which an operation of multiplication is defined; this operation being associative and distributive with respect to the addition.
R is called a commutative ring if it satisfies in addition $a b=b a$ for all $a, b \in R$. The term non-commutative ring usually stands for "a not necessarily commutative ring"

1.2 Properties of Addition and Multiplication

The following can be deduced from the axioms for a ring:

1. The element 0 is unique
2. Given $a \in R,-a$ is uniquely
3. $-(-a)=a$ for all $a \in R$
4. $a+b=a+c$ if and only if $b=c$ for $a, b, c \in R$
5. Given $a, b \in R$, the equation $x+a=b$ has a unique solution $x=b+(-a)$

Notation. We write $a-b$ to mean $a+(-b)$
6. $-(a+b)=-a-b$ for all $a, b \in R$
7. $-(a-b)=-a+b$ for all $a, b \in R$
8. $a \cdot 0=0 \cdot a=0$ for all $a \in R$
9. $a(-b)=(-a) b=-a b$ for all $a, b \in R$
10. $(-a)(-b)=a b$ for all $a, b \in R$
11. $a(b-c)=s b-a c$ for all $a, b, c \in R$

Notation. \mathbb{Z}, the integers. \mathbb{Q}, the rational numbers. \mathbb{R}, the real numbers. \mathbb{C}, the complex numbers. $M_{n}(R)$, the ring of $n \times n$ matrices whose entries are from the ring R.

1.3 Subrings and Ideals

Definition 1.2. A subset S of a ring R is called a subring of R if S itself is a ring with respect to the laws of composition of R

Proposition 1.3. A non-empty subset S of a ring R is a subring of R if and only if $a-b \in S$ and $a b \in S$ whenever $a, b \in S$

Proof. If S is a subring then obviously the given condition is satisfied. Conversely, suppose that the condition holds. Take any $a \in S$. We have $a-a \in S$ hence $0 \in S$. Hence for any $x \in S$ we have $0-x \in S$ so $-x \in S$. Finally, if $a, b \in S$ then by the above $-b \in S$. Therefore $a-(-b) \in S$, i.e., $a+b \in S$. So S is closed with respect to both addition and multiplication. Thus S is a subring since all the other axioms are automatically satisfied.

Definition 1.4. A subset I of a ring R is called an ideal if

1. I is a subring of R
2. For all $a \in I, r \in R$ ar $\in I$ and $r a \in I$

If I is an ideal of R we denote this fact by $I \triangleleft R$.
Proposition 1.5. A non-empty subset I of a ring R is an ideal of R if and only if $a-b \in I$, ar $\in I$ and $r a \in I$ whenever $a, b \in I$ and $r \in R$

Proof. Exercise

1.4 Cosets and Homomorphism

Definition 1.6. Let I be an ideal of a ring R and $x \in R$. Then the set of elements $\{x+i: i \in I\}$ is called the coset of x in R with respect to I. It is denoted by $x+I$

When dealing with cosets, it is more important to realise that, in general, a given coset can be represented in more than one way. The next lemma shows how the coset representatives are related.

Lemma 1.7. Let R be a ring with an ideal I and $x, y \in R$. Then $x+I=y+I \Longleftrightarrow x-y \in I$
Proof. Exercise
We denote the set of all cosets of R with respect to I by R / I. We can give R / I the structure of a ring as follows: Define $(x+I)+(y+I)=(x+y)+I$ and $(x+I)(y+I)=x y+I$ for $x, y \in R$.

The key point here is that the sum and the product of R / I are well-defined, that is, they are independent of the coset representatives chosen. Check this and make sure that you understand why the fact that I is an ideal is crucial to the proof.

Definition 1.8. R / I is called the residue class ring of R with respect to I
The zero element of R / I is $0+I=i+I$ for any $i \in I$. If S is a subset of R with $S \supseteq I$ we denote by S / I the subset $\{s+I: s \in S\}$ of R / I.

Proposition 1.9. Let I be an ideal of a ring R. Then

1. Every ideal of the ring R / I is of the form K / I where $K \triangleleft R$ and $K \supseteq I$. Also conversely, $K \triangleleft R, K \supseteq I \Rightarrow K / I \triangleleft R / I$
2. There is a one to one correspondence between ideals of the ring R / I and the ideals of R containing I

Proof. 1. If $K^{*} \triangleleft R / I$, define $\left.K\right]\left\{x \in R: x+I \in K^{*}\right\}$. Then $K \triangleleft R, K \supseteq I$ and $K / I=K^{*}$
2. The correspondence is given by $K \leftrightarrow K / I$ where $K \triangleleft R, K \supseteq I$

Definition 1.10. A mapping θ of a ring R into a ring S is said to be a (ring) homomorphism if $\theta(x+y)=\theta(x)+\theta(y)$ and $\theta(x y)=\theta(x) \theta(y)$ for all $x, y \in R$.
θ defined by $\theta(r)=0$ for all $r \in R$ is a homomorphism. It is called the zero homomorphism.
ϕ defined by $\phi(r)=r$ for all $r \in R$ is also a homomorphism. It is called the identity homomorphism
Let $I \triangleleft R$. Then $\sigma: R \rightarrow R / I$ defined by $\sigma(x)=x+I$ for all $x \in R$ is a homomorphism of R onto R / I. This is called the natural (or canonical) homomorphism.

Proposition 1.11. Let R, S be rings and $\theta: R \rightarrow S$ a homomorphism. Then :

1. $\theta\left(0_{R}\right)=0_{S}$
2. $\theta(-r)=-q(r)$ for all $r \in R$
3. $K=\left\{x \in R: q \theta(x)=0_{S}\right\}$ is an ideal of R
4. $\theta R=\{\theta(r): r \in R\}$ is subring of S

Proof. Exercise

K is called the kernel of θ and θR is called the (homomorphic) image of R. The ideal K is sometimes denoted by $\operatorname{ker} \theta$.

Definition 1.12. Let θ be a homomorphism of a ring R into a ring S. Then θ is called an isomorphism if θ is a one to one and onto map. We say that R and S are isomorphic rings and denote this by $R \cong S$.

1.5 The Isomorphism Theorems

Question: Given a ring R, what rings can occur as its homomorphic images?
The importance of the first isomorphism theorem lies in the fact that it shows the answer to lie with R itself. It tells us that if we know all the ideals of R then we know all the homomorphic images of R.Only the first isomorphism theorem contains new information. The other two are simply its application.

Theorem 1.13. Let θ be a homomorphism of a ring R into a ring S. Then $\theta R \cong R / I$ where $I=\operatorname{ker} \theta$
Proof. Defined $\sigma: R / I \rightarrow R$ by $\sigma(x+I)=\theta(x)$ for all $x \in R$. The map σ is well defined since for $x, y \in R, x+I=y+I \Rightarrow x-y \in I=\operatorname{ker} \theta \Rightarrow \theta(x-y)=0 \Rightarrow \theta(x)=\theta(y) . \theta$ is easily seen to be the required isomorphism.

Theorem 1.14. Let I be an ideal and L a subring of a ring R. Then $L /(L \cap I) \cong(L+I) / I$
Proof. Let σ be the natural homomorphism $R \rightarrow R / I$. Restrict σ to the ring L. We have $\sigma L=$ $(L+I) / I$. The kernel of σ restricted to L is $L \cap I$. Now apply previous theorem.

Theorem 1.15. Let I, K be ideals of a ring R such that $I \subseteq K$. Then $(R / I) /(K / I) \cong R / K$
Proof. $K / I \triangleleft R / I$ and so $(R / I) /(K / I)$ is defined. Define a map $\gamma: R / I \rightarrow R / K$ by $\gamma(x+I)=x+K$ for all $x \in R$. The map γ is easily seen to be well defined and a homomorphism onto R / K. Further,

$$
\begin{aligned}
\gamma(x+I)=K & \Longleftrightarrow x+K=K \\
& \Longleftrightarrow x \in K \\
& \Longleftrightarrow x+I \in K / I
\end{aligned}
$$

Therefore $\operatorname{ker} \gamma=K / I$. Now apply the first isomorphism theorem.

1.6 Direct Sums

Definition 1.16. The internal direct sum: Let $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of ideals of a ring R. We define their sum to be $\sum_{\lambda \in \Lambda} I_{\lambda}=\left\{x \in R: x=x_{1}+\cdots+x_{k}, x_{i} \in I_{\lambda_{i}}, k=1,2,3, \ldots\right\}$. That is the sum is the collection of finite sums of elements of the I_{λ} 's.

We say that the sum of the I_{λ} 's is direct if each element of $\sum_{\lambda \in \Lambda} I_{\lambda}$ is uniquely expressible as $x_{1}+\cdots+x_{k}$ with $x_{i} \in I_{\lambda_{i}}$. In this case we denote this sum as $\sum_{\lambda \in \Lambda} \oplus I_{\lambda}$ or $I_{1} \oplus \cdots \oplus I_{n}$ if Λ is finite.

Proposition 1.17. The sum $\sum_{\lambda \in \Lambda} I_{\lambda}$ is direct if and only if $I \mu \cap\left(\sum_{\lambda \in \Lambda, \lambda \neq \mu} I_{\lambda}\right)=0$ for all $\mu \in \Lambda$
Proof. Exercise
Definition 1.18. The external direct sum: Let R_{1}, \ldots, R_{n} be rings. We define the external direct sum S to be the set of all n-tuples $\left\{\left(r_{1}, \ldots, r_{n}\right): r_{i} \in R_{i}\right\}$. On S we define addition and multiplication component wise. This makes S a ring. We write $S=R_{1} \oplus \cdots \oplus R_{n}$.

The set $\left(0, \ldots, 0, R_{j}, 0, \ldots, 0\right)$ is an ideal of S. Clearly S is the internal direct sum of these ideals. But $\left(0, \ldots, R_{j}, \ldots 0\right) \cong R_{j}$. Because of this S can be considered as a ring in which the R_{j} are ideals and S is their internal direct sum. Also in internal direct sum we can consider $I_{1} \oplus \cdots \oplus I_{n}$ to be the external direct sum of the rings I_{j}. Hence, in practice, we do not need to distinguish between external and internal direct sums.

1.7 Division Rings

Definition 1.19. Let R be a ring with 1. An element $u \in R$ is said to be a unit if there exists an element $v \in R$ such that $u v=v u=1$. The element v is called the inverse of u and is denoted by u^{-1}

A ring D with at least two elements is called a division ring (or a skew field) if D has an identity and every non-zero element of D has an inverse in D

A division ring in which the multiplication is commutative is called a field-discriminant
Example. The Quaternions: Let D be the set of all symbols $a_{0}+a_{1} i+a_{2} j+a_{3} k$ where $a_{i} \in \mathbb{R}$. Two such symbols are considered to be equal if and only if $a_{i}=b_{i}$ for $i=0,1,2,3$. We make the ring as follows: Addition is component-wise. Two such symbols are multiplied term by term using the relations $i^{2}=j^{2}=k^{2}=-1$ and $i j=-j k=k, j k=-k j=i, k i=-i k=j$. Then D is a non-commutative ring with zero and identity. Let $a_{0}+a_{1} i+a_{2} j+a_{3} k$ be a non-zero element of D. Then not all the a_{i} are zero. We have

$$
\left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right)\left(a_{0}-a_{1} i-a_{2} j-a_{3} k\right)=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2} \neq 0
$$

. So letting $n=a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$, the element $\left(a_{0} / n\right)+\left(a_{1} / n\right) i+\left(a_{2} / n\right) j+\left(a_{3} / n\right) k$ is the inverse of $a_{0}+a_{1} i+a_{2} j+a_{3} k$. Thus D is a division ring. It is called the division ring of real quaternions. Rational quaternions can be defined similarly where the coefficients are from \mathbb{Q}.

1.8 Modules

Definition 1.20. Let R be a ring. A set M is called a right R-module if:

1. M is an additive abelian group
2. A law of composition $M \times R \rightarrow M$ is defined, which satisfies for $x, y \in M$ and $r_{1}, r_{2} \in R$
3. $(x+y) r_{1}=x r_{1}+y r_{1}$
4. $x\left(r_{1}+r_{2}\right)=x r_{1}+x r_{2}$
5. $x\left(r_{1} r_{2}\right)=\left(x r_{1}\right) r_{2}$

A left R-module is defined analogously. Here the product of $m \in M$ and $r \in R$ is denoted by $r m$.
Example. 1. R and $\{0\}$ are left R-modules. They are also right R-modules.
2. Let V be a vector space over a field F. Then V is a left F-module. The module axioms are part of the vector space axioms
3. Any abelian group can be considered a left \mathbb{Z}-module:

Let $g \in A$ and $k \in \mathbb{Z}$. We defined $k g=\underbrace{g+\cdots+g}_{k \text { times }}$ if $k>0,0_{\mathbb{Z}} g=0_{A}$ and $k g=-[(-k) g]$ if $k<0$.
4. Let R be a ring. Then $M_{n}(R)$ becomes a left R-module if we define for $r \in R$ and $X \in M_{n}(R)$

$$
r X=\left(\begin{array}{ccccc}
r & 0 & 0 & \cdots & 0 \\
0 & r & 0 & \cdots & 0 \\
0 & 0 & r & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
0 & 0 & 0 & & r
\end{array}\right) X
$$

Clearly, we can also make $M_{n}(R)$ a right R-module.
The symbol M_{R} will denote M is a right R-module, while the symbol ${ }_{R} M$ will denote M is a left R-module. For technical reason it is sometimes easier to work with right R-modules while dealing with non-commutative rings (when we choose to write maps on the left). We say simply say that M is a module if the other details are clear from the context.

Proposition 1.21. Let M be a right R-module. Then:

1. $0_{M} r=0_{M}$ for all $r \in R$
2. $m 0_{R}=0_{M}$ for all $m \in M$.
3. $(-m) r=m(-r)=-m r$ for all $m \in M$ and $r \in R$

Proof. Exercise
Definition 1.22. Let K be a subset of a right R-module M. Then K is called a right R-submodule (or just submodule) if K is also a right R-module under the laws of composition defined on M.

Proposition 1.23. Let K be a non-empty subset of M_{R}. Then K is a submodule of $M \Longleftrightarrow x-y \in K$ and $x r \in K$ for all $x, y \in K$ and $r \in R$

Proof. Exercise

Definition 1.24. Submodules of R_{R} are called right ideals of R and submodules of ${ }_{R} R$ are called left ideals of R.

1.9 Factor Modules and Homomorphisms

Let K be a submodule of a right R-module M. Consider the facto group M / K. Elements of M / K are cosets of the form $m+K$ with $m \in M$. We can make M / K a right R-module by defining $[m+K] r=m r+K$ for all $m \in M$ and $r \in R$. Check that this action is well defined and the module axioms are satisfied to make M / K a right R-module.

Proposition 1.25. Let K be a submodule of M_{R}. Then

1. every submodule of M / K has the form A / K where A is a submodule of M and $A \supseteq K$.
2. There is a one to one correspondence between the submodules of M / K and the submodules of M containing K

Definition 1.26. Let M and M^{\prime} be right R-modules. A mapping $\theta: M \rightarrow M^{\prime}$ is called an R homomorphism if:

1. $\theta(x+y)=\theta(x)+\theta(y)$ for all $x, y \in M$
2. $\theta(x r)=\theta(x) r$ for all $x \in M$ and $r \in R$

If K is a submodule of M_{R} then the map $\sigma: M \rightarrow M / K$ defined by $\sigma(m)=m+K$ for all $m \in M$ is an R-homomorphism of M onto M / K. It is called the canonical R-homomorphism

Proposition 1.27. Let $\theta: M_{R} \rightarrow M_{R}^{\prime}$ be an R-homomorphism. Then:

1. $\theta\left(0_{M}\right)=0_{M^{\prime}}$
2. $K=\left\{x \in M: \theta(x)=0_{M^{\prime}}\right\}$ is a submodule of M
3. $\theta M=\{\theta(m): m \in M\}$ is a submodule of M^{\prime}

Proof. Exercise
K is called the kernel of θ and θM is called the image of $\theta . \theta$ is a one to one correspondence map if and only if $\operatorname{ker} \theta=0$

Definition 1.28. Let $\theta: M_{R} \rightarrow M_{R}^{\prime}$ be an R-homomorphism. Then θ is called an R-isomorphism if it is in addition a one to one correspondence and onto map. In this case we write $M \cong M^{\prime}$

1.10 The Isomorphism Theorem

There are similar to those for rings
Theorem 1.29. Let M and M^{\prime} be right R-modules and $\theta: M \rightarrow M^{\prime}$ and R-homomorphism. Then $\theta M \cong M / K$ where $K=\operatorname{ker} \theta$

Theorem 1.30. Let L, K be submodules of M_{R}. Then $(L+K) / K \cong L /(L \cap K)$
Theorem 1.31. If K, L are submodules of M_{R} and $K \subseteq L$ then L / K is a submodule of M / K and $(M / K) /(L / K) \cong M / L$.

The proofs of these theorems are similar to those for rings

1.11 Direct Sums of Modules

Let M_{1}, \ldots, M_{n} be right R-modules. The set of n-tuples $\left\{\left(m_{1}, \ldots, m_{n}\right): m_{i} \in M_{i}\right\}$ becomes a right R-modules if we define $\left(m_{1}, \ldots, m_{n}\right)+\left(m_{1}^{\prime}, \ldots, m_{n}^{\prime}\right)=\left(m_{1}+m_{1}^{\prime}, \ldots, m_{n}+m_{n}^{\prime}\right)$ and $\left(m_{1}, \ldots, m_{n}\right) r=$ $\left(m_{1} r, \ldots, m_{n} r\right)$. This is the external direct sum of the M_{i} and is denoted $\sum_{i=1}^{n} \oplus M_{i}$ or $M_{1} \oplus \cdots \oplus M_{n}$.

Let $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}$ be a collection of submodules of a right R-modules M. We define their sum $\sum_{\lambda \in \Lambda} M_{\lambda}$ to be $\left\{m_{\lambda_{1}}+\cdots+m_{\lambda_{k}}: m_{\lambda_{i}} \in M_{\Lambda_{i}}\right.$ for all possible subsets $\left\{\lambda_{1}, \ldots, \lambda_{k}\right\}$ of $\left.\Lambda\right\}$. Thus $\sum_{\lambda \in \Lambda} M_{\lambda}$ is the set of all finite sums of elements of the M_{λ} 's. It is easy to see that this is a submodule of M.
$\sum_{\lambda \in \Lambda} M_{\lambda}$ is said to be direct if each $\sum_{\lambda \in \Lambda} M_{\lambda}$ has a unique expression as $m_{\lambda_{1}}+\cdots+m_{\lambda_{k}}$ for some $m_{\lambda_{i}} \in M_{\lambda_{i}}$. As in 1.6 we can show that $\sum_{\lambda \in \Lambda} M_{\lambda}$ is direct $\Longleftrightarrow M_{\mu} \cap\left\{\sum_{\lambda \in \Lambda, \lambda \neq \mu} M_{\lambda}\right\}=\{0\}$ for all $\mu \in \Lambda$. If $\sum_{\lambda \in \Lambda} M_{\Lambda}$ is direct, we denote it by $\sum_{\lambda \in \Lambda} \oplus M_{\lambda}$ or $M_{1} \oplus \cdots \oplus M_{n}$ if Λ is a finite set. As explained for rings in 1.6, there is no real difference between (finite) external and internal direct sums of modules.

Definition 1.32. Let R be a ring with 1. A module M_{R} is said to be unital if $m 1=m$ for all $m \in M$
We shall assume that all modules considered are unital whenever R is a ring with identity.

1.12 Products of subsets

Let M be a right R-module. Let K, S be non-empty subsets of M and R respectively. We defined their products $K S$ to be $\left\{\sum_{i=1}^{n} k_{i} s_{i} \mid k_{i} \in K, s_{i} \in S ; i=1,2, \ldots\right\}$. Thus $K S$ consists of all possible finite sums of elements of the type $k s$ with $k \in K$ and $s \in S$. If K is a non-empty subset of M and S is a right ideal of R then $K S$ is a submodule of M. (Check that we require finite sums in our definition to make this work)

The above definition applies, in particular, when $M=R$. Thus if S is a non-empty subset of R then $S^{2}=\left\{\sum_{i=1}^{n} s_{i} t_{i}: s_{i}, t_{i} \in S ; n=1,2, \ldots\right\}$. Extending inductively, S^{n} consist of all finite sums of elements of the type $x_{1} x_{2} \ldots x_{n}$ with $x_{i} \in S$.

Note that if S is a right ideal of R then so is S^{n}

1.13 A construction

Let R be a ring with an ideal I and M a right R-module. In general, M need not be a right R / I module. However, we can give M a right R / I-module structure if $M I=0$. In this case we define $m r=m[r+I]$ for all $m \in R$ and $r \in R$. It can be checked that this is well-defined right R / I-module action. Further, under this action the R and R / I submodules of M coincide.

In particular, I / I^{2} is naturally a right (and left) R-module. This fact will be used repeatedly. In general same for I^{n} / I^{n+1}.

1.14 Zorn's Lemma, Well-ordering Principle, The Axiom of Choice

Definition 1.33. 1. A non-empty set \mathscr{S} is said to be partially ordered if there exists a binary relation \leq in \mathscr{S} which is defined for certain pairs of elements in \mathscr{S} and satisfies:
(a) $a \leq a$
(b) $a \leq b, b \leq c \Rightarrow a \leq c$
(c) $a \leq b, b \leq a \Rightarrow a=b$
2. Let \mathscr{S} be a partially ordered set. A non-empty subset τ is said to be totally ordered if for every pair $a, b \in \tau$ we have either $a \leq b$ or $b \leq a$
3. Let \mathscr{S} be a partially ordered set. An elements $x \in \mathscr{S}$ is called a maximal element if $x \leq y$ with $y \in \mathscr{S} \Rightarrow x=y$. Similarly, for a minimal element
4. Let τ be a totally ordered subset of a partially ordered set \mathscr{S}. We say that τ has an upper bound in \mathscr{S} if there exists $c \in \mathscr{S}$ such that $x \leq c$ for all $x \in \tau$.

Zorn's Lemma (Axiom). If a partially ordered set \mathscr{S} has the property that every totally ordered subset of \mathscr{S} has an upper bound in \mathscr{S}, then \mathscr{S} contains a maximal element.

A non-empty set \mathscr{S} is said to be well-ordered if it is totally ordered and every non-empty subset of \mathscr{S} has a minimal element.

The Well ordering Principle. Any non-empty set can be well-ordered.
Axiom (The Axiom of Choice). Given a class of sets, there exists a "choice function", i.e., a function which assigns to each of these sets one of its elements.

It can be shown that Axiom of Choice is logically equivalent to Zorn's Lemma which is logically equivalent to the Well-ordering Principle.

2 Chapter 2: The Jacobson Radical

All rings considered in this chapter are assumed to have an identity.

2.1 Quasi-regularity

Definition 2.1. Let M be a right ideal of R. M is said to be a maximal right ideal if $M \neq R$ and $M^{\prime} \supsetneq M$ with $M^{\prime} \triangleleft_{r} R \Rightarrow M^{\prime}=R$.

Similar definition is applied for a maximal two-sided ideal, and maximal left ideal.
Proposition 2.2. Let $I \neq R$ be a right ideal of a ring R. Then there exists a maximal right ideal M of R such that $M \supseteq I$.
c.f. Commutative Algebra, Theorem 1.4. By Zorn's Lemma. Let \mathscr{S} be the set of all proper right ideals of R containing I. Partially order \mathscr{S} by inclusion. Let $\left\{T_{\alpha}\right\}_{\alpha \in \Lambda}$ be a totally ordered subset of \mathscr{S}. Let $T=\cup_{\alpha \in \Lambda} T_{\alpha}$. Then $T \triangleleft_{r} R$ and $T \supseteq I$. Moreover T is proper since $T=R \Rightarrow 1 \in T \Rightarrow 1 \in T_{\alpha}$ for some $\alpha \in \Lambda \Rightarrow T_{\alpha}=R$. Thus $T \neq R$ and so $T \in \mathscr{S}$. Thus $T \neq R$ and so $T \in \mathscr{S}$. Now $T \supseteq T_{\alpha}$ for all $\alpha \in \Lambda$. Hence Zorn's Lemma applies and \mathscr{S} contains a maximal element, say M. Clearly M is a maximal right ideal and $M \supseteq I$.

Corollary 2.3. A ring with identity contains a maximal right ideal.
Proof. Take $I=0$ in the above theorem.
Remark. This is not true for rings without 1
Definition 2.4. The intersection of all maximal right ideals of a ring R is called its Jacobson radical. It is usually denoted by $J(R)$ (or simply J)

Remark. Strictly speaking the above definition was for the right Jacobson radical. However we shall show that this is the same as the left Jacobson radical.

Theorem 2.5 (Crucial Lemma). Let M be a maximal right ideal of a ring R and let $a \in R$. Define $K=\{r \in R:$ ar $\in M\}$. Then $K \triangleleft_{r} R$ and:

1. if $a \in M$ then $K=R$
2. if $a \notin M$ then K is also a maximal right ideal.

Proof. Clear that $K \triangleleft_{r} R$, Now assume that $a \notin M$ so that $M+a R=R(*)$. Define an R-module homomorphism $\theta: R \rightarrow R / M$ by $r \mapsto a r+M \forall r \in R$. Check that this is a homomorphism of right R-modules. By (*), θ is an onto map. So by the isomorphism theorem for modules: $R / M \cong R / \operatorname{ker} \theta=$ R / K. It follows that K is a maximal right ideal.

Theorem 2.6. $J \triangleleft R$
Proof. Clearly $J \triangleleft_{r} R$. Now let $j \in J$ and $a \in R$ and suppose $a j \notin J$. Then by definition there exists a right ideal M such that $a j \notin M$. Define $K=\{r \in R: a r \in M\}$. By the previous theorem K is a maximal right ideal. But $j \notin K$ since $a j \notin M$ hence $j \notin J$. This is a contradiction. Hence $a j \in J$ for all $j \in J$ and $r \in R$. Thus $J \triangleleft R$.

Definition 2.7. Let x be an element of a ring R. We say that x is a right quasi-regular (rqr) if $1-x$ has a right inverse, i.e., if $\exists y \in R$ such that $(1-x) y=1$

A subset S of R is called right quasi-regular if every elements of S is rqr
Left quasi-regular (lqr) is defined analogously
We call an element or set quasi-regular if it is both lqr and rqr.
Lemma 2.8. Let I be a rqr right ideal of R. Then $I \subseteq J$
Proof. Let M be a maximal right ideal of R. If $I \nsubseteq M$ then $I+M=R$, so $1=x+m$ for some $x \in I$ and $m \in M$. Hence $1-x \in M$, now there exits $y \in R$ such that $(1-x) y=1$, so $1 \in M$ hence $M=R$. A contradiction, thus $I \subseteq J$ as required.

Lemma 2.9. Let R be a ring, $J(R)$ is a right quasi-regular ideal.
Proof. Let $j \in J$. Suppose that $1-j$ has no right inverse. Then $(1-j) R \neq R$ so by Theorem 2.2 there exists a maximal right ideal M such that $(1-j) R \subseteq M$. But $j \in M$ by definition of $J(R)$ so $1=1-j+j \in M$, hence $M=R$. This is a contradiction, hence $1-j$ has a right inverse for all $j \in J$. So J is a rqr.

Lemma 2.10. Let I be an ideal of a ring R. Then I rqr if and only if I lqr.
Proof. Suppose that I is rqr. Let $x \in I$, then there exists $a \in R$ such that $(1-x)(1-a)=1$. So $a=x a-x \in I$ since $I \triangleleft_{r} R$. Hence there exists $t \in R$ such that $(1-a)(1-t)=1$, so $1-x=(1-x) 1=$ $(1-x)(1-a)(1-t)=1(1-t)=1-t$. Hence $(1-a)(1-x)=1$, thus x is lqr. By symmetry we can run the converse argument.

Theorem 2.11. The (right) Jacobson radical is a qr ideal and contains all the rqr right ideals.
Proof. This is what we have proved above.
Corollary 2.12. The Jacobson radical of a ring R is left right symmetric, i.e., left Jacobson radical J_{l} is equal to the right Jacobson radical J_{r}

Proof. J_{l} is a qr ideal by the left hand version of the theorem, so $J_{l} \subseteq J_{r}$. Similarly $J_{r} \subseteq J_{l}$, hence $J_{r}=J_{l}$.

Theorem 2.13. Let R be a ring with Jacobson radical J. Then $J(R / J)=0$
Proof. The maximal right ideals of the right R / J are precisely the right ideals of the form M / J where M is a maximal right ideal of R

Remark. The theory can be adjusted to deal with rings without an identity.

2.2 Commutative Local Rings

Definition 2.14. Let R be a commutative ring, R is said to be a local ring if R has a unique maximal ideal

Note. This terminology is slightly different from Kaplansky's
Let R be a commutative local ring with 1 . Let M be the maximal ideal of R, then:

1. M is the Jacobson radical of R
2. R / M is a field
3. If $x \in R, x \notin M$ then x is a unit of R.

Example. Let $R=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right.$, bodd $\}$
Check that R is a local ring. Find its unique maximal ideal. In fact $R=\mathbb{Z}_{(2)}$, i.e., the ring \mathbb{Z} localised at the prime ideal $2 \mathbb{Z}$

Remark. There exists a non-commutative ring with unique maximal ideal (in fact the only proper non-zero ideal) which is not its Jacobson radical.

3 Chapter 3: Chain conditions

Rings need not have 1 in this chapter

3.1 Finitely Generated Modules

Definition 3.1. Let T be a subset of M_{R}. The "smallest" submodule of M containing T is called the submodule of M generated by T, i.e., it is the intersection of all submodules of M containing T.

By convention we take $\{0\}$ to be the submodule generated by the empty set \emptyset.
Of particular importance is the case when T consists of a singles element $a \in M$. In general the submodule generated by a is $\{a r+\lambda a \mid r \in R, \lambda \in \mathbb{Z}\}$. This equals $a R$ when R has 1 and M is unital.

Definition 3.2. If M_{R} is generated by a single element then we say that M is a cyclic module
A right R-module M is said to be finitely generated (f.g.) if it is the module generated by a finite subset. If R has 1 and M is a finitely generated module then $\exists a_{1}, \ldots, a_{n} \in M$ such that $M=a_{1} R+\cdots+a_{n} R$.

Cyclic submodules of $R_{R}\left[{ }_{R} R\right]$ are called principle right (left) ideals.

3.2 Finiteness Assumption

Definition 3.3. Let \mathscr{S} be a non-empty collection of submodules of a right R-module M.

1. An element $K \in \mathscr{S}$ is said to be maximal in \mathscr{S} if $\nexists K^{\prime} \in \mathscr{S}$ such that $K^{\prime} \supsetneq K$.

Similarly for a minimal element of \mathscr{S}
2. A is said to have the ascending chain condition (ACC) for submodules in \mathscr{S} if every chain of submodules $A_{1} \subseteq A_{2} \subseteq \ldots$ with $A_{i} \in \mathscr{S}$ has equal terms after a finite number of terms.
3. M is said to have the maximum condition on submodules in \mathscr{S} if every non-empty collection of submodules in \mathscr{S} has a submodules maximal in this collection.

The descending chain condition (DCC) and minimum condition are defined analogously.
Proposition 3.4. Let \mathscr{S} be a non-empty collection of submodules of M_{R} then the following are equivalent:

1. M has $A C C[D C C]$ on submodules in \mathscr{S}
2. M has the maximum [minimum] condition on submodules in \mathscr{S}

Proof. Exercise

Particularly important is the case when \mathscr{S} consists of all submodules in M_{R}. The abbreviation " M has ACC" will mean that M has ACC on the set of all submodules of M. Similarly for the other conditions.

Proposition 3.5. The following are equivalent for a right R-module M.

1. M has $A C C$
2. M has the maximal condition
3. Every submodule of M is finitely generated.

Proof. This is Commutative Algebra Proposition 5.1
Example. $\mathbb{Z}_{\mathbb{Z}}$ has ACC since every ideal is principle (this follows from the Euclidean Algorithm)
Remark. 1. ACC does not imply the existence of an integer n such that all chains stop after n steps. This is easily checked on \mathbb{Z}
2. Similarly with DCC. Examples are harder but they do exists.
3. However if M_{R} has both ACC and DCC then such an integer does exists. This follows from the theory of composition series.

Lemma 3.6 (Dedekind Modular Law). Let A, B, C be submodules of M_{R} such that $A \supseteq B$. Then $A \cap(B+C)=B+(A \cap C)$.

Proof. Elementary
Proposition 3.7 (Commutative Algebra 5.4). Suppose that K is a submodule of M_{R}. Then M has $A C C[D C C]$ if and only if both K and M / K have $A C C[D C C]$

Proof. \Rightarrow : Straightforward
\Leftarrow : Let $M_{1} \subseteq M_{2} \subseteq \ldots$ be an ascending chain of submodules of M. Consider the chains $M_{1} \cap$ $K \subseteq M_{2} \cap K \subseteq \ldots$ and $M_{1}+K \subseteq M_{2}+K \subseteq \ldots$. The first chain stops since it consists of submodules of K. So there exists $k \geq 1$ such that $M_{k} \cap K=M_{k+i} \cap K$ for all $i \geq 1$. The second chain stops since it consists of submodules of M which are in 1 to 1 correspondence with those of M / K. So there exists an l such that $M_{l}+K=M_{l+i}+K$ for all $i \geq 1$. Let $n=\max \{k, l\}$. Then $M_{n+i}=M_{n+i} \cap\left(M_{n+i}+K\right)=M_{n+i} \cap\left(M_{n}+K\right)=M_{n}+\left(M_{n+i} \cap K\right)$ by the Modular Law (since $\left.M_{n+i} \supseteq M_{n}\right)$. And $M_{n}+\left(M_{n+i}+K\right)=M_{n}+M_{n} \cap K=M_{n}$, and this is true $\forall i \geq 1$. So M_{R} has ACC

Similarly for DCC
This important proposition has many consequences
Corollary 3.8 (Commutative Algebra 5.5). Let M_{1}, \ldots, M_{n} be submodules of a right R-modules M. If each M_{i} has $A C C[D D C]$ then so does their sum $M_{1}+\cdots+M_{n}=K$.

Proof. Take $K_{1}=M_{1}+M_{2}$. We have $K_{1} / M_{1}=\frac{M_{1}+M_{2}}{M_{1}} \cong \frac{M_{2}}{M_{1} \cap M_{2}}$. So $\frac{K_{1}}{M_{1}}$ has ACC [DCC] since $\frac{M_{2}}{M_{1} \cap M_{2}}$ is a factor modules of M_{2} and M_{2} has ACC. Also M_{1} has by assumption ACC [DCC]. So by the proposition 3.7, K_{1} has ACC [DCC].

This can easily be extended by induction.
Corollary 3.9. Let R be a ring with 1 . Suppose that R has $A C C[D C C]$ on right ideals. Let M_{R} be a finitely generated unital right R-module. Then M_{R} has $A C C$ [DCC] on submodules.

Proof. Since M_{R} is finitely generated and unital, there exists m_{1}, \ldots, m_{k} such that $M=m_{1} R+$ $\ldots m_{k} R$. So by Corollary 3.8 it is enough to show that each $m_{i} R$ has ACC [DCC]. The map $r \rightarrow m_{i} r$ for all $r \in R$ is an R-homomorphism of R_{R} onto $m_{i} R$. So $m_{i} R$ is isomorphic to a factor of R_{R}. So $m_{i} R$ has ACC [DCC] on submodules.

Remark. If R does not have 1 , the ACC part of the corollary still holds but the DCC part is false! This is because $\left(m_{i}\right)=\left\{m_{i} r+\lambda m_{i} \mid r \in R, \lambda \in \mathbb{Z}\right\}$ and \mathbb{Z} has ACC but not DCC

Definition 3.10. A modules with ACC on submodules is called a Noetherian module. A modules with DCC on submodules is called an Artinian module

A ring with ACC on right ideals is called a right Noetherian ring. A ring with ACC on left ideals is called a left Noetherian ring.

A ring with 1 and DCC on right ideals is called a right Artinian ring. A ring with 1 and DCC on left ideals is called a left Artinian ring.

3.3 Nil and Nilpotent Ideals

Definition 3.11. Let S be non-empty subset of a ring R. S is said to be nil if given any $s \in S$ there exists an integer $k \geq 1$ (which depends on s) such that $s^{k}=0$. S is said to be nilpotent if there exists an integer $k \geq 1$ such that $S^{k}=0$

If S consists of a single element, there is no difference between nil and nilpotent and we normally say that the element is nilpotent.

Proposition 3.12. Let R be a ring with 1. Every nil one sided ideal of R is inside $J(R)$.

Proof. Let I be a nil right ideal and $x \in I$. Then $x^{k}=0$ for some $k \geq 1$. We have $(1-x)(1+x+$ $\left.\cdots+x^{k-1}\right)=1$ so x is r.q.r. so $x \in J(R)$. Thus $I \subseteq J(R)$.

Remark. This is also true without 1.
Lemma 3.13. Let R be a ring:

1. If I and K are nilpotent right ideals then so are $I+K$ and $R I$
2. Every nilpotent right ideal lies inside a nilpotent ideal.

Proof. Suppose that $I^{k}=0$ and $K^{l}=0, k, l \geq 1$. Then $(I+K)^{k+l-1}=0$ since every term in the expansion lies in either I^{k} or K^{l} and hence is zero. So $I+K$ is nilpotent. $(R I)^{k}=(R I)(R I) \ldots(R I) \subseteq$ $R(I R)^{k-1} I \subseteq R I^{k}=0$. So $R I$ is nilpotent.

Suppose that I is a nilpotent right ideal. Then $I \subseteq I+R I$. Now $I+R I \triangleleft R$ and is nilpotent by the first part.

Definition 3.14. The sum of all nilpotent ideals of R is called the Nilpotent radical (or the Wedderburn radical). It is usually denoted by $N(R)$.

Note. $N(R) \subseteq J(R)$ always.
It follows from Lemma 3.13 that $N(R)=\sum$ nilpotent right ideals $=\sum$ nilpotent left ideals. Clearly $N(R)$ is a nil ideal. It is in general not itself nilpotent.

Example (Zassenhaus's Example). Let F be a field, I the open interval $(0,1)$ and R a vector space over F with basis $\left\{x_{i} \mid i \in I\right\}$. Define a multiplication on F by extending the following product of basis elements $x_{i} x_{j}=\left\{\begin{array}{ll}x_{i+j} & \text { if } i+j<1 \\ 0 & \text { if } \mathrm{i}+\mathrm{j} \geq 1\end{array}\right.$. Thus every element of R can be written uniquely in the form $\sum_{i \in I} a_{i} x_{i}$ where $a_{i} \in F$ and $a_{i}=0$ for all except a finite number of i. Check that $N(R)=R$ but R is not nilpotent.

Proposition 3.15. Let R be a commutative ring. Then $N(R)$ equals the set of all nilpotent elements of R.

Proof. Let n be a nilpotent element. This implies that the principle ideal generated by n is nilpotent. (Prove!)

Example. The above is false for non-commutative rings. e.g, let R be the ring of 2×2 matrices over \mathbb{Q}. Then R has only two ideals 0 and R. So $N(R)=0$ but $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)^{2}=0$.

Definition 3.16. An ideal P of a ring R is said to be a prime ideal if $A B \subseteq P, A, B \triangleleft R$ implies $A \subseteq P$ or $B \subseteq P$. We exclude R itself from the set of prime ideals.

Proposition 3.17. Let R be a commutative ring and $P \triangleleft R$. Then P is a prime ideal if and only if $(a, b \in R)$ we have $a b \in P \Rightarrow a \in P$ or $b \in P$.

Proof. Trivial if R has 1 . Not so trivial but still true if R does not have 1 .
Proposition 3.18 (Commutative Algebra 1.10). Let R be a ring. The intersection of all prime ideals of R is a nil ideal.

Proof. We shall show that if $x \in R$ is not nilpotent then there exists a prime ideal excluding it. Suppose that $x \in R$ is not nilpotent. Let \mathscr{S} be the set of ideals which contains no power of $x . \mathscr{S} \neq 0$ since $\{0\} \in \mathscr{S}$. Check that Zorn's lemma applies. So \mathscr{S} contains a maximal element, say P. Claim: P is a prime ideal. If not then \exists ideals A and B of R such that $A B \subseteq P$ but $\nsubseteq P$ and $B \subseteq P$. Then $A+P \supsetneq P$ and $B+P \supsetneq P$. So $x^{k} \in A+P$ and $x^{l} \in B+P$ for some integers k, l. But then $x^{k+l} \in(A+P)(B+P) \subseteq P$ which is a contradiction. Thus P is a prime ideal proving the proposition.

Corollary 3.19. In a commutative ring $N(R)$ equals the intersection of all prime ideals of R.

Proof. This follows from Theorem 3.15 and the previous theorem.
Corollary 3.20. In a commutative ring with 1 a finitely generated nil ideal is nilpotent. In particular when R is Noetherian $N(R)$ is nilpotent.

Proof. Let K be a finitely generated ideal of R. Let $K=k_{1} R+\cdots+k_{s} R$ with $k_{i} \in K$. Each k_{i} is nilpotent hence so is the ideal. The result follows by 3.13. When R is Noetherian $N(R)$ is finitely generated and so nilpotent by above.

3.4 Nakayama's Lemma and an Application

Definition 3.21. Let $I \triangleleft_{r} R$. We say that a_{1}, \ldots, a_{n} is minimal generated set for I if:

1. a_{1}, \ldots, a_{n} generate I
2. No proper subset of $\left\{a_{1}, \ldots, a_{n}\right\}$ generates I.

Nakayama's Lemma. Let R be a ring with 1 and M_{R} a finitely generated module. Let I be a subset of $J(R)$ Then $M I=M \Rightarrow M=0$.

Proof. Let $M I=M$. Then we have $M J=M$. Suppose that $M \neq 0$. Let a_{1}, \ldots, a_{n} be a minimal generated set for M. We have $M=a_{1} R+\cdots+a_{n} R$ so that $M J=a_{1} J+\cdots+a_{n} J$. Now $a_{1} \in M=M J$ so $a_{1}=a_{1} x+\cdots+a_{n} x_{n}$ for some $x_{i} \in J$. Now $a_{1}(1-x)=a_{2} x_{2}+\cdots+a_{n} x_{n}\left(a_{1}\left(1-x_{1}\right)=0\right.$ if $\left.n=1\right)$. So $a_{1}=a_{2} x_{2}\left(1-x_{1}\right)^{-1}+\cdots+a_{n} x_{n}\left(1-x_{1}\right)^{-1}\left(a_{1}=0\right.$ if $\left.n=1\right)$. This contradicts the minimality of n. Hence $M=0$

Remark. This is also valid for rings without 1.
Let R be a commutative local ring with 1 with unique maximal ideal J. Then R / J is a field. So J / J^{2} is an R / J-module, i.e., J / J^{2} is a vector space over the field R / J. If $x \in R$ let \bar{x} denote the coset $x+J^{2}$. So $\bar{x} \in R / J^{2}$.

Lemma 3.22 (Commutative Algebra 2.17). Let R be a commutative local ring with 1 . Let J be the maximal ideal of R. Suppose that J is finitely generated and $x_{1}, \ldots, x_{k} \in J$. Then x_{1}, \ldots, x_{k} generate J (as an R-module) $\Longleftrightarrow \overline{x_{1}}, \ldots, \overline{x_{k}}$ is a set which spans the vector space J / J^{2} (over the field R / J)

Proof. $\Rightarrow) \overline{x_{1}}, \ldots, \overline{x_{k}}$ generate J / J^{2} as an R-module so $\overline{x_{1}}, \ldots, \overline{x_{k}}$ generate J / J^{2} as an R / J-module, i.e., they span the vector space J / J^{2}.
$\Leftrightarrow)$ Let $I=x_{1} R+\cdots+x_{k} R$. Then $I \subseteq J, \overline{x_{1}}, \ldots, \overline{x_{k}}$ generates J / J^{2} as an R-module, hence $I+J^{2}=J$. This implies that $(J / I) J=J / I$ where J / I is considered as an R-module. So $J / I=0$ by Nakayama's lemma, so $J \subseteq I$. Hence $J=x_{1} R+\cdots+x_{k} R$.

Corollary 3.23. In the above ring $x_{1}, \ldots,, x_{k}$ is a minimal generated set for $J \Longleftrightarrow \overline{x_{1}}, \ldots, \overline{x_{k}}$ is a basis for the vector space J / J^{2} over R / J.

Proof. Follows from above
Theorem 3.24. Let R be a commutative Noetherian local ring with 1 . Let J be the maximal ideal of R. Then any two minimal generating set of J contain the same number of elements.

Proof. This is a direct consequence of the corollary
Notation. We shall denote this common number by $V(R)$. Thus $V(R)=\operatorname{dim} J / J^{2}$ as a vector space over the field R / J.

4 Commutative Noetherian Rings

All rings considered in this chapter are assumed to be commutative rings 1.

4.1 Primary Decomposition

Definition 4.1. An ideal Q is said to be primary if $a b \in Q(a, b \in R)$ implies that $a \in Q$ or $b^{n} \in Q$ for some integer n.

Clearly a prime ideal is primary.
Definition 4.2. R is called a primary ring if 0 is a primary ideal.
Clearly an ideal Q is primary if and only if R / Q is a primary ring.
Definition 4.3. We say that R has primary decomposition if every ideal of R is expressible as a finite intersection of primary ideals.

Definition 4.4. An ideal is said to be meet-irreducible if $I=A \cap B, A, B \triangleleft R$ implies $I=A$ or $I=B$.
Note. The two different definitions: M_{R} is irreducible if $\{0\}$ and M are the only submodules. $I \triangleleft R$ is meet-irreducible if $I=A \cap B$ implies $I=A$ or $I=B$

Lemma 4.5 (Commutative Algebra 6.18). Let R be a Noetherian ring. Then every ideal of R is expressible as a finite intersection of meet-irreducible ideals.

Proof. Suppose not. Let $A \triangleleft R$ be a maximal counterexample. Then A is not meet-irreducible. So $A=B \cap C, B, C \triangleleft R, B \supsetneq A, C \supsetneq A$. By maximality of A, both B and C are finite intersection of meet-irreducible ideals. Hence so is A. Contradiction hence the result holds.

Notation. Let M be a subset of M_{R}. The annihilator of S in R is $\operatorname{ann}(S)=\{r \in R \mid S r=0\}$. For R is non-commutative $\operatorname{ann}(S) \triangleleft_{r} R$. If S is a submodule then typically S is a subset of R.

Theorem 4.6 ((Noether) Commutative Algebra 6.20). A Noetherian ring has primary decomposition
Proof. By the previous lemma it is enough to show that a meet-irreducible ideal is primary. Without loss of generality assume 0 to be meet-irreducible. Suppose that $a b=0, a, b \in R$.

Claim: There exists an integer $n \geq 1$ such that $b^{n} R \cap \operatorname{ann}\left(b^{n}\right)=0$.
Since the chain $\operatorname{ann}(b) \subseteq \operatorname{ann}\left(b^{2}\right) \subseteq \ldots$ stops there is an integer $n \geq 1$ such that $\operatorname{ann}\left(b^{n}\right)=\operatorname{ann}\left(b^{2 n}\right)$. Now $z \in b^{n} R \cap \operatorname{ann}\left(b^{n}\right) \Rightarrow x=b^{n} t$ for some $t \in R$ and $b^{z}=0$. So $b^{2 n} t=0 \Rightarrow b^{n} t=0 \Rightarrow z=0$. Since 0 is meet-irreducible either $b^{n} R=0$ or $\operatorname{ann}\left(b^{n}\right)=0$. Thus $b^{n}=0$ or $a=0$ and 0 is a primary ideal

Definition 4.7. Let Q be a primary ideal. Let P / Q be the nilpotent radical of the ring $R / Q . P$ is called the radical of Q and we say that Q is P-primary.

Notation. We denote the radical of Q by \sqrt{Q}.
Recall that for a commutative ring $R, N(R)=$ set of all nilpotent elements of R.
Proposition 4.8. Let Q be a primary ideal and let $P=\sqrt{Q}$. Then:

1. P is a prime ideal
2. If further R is Noetherian, then $P^{k} \subseteq Q$ for some $k \geq 1$.

Proof. 1. Let $a b \in P$ with $a, b \in R$. Then $(a b)^{n} \in Q$ for some $n \geq 1$ so $a^{n} b^{n} \in Q$. If $a \notin P$ then $a^{n} \notin Q$ so $\left(b^{n}\right)^{s} \in Q$ for some $s \geq 1$ by definition of primary. Hence $b \in P$. Thus P is a prime ideal/
2. P / Q is a nil ideal of R / Q. If R / Q is Noetherian, P / Q is nilpotent (by Proposition 3.13 ?(check reference maybe)). Hence $P^{k} \subseteq Q$ for some $k \geq 1$.

Theorem 4.9 (Commutative Algebra 6.24). Let R be a commutative Noetherian ring. Then $\cap_{n=1}^{\infty} J^{n}=$ 0 where $J=J(R)$.

Proof. Let $X=\cap_{n=1}^{\infty} J^{n}$. Let $X J=Q_{1} \cap \cdots \cap Q_{n}$ be a primary decomposition for X. Fix i and let $P_{i}=\sqrt{Q_{i}}$, if $X \nsubseteq Q_{i}$ then $J \subseteq P_{i}$. So $J^{k_{i}} \subseteq Q_{i}$ for some $k_{i} \geq 1$ by the previous proposition. Thus $X \subseteq Q_{i}$ or $J^{k_{i}} \subseteq Q_{i}$. So $X \subseteq Q_{i}$ for all $i=1 \ldots, n$ in any case. Hence $X \subseteq X J$. So $X=X J$ hence by Nakayama's lemma $X=0$.

This is a surprisingly useful result.
Remark. For a right Noetherian ring this is false (Proven by Herstein in 1965). While for left and right Noetherian rings the result is still an open problem.

Definition 4.10. A ring is called an integral domain if the product of any two non-zero elements of the ring is non-zero.

Theorem 4.11. Let R be a commutative, local, Noetherian ring. Suppose that $J=J(R)$ is a principle ideal. Then every non-zero ideal of R is a power of J. In particular, R is a principal ideal ring.

Proof. Let $0 \neq I \triangleleft R, I \neq R$. Then $I \subseteq J$. Since $\cap_{n=1}^{\infty} J^{n}=0$ there exists an integer $k \geq 1$ such that $I \subseteq J^{k}$ but $I \nsubseteq J^{k+1}$. Let $J=a R(a \in J)$, then $J^{m}=a^{m} R \forall m \geq 1$. Now there exists an element x such that $x \in I$ but $x \notin a^{k+1} R(*)$. Since $x \in a^{k} R$ we have $x=a^{k} t$ for some $t \in R$. Now $t \notin J=a R$ by $(*)$. So t must be a unit of R. So $a^{k}=x t^{-1} \in I$. Hence $J^{k}=a^{k} R \subseteq I$. It follows that $I=J^{k}$ proving the theorem.

Corollary 4.12. Let R be a commutative, local, Noetherian ring.

1. If J is not nilpotent then R is an integral domain and 0 and J are the only prime ideals of R.
2. If J is nilpotent then R is Artinian and J is the only prime ideal of R.

Proof. Exercise. (Note that in 2. $J^{s}=0$ for some $s \geq 1$ so $R, J, J^{2}, \ldots, J^{s}=0$ are the only ideals.

4.2 Decomposition of 0

Definition 4.13. Let $I=Q_{1} \cap \cdots \cap Q_{n}$ be a primary decomposition for an ideal I. Suppose that Q_{i} are P_{i}-primary. We say the decomposition is normal [Commutative Algebra: minimal] if

1. No Q_{i} is superfluous
2. $P_{i} \neq P_{j}$ for all $i \neq j$

Given that I has a primary decomposition, we can arrange a normal decomposition for I by:

1. Removing any superfluous primary ideals and
2. By applying the following:

Lemma 4.14. If Q_{1} and Q_{2} are P-primary ideals then so is $Q_{1} \cap Q_{2}$
Proof. Let $a b \in Q_{1} \cap Q_{2}, a, b \in R$. If $a \notin Q_{1} \cap Q_{2}$ then $a \notin Q_{1}$ say. Then $b^{n} \in Q_{1}$ for some $n \geq 1$. So $b \in P$. Hence $b^{s} \in Q_{2}$ for some $s \geq 1$ since Q_{2} is P-primary. Let $k=\max (n, s)$ then $b^{k} \in Q_{1} \cap Q_{2}$. Now $p \in P$ implies $p^{t} \in Q_{1} \cap Q_{2}$ for sufficiently large $t \geq 1$. Hence $P \subseteq \sqrt{Q_{1} \cap Q_{2}}$. But $Q_{1} \cap Q_{2} \subseteq Q_{1}$ so $\sqrt{Q_{1} \cap Q_{2}} \subseteq \sqrt{Q_{1}}=P$, thus $P=\sqrt{Q_{1} \cap Q_{2}}$.

Thus whenever necessary we shall assume that the primary decomposition being considered is normal. Remark. We may still have $\sqrt{Q_{i}} \supsetneq \sqrt{Q_{j}}$ with a normal primary decomposition [Commutative Algebra, example before 6.8]

Definition 4.15. Let R be a ring. We say that a prime ideal P is a minimal prime ideal of R if $Q \subseteq P$ with Q prime implies $Q=P$.

Lemma 4.16. Let R be a commutative Noetherian ring. Suppose that $0=Q_{1} \cap \cdots \cap Q_{n}$ be a primary decomposition of 0 . Let $P_{i}=\sqrt{Q_{i}}$ and suppose (after possible renumbering) that P_{1}, \ldots, P_{k} are minimal in the set $\left\{P_{1}, \ldots, P_{n}\right\}$. Then P_{1}, \ldots, P_{k} are precisely the minimal primes of R.

Proof. It is enough to show that if P is a prime ideal of R then $P \supseteq P_{j}$ for some $1 \leq j \leq k$. By Theorem 4.6 (? check reference) there exists integers $k_{i} \geq 1$ such that $P_{i}^{k_{i}} \subseteq Q_{i}$ for $i=1, \ldots, n$. Then $P_{1}^{k_{1}} P_{2}^{k_{2}} \ldots P_{n}^{k_{n}} \subseteq Q_{1} \cap \cdots \cap Q_{n}=0$. In particular, $P_{1}^{k_{1}} \ldots P_{n}^{k_{n}} \subseteq P$ hence $P_{m} \subseteq P$ for some m with $1 \leq m \leq n$. But since P_{1}, \ldots, P_{k} are minimal in the set $\left\{P_{1}, \ldots, P_{n}\right\}$ we have $P_{j} \subseteq P_{m}$ for some j, $1 \leq j \leq m$. Thus $P \supseteq P_{j}$ with $1 \leq j \leq m$ as required.

Definition 4.17. Let $c \in R$, we say that c is regular if $c x=0, x \in R \Rightarrow x=0$
An element which is not regular is called a zero-divisor.
Notation. Let $I \triangleleft R$. Write $\mathscr{C}(I)=\{x \in R \mid x+I$ is regular in the ring $R / I\}$
Clearly $\mathscr{C}(0)=\{$ regular elements of $R\}$. If P is a prime ideal, in a commutative ring then $\mathscr{C}(P)=R \backslash P$.

Proposition 4.18. Let R be a Noetherian ring and $0=Q_{1} \cap \cdots \cap Q_{n}$ a normal primary decomposition. Let $P_{i}=\sqrt{Q_{i}}$ and suppose that P_{1}, \ldots, P_{k} are the minimal primes of R. Then:

1. $N(R)=P_{1} \cap \cdots \cap P_{k}$.
2. $\mathscr{C}(0)=R \backslash \cup_{i=1}^{n} P_{i}$
3. $\mathscr{C}(N)=R \backslash \cup_{i=1}^{k} P_{i}$

Proof. 1. Clearly $N \subseteq P_{1} \cap \cdots \cap P_{k}$. Now $P_{1} \cap \cdots \cap P_{k} \subseteq P_{j}$ for all $1 \leq j \leq n$. By Proposition 4.8 there exists an integer t_{i} such that $\left(P_{1} \cap \cdots \cap P_{k}\right)^{t_{i}} \subseteq Q_{i}$. Let $t=\max \left\{t_{i}\right\}$, then $\left(P_{1} \cap \cdots \cap P_{k}\right)^{t} \subseteq$ $Q_{1} \cap \cdots \cap Q_{n}=0$. Thus $P_{1} \cap \cdots \cap P_{k} \subseteq N$ and so $P_{!} \cap \cdots \cap P_{k}=N$.
2. Let $c \in R \backslash \cup_{i=1}^{n} P_{i}$. Then $c x=0, x \in R \Rightarrow x \in Q_{i}$ for all $i 1 \leq i \leq n$, since c belong to no P_{i}. Hence $x \in Q_{1} \cap \cdots \cap Q_{n}=0$, so $c \in \mathscr{C}(0)$.
Now $P_{i}^{n_{i}} \subseteq Q_{i}$ for some n_{i}. So $P_{i}^{n_{i}}\left[Q_{1} \cap \cdots \cap Q_{i-1} \cap Q_{i+1} \cap \cdots \cap Q_{n}\right] \subseteq Q_{1} \cap \cdots \cap Q_{n}=0$. Now $Q_{1} \cap \cdots \cap Q_{i-1} \cap Q_{i+1} \cap \cdots \cap Q_{n} \neq 0$ since our decomposition is normal. So P_{i} is does not contain a regular elements and hence $\cup_{i=1}^{n} P_{i}$ does not contain a regular element. Hence $\mathscr{C}(0)=R \backslash \cup_{i=1}^{n} P_{i}$
3. Exercise

Lemma 4.19. Let R be a commutative ring. Let P_{1}, \ldots, P_{n} be ideals of R, at least $n-2$ of which are prime. Let S be a subring of R. Suppose that $S \subseteq \cup_{i=1}^{n} P_{i}$, then $S \subseteq P_{k}$ for some $k, 1 \leq k \leq n$.

Remark. Note that S does not (necessarily) contain 1, since our definition of rings did not include 1
Proof. Proof by induction on n. For $n=1$, result is trivial.
For $n=2$ if $S \nsubseteq P_{1}$ and $S \nsubseteq P_{2}$ then choose $x_{1}, x_{2} \in S$ such that $x_{1} \notin P_{2}$ and $x_{2} \notin P_{1}$. Then $x_{1}+x_{2} \in S$ but $x_{1}+x_{2} \notin P_{i}, i=1,2$.

Now assume $n>2$ and that the result holds for values $<n$.
Clearly any selection of $n-1$ of the P_{i} at most 2 will be non-prime. Suppose that $S \subseteq \cup_{i=1}^{n} P_{i}$ but $S \notin P_{i}$ for any $i(i=1,2, \ldots, n)$. Then $S \nsubseteq P_{1} \cup \cdots \cup P_{k-1} \cup P_{k+1} \cup \cdots \cup P_{n}$ by induction hypothesis (as k varies). Now choose $x_{k} \in S$ such that $x_{k} \notin P_{1} \cup \cdots \cup P_{k-1} \cup P_{k+1} \cup \cdots \cup P_{n}$. Thus $x_{k} \in P_{k}$. Since $n>2$ at least of the P_{i} must be prime, say P_{1}. Let $y=x_{1}+x_{2} \ldots x_{n}$, then $y \notin P_{i}$ for any $i=1, \ldots, n$. This is a contradiction. This completes the induction.

Proposition 4.20. Let R be a commutative Noetherian ring. Let $I \triangleleft R$, then I contains a regular element if and only if ann $I=0$.

Proof. \Rightarrow : Trivial
\Leftarrow : Suppose that every element of I is a zero divisor. Then by the Proposition 4.18 part 2) $I \subseteq \cup_{i=1}^{n} P_{i}$ (where the P_{i} are as in Proposition 4.18. So $I \subseteq P_{j}$, for some $j, 1 \leq j \leq n$. We have ann $I \supseteq$ ann $P_{j} \neq 0$. This completes the proof.

Proposition 4.21. Let R be a commutative Noetherian ring and $I \triangleleft R$. Suppose that I contains a regular element. Then $I=c_{1} R+\cdots+c_{n} R$ where each c_{i} is regular.

Proof. Let K be the right ideal generated by the regular elements in I. So $I \backslash K$ is either empty or consists of zero divisors. Let P_{1}, \ldots, P_{n} be the primes associated with a primary decomposition of 0 (as in Proposition 4.18). So $I \backslash K \subseteq P_{1} \cup \cdots \cup P_{n}$ by Proposition 4.18 part 2 , so $I \subseteq K \cup P_{1} \cup \cdots \cup P_{n}$. Hence $I \subseteq K$ or $I \subseteq P_{i}$ for some i (by Lemma 4.19). But $I \nsubseteq P_{i}$ for any i since I contains a regular element but all P_{i} contains zero-divisors. Hence $I \subseteq K$ and so $I=K$. Since R is Noetherian it follows that we can find a finite generating set consisting of regular elements.

4.3 Localisation [Commutative Algebra Section 3]

Definition 4.22. Let S be a non-empty subset of a ring R. We say that S is multiplicatively closed if $s_{1}, s_{2} \in S \Rightarrow s_{1} s_{2} \in S$.

Typical example: $\mathscr{C}(P)=R \backslash P$ where P is a prime ideal in a commutative ring. We shall always assume $0 \notin S$ and $1 \in S$.

Define an equivalence relation \sim on $R \times S$ as follows: $(a, s) \sim(b, t)$ if there exists $s^{\prime} \in S$ such that $(a t-b s) s^{\prime}=0($ where $(a, s),(b, t) \in R \times S)$

Let $\frac{a}{c}$ be the equivalence class of (a, b) and let R_{S} denote the set of all such equivalence classes. For $\frac{a}{s}, \frac{b}{t} \in R_{S}$ define $\frac{a}{s}+\frac{b}{t}=\frac{a t+b s}{s t}$ and $\frac{a}{s} \times \frac{b}{t}=\frac{a b}{s t}$.

Check that this is well-defined and that R_{S} is a ring. We have a natural ring homomorphism $\phi: R \rightarrow R_{S}$ given by $\phi(r)=\frac{r}{1}$ for all $r \in R$

Definition 4.23. R_{S} constructed above is called a localizations of R at S
Let A, B be rings with 1 and $\phi: A \rightarrow B$ a homomorphism of rings. In this context we shall always assume $\phi\left(1_{A}\right)=1_{B}$

The Universal Mapping Property.

Let A, B be rings and S a multiplicatively closed subset of A. Suppose that $\phi: A \rightarrow B$ is a ring homomorphism such that $\phi(s)$ is a unit in B for all $s \in S$. Then there exists a unique ring homomorphism $\psi: A_{S} \rightarrow B$ such that $\phi=\psi \theta$

Proof. See Commutative Algebra 3.2-point
The ring homomorphism $\theta: R \rightarrow R_{S}$ has the following properties:

1. $s \in S$ implies $\theta(s)$ is a unit in R_{S}
2. Given $a \in R, \theta(a)=0$ if and only if $a s=0$ for some $s \in S$
3. Every element of R_{S} is expressible as $\theta(a)[\theta(s)]^{-1}$ for some $a \in R, s \in S$.

These three properties determine R_{S} to within isomorphism.
Theorem 4.24. Let A, B be rings and S a multiplicatively closed subset of A. Suppose that $\alpha: A \rightarrow B$ is a ring homomorphism such that:

1. $s \in S$ implies $\alpha(s)$ is a unit of B
2. $\alpha(a)=0$ implies as $=0$ for some $s \in S$
3. Every element of B is expressible as $\alpha(a)[\alpha(s)]^{-1}$ for some $a \in A, s \in S$.

Then there exists a unique isomorphism $\psi: A_{S} \rightarrow B$ such that $\alpha=\psi \theta$, where θ is the natural map $A \rightarrow A_{S}$.

Proof. By the universal mapping property there is a unique homomorphism $\psi: A_{S} \rightarrow B$ such that $\alpha=\psi \theta$, where ψ is given by $\psi\left(a s^{-1}\right)=\alpha(a)[\alpha(s)]^{-1}$ (used property 1.) Then use property 2 and 3 to check that ψ is an isomorphism.

In view of this we speak of the localization of R at S. Also since $\frac{a}{s}=\frac{a}{1} \cdot \frac{1}{s}$ we usually write $a s^{-1}$ rather than $\frac{a}{s}$ for elements of $\overline{R_{S}}$.

Particularly important is the case when elements of S are regular, in this case the natural map $R \rightarrow R_{S}$ is a monomorphism. We identity R with its image in R_{S}. Thus we may assume that R is a subring of R_{S}, we write r instead of $\frac{r}{1}$ for elements of R. In particular when R is an integral domain and $S=R \backslash\{0\}$ then R_{S} is just the field of fractions of R.
Lemma 4.25. Let R be a ring and S a multiplicatively closed subset such that $S \subseteq \mathscr{C}(0)$. Then:

1. if $I \triangleleft R \Rightarrow I R_{S} \triangleleft R_{S}$ and every element of $I R_{S}$ is expressible as $x d^{-1}$ for some $x \in I$ and $d \in S$.
2. $K \triangleleft R_{S} \Rightarrow K \cap R \triangleleft R$ and $(K \cap R) R_{S}=K$.

Proof. We are assuming that R is a subring of R_{S}. So a typical element of $I R_{S}$ is $x_{1} r_{1} c_{1}^{-1}+\cdots+$ $x_{n} r_{n} c_{n}^{-1}$ for some $x_{i} \in I, r_{i} \in R$ and $c_{i} \in S$. Let $d=c_{1} c_{2} \ldots c_{n}$ and $d_{i}=c_{1} c_{2} \ldots c_{i-1} c_{i+1} \ldots c_{n}$ then $x_{1} r_{1} c_{1}^{-1}+\cdots+x_{n} r_{n} c_{n}^{-1}=\left(x_{1} r_{1} d_{1}+\cdots+x_{n} r_{n} d_{n}\right) d^{-1}=x d^{-1}$ where $x=x_{1} r_{1} d_{1}+\cdots+x_{n} r_{n} d_{n} \in I$.

The rest is an exercise.
Remark. If $I \triangleleft R$ we have $I R_{S} \cap R \supseteq I$ but we do not have equality in general. E.g. $R=\mathbb{Z}$ and $R_{S}=\mathbb{Q}$.

However, see Lemma 4.27 part 2 below.
Corollary 4.26. If R is a Noetherian ring then so is the ring R_{S}.
Proof. Clear from the previous lemma (part 2)
Lemma 4.27. Let R be a ring and S a multiplicatively closes subset. Suppose that the elements of S are regular. Then

1. If Π is a prime ideal of R_{S} then $\Pi \cap R$ is a prime ideal of R
2. If P is a prime ideal of R and $P \cap S=\emptyset$ then $P R_{S}$ is a prime ideal of R_{S} and $P R_{S} \cap R=P$

Proof. 1. Easy

2. We shall first need to show that $P R_{S} \cap R=P$. Clearly $P R_{S} \cap R \supseteq P$. Let $z \in P R_{S} \cap R$, then $z=p s^{-1}$ for some $p \in P$ and $s \in S$ Lemma 4.25 part 1. So $z s=p \in P$ with $z, s \in R$. Now $z \in P$ since $s \notin P$ and P is prime. Thus $P R_{S} \cap R=P$. Now let $\alpha \beta \in P R_{S}$ with $\alpha, \beta \in R_{S}$. Then $\alpha=a c^{-1}$ and $\beta=b d^{-1}$ where $a, b \in R, c, d \in S$. So $a b c^{-1} d^{-1} \in P R_{S}$ hence $a b \in P R_{S} \cap R=P$. So $\alpha \in P R_{S}$ or $\beta \in P R_{S}$, hence $P R_{S}$ is a prime ideal of R_{S}. (Note: $P R_{S} \neq R_{S}$ since $P \neq R$)

Theorem 4.28. Let R, S be as above. Then there is a one to one order preserving correspondence between the prime ideals of R which do not intersect S and the prime ideals of R_{S}
Proof. This follows from the previous lemma. The correspondence is $P \leftrightarrow P R_{S}$.
Remark. Theorems analogous to the above hold even when the elements of S are not assumed to be regular.
Notation. Of special importance is the case when P is a prime ideal and $S=R \backslash P=\mathscr{C}(P)$. In this case it is customary to write R_{P} instead of $R_{\mathscr{C}(P)}$ or $R_{R \backslash P}$.
Proposition 4.29. Let P be a prime ideal of a ring R and suppose that the elements of $\mathscr{C}(P)$ are regular. Then $P R_{P}$ is the unique maximal ideal of R_{P} and thus R_{P} is a local ring.

Proof. Let $I \triangleleft R_{P}, I \neq R_{P}$. Then I does not contain a unit of $R_{P} .[I \cap R] \cap \mathscr{C}(P)=\emptyset$, i.e., $I \cap R \subseteq P$. So $I=(I \cap R) R_{P} \subseteq P R_{P}$, since $P \cap \mathscr{C}(P)=\emptyset, P R_{P} \neq R_{P}$. It follows that $P R_{P}$ is the unique maximal ideal of R_{P}.

Remark. Hence the name "localization"
Example. $R=\mathbb{Z}, P=2 \mathbb{Z}$, then $Z_{(2)}=\left\{\left.\frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b\right.$ odd $\}$

4.4 Localisation of a Module [Commutative Algebra 3.1]

Let M be an R-module and S a multiplicatively closed subset of R such that $0 \notin S, 1 \in S$. Define an equivalence relation on $M \times S$ as follows: $(m, s) \sim\left(m^{\prime}, s^{\prime}\right)$ if there exists $t \in S$ such that $\left(m s^{\prime}-m^{\prime} s\right) t=$ 0 . Check that \sim is an equivalence relation. Denote equivalence class of (m, s) by m / s. Let M_{S} be the collection of all such equivalence classes. Define

$$
\frac{m}{s}+\frac{m^{\prime}}{s}=\frac{m s^{\prime}+m^{\prime} s}{s s^{\prime}}, \frac{m}{s} \cdot \frac{r}{t}=\frac{m r}{s t}, m, m^{\prime} \in M, s, s^{\prime}, t \in S, r \in R
$$

Check that this turns M_{S} into an R_{S}-module. Uniqueness corresponding to Theorem 4.24 can also be proved. We call M_{S} the localization of M at S.

Note that if A is an R_{S}-module then A can be considered an R-module via the action $a \cdot r=$ $a \cdot \frac{r}{1} \forall a \in A, r \in R$. In this case $A \cong A_{S}$ as R_{S}-module [Check that $\frac{a}{c} \rightarrow a \cdot \frac{1}{c}$ is an isomorphism $\left.A_{S} \rightarrow S\right]$

4.5 Symbolic Powers

Let P be a prime ideal. Then the powers of P need not be P-primary [Commutative Algebra Example after 6.3]
$P^{(n)}=\left\{x \in R \mid x c \in P^{n}\right.$ for some $c \in \mathscr{C}(P\}$. Check that $P^{(n)} \triangleleft R$.
Definition 4.30. $P^{(n)}$ is called the $n^{\text {nt }}$ symbolic power of P
Clearly $P^{(1)}=P$ and $P^{(n)} \subseteq P$ for all n.
Lemma 4.31. $P^{(n)}$ is P-primary
Proof. Let $a b \in P^{(n)}, a, b \in R$. Then $a b c \in P^{n}$ for some $c \in \mathscr{C}(P)$. If no power of b lies in $P^{(n)}$ then $b \notin P$, i.e., $b \in \mathscr{C}(P)$, We have $a(b c) \in P^{n}$ with $b c \in \mathscr{C}(P)$. Hence $a \in P^{(n)}$ and $P^{(n)}$ is primary. It is easy to see that $\sqrt{P^{(n)}}=P$

Lemma 4.32. Let P be a prime ideal and suppose that elements of $\mathscr{C}(P)$ are regular. Then fro every $n \geq 1$:

1. $\left(P R_{P}\right)^{n}=P^{n} R_{P}$
2. $P^{n} R_{P} \cap R=P^{(n)}$
3. $P^{(n)} R_{P}=P^{n} R_{P}$

Proof.

1. $\left(P R_{P}\right)^{n}=P^{n} R_{P}^{n}=P^{n} R_{P}$
2. $x \in P^{(n)} \Rightarrow x c \in P^{n}$ for some $c \in \mathscr{C}(P)$. So $x c R_{P} \subseteq P^{n} R_{P} \Rightarrow x R_{P} \subseteq P^{n} R_{P}$ since c is a unit of R_{P}. Hence $x \in P^{n} R_{P} \cap R$.
Conversely: $q \in P^{n} R_{P} \cap R \Rightarrow q=p c^{-1}$ with $p \in P^{n}$ and $c \in \mathscr{C}(P)$. Hence $q c=p \in P^{n}$, so $q \in P^{(n)}$ and noting that $q \in R$, we have $P^{(n)}=P^{n} R_{P} \cap R$
3. Exercise

4.6 The Rank of a Prime Ideal

Definition 4.33. A prime ideal P is said to have rank r (or height r) if there exists a chain of prime ideals $P_{1} \subsetneq P_{2} \subsetneq \cdots \subsetneq P_{r} \subsetneq P$ but none longer. If there does not exists a maximal finite chain of primes then we say rk $P=\infty$. If P contains no other primes, we define rk $P=0$

Note that rk $P=0$ if and only if P is a minimal prime.
Definition 4.34. Let $a_{1}, \ldots, a_{n} \in R$, we say that prime P is minimal over a_{1}, \ldots, a_{n} if $P /\left(a_{1} R+\right.$ $\left.\cdots+a_{n} R\right)$ is a minimal prime of the ring $R /\left(a_{1} R+\cdots+a_{n} R\right)$.

Lemma 4.35. Let R be a Noetherian ring, $A \triangleleft R$. Suppose that R / A is an Artinian ring. Then R / A^{n} is Artinian for all $n \geq 1$.

Proof. $R / A \cong \frac{R / A^{2}}{A / A^{2}}$ (by the third isomorphism theorem). Note A / A^{2} is finitely generated as an R / A module, so by Corollary $3.9 A / A^{2}$ is Artinian. Since R / A and A / A^{2} are Artinian, it follows from Proposition 3.7 that R / A^{2} is Artinian. The proof then extends by induction.

Krull's Principal Ideal Theorem. Let R be a Noetherian Ring. Let $a \in R$ be a non-unit, suppose that P is a prime ideal minimal over a. Then $\operatorname{rk} P \leq 1$.

Proof. We shall first deal with the case when P is the unique maximal ideal of R, i.e., when R is a local ring with Jacobson radical P. Suppose we have $Q_{1} \subseteq Q \subsetneq P$. Factoring out by Q_{1} we may without loss of generality assume that R is an integral domain. In the ring $R / a R, P / a R$ is both the unique maximal ideal and a minimal prime. Hence by Proposition 4.18 we have $P / a R=N(R / a R)$. By Proposition 3.20 (Check this reference) there exists an integer $n \geq 1 n$ such that $P^{n} \subseteq a R$.

Now R / P is a field so by Lemma $4.35 R / P^{n}$ is Artinian. Hence $R / a R$ is an Artinian ring. Hence there exists $k \geq 1$ such that $Q^{(k)}+a R=Q^{(k+1)}+a R$. So $Q^{(k)} \subseteq Q^{(k+1)}+a R$. Let $x \in Q^{(k)}$, then $x=y+a t$ for some $y \in Q^{(k+1)}, t \in R$. Hence $a t=x-y \in Q^{(k)}$. Now $a \notin Q$ since P is minimal over a. So $t \in Q^{(k)}$, thus $Q^{(k)} \subseteq Q^{(k+1)}+a Q^{(k)}$. Hence $Q^{(k)}=Q^{(k+1)}+a Q^{(k)}$ (since the other containment is true trivially). Hence $\left[\frac{Q^{(k)}}{Q^{(k+1)}}\right]=\left[\frac{Q^{(k)}}{Q^{(k+1)}}\right] a R$ where [] is viewed as an R-module.

So $\frac{Q^{(k)}}{Q^{(k+1)}}=0$ by Nakayama's Lemma since $a R \subseteq J(R)$, so $Q^{(k)}=Q^{(k+1)}$. Now localize at Q. So $Q^{(k)} R_{Q}=Q^{(k+1)} R_{Q}$ and $Q^{k} R_{Q}=Q^{k+1} R_{Q}$ by Lemma 4.32 part 3 . So $\left(Q R_{Q}\right)^{k}=\left(Q R_{Q}\right)^{k+1}$ by Lemma 4.32 part 1. So $\left(Q R_{Q}\right)^{k}=0$ by Nakayama's Lemma since $Q R_{Q}=J\left(R_{Q}\right)$. Hence $Q^{k}=0$ and hence $Q=0$ since R is a domain.

Now in the general case again suppose that $Q_{1} \subseteq Q \subsetneq P$. Factor out Q_{1} and assume that R is an integral domain. Now localize at P. Factor out Q_{1} and assume that R is an integral domain. Now localise at P, by Theorem 4.28, there exists an inclusion preserving one to one correspondence between primes of R lying inside P and primes of the ring R_{P}. Use this and the first part of the proof applied to the ring R_{P} to finish the proof.

The Generalised Principal Ideal Theorem. Let R be a commutative Noetherian ring. Suppose that P is a prime ideal minimal over the elements $x_{1}, \ldots, x_{r} \in R$. Then rk $P \leq r$.

Proof. We prove this by induction
For $r=1$ we use Krull's Principal Ideal Theorem.
Now assume the result is true for primes minimal over $\leq r-1$ elements. Suppose that P is minimal over x_{1}, \ldots, x_{r} and suppose that we can construct a chain of primes $P=P_{0} \supsetneq P_{1} \supsetneq \cdots \supsetneq P_{r+1}$. If $x_{1} \in P_{r}$ then in the ring $R / x_{1} R$ we have a chain of primes $P_{0} / x_{1} R \supsetneq P_{1} / x_{1} R \supsetneq \cdots \supsetneq P_{r} / x_{1} R(*)$ But $P_{0} / x_{1} R$ is minimal over the images of x_{2}, \ldots, x_{r} in the ring $R / x_{1} R$. So (*) contradicts the induction. So $x_{1} \notin P_{r}$.

Let k be such that $x_{1} \in P_{k}$ but $x_{1} \notin P_{k+1}$. So we have $P_{k} / P_{k+2} \supseteq \frac{P_{k+2}+x_{1} R}{P_{k+2}} \supsetneq P_{k+2} / P_{k+2}$. By Krull's Principal Ideal Theorem P_{k} / P_{k+2} can not be minimal over [$x_{1}+P_{k+2}$] (since otherwise we have $\left.P_{k} / P_{k+2} \supsetneq P_{k+1} / P_{k+2} \supsetneq P_{k+2} / P_{k+2}\right)$. So there exists a prime ideal P_{k+1}^{\prime} such that $P_{k} \supsetneq P_{k+1}^{\prime} \supseteq$ $P_{k+2}+x_{1} R \supsetneq P_{k+2}$. Proceeding this way we can build a new chain $P=P_{0} \supsetneq P_{1} \supsetneq \cdots \supsetneq P_{k} \supsetneq P_{k+1}^{\prime} \supsetneq$ $\cdots \supsetneq P_{r}^{\prime} \supsetneq P_{r+1}$. Now we have $x_{1} \in P_{r}^{\prime}$ and this leads to a contradiction as in (*).

Definition 4.36. Let R be a commutative ring. We define the Krull dimension of R by $K \operatorname{dim}(R)=$ $\sup _{P \text { prime }}$ rk P.
Note. K dim can be infinite in a Noetherian ring even thought the rank of each prime ideal is finite.
Proposition 4.37. Let R be a commutative Noetherian local ring with Jacobson radical J. Then $K \operatorname{dim}(R)=\operatorname{rk} J<\infty$.

Proof. Since R is local, $K \operatorname{dim}(R)=\mathrm{rk} J$, and $\mathrm{rk} J<\infty$ by the Generalised Principal Ideal Theorem as it is minimal over its generators.

Lemma 4.38. Let R be a commutative Noetherian local ring with $K \operatorname{dim}(R)=n$. Then $K \operatorname{dim}(R / c R) \geq$ $n-1$. Further, if c is regular then equality holds.

Proof. Let J be the maximal ideal of R. Then rk $J=n$, so there exists a chain of primes $J=P_{0} \supsetneq$ $P_{1} \supsetneq \cdots \supsetneq P_{n}$. As in the Generalised Principal Ideal Theorem we can construct a new chain of primes, $J=Q_{0} \supsetneq Q_{1} \supsetneq \cdots \supsetneq Q_{n-1}$ with $c \in Q_{n-1}$. Hence $\operatorname{rk}(J / c R) \geq n-1(*)$.

Now assume that c is regular. If $J / c R=T_{0} / c R \supsetneq \cdots \supsetneq T_{k} / c R$ is a chain of primes in $R / c R$ then $J=T_{0} \supsetneq T_{1} \supsetneq \cdots \supsetneq T_{k}$ is a chain of primes in R. Since c is regular by Proposition $4.18 T_{k}$ can not be a minimal prime of R since $c \in T_{k}$. So $n=\mathrm{rk} J \geq \mathrm{rk} J / c r+1$. Hence $\mathrm{rk} J / c R=n-1$ from (*) when c is regular.

4.7 Regular Local Ring

Let R be a Noetherian local ring with Jacobson radical J. We have $V(R)=\operatorname{dim} J / J^{2}$ as a vector space over the field R / J. So $V(R)=$ the number of elements in a minimal generator set for J by Corollary 3.23. By The Generalised Principal Ideal Theorem we have rk $J \leq V(R)$

Definition 4.39. A Noetherian local ring is called a regular local ring if $\operatorname{rk}(J)=V(R)$.
A local principal ideal domain is regular by Theorem 4.12
Lemma 4.40. Let R be a Noetherian local ring with Jacobson radical J (R not a field). Suppose that $x \in J \backslash J^{2}$, let $R^{*}=R / x R$. Then $V\left(R^{*}\right)=V(R)-1$.
Proof. Note that R^{*} is a Noetherian local ring with Jacobson radical $J^{*}=J / x R$. Let $y_{1}^{*}, \ldots, y_{k}^{*}$ be a minimal generating set for J^{*}. Choose $y_{1}, \ldots, y_{k} \in J$ such that $y_{i} \mapsto y_{i}^{*}$ under the natural homomorphism $R \rightarrow R / x R$. Claim x, y_{1}, \ldots, y_{k} is a minimal generating set for J. We shall now show that the homomorphic images of x, y_{1}, \ldots, y_{k} in the vector space J / J^{2} are linearly independent. Suppose that $x r+y_{1} r_{1}+\cdots+y_{k} r_{k} \in J^{2}(*)$. So $y_{1}^{*} r_{1}^{*}+\cdots+y_{k}^{*} r_{k}^{*} \in\left(J^{*}\right)^{2}$ where r_{i}^{*} are the homomorphic images of r_{i} under $R \rightarrow R / x R$. It follows that $r_{i}^{*} \in J^{*}$ since $y_{1}^{*}, \ldots, y_{k}^{*}$ is a minimal generating set for J^{*} and $\operatorname{dim} J^{*} /\left(J^{*}\right)^{2}=k$. So $r_{i} \in J$ for all i. It follows from $(*)$ that $x r \in J^{2}$ since $r_{i}, y_{i} \in J$. So $r \in J$ since $x \notin J^{2}$. (Note that J^{2} is J-primary check!) This completes the proof.

Theorem 4.41. Let R be a regular local ring with Jacobson radical J. Suppose that $x \in J \backslash J^{2}$. Then the ring $R^{*}=R / x R$ is also regular local.

Proof.

$$
\begin{aligned}
V(R)-1 & =V\left(R^{*}\right) & & \text { by the previous lemma } \\
& \geq \operatorname{rk} J^{*} & & \text { where } J^{*}=J / x R \text { by the General Principal Ideal Theorem } \\
& \geq \operatorname{rk} J-1 & & \text { by Theorem } 4.38 \\
& =V(R)-1 & &
\end{aligned}
$$

So $V\left(R^{*}\right)=\operatorname{rk} J^{*}$. Thus R^{*} is a regular local ring
Remark. We have also shown that rk $J^{*}=\operatorname{rk} J-1$.
Lemma 4.42. Let R be a Noetherian local ring which is not an integral domain. Let $P=p R(p \in P)$ be a prime ideal. Then $\operatorname{rk} P=0$.

Proof. Suppose that $Q \subsetneq P$ where Q is a prime ideal. Then $p \notin Q$. Now $q \in Q$ implies $q=p t$ for some $t \in R$. Hence $p t \in Q \Rightarrow t \in Q$ since $p \notin Q$. So $q \in p Q \subseteq P^{2} \subseteq p^{2} R$. Preceding this way we have $Q \subseteq P^{n}$ for all $n \geq 1$, so $Q \subsetneq \cap_{n=1}^{\infty} P^{n} \subseteq \cap_{n=1}^{\infty} J$ where $J=J(R)$. But by Theorem $4.9 \cap_{n=1}^{\infty} J^{n}=0$, so $Q=0$ which is a contradiction since R is not a domain. Hence rk $P=0$

Theorem 4.43. A regular local ring is an integral domain.
Proof. By induction on $K \operatorname{dim} R=\mathrm{rk} J$. If $\mathrm{rk} J=0$ then R must be a field.
Suppose now that rk $J=n>0$ and assume result for rings of $K \operatorname{dim}<n$. Since $J \neq J^{2}$ by Nakayama's lemma choose $x \in J \backslash J^{2}$. By Theorem 4.41, $R^{*}=R / x R$ is regular local. Also $K \operatorname{dim} R^{*}=K \operatorname{dim} R-1$. By induction hypothesis R^{*} is an integral domain, i.e., $x R$ is a prime ideal. Suppose that R is not an integral domain, then by Lemma $4.42 x R$ is a minimal prime. Let P_{1}, \ldots, P_{k} be the minimal primes of R. We have show that $J \backslash J^{2} \subseteq P_{1} \cup \cdots \cup P_{k}$. So $J \subseteq J^{2} \cup P_{1} \cup \cdots \cup P_{2}$. So $J \subseteq P_{j}$ for some j by Lemma 4.19 hence $J=P_{j}$. So rk $J=0$, which is a contradiction. So R is an integral domain.

5 Projective Modules

All rings in this chapter are assumed to have 1 but need not be commutative.
Suppose R is regular local and P prime. How about the ring R_{P} ?

5.1 Free Modules

Definition 5.1. A right R-module M is said to be free if:

1. M is generated by a subset $S \subseteq M$
2. $\sum_{\text {finite }} a_{i} r_{i}=0$ if and only if $r_{i}=0 \forall r_{i} \in R, a_{i} \in S$.

Then S is called a free basis for M.
Remark. 1. R_{R} is free with free basis 1
2. In a free module not every minimal generating set is a free basis. e.g: in the ring of 2×2 matrices over $\mathbb{Q},\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ and $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ is a minimal generating set but not a free basis.
3. By convention, 0 is considered to be a free module on the empty free basis.

Lemma 5.2. Let R be a commutative ring, then any two free basis of a free R-module have the same cardinality.

Proof. By Theorem 2.2, R contains a maximal ideal, M say. Then R / M is a field. Let A be a free R-module with a free basis $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$. We claim: $\frac{x_{\lambda} R}{x_{\lambda} M} \cong \frac{R}{M}$ (as R and hence as R / M-modules). To see this, define $\theta: R \rightarrow \frac{x_{\lambda} R}{x_{\lambda} M}$ by $\theta(r)=x_{\lambda} r+x_{\lambda} M$. Then θ is an R-homomorphism and $\operatorname{ker} \theta \supseteq M$. But M is maximal, so $\operatorname{ker}(\theta)=M$, proving our claim.

Write $B_{\lambda}=\frac{x_{\lambda} R}{x_{\lambda} M}$, since $B_{\lambda} \cong R / M$ each B_{λ} is a 1-dimensional vector space over the field R / M. From the external direct sum $\sum_{\lambda \in \Lambda} \oplus B_{\lambda}$. Now $A / A M$ is an R / M-module. (see Section 1.11). We have $A / A M \cong \sum_{\lambda \in \Lambda} \oplus B_{\lambda}$ (as R-modules and hence also as R / M-modules). Hence dimension of $A / A M$ as a vector space is $|\Lambda|$. The dimension of $A / A M$ is invariant by vector space theory, hence the result.

Remark. Over a non-commutative ring it is possible to have $R \cong R \oplus R$ as right R-modules.
The Free Module F_{A}. Let A be a set indexed by Λ. We define F_{A} to be the set of all symbols $\sum a_{\lambda} r_{\lambda}$ with $a_{\lambda} \in A, r_{\lambda} \in R, \lambda \in \Lambda$, where all but a finite number of r_{λ} are zero. We further require these expression to satisfy $\sum a_{\lambda} r_{\lambda}=\sum a_{\lambda} s_{\lambda} \Longleftrightarrow r_{\lambda}=s_{\lambda} \forall \lambda \in \Lambda$. We can make F_{A} a right R-module by defining $\sum a_{\lambda} r_{\lambda}+\sum a_{\lambda} s_{\lambda}=\sum a_{\lambda}\left(r_{\lambda}+s_{\lambda}\right)$ and $\left(\sum a_{\lambda} r_{\lambda}\right) r=\sum a_{\lambda}\left(r_{\lambda} r\right)$ (for all $r_{\lambda}, s_{\lambda}, r \in R$)

A is a free basis for F_{A} (identifying $a \in A$ with $a \cdot 1 \in F_{A}$)
Proposition 5.3. Every right R-module is a homomorphism image of a free right R-module
Proof. Let M be a right R-module. Index the elements of M and form the free right R-module F_{M}. Elements of F_{M} are formal sums of the form $\sum\left(m_{i}\right) r_{i}, m_{i} \in M, r_{i} \in R$. Define $F_{M} \rightarrow M$ by $\sum\left(m_{i}\right) r \mapsto \sum m_{i} r_{i} \in M$. This map is well-defined and is an R-homomorphism by the definition of F_{M}.

5.2 Exact Sequences

Let M_{i} be right R-modules and $f_{i} R$-homomorphism of M_{i} into M_{i-1}. The sequence (which maybe finite or infinite) $\cdots \xrightarrow{f_{i+2}} M_{i+1} \xrightarrow{f_{i+1}} M_{i} \xrightarrow{f_{i}} M_{i-1} \xrightarrow{f_{i-1}} \cdots$ is said to be exact if im $f_{i+1}=\operatorname{ker} f_{i}$ for all i.

A short exact sequence (s.e.s.) is an exact sequence of the form $0 \longrightarrow M^{\prime} \xrightarrow{f} M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$. Note that since $0 \longrightarrow M^{\prime} \xrightarrow{f} M$ is exact we have $\operatorname{ker}(f)=0$, i.e., f is a monomorphism. Similarly we have $M \xrightarrow{g} M^{\prime \prime} \longrightarrow 0$ is exact so $M^{\prime \prime}=\operatorname{im}(g)$, i,e, g is an epimorphism. We have $M^{\prime} \cong f\left(M^{\prime}\right)$, i.e., M^{\prime} is isomorphic to a submodule of M. Also $M^{\prime \prime} \cong M / \operatorname{ker}(g)=M / f\left(M^{\prime}\right)$.

Given modules $B \subseteq A$, we can construct the short exact sequence $0 \longrightarrow B \xrightarrow{i} A \xrightarrow{\pi} A / B \longrightarrow 0$ where i is the inclusion map and π the canonical homomorphism.

Proposition 5.4 (c.f. Graduate Algebra Theorem 5.3). Given a short exact sequence $0 \longrightarrow A \underset{{ }_{{ }_{\delta}}}{\alpha} B \underset{<_{\gamma}}{{ }_{<}} C \longrightarrow 0$, the following conditions are equivalent.

1. $\operatorname{im} \alpha$ is a direct summand of B
2. There exists a homomorphism $\gamma: C \rightarrow B$ such that $\beta \gamma=1_{C}$
3. There exists a homomorphism $\delta: B \rightarrow A$ such that $\delta \alpha=1_{A}$

Proof. 1. $\Rightarrow 2$ 2.) Let $B=\operatorname{im}(\alpha)+B_{1}=\operatorname{ker} \beta+B_{1}$. Let β_{1} be the restriction of β to B_{1}. We have $\beta B=\beta_{1} B_{1}=C$, so β_{1} is an epimorphism. Also $\operatorname{ker} \beta_{1} \subseteq \operatorname{im} \alpha \cap B_{1}=0$. Hence β_{1} is an isomorphism and $C \cong B_{1}$. Define $\gamma: C \rightarrow B$ to be the inverse of β_{1}. It follows that γ
2. \Rightarrow 1.) We shall show that $B=\alpha(A)+\gamma \beta(B)=\operatorname{ker} \beta+\gamma \beta(B)$. Let $b \in B$, then $b=(b-\gamma \beta b)+\gamma \beta b$. Now $b-\gamma \beta b \in \operatorname{ker} \beta$ since $\beta(b-\gamma \beta b)=\beta b-\beta \gamma \beta b=\beta b-1_{C} \beta b=\beta b-\beta b=0$. If $z \in \operatorname{ker} \beta \cap \gamma \beta B$ means $z=\gamma \beta b$ for some $b \in B$ and $\beta(z)=0$. This means $0=\beta(x)=\beta \gamma \beta b=\beta b \Rightarrow x=0$. Thus $B=\operatorname{ker}(\beta) \oplus \gamma \beta(B)$

Similarly we can show $1 \Longleftrightarrow 3$.
Definition 5.5. We say that the short exact sequence split if any (and hence all) of the above condition holds.

Note that if the above short exact sequence split then we have $B=\operatorname{im} \alpha \oplus B_{1} \cong A \oplus C$ (external direct sum)

Definition 5.6. A right R-module P is said to be projective if every diagram of the from

can be embedded in he diagram

in such a way that $\pi \bar{\mu}=\mu$. ("the diagram commutes")
Lemma 5.7. A free module is projective.
Proof. Let F be a free right module with a free basis $\left\{e_{\alpha}\right\}$. Consider

Let $b_{\alpha}=\mu e_{\alpha}$. As π is an epimorphism, we can choose $a_{\alpha} \in A$ such that $\pi a_{\alpha}=b_{\alpha}$. Now define $\bar{\mu}$: $F \rightarrow A$ by $\bar{\mu}\left(\sum e_{\alpha} r_{\alpha}\right)=\sum a_{\alpha} r_{\alpha}, r_{\alpha} \in R$. Then $\bar{\mu}$ is an R-homomorphism $F \rightarrow A$ and $\pi \bar{\mu}\left(\sum e_{\alpha} r_{\alpha}\right)=$ $\pi\left(\sum a_{\alpha} r_{\alpha}\right)=\sum \pi\left(a_{\alpha}\right) r_{\alpha}=\sum b_{\alpha} r_{\alpha}=\sum \mu\left(e_{\alpha}\right) r_{\alpha}=\mu\left(\sum e_{\alpha} r_{\alpha}\right)$. Therefore $\pi \bar{\mu}=\mu$.

A projective module need not be free. To be shown later.
Lemma 5.8. Let $P_{\alpha}(\alpha \in \Lambda)$ be right R-modules. Then $\sum_{\alpha \in \Lambda} \oplus P_{\alpha}$ is projective if and only if all P_{α} are projective

Proof. Let i_{α} be the injection map $P_{\alpha} \rightarrow \sum_{\alpha \in \Lambda} \oplus P_{\alpha}$ and let p_{α} be the projection map $\sum_{\alpha \in \Lambda} \oplus P_{\alpha} \rightarrow$ P_{α}
$\Leftarrow \quad$ Consider the diagram

Restrict f to $P_{\alpha},\left.f\right|_{P_{\alpha}}=f_{\alpha}$ say. Then $f_{\alpha}=f i_{\alpha}$. Since each P_{α} is projective, there exists maps $\overline{f_{\alpha}}: P_{\alpha} \rightarrow A$ such that $\pi \overline{f_{\alpha}}=f_{\alpha}$. Define $\bar{f}=\sum_{\alpha \in \Lambda} \overline{f_{\alpha}} p_{\alpha}$. Then $\pi \bar{f}=\sum_{\alpha \in \Lambda} \pi \overline{f_{\alpha}} p_{\alpha}=$ $\sum_{\alpha \in \Lambda} f_{\alpha} p_{\alpha}=\sum_{\alpha \in \Lambda} f i_{\alpha} p_{\alpha}=f$. So $\sum_{\alpha \in \Lambda} \oplus P_{\alpha}$ is projective.
$\Rightarrow \quad$ For any $\beta \in \Lambda$ consider

This gives rise to

So there exists $\bar{f}: \sum_{\alpha \in \Lambda} \oplus P_{\alpha} \rightarrow A$ such that $\pi \bar{f}=f_{\beta} p_{\beta}$. Hence $\pi \bar{f} i_{\beta}=f_{\beta} p_{\beta} i_{\beta}=f_{\beta}$ and $\bar{f} i_{\beta} \operatorname{maps} p_{\beta} \rightarrow A$.

Proposition 5.9. The following conditions are equivalent:

1. P is a projective right R-module
2. P is a direct summand of a free module
3. Every short exact sequence $0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow P \longrightarrow 0$ splits.

Proof. $3 \Rightarrow 2$ Consider the short exact sequence $0 \longrightarrow K_{P} \longrightarrow F_{p} \longrightarrow P \longrightarrow 0$ where K_{P} is the kernel of the map $F_{P} \rightarrow P$. Since this sequence splits, $F_{P} \cong P \oplus K_{P}$
$2 \Rightarrow 1 \quad$ Follows from Lemma 5.7 and Lemma 5.8
$1 \Rightarrow 3 \quad$ Consider

Since P is projective, there exists $\bar{\mu}: P \rightarrow M$ such that $g \bar{\mu}=1_{P}$. Thus the short exact sequence splits.

Example. Projective does not imply Free. Let $R=\mathbb{Z} / 6 \mathbb{Z}, A=2 \mathbb{Z} / 6 \mathbb{Z}$ and $B=3 \mathbb{Z} / 6 \mathbb{Z}$, then $A, B \triangleleft R$ and $R=A \oplus B$. A being a direct summand of R is projective, but is not free since it has fewer elements than R

Theorem 5.10. Over a commutative local ring, finitely generated projective modules are free.

Proof. Let R be a commutative local ring with unique maximal ideal J. Let M be a finitely generated R-module. Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a minimal set of generators for M. Then there exists a free module with a free basis $\left\{x_{1}, \ldots, x_{n}\right\}$ and an R-homomorphism $\phi: F \xrightarrow{\text { onto }} M$ such that $\phi\left(x_{i}\right)=a_{i}$ (See note on page 25, Question 1 on Exercise sheet 6 or Commutative Algebra). Thus we have $0 \longrightarrow K \longrightarrow F \xrightarrow{\phi} M \longrightarrow 0$ where $K=\operatorname{ker}(\phi)$.

Claim: $K \subseteq F J$. If not there exists an element $k=x_{1} r_{1}+\cdots+x_{n} r_{n}\left(r_{i} \in R\right)$ of F such that $k \in K$ but $r_{i} \notin J$ for some i. Say $r_{1} \notin J$. Since R is local, r_{1} must be a unit. Since $k \in \operatorname{ker} \phi$, $a_{1} r_{1}+\cdots+a_{n} r_{n}=0$. So $a_{1}=-r_{1}^{-1}\left(a_{2} r_{2}+\cdots+a_{n} r_{n}\right)$ contradiction the fact that $\left\{a_{1}, \ldots, a_{n}\right\}$ was a minimal generating set. Thus $K \subseteq F J$.

Now since M is projective, the above short exact sequence split. So $F=K \oplus M^{\prime}$ where $M^{\prime} \cong M$. Hence $F J=K J \oplus M^{\prime} J$. So $K=F J \cap K=K \cap\left(K J \oplus M^{\prime} J\right)=K J \oplus\left(K \cap M^{\prime} J\right)$ by the modular law. But $K \cap M^{\prime} J \subseteq K \cap M^{\prime}=0$, so $K=K J$. Now K is finitely generated (check this!). By Nakayama's Lemma $K=0$, thus M^{\prime} and hence M is free.

Remark. Kaplansky has shown that the result is true even without the finitely generated assumption.

The Dual Basis Lemma

Let R be a commutative integral domain with a field of fraction K. Let $0 \neq A \triangleleft R$ and define $A^{*}=\{k \in K: k A \subseteq R\}$. Then A^{*} is an R-module.
Lemma 5.11. Let R, K, A be as above. Let $\theta: A \rightarrow R$ be an R-homomorphism. Then there exists $q \in A^{*}$ such that $\theta(x)=q x$ for all $x \in A$.
Proof. $A K=K$. So a typical element of K is expressible as $a c^{-1}$ with $a, c \in R, c \neq 0$. Now θ can be extended to a K-homomorphism, $\theta^{*}: K \rightarrow K$ by $\theta^{*}\left(a c^{-1}\right)=\theta(a) c^{-1}$. Check that θ^{*} is well defined and K-homomorphism. Let $\theta^{*}(1)=q \in K$. Then for $x \in A, \theta(x)=\theta^{*}(x)=\theta^{*}(1 x)=\theta^{*}(1) x=q x$. Clearly $q \in A^{*}$.

Proposition 5.12 (The Dual Basis Lemma - Special Case). With the notation as above: A_{R} is projective if and only if $1=x_{1} q_{1}+\cdots+x_{n} q_{n}$ for some $x_{i} \in A, q_{i} \in A^{*}$. (Or equivalently $A^{*} A=R$)
Proof. \Rightarrow Let F be a free module with an R-homomorphism $\phi: F \rightarrow A$. Since A is projective, there exists an R-homomorphism $\psi: A \rightarrow F$ such that $\phi \psi=1_{A}$

$$
F \stackrel{\phi}{\leftarrow_{\psi}-} A
$$

Let $\left\{f_{\alpha}\right\}$ be a free basis for F. Then for each $y \in A$, we have $\psi(y)=f_{1} r_{1}+\cdots+f_{n} r_{n}$ uniquely for some $f_{i} \in\left\{f_{\alpha}\right\}$ and $r_{i} \in R$. So for each $i, y \rightarrow r_{i}$ is an R-homomorphism $A \rightarrow R$. So by the previous lemma, there exists $q_{i} \in A^{*}$ such that $\psi(y)=f_{1} q_{1} y+\cdots+f_{n} q_{n} y$. So

$$
\begin{aligned}
y & =\phi \psi(y) \\
& =\phi\left(f_{1} q_{1} y+\cdots+f_{n} q_{n} y\right) \\
& =\phi\left(f_{1}\right) q_{1} y+\cdots+\phi\left(f_{n}\right) q_{n} y \text { since } q_{i} y \in R
\end{aligned}
$$

So $1=\phi\left(f_{1}\right) q_{1}+\cdots+\phi\left(f_{n}\right) q_{n}=x_{1} q_{1}+\cdots+x_{n} q_{n}$, where $x_{i}=\phi\left(f_{i}\right) \in A$.
$\Leftarrow) \quad$ Define $\psi: A \rightarrow \underbrace{R \oplus \cdots \oplus R}_{n-\text { times }}$ by $\psi(x)=\left(q_{1} x, \ldots, q_{n} x\right)$ for all $x \in A$.

$$
A \underset{{\underset{-}{\phi}}^{\longrightarrow}}{\stackrel{\psi}{\longrightarrow}} R \oplus \cdots \oplus R
$$

Note that $q_{i} x \in R$ since $q_{i} \in A^{*}$. Define $\phi: \underbrace{R \oplus \cdots \oplus R}_{n-\text { times }} \rightarrow A$ by $\phi\left(r_{1}, \ldots, r_{n}\right)=x_{1} r_{1}+$ $\cdots+x_{n} r_{n}, r_{i} \in R$ Then ϕ is an R-homomorphism and for any $y \in A$

$$
\begin{aligned}
\phi \psi(y) & =\phi\left(q_{1} y, \ldots, q_{n} y\right) \\
& =x_{1} q_{1} y+\cdots+x_{n} q_{n} y \\
& =y
\end{aligned}
$$

So $\phi \psi=1_{A}$, hence A_{R} is projective.

Proposition 5.13. Let R be a commutative Noetherian integral domain and $I \triangleleft R$. Suppose that $I R_{M}$ is a projective R_{M}-module for each maximal ideal M of R. Then I_{R} is projective.

Proof. $I=0$ is trivial so assume $I \neq 0$.
Proof. Let F be the field of fractions of R. Then F is also the field of fractions of each R_{M} (check!). Consider a maximal ideal M. Since $I R_{M}$ is R_{M}-projective by the Dual Basis Lemma, there exists some $x_{i}^{\prime} \in I R_{M}$ and $q_{i} \in F$ such that $1=x_{1}^{\prime} q_{1}+\cdots+x_{n}^{\prime} q_{n}$ and $q_{i} I \subseteq R_{M}$. Now $q_{i} I$ is a finitely generated R-module. So $q_{i} I=z_{1} R+\cdots+z_{k} R$ with $z_{i} \in R_{M}$. Let $a \in R$ be a common denominator of the x_{i}^{\prime}, let $b \in R$ be a common denominator of the z_{j}. Let $d=a b$, then $d \in \mathscr{C}(M), d=x_{1}\left(q_{1} b\right)+\cdots+x_{n}\left(q_{n} b\right)$ where $x_{i}=x_{i}^{\prime} a \in I$ and $q_{i} b I \subseteq R(\dagger)$.

Now $I^{*} I \triangleleft R$, by $(\dagger) I^{*} I \cap \mathscr{C}(M) \neq \emptyset$. This is true for all maximal ideal M. Hence $I^{*} I=R$. Thus $1 \in I^{*} I$ and so I_{R} is projective by the dual basis lemma.

Remark. This is a special case of a standard result. If A is a finitely generated module over a commutative Noetherian ring R then A_{R} is projective if and only if A_{M} is a projective R_{M}-module for all maximal ideal M. See:

- Marsumura: Commutative ring Theory Theorem 7.12
- Rotman: Intro to homological algebra Exercise 9.22 p258

5.3 Projective Resolutions and Projective Dimension

Definition 5.14. If A is a right R-module, and exact sequence

$$
\ldots \longrightarrow P_{n} \xrightarrow{\partial_{n}} P_{n-1} \xrightarrow{\partial_{n-1}} \ldots \xrightarrow{\partial_{1}} P_{0} \xrightarrow{\epsilon} A \longrightarrow 0
$$

where each P_{i} is projective is called a projective resolution for A. (This sequence may be finite or infinite)

Construction of a Projective Resolution

Let A be a right R-module. A is a homomorphic image of a free module, say F_{0} (by Proposition 5.3). So we have the exact sequence $0 \longrightarrow K_{0} \xrightarrow{i} F_{0} \xrightarrow{\alpha} A \longrightarrow 0$, where α is the homomorphism $F_{0} \rightarrow A$ and $K_{0}=\operatorname{ker} \alpha$ and $i=$ inclusion map. If K_{0} is projective the above is a projective resolution.

Even if K_{0} is not projective it is still a homomorphic image of a free module, say F_{1}. So we have the exact sequence $0 \longrightarrow K_{1} \longrightarrow F_{1} \xrightarrow{\beta} K_{0} \longrightarrow 0$ where $K_{1}=\operatorname{ker} \beta$. Let $i \beta=\gamma$. Thus γ maps $F_{1} \rightarrow F_{0}$ and we have ker $\alpha=K_{0}=\operatorname{im} \beta=\operatorname{im} \gamma$. So we have the exact sequence

$$
0 \longrightarrow K_{1} \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow A \longrightarrow 0
$$

Here F_{1} and F_{0} are free and hence projective. If K_{1} is not projective the procedure can be repeated. It may happen that after a finite number of steps we get an exact sequence

$$
0 \longrightarrow K_{n} \longrightarrow F_{n} \longrightarrow F_{n-1} \longrightarrow \ldots \longrightarrow F_{1} \longrightarrow F_{0} \longrightarrow A \longrightarrow 0
$$

where the K_{n} are projective and all the F_{i} are free.
Definition 5.15. A right R-module A is said to have finite projective dimension if there exists an exact sequence

$$
0 \longrightarrow P_{k} \longrightarrow P_{k-1} \longrightarrow \ldots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

where each P_{i} is projective. k is called the length of this sequence.

Further, we say that A has projective dimension n if n is the least integer for which there exists a projective resolution

$$
0 \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \ldots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

We denote the projective dimension of A by $\operatorname{pd}_{R}(A)$ (or simply $\operatorname{pd}(A)$) If A does not have finite projective dimension we write $\operatorname{pd} A=\infty$. If $A=0$ we take $\operatorname{pd} A=-1$ conventionally.

It is clear that $\operatorname{pd} A=0$ if and only if A is projective.
Schanuel's Lemma. Let M be a right R-module and let

$$
0 \longrightarrow K \xrightarrow{\bar{f}} A \xrightarrow{f} M \longrightarrow 0 \quad 0 \longrightarrow K^{\prime} \xrightarrow{\bar{g}} Y \xrightarrow{g} M \longrightarrow 0
$$

be two short exact sequence. If X and Y are projective then $X \oplus K^{\prime} \cong Y \oplus K$.
Proof. Define $L=\{(x, y) \mid x \in X, y \in Y$ such that $f(x)=g(y)\}$. Then L is a submodule of $X \oplus Y$.

Since X is projective there exists an R homomorphism $\alpha: X \rightarrow Y$ such that $f=g \alpha$. Define $\theta: X \oplus K^{\prime} \rightarrow X \oplus Y$ by $\theta\left(x, k^{\prime}\right)=\left(x, \alpha(x)+\bar{g}\left(k^{\prime}\right)\right.$ with $x \in X, k^{\prime} \in K^{\prime} . \theta$ is clearly an R-homomorphism, also $g(\alpha(x)+\bar{g}(k))=g \alpha(x)+g \bar{g}\left(k^{\prime}\right)=f(x)+0$. Thus θ is an R-homomorphism $X \oplus K^{\prime} \rightarrow L$. Now $\theta\left(x, k^{\prime}\right)=0 \Rightarrow x=0$ and $\bar{g}\left(k^{\prime}\right)=0 \Rightarrow x=0$ and $k^{\prime}=0$. Thus θ is a monomorphism.

Finally if $(x, y) \in L$ then $f(x)=g(y)$, so $g \alpha(x)=g(y)$. So $g[-\alpha(x)+y]=0$. Hence $-\alpha(x)+y \in$ $\operatorname{ker} g=\operatorname{im}(\bar{g})=\bar{g}\left(K^{\prime}\right)$. Hence there exists $k_{1}^{\prime} \in K^{\prime}$ such that $g\left(k_{1}^{\prime}\right)=-\alpha(x)+y$. Thus $\theta\left(x, k^{\prime}\right)=(x, y)$ and θ is an epimorphism.

So we have $X \oplus K^{\prime} \cong L$ and $Y \oplus K \cong L$ and we are done.

Corollary 5.16. In the above situation K is projective if and only if K^{\prime} is projective.
Remark. For free modules the result corresponding to Schanuel's Lemma does not work.
Generalised Schanuel's Lemma. Suppose that A is a right R-module and we have two exact sequences of R-modules

$$
\begin{aligned}
& 0 \longrightarrow K_{n} \longrightarrow P_{n} \longrightarrow P_{n-1} \longrightarrow \ldots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0 \\
& 0 \longrightarrow K_{n}^{\prime} \longrightarrow P_{n}^{\prime} \longrightarrow P_{n-1}^{\prime} \longrightarrow \ldots \longrightarrow P_{1}^{\prime} \longrightarrow P_{0}^{\prime} \longrightarrow A^{\prime} \longrightarrow 0
\end{aligned}
$$

with P_{j}, P_{j}^{\prime} projective for $j=1,2, \ldots, n$. Then $K_{n} \oplus P_{n}^{\prime} \oplus P_{n-1} \oplus \cdots \oplus\left\{\begin{array}{ll}P_{0} & n \text { odd } \\ P_{0}^{\prime} & n \text { even }\end{array} \cong K_{n}^{\prime} \oplus P_{n} \oplus\right.$ $P_{n-1}^{\prime} \oplus \cdots \oplus\left\{\begin{array}{ll}P_{0}^{\prime} & n \text { odd } \\ P_{0} & n \text { even }\end{array}\right.$.
Proof. By induction on n. If $n=0$ this is just Schanuel's lemma.
So assume the result for $n=j-1$, i.e., $K_{j-1} \oplus P_{j-1}^{\prime} \oplus \ldots \cong K_{j-1}^{\prime} \oplus P_{j-1} \oplus \ldots$ where $K_{t}=$ ker of $\operatorname{map} P_{t} \rightarrow P_{t-1}$ and $K_{t}^{\prime}=$ ker of map $P_{t}^{\prime} \rightarrow P_{t-1}^{\prime}$. So we have the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow K_{j} \longrightarrow P_{j} \longrightarrow K_{j-1} \longrightarrow 0 \\
& 0 \longrightarrow K_{j}^{\prime} \longrightarrow P_{j}^{\prime} \longrightarrow K_{j-1}^{\prime} \longrightarrow 0
\end{aligned}
$$

we obtain

$$
0 \longrightarrow K_{j} \longrightarrow P_{j} \oplus P_{j-1}^{\prime} \oplus P_{j-2} \oplus \ldots \longrightarrow K_{j-1} \oplus P_{j-1}^{\prime} \oplus P_{j-2} \oplus \ldots \longrightarrow 0
$$

$$
0 \longrightarrow K_{j}^{\prime} \longrightarrow P_{j}^{\prime} \oplus P_{j-1} \oplus P_{j-2}^{\prime} \oplus \ldots \longrightarrow K_{j-1}^{\prime} \oplus P_{j-1} \oplus P_{j-2}^{\prime} \oplus \ldots \longrightarrow 0
$$

In both these sequences the middle terms are projective and the right hand side terms are isomorphic by induction assumption. So by Schanuel's lemma $K_{j} \oplus P_{j}^{\prime} \oplus P_{j-1} \oplus \ldots \cong K_{j}^{\prime} \oplus P_{j} \oplus P_{j-1}^{\prime} \oplus \ldots$. This completes the proof.

Corollary 5.17. With the above notation we have K_{n} projective if and only if K_{n}^{\prime} is projective.

Corollary 5.18. If $\mathrm{pd} A_{R}=m$ and

$$
0 \longrightarrow K \longrightarrow P_{m} \longrightarrow P_{m-1} \longrightarrow \ldots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

is an exact short sequence with P_{j} 's projective. Then K is projective.
Example. A module with infinite projective dimension.
Consider $\mathbb{Z} / 2 \mathbb{Z}$ as a module over the ring $\mathbb{Z} / 4 \mathbb{Z}$ defined by $[x+2 \mathbb{Z}][a+4 \mathbb{Z}]=[x a+2 \mathbb{Z}], x, a \in \mathbb{Z}$. Look at

where $\epsilon:[a+4 \mathbb{Z}] \rightarrow[a+2 \mathbb{Z}]$ and $d_{i}:[a+4 \mathbb{Z}] \rightarrow[2 a+4 \mathbb{Z}]$ for all i. The kernel at each stage is $2 \mathbb{Z} / 4 \mathbb{Z}$ and thus cannot be projective (why?).

Proposition 5.19. Let $\left\{A_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of right R-modules. Then $\operatorname{pd}\left(\sum_{\lambda \in \Lambda} \oplus A_{\lambda}\right)=\sup _{\lambda \in \Lambda} \operatorname{pd} A_{\lambda}$
Proof. We shall do this for the direct sum of two modules, the general case just involves more notation. Let

$$
\begin{aligned}
& \ldots \longrightarrow P_{n} \xrightarrow{\alpha_{n}} P_{n-1} \xrightarrow{\alpha_{n-1}} \ldots \xrightarrow{\alpha_{2}} P_{1} \xrightarrow{\alpha_{1}} P_{0} \xrightarrow{\alpha_{0}} A \longrightarrow 0 \\
& \ldots \longrightarrow Q_{n} \xrightarrow{\beta_{n}} Q_{n-1} \xrightarrow{\beta_{n-1}} \ldots \xrightarrow{\beta_{2}} Q_{1} \xrightarrow{\beta_{1}} Q_{0} \xrightarrow{\beta_{0}} B \longrightarrow 0
\end{aligned}
$$

be projective resolution for A and B. Consider

$$
\ldots \longrightarrow P_{n} \oplus Q_{n} \xrightarrow{\theta_{n}} P_{n-1} \oplus Q_{n-1} \longrightarrow \ldots \longrightarrow P_{1} \oplus Q_{1} \xrightarrow{\theta_{1}} P_{0} \oplus Q_{0} \xrightarrow{\theta_{0}} A \oplus B \longrightarrow 0
$$

where $\theta_{n}\left(p_{n}, q_{n}\right)=\left(\alpha_{n} p_{n}, \beta_{n} q_{n}\right), p_{n} \in P_{n}, q_{n} \in Q_{n}$. This is an exact sequence and each $P_{i} \oplus Q_{i}$ is projective. It follows $\operatorname{pd}(A \oplus B) \leq \sup (\operatorname{pd} A, \operatorname{pd} B)$

Suppose that $\operatorname{pd}(A \oplus B)=m<\infty$. Consider

$$
0 \longrightarrow T_{m} \longrightarrow P_{m-1} \oplus Q_{m-1}^{\theta_{m-1}} \longrightarrow \ldots \longrightarrow P_{0} \oplus Q_{0} \xrightarrow{\theta_{0}} A \oplus B \quad 0
$$

where θ_{1} are the maps defined above, since $\operatorname{pd}(A \oplus B) \cong m$. But $T_{m}=\operatorname{ker} \theta_{m-1} \cong \operatorname{ker} \alpha_{m-1} \oplus \operatorname{ker} \beta_{m-1}$. This implies pd $A \leq \operatorname{pd}(A \oplus B)$ and $\operatorname{pd}(B) \leq \operatorname{pd}(A \oplus B)$.

The above argument shows that if either pd A or $\operatorname{pd} B=\infty$ then $\operatorname{pd}(A \oplus B)=\infty$ and conversely. This completes the proof.

Lemma 5.20. Suppose that

$$
0 \longrightarrow K \longrightarrow P \longrightarrow A \longrightarrow 0
$$

is an exact sequence with P projective and A not projective. Then $\operatorname{pd} K<\infty$ if and only if $\operatorname{pd} A<\infty$ and we have in this case $1+\operatorname{pd} K=\operatorname{pd} A$.

Proof. Follows from definition of projective dimension and generalised Schanuel's Lemma.

Recall how build our projective resolution for M_{k}

Theorem 5.21. Let $0 \rightarrow B \rightarrow A \rightarrow C \rightarrow 0$ be a short exact sequence. If the projective dimension of any two module is the short exact sequence is finite then so is the third. Furthermore we have

1. if $\operatorname{pd} A>\operatorname{pd} B$ then $\operatorname{pd} C=\operatorname{pd} A$
2. if $\operatorname{pd} A<\operatorname{pd} B$ then $\operatorname{pd} C=\operatorname{pd} B+1$
3. if $\operatorname{pd} A=\operatorname{pd} B$ then $\operatorname{pd} C \leq \operatorname{pd} A+1$.

Proof. To prove the first part we induct on n the sum of the finite projective dimension. If $n=0$ then both modules must be projective. If one of these is C then the short exact sequence splits. So by Lemma 5.8 if one of A or B is projective then so is the other. On the other hand if A and B are projective then $\operatorname{pd} C \leq 1$.

Now suppose that $n>0$ and the result is true when the sum of the two projective dimension is $<n$. We may also assume that neither A nor C is projective. Now there exists a projective P such that $0 \rightarrow D \rightarrow P \rightarrow A \rightarrow 0$ is exact $(*)$. So $A \cong P / D$. Hence there exists a submodule E with $P \supseteq E \supseteq D$ such that $B \cong E / D$, moreover $C \cong A / B \cong(P / D) /(E / D) \cong P / D$ (by the third isomorphism theorem). Thus we have short exact sequences

$$
\begin{align*}
& 0 \longrightarrow E \longrightarrow P \longrightarrow C \longrightarrow 0 \\
& 0 \longrightarrow D \longrightarrow E \longrightarrow B \longrightarrow 0
\end{align*}
$$

Now $(*)$ and (\dagger) give $\operatorname{pd} D=\operatorname{pd} A-1$ if $\operatorname{pd} A<\infty$ and $\operatorname{pd} E=\operatorname{pd} C-1$ if $\operatorname{pd} C<\infty$ (by the previous lemma). So by induction hypothesis (\ddagger) gives that if any two of D, E, B have finite projective dimension then so does the third. Hence the same is true for A, B and C.

Now assume that all the projective dimension are finite. We prove the second part by induction on the sum of all three projective dimension. If $n=0$, nothing to prove (see the base case of the first part of the proof)

Let $n>0$. If either A or C is projective, then the result holds. So assume that neither is projective. Induction hypothesis applied to (\ddagger) gives:
i If $\operatorname{pd} E>\operatorname{pd} D$ then $\operatorname{pd} B=\operatorname{pd} E$
ii if $\operatorname{pd} E<\operatorname{pd} D$ then $\operatorname{pd} B=\operatorname{pd} D+1$
iii if $\operatorname{pd} E=\operatorname{pd} D$ then $\operatorname{pd} B \leq \operatorname{pd} D+1$
In terms of A, B and C these gives
a If $\operatorname{pd} C>\operatorname{pd} A$ then $\operatorname{pd} B=\operatorname{pd} C-1$
b If $\operatorname{pd} C<\operatorname{pd} A$ then $\operatorname{pd} B=\operatorname{pd} A$
c If $\operatorname{pd} C=\operatorname{pd} A$ then $\operatorname{pd} B \leq A$.
It can be seen (check!) that a. b. and c. are logically equivalent to 1. 2. and 3. of the theorem.
Theorem 5.22 (Auslander). Let M be a right R-module, I a non-empty well-ordered set and $\left\{M_{i}\right\}_{i \in I}$ a family of submodules such that:

1. $M_{i} \subseteq M_{j}$ if $i \leq j$
2. $M=\cup_{i \in I} M_{i}$
3. $\operatorname{pd}\left(M_{i} / M_{i}^{\prime}\right) \leq n$ where $M_{i}^{\prime}=\cup_{j<i} M_{j}$
then $\operatorname{pd} M \leq n$
Proof. By induction on n. If $n=0$ then for all $i \in I, \operatorname{pd}\left(M_{i} / M_{i}^{\prime}\right) \leq 0$ so M_{i} / M_{i}^{\prime} is projective. So each short exact sequence $0 \rightarrow M_{i}^{\prime} \rightarrow M_{i} \rightarrow M_{i} / M_{i}^{\prime} \rightarrow 0$ splits. So there exists submodules C_{i} of M_{i} such that $M_{i}=M_{i}^{\prime} \oplus C_{i}$ where $C_{i} \cong M_{i} / M_{i}^{\prime}$. So each C_{i} is projective.

We claim that $M=\sum_{i \in I} \oplus C$. The sum is direct for suppose $c_{i_{1}}+c_{i_{2}}+\cdots+c_{i_{m}}=0$ where $c_{i_{j}} \in C_{i_{j}}$ and $i_{1}<i_{2}<\cdots<i_{m}$, then $-c_{i_{m}}=c_{i_{1}}+\cdots+c_{i_{m-1}} \in M_{i_{m}}^{\prime} \cap C_{m}=0$. So $c_{i_{m}}=0$ and similarly $c_{i_{1}}=c_{i_{2}}=\cdots=c_{i_{m-1}}=0$. Suppose now that $M \neq \sum_{i \in I} \oplus C_{i}$, so there exists $i \in I$ such that $M_{i} \nsubseteq \sum_{i \in I} C_{i}$. Suppose that j is the least index such that $M_{j} \nsubseteq \sum_{i \in I} \oplus c_{i}$. So there exists $m \in M_{j}$ such that $m \notin \sum_{i \in I} \oplus C_{i}$. Now $M_{j}=M_{j}^{\prime} \oplus C_{j}$, so $m=b+c$ for some $b \in M_{j}^{\prime}, c \in C_{j}$. But $b \in \sum_{i \in I} \oplus C_{i}$ by the minimality of $j\left(b \in M_{k}\right.$ some $\left.k<j\right)$. So $m \in \sum_{i \in I} \oplus C_{i}$ a contradiction. Thus $M=\sum_{i \in I} \oplus C_{i}$ as required. Hence $\operatorname{pd} M \leq 0$ since M is a direct sum of projective modules.

Now assume the result for $n-1$. We are given that $\operatorname{pd}\left(M_{i} / M_{i}^{\prime}\right) \leq n$ for all $i \in I$. Let $F\left(=F_{M}\right)$ be the free module with free basis M, let F_{i} be the free module with free basis M_{i} and let F_{i}^{\prime} be the free module with free basis M_{i}^{\prime}. We have $F \supseteq F_{i} \supseteq F_{i}^{\prime}$ so we have the short exact sequence $0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$. Define $K_{i}=F_{i} \cap K$ and $K_{i}^{\prime}=F_{i}^{\prime} \cap K$. From the relations $M_{i} \supseteq M_{i}^{\prime}, F_{i} \supseteq F_{i}^{\prime}$ and the short exact sequences $0 \rightarrow K_{i} \rightarrow F_{i} \rightarrow M_{i} \rightarrow 0$, it follows that the sequences

$$
0 \longrightarrow K_{i} / K_{i}^{\prime} \longrightarrow F_{i} / F_{i}^{\prime} \longrightarrow M_{i} / M_{i}^{\prime} \longrightarrow 0
$$

are exact. [Note that $\left(K_{i}+F_{i}\right) / F_{i}^{\prime} \cong K_{i} /\left(K_{i} \cap F_{i}^{\prime}\right)$ by the third isomorphism theorem. But this is $K_{i} /\left(K_{i} \cap F_{i} \cap F_{i}^{\prime}\right)=K_{i} / K_{i}^{\prime}$.] Each F_{i} / F_{i}^{\prime} is free since F_{i} has a set of generators, a subset of which generates F_{i}^{\prime}. Hence F_{i} / F_{i}^{\prime} is projective so by Lemma $5.20 \mathrm{pd} K_{i} / K_{i}^{\prime} \leq n-1$. It can be checked that:
i $i<j, i, j \in I$ implies $K_{i} \subseteq K_{j}$
ii $K=\cup_{i \in I} K_{i}$ and $K_{i}^{\prime}=\cup_{j<i} K_{j}$.
So by Lemma 5.20 , we have $\mathrm{pd} M \leq 1+\operatorname{pd} K \leq n$. This completes our proof.
Definition 5.23. Let R be a ring. We define $D(R)=\sup _{\{M\}} \mathrm{pd} M$ where M ranges over all right modules of $R . D(R)$ is called the right global dimension of R.

Lemma 5.24. Let M be a cyclic module over a ring R. Then $M \cong R / I$ where I is a right ideal of R.
Proof. Exercise sheet 2. Q4 i)
Theorem 5.25. Let R be a ring. We have

1. $D(R)=\sup _{\{B\}} \operatorname{pd} B$ where B runs over all cyclic right R-modules
2. $D(R)=\sup _{\{I\}} \operatorname{pd} R / I$ where I runs over all right ideals of R
3. Further if $D(R) \neq 0$ then $D(R)=1+\sup _{\{I\}} \operatorname{pd} I$ where I runs over all right ideals of R.

Proof. The equivalence of 1 and 2 follows from the previous lemma. The equivalence of 2 and 3 is clear from Lemma 5.20 using the short exact sequence $0 \rightarrow I \rightarrow R \rightarrow R / I \rightarrow 0$. So we prove 1 .

Let M be a right R-module. Well order the elements x_{i} of $M(i \in I)$ and denote by M_{i} [respectively by M_{i}^{\prime}] the submodule of M generated by all $x_{j}, j \leq i$ respectively $j<i$]. Then M_{i} / M_{i}^{\prime} is either 0 or generated by a single element x_{i}. So $\operatorname{pd}\left(M_{i} / M_{i}^{\prime}\right) \leq n$ where $n=\sup _{\{B\}} \operatorname{pd} B$ where B ranges over all cyclic right R-modules. Since the family $\left\{M_{i}\right\}_{i \in I}$ satisfies the hypothesis of Theorem 5.22, we have $\operatorname{pd} M \leq n$, hence $D(R) \leq n$. But by definition $D(R) \geq n$, hence $D(R)=n=\sup _{\{B\}} \operatorname{pd} B$.

Remark. Auslander has shown that for a (left and right) Noetherian ring R, left global dimension of R is the same as the right global dimension of R

5.4 Localization and Global Dimension

All rings are commutative in this section.
S multiplicative subset of $R, 0 \notin S, 1 \in S$. Let M, K be R-modules and $\phi: M \rightarrow K$ and R homomorphism. Then we can define a corresponding R_{S}-homomorphism $\phi^{*}: M_{S} \rightarrow K_{S}$ by $\phi^{*}\left(\frac{m}{s}\right)=$ $\frac{\phi(m)}{s}$ with $m \in M, s \in S$. (Check details, c.f. Commutative Algebra). If ϕ is an epimorphism, so is ϕ^{*}.

Lemma 5.26. If $0 \longrightarrow A \xrightarrow{\theta} B \xrightarrow{\phi} C \longrightarrow 0$ is an exact sequence of R-modules then
$0 \longrightarrow A_{S} \xrightarrow{\theta^{*}} B_{S} \xrightarrow{\phi^{*}} C_{S} \longrightarrow 0$ is an exact sequence of R^{*}-modules.
Proof. See Commutative Algebra 3.3
Lemma 5.27. If P is a projective R-module, then P_{S} is a projective R_{S}-module.
Proof. Routine from first principle
Lemma 5.28. $D\left(R_{S}\right) \leq D(R)$
Proof. If $D(R)=\infty$ there is nothing to prove.
So assume $D(R)<\infty$. Let A be an R_{S}-module. View A as an R-module. Since $A_{S} \cong A$ (see section 4.4) using Lemma 5.26 and 5.27 we get $\operatorname{pd}_{R_{S}} A \leq \operatorname{pd}_{R} A$. It follows that $D\left(R_{S}\right) \leq D(R)$

Example. $D(\mathbb{Z})=1, D(\mathbb{Z} / 4 \mathbb{Z})=\infty . D\left(\mathbb{Z}_{(2)}\right)=1, D\left(\mathbb{Z}_{(2)} / 4 \mathbb{Z}_{(2)}\right)=\infty$

6 Global Dimension of Regular Local Rings

6.1 Change of Rings Theorems

Theorem 6.1. Let R be a commutative ring and suppose that x is a regular element of R. Denote the ring $R / x R$ by R^{*}. Let M be a non-zero R^{*}-module with $\operatorname{pd}_{R^{*}} M=n<\infty$. Then $\operatorname{pd}_{R} M=n+1$

Proof. By induction on n.
Suppose that $n=0$, i.e., M is R^{*}-projective, so there exists a free module F such that $F=M \oplus M^{\prime}$ (for some submodule M^{\prime} of F). Now $0 \rightarrow x R \rightarrow R \rightarrow R^{*} \rightarrow 0$ is exact as R-modules. $x R \cong R_{R}$, so $x R$ is R-projective. Hence $\operatorname{pd}_{R}\left(R^{*}\right) \leq 1$. By Proposition 5.19, it follows that

$$
\operatorname{pd}_{R} F \leq 1(*)
$$

So $\operatorname{pd}_{R} M \leq 1$. Now x does not annihilate any non-zero elements of R. So x does not annihilate any non-zero elements of a free R-module and hence of a projective R-module. But $M x=0$, so it follows that M_{R} cannot be projective. Thus pd $M=1$.

So now let $n>0$ and assume the result for integers less than n. Now there exists a free R^{*}-module G such that $0 \rightarrow K \rightarrow G \rightarrow M \rightarrow 0$ is exact. Since M is not R^{*}-projective, $\operatorname{pd}_{R^{*}}(K)=n-1$. Hence $\operatorname{pd}_{R}(K)=n$ by induction hypothesis. Also $\operatorname{pd}_{R}(G) \leq 1$ as in $(*)$. So by Theorem $5.21 \operatorname{pd}_{R} M=n+1$ if $n \neq 1$, and $\operatorname{pd}_{R} M \leq 2$ if $n=1$.

In the first case we are done, so now we deal with the case $n=1$ and we must rule out the possibility that $\operatorname{pd}_{R} M \leq 1$ when $\operatorname{pd}_{R^{*}} M=1$. So assume that $\operatorname{pd}_{R} M \leq 1$ and $\operatorname{pd}_{R^{*}} M=1$. So there exists a free R-module H such that

$$
0 \rightarrow T \rightarrow H \rightarrow M \rightarrow 0(* *)
$$

is exact. So T is projective since $\operatorname{pd}_{R} M \leq 1$. Also $H x \subseteq T$ since $M x=0$. Therefore ($* *$) induces the exact sequence

$$
0 \longrightarrow T / H x \longrightarrow H / H x \longrightarrow M \longrightarrow 0
$$

Now $H / H x$ is R^{*}-free (check!) and $\operatorname{pd}_{R^{*}} M=1$. Thus $T / H x$ is R^{*}-projective. But by the third isomorphism theorem $\frac{T / T x}{H x / T x} \cong T / H x$ as R^{*}-modules. Hence $H x / T x$ is a direct summand of $T / T x$. Since T is R-projective, $T / T x$ is R^{*}-projective. [If $\underset{R \text {-free }}{F}=T \oplus K$ then $\left.\underset{R^{*}-\text { free }}{F / F x}=T / T x \oplus K / K x\right]$.
Hence $H x / T x$ is R^{*}-projective. But $H x / T x \cong H / T$ since x is regular. But $H / T \cong M$, so M is R-projective, contradiction. So we have proved that $\operatorname{pd}_{R^{*}} M=1$ implies $\operatorname{pd}_{R} M=2$

Corollary 6.2. In the above situation if $D\left(R^{*}\right)=n<\infty$, then $D(R) \geq n+1$
Theorem 6.3. Let R be a commutative ring. Let M be a right R-module. Suppose that x is a regular element of R such that x annihilates no non-zero elements of M. Write $R^{*}=R / x R$. Then $\operatorname{pd}_{R^{*}}(M / M x) \leq \operatorname{pd}_{R} M$.

Proof. If $\operatorname{pd} M_{R}=\infty$ then nothing to prove. So assume $\operatorname{pd}_{R} M=n<\infty$. We prove the result by induction on n.

Suppose $n=0$. If F is R-free then $F / F x$ is R^{*}-free. Hence if M is a direct summand of an R-free module, then $M / M x$ is a direct summand of R^{*}-free module. (This argument was used before). Thus $M / M x$ is R^{*}-projective, as required.

Now suppose that $n>0$ and the result holds for integers smaller than n. There exists a R-module F such that

$$
\begin{equation*}
0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0 \tag{*}
\end{equation*}
$$

is exact, so $\operatorname{pd}_{R}(K)=n-1$. Hence $\operatorname{pd}_{R^{*}}(K / K x) \leq n-1$ by induction hypothesis. From $(*)$ we get the exact sequence:

$$
0 \longrightarrow \frac{K+F x}{F x} \longrightarrow F / F x \longrightarrow M / M x \longrightarrow 0
$$

so we have

$$
0 \longrightarrow \frac{F}{K \cap F x} \longrightarrow F / F x \longrightarrow M / M x \longrightarrow 0
$$

is exact. We claim $K \cap F x=K x$, clearly $K x \subseteq K \cap F x$. Suppose that $k=f x \in K \cap F x$, where $k \in K$, $f \in F$. But x is not a zero divisor on $F / K \cong M$. Thus we have the exact sequence of R^{*}-modules

$$
0 \longrightarrow K / K x \longrightarrow F / F x \longrightarrow M / M x \longrightarrow 0
$$

Since $\operatorname{pd}_{R^{*}}(K / K x) \leq n-1$, it follows that $\operatorname{pd}_{R^{*}}(M / M x) \leq n$. This completes the proof
We get equality if R is Noetherian and x lies in the Jacobson Radical of R.
Lemma 6.4. Let R be a commutative Noetherian ring. Let M be a finitely generated module and suppose that x is a regular element lying in $J(R)$. Suppose that x does not annihilate any non-zero elements of M. Write $R^{*}=R / x R$.

Then $M / M x$ is R^{*}-projective implies that M is R-projective.
Proof. First suppose that $M / M x$ is R^{*}-free. Let v_{1}, \ldots, v_{n} be a free basis of $M / M x$. Let u_{1}, \ldots, u_{n} be elements of M mapping onto v_{1}, \ldots, v_{n} under the natural homomorphism $M \rightarrow M / M x$.

Claim: M is R-free with basis u_{1}, \ldots, u_{n}.
Let C be the submodule of M generated by u_{1}, \ldots, u_{n}. Then clearly, $C+M x=M$. This gives $[M / C] R x=[M / C]$, so $M / C=0$ by Nakayama's lemma. Thus $M=C$ and u_{1}, \ldots, u_{n} generate M.

Suppose that u_{1}, \ldots, u_{n} is not a free basis for M. Then (after possible renumbering) there exists non-zero $r_{1}, \ldots, r_{k} \in R$ such that $u_{1} r_{1}+\cdots+u_{k} r_{k}=0, k \leq n(*)$. Thus $v_{1} r_{1}+\cdots+v_{k} r_{k} \in M x$. Hence $r_{i} \in x R$ for all i since v_{1}, \ldots, v_{k} is part of a free basis of an R^{*}-module. Say $r_{i}=x s_{i}$ for $s_{i} \in R$. We claim $r_{k} R \subsetneq s_{k} R$. Clearly $r_{k} R \subseteq s_{k} R$ and $r_{k} R=s_{k} R$ would imply $s_{k}=r_{k} t_{k}$ for some $t_{k} \in R$, i.e., $s_{k}=x s_{k} t_{k}$ and so $s_{k}\left(1-x t_{k}\right)=0$. Hence $x_{k}=0$ since $1-x t_{k}$ is a unit since $x \in J(R)$. But is $s_{k}=0$ then $r_{k}=0$ contrary to our assumption. Now cancelling out $x,(*)$ gives $u_{1} s_{1}+\cdots+u_{k} s_{k}=0$ with $s_{k} \neq 0$ since $r_{k} \neq 0$. We can write this symbolically as $u_{1}\left(\frac{r_{1}}{x}\right)+\ldots u_{n}\left(\frac{r_{k}}{x}\right)=0$. Repeating the above process we get an ascending chain of ideals

$$
r_{k} R \subsetneq\left(\frac{r_{k}}{x}\right) R \subsetneq\left(\frac{r_{k}}{x^{2}}\right) R \subsetneq \ldots
$$

This is a contradiction since R is a Noetherian ring. Hence u_{1}, \ldots, u_{n} is a free basis for M as claimed. So M is R-free.

Next suppose that $M / M x$ is R^{*}-projective. Then there exists a free module F such that

$$
0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0
$$

is exact. As before this induces the exact sequence of R^{*}-modules

$$
0 \longrightarrow K / K x \longrightarrow F / F x \longrightarrow M / M x \longrightarrow 0 \quad(* *)
$$

Now write $B=M \oplus K(* * *)$ (external direct sum). Then $B x=M x \oplus K x$. This gives $B / B x=$ $M / M x \oplus K / K x$. Since $M / M x$ is R^{*}-projective, $(* *)$ splits so $F / F x \cong M / M x \oplus K / K x \cong B / B x$. Therefore $B / B x$ is R^{*}-free and by earlier part of the proof B is R-free. Hence from $(* * *)$ we have that M is R-projective.

Theorem 6.5. Let R be a commutative Noetherian ring, M_{R} a finitely generated module. Suppose that $x \in R$ is a regular element such that $x \in J(R)$. Suppose also that x does not annihilate any non-zero elements of M. Write $R^{*}=R / x R$. Then $\operatorname{pd}_{R^{*}}(M / M x)=\operatorname{pd}_{R}(M)$

Proof. Let $\operatorname{pd}_{R^{*}}(M / M x)=n$.
If $\operatorname{pd}_{R^{*}}(M / M x)=\infty$ then $\operatorname{pd}_{R}(M)=\infty$ by Theorem 6.3
So assume that $n<\infty$. We induct on n. For $n=0$ the result is proved by previous Lemma.
Assume that $n>0$ and the result for values smaller than n. There exists a free module F such that the sequence

$$
0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0
$$

is exact. As before this induces the short exact sequence

$$
\begin{equation*}
0 \longrightarrow K / K x \longrightarrow F / F x \longrightarrow M / M x \longrightarrow 0 \tag{*}
\end{equation*}
$$

Since $F / F x$ is R^{*}-free we have that $\operatorname{pd}_{R^{*}}(K / K x)=n-1$. Since R is Noetherian and M is finitely generated we have K is finitely generated. Clearly x annihilates no non-zero elements of K. Now $\operatorname{pd}_{R}(K)=n-1$ by induction hypothesis. So $(*)$ gives $\operatorname{pd}_{R} M=n$ (unless $\operatorname{pd}_{R}(M)=0$ but in this case $\operatorname{pd}_{R^{*}}(M / M x)=0$ by Theorem 6.3) This completes the proof.

Corollary 6.6. Let R be a commutative Noetherian ring. Let $x \in J(R)$ be regular and let $R^{*} / x R$. If $D\left(R^{*}\right)=n<\infty$ then $D(R)=n+1$.

Proof. We have $D(R) \geq n+1$ by Corollary 6.2. Now let M be a finitely generated R-module. Let $\operatorname{pd}_{R} M=k$. We shall not show that $k \leq n+1$. This is clear if $k=0$, so assume that M is not R-projective. So there exists a free R-module F such that

$$
0 \longrightarrow K \longrightarrow F \longrightarrow M \longrightarrow 0
$$

is exact. We have $\operatorname{pd}_{R} K=k=1$. Since R is Noetherian and F finitely generated, we have K is finitely generated. Also since $K \subseteq F, x$ does not annihilate any non-zero elements of K. So by the previous theorem $\operatorname{pd}_{R} K=\operatorname{pd}_{R^{*}}(K / K x) \leq n$. So $\operatorname{pd}_{R} M=1+\operatorname{pd}_{R} K \leq n+1$. But by Theorem $5.25 D(R)=\sup _{\left\{M_{R} \mathrm{f.g}\right\}}$ pd M. Hence $D(R) \leq n+1$. Thus $D(R)=n+1$.

6.2 Regular Local Ring

Lemma 6.7. Let R be a regular local ring of Krull dimension n. Then $D(R)=n$.
Proof. By induction on n. Let J be the Jacobson radical of R. If $n=0$ we have $J=0$, i.e., R is a field and the result is true.

Let $n>0$ and assume the result holds for regular local ring of $K \operatorname{dim} \leq n-1$. Since $n>0, J \neq 0$ and so $J \neq J^{2}$ by Nakayama's lemma. Let x_{1}, \ldots, x_{n} be a minimal generating set for J. Then there exists x_{i} such that $x_{i} \notin J^{2}$. Write $x_{i}=x$. Since R is an integral domain, x is regular. Let $R^{*}=R / x R$. By Lemma $4.38 K \operatorname{dim} R^{*}=n-1$. Clearly the images of $x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}$ are a minimal generating set for $J / x R$. Thus R^{*} is a regular local ring, hence $D\left(R^{*}\right)=n-1$ by induction hypothesis. Therefore $D(R)=n$ by Corollary 6.6. This completes the proof.

Lemma 6.8. Let R be a Noetherian commutative local ring. Suppose that Ann $J \neq 0$ (where $J=$ $J(R)$). Then $\operatorname{pd} M=0$ or ∞.

Proof. If $\operatorname{pd} M \neq 0$ or ∞ then there exists a module B such that $\operatorname{pd} B=1$. Now consider

$$
0 \longrightarrow K \longrightarrow F \longrightarrow B \longrightarrow 0
$$

where F is free and $K \subseteq F J$ (as in Theorem5.10). So Ann $K \neq 0$. But since pd $B=1, K$ is projective and hence free. This is a contradiction since a free module cannot have a non-zero annihilator.

Lemma 6.9. Let R be a regular local ring with Jacobson radical J. Let $x \in R$ be regular such that $x \in J$ but $x \notin J^{2}$. Then $J / x R$ is isomorphic to a direct summand of $J / x J$.

Proof. Since $x \notin J^{2}$ we can choose a minimal generating set x, y_{1}, \ldots, y_{r} of J. Write $S=x J+y_{1} R+$ $\cdots+y_{r} R$. Then clearly $S+x R=J$. We claim that $S \cap x R=x J$, clearly $x J \subseteq S \cap x R$. Let $z \in S \cap x R$. Then $z=x_{j}+u_{1} s_{1}+\cdots+y_{r} s_{r}=x t$ for some $h \in J, s_{i} \in R, t \in R$. So $x t-y_{1} s_{1}-\cdots-y_{r} s_{r} \in J^{2}$, since x, y_{1}, \ldots, y_{r} is a minimal generating set for J, we have $t \in J$, proving the claim.

Hence we have $J / x J \cong S / x J \oplus x R / x J$ (check!). Now $J / x R \cong \frac{J / x J}{x R / x J} \cong S / x J$ which is a direct summand of $J / x J$.

Proposition 6.10. Let R be a Noetherian local ring with Jacobian radical J. If $\operatorname{pd} J=m<\infty$ then R is a regular local ring of Krull dimension $m+1$

Proof. If $J=0$ then R is a field, $\operatorname{pd} J=-1$ and $K \operatorname{dim} R=0$, so the result is true.
We now deal with the case $m=0$. We can assume $J \neq 0$. Since J is projective it is free (Theorem 5.10). So J is a principal ideal generated by a regular element, so by Theorem 4.12 , rk $J=K \operatorname{dim} R=1$ and the result holds.

We now prove the result by induction on k, the Krull dimension of R.

If $k=0$ then J is the unique minimal prime of R. Hence ann $J \neq 0$ (see Proposition 4.18). Then by Lemma $6.8 \operatorname{pd} J=0$ and this is dealt with above (we get $J=0$)

So suppose that $k>0$ and that the result holds for rings of smaller Krull dimension. Clearly we may also assume $m>0$. We have $0<m<\infty$. So by 6.8 ann $J=0$. So by Proposition $4.20, J$ contains a regular element, say x. By Proposition 4.21, we may choose x such that $x \notin J^{2}$. Write $R^{*}=R / x R, J^{*}=R / x R$. Since x is regular by Lemma 4.38 we have $K \operatorname{dim} R^{*}=k-1$.

Claim: $\operatorname{pd}_{R^{*}} J^{*}=m-1$. We have $\operatorname{pd}_{R^{*}}(J / x J) \leq \operatorname{pd}_{R} J$ by Theorem 6.3, but by Lemma $6.9 J^{*}$ is a direct summand of $J / x J$, so $\operatorname{pd} J^{*}<\infty$. Since $m \geq 1$, applying Theorem 5.21 to

$$
0 \longrightarrow x R \longrightarrow J \longrightarrow J^{*} \longrightarrow 0
$$

we have $\operatorname{pd}_{R} J^{*}=\operatorname{pd}_{R} J=m$, so by Theorem $6.1 \operatorname{pd}_{R^{*}} J^{r}=m-1$.
So by induction hypothesis R^{*} is a regular local ring of Krull dimension m. Hence $K \operatorname{dim} R=m+1$ and R is regular local. (J^{*} is generating by m elements so J is generated by $m+1$ elements. But $\operatorname{rk} J=m+1$)

Collecting these results together we have
Theorem 6.11 (Serre). Let R be a commutative Noetherian local ring. Then R is regular local ring of Krull dimension of n if and only if $D(R)=n$.

Corollary 6.12. If P is a prime ideal of a regular local ring R then the ring R_{P} is also regular local
Proof. R_{P} is a Noetherian local ring, by the previous theorem $D(R)<\infty$. Hence $D\left(R_{P}\right)<\infty$ by Lemma 5.28. R is regular local by the previous Theorem

In fact, if S is a multiplicatively closed subset of R and $D(R)<\infty$ then $D\left(R_{S}\right) \leq D(R)<\infty$.

7 Unique Factorization

All rings are commutative with 1

7.1 Unique Factorization Domain

Definition 7.1. An element $0 \neq p \in R$ is said to be a prime element if $p R$ is a prime ideal.
Note. If p is a prime element, then so is $u p$ where u is a unit.
Definition 7.2. The ring R is called a unique factorisation domain (UFD) if R is an integral domain and every non-zero element $a \in R$ is expressible as $a=u p_{1} \ldots p_{n}$ where u is a unit and the p_{i} are prime elements.

Proposition 7.3. If an element of an integral domain is expressible as $p_{1} \ldots p_{n}$ where the p_{i} are primes, then this expression is unique up to a permutation of the p_{i} 's and multiplication by a unit.

Proof. Algebra II course. (Or Hartley and Hawkes: Rings, Modules and Linear Algebra; Theorem 4.10)

Definition 7.4. Let R be an integral domain and $a, b \in R$. We say that a divides b and write $a \mid b$ if there exists $c \in R$ such that $b=a c$.

Proposition 7.5. Let R be a commutative Noetherian integral domain. Then R is a UFD if and only if every rank 1 prime ideal of R is principal.

Proof. \Rightarrow : Let P be a rank 1 prime ideal of R. Let $a \in P$. Then a must be a non-unit, so $a=u p_{1} \ldots p_{n}$ where u is a unit and the p_{j} are primes. Hence $p_{i} \in P$ for some i and so $P=p_{i} R$ since P is a rank 1 prime ideal and $p_{i} R$ is a non-zero prime ideal.
$\Leftarrow: \quad$ Let S be the set of all elements of R which are expressible in the form $u p_{1} \ldots p_{n}$ with u a unit and each p_{i} is prime.
We shall first show that if $a \notin S$ then $a R \cap S=\emptyset$. Suppose not. Let $b \in R$ such that $a b=u p_{1} \ldots p_{n}$ and n is the least possible, where u is a unit and the p_{j} are primes. (Note: $a b$ cannot be a unit since a is not a unit). Now $p_{i} \nmid b$ for any i since if $p_{i} \mid b \Rightarrow b=p_{i} t_{i}$ for some $t_{i} \in R$. Hence $a t_{i} p_{i}=u p_{1} \ldots p_{n} \Rightarrow a t_{i}=u p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{n}$ which contradicts the choice of n. Now $p_{1} \mid a b$ so $p_{1} \mid a$. Let $a=p_{1} a_{1}$ where $a_{1} \in R$. Then $p_{1} a_{1} b=u p_{1} \ldots p_{n}$ and so $a_{1} b=u p_{2} \ldots p_{n}$. Again $p_{2} \mid a_{1}$ since $p_{2} \nmid b$. Proceeding this way we obtain that b is a unit of R. Therefore $a=b^{-1} u p_{1} \ldots p_{n}$, a contradiction since $a \notin S$.
Now suppose that R is not a UFD. Then there exists a non-zero element $a \in R$ such that $a \notin S$. By the above $a R \cap S=\emptyset$. Choose $P \supseteq a R$ to be an ideal maximal with respect to $P \cap S=\emptyset$. Then P is a prime ideal (check!). However, P will contain a rank 1 prime ideal and hence, by assumption, a prime element. This is a contradiction since $P \cap S=\emptyset$. Thus R must be a UFD.

Lemma 7.6. Let s be a non-zero prime element of a Noetherian local domain R. Let A be a prime ideal with $s \notin A$. Let $S=\left\{s^{n}\right\}$. If $A R_{S}$ is a principal ideal of R_{S} then A is a principal ideal of R

Proof. Let $A R_{S}=b R_{S}$. We may assume that $b \in A$ (why?). By Lemma $4.9 \cap_{n=1}^{\infty} s^{n} R=0$. So there exists $k \geq 0$ such that $b \in s^{k} R$ but $b \notin s^{k+1} R$. Let $b=s^{k} a$ where $a \in R$. Then $a \notin s R$. We have $A R_{S}=b R_{S}=a s^{k} R_{S}=a R_{S}$. Also $a s^{k} \in A$ gives $a \in A$ since $s \notin A$ and A is prime

Claim: $A=a R$
Let $x \in A$. Then $x \in a R_{S}$. So $x=a r s^{-m}$ for some m, suppose $m \geq 1$. Hence $x s^{m}=a r$. Since $a \notin s R, r \in s R$ since $s R$ is prime. So $r=s r_{1}$ for some $r_{1} \in R$. Hence $x s^{m}=a s r_{1}$ and so $x s^{m-1}=a r_{1} \in s R$ if $m-1>0$. Proceeding as above we finally obtain $x \in a R$. Thus $A=a R$ as required.

7.2 Stably Free Modules

Let A, B be $n \times n$ matrices over a commutative integral domain. Then $|A B|=|A| \cdot|B|$ where $|\quad|$ denotes the determinant of the matrix
Notation. Let R be a ring. We write R^{n} (or sometimes $R^{(n)}$) for $\underbrace{R \oplus \cdots \oplus R}_{n \text { times }}$
Theorem 7.7 (Kaplansky). Let R be a commutative integral domain and A a (non-zero) ideal of R such that $A \oplus R^{n-1} \cong R^{n}$ as R-modules. Then A is a principal ideal of R.
Proof. The isomorphism shows that $A \oplus R^{n-1}$ has a free basis consisting of n elements, say $\lambda_{1}, \ldots, \lambda_{n}$. Each λ_{j} is an n-tuple, so let $\lambda_{j}=\left(\alpha_{1 j}, \beta_{2 j}, \ldots, \beta_{n j}\right)$ where $\alpha_{1 j} \in A$ and $\beta_{i j} \in R$. Let

$$
\Lambda=\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\
\beta_{21} & \beta_{22} & & \beta_{2 n} \\
\vdots & & \ddots & \\
\beta_{n 1} & \beta_{n 2} & & \beta_{n n}
\end{array}\right)
$$

Then $\Lambda \in M_{n}(R)$, note that $|\Lambda| \in A$. Now consider

$$
X=\left(\begin{array}{cccc}
I & I & \ldots & I \\
R & R & & R \\
\vdots & & \ddots & \\
R & R & & R
\end{array}\right)
$$

Then $X \triangleleft_{r} M_{N}(R)$. Let

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
b_{21} & b_{22} & & b_{2 n} \\
\vdots & & \ddots & \\
b_{n 1} & b_{n 2} & & b_{n n}
\end{array}\right) \in X
$$

where $a_{1 j} \in A$ and $b_{i j} \in R$ for $2 \leq i \leq n$. Writing the elements of $A \oplus R \oplus \cdots \oplus R$ as columns we have
with $s_{i j} \in R$ since $\lambda_{1}, \ldots, \lambda_{n}$ is a free basis for $A \oplus R^{n}$. In the matrix from these can be written

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
b_{21} & b_{22} & & b_{2 n} \\
\vdots & & \ddots & \\
b_{n 1} & b_{n 2} & & b_{n n}
\end{array}\right)=\left(\begin{array}{cccc}
\alpha_{11} & \alpha_{12} & \ldots & \alpha_{1 n} \\
\beta_{21} & \beta_{22} & & \beta_{2 n} \\
\vdots & & \ddots & \\
\beta_{n 1} & \beta_{n 2} & & \beta_{n n}
\end{array}\right)\left(\begin{array}{cccc}
s_{11} & s_{12} & \ldots & s_{1 n} \\
s_{21} & s_{22} & & s_{2 n} \\
\vdots & & \ddots & \\
s_{n 1} & s_{n 2} & & s_{n n}
\end{array}\right)
$$

Thus $X \subseteq \Lambda M_{n}(R)$, but $\Lambda M_{n}(R) \subseteq X$ since $X \triangleleft R$. Hence $X=\Lambda M_{n}(R)$. Now let $x \in A$ and consider

$$
\left(\begin{array}{ccccc}
x & & & & \\
& 1 & & & 0 \\
& & 1 & & \\
& & & \ddots & \\
& 0 & & & 1
\end{array}\right) \in X
$$

so by above there exists $B \in M_{n}(R)$ such that

$$
\left(\begin{array}{ccccc}
x & & & & \\
& 1 & & & 0 \\
& & 1 & & \\
& & & \ddots & \\
& 0 & & & 1
\end{array}\right)=\Lambda B
$$

Take determinants, we have $x=|\Lambda| \cdot|B|$. Thus $A \subseteq|\Lambda| R$, but $|\Lambda| R \subseteq A$ since $A \triangleleft R$. Thus $A=|\Lambda| R$ and A is principal.

Definition 7.8. M_{R} is said to have a finite free resolution if there exists an exact sequence $0 \rightarrow F_{n} \rightarrow$ $F_{n-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow M \rightarrow 0$ with each F_{i} is free.

Clearly, over a regular local ring each finitely generated module has a finite free resolution
Lemma 7.9. Let S be a multiplicatively closed subset of a commutative ring R. If M_{R} has finite free resolution then so does the R_{S}-module M_{S}

Proof. Exercise
Definition 7.10. An R-module M is called stably free if there exists finitely generated free modules F and G such that $G \oplus M \cong F$.

Clearly a stably free module is projective. A stably free module is a finitely generated projective module with a finitely generated free complement

Lemma 7.11. Let R be a commutative ring. A projective R-module with finite free resolution is stably free

Proof. We prove this by induction on the length of the finite free resolution. Let M be a finite free resolution module.

For $n=1$ we have $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 . M$ is projective. So this splits, so $F_{0} \cong F_{1} \oplus M$ and M is stably free.

Now suppose we have

We have $F_{0} \cong K_{0} \oplus M$ since M is projective. K_{0} has finite free resolution of length $n-1$. By induction hypothesis there exists a finitely free module G such that $K_{0} \oplus G$ is free. Hence $F_{0} \oplus G \cong K_{0} \oplus G \oplus M$ with both $F_{0} \oplus G$ and $K_{0} \oplus G$ free.

If R is a Noetherian domain and $0 \neq A \triangleleft R$ such that A is stably free then $A \oplus R^{m} \cong R^{n}$. In this case $m=n-1$ (Q4 on exercise sheet 7)

Theorem 7.12 (Auslander - Buchsbaum 1959). A regular local ring is a UFD.
Proof. Let R be a regular local ring of dimension n. We prove the theorem by induction on the (Krull) dimension n.

If $n=0$ then R is a field and there is nothing to prove.
Assume result for regular local rings of dimension less than n. Let $J=J(R)$, choose $p \in J \backslash J^{2}$. By Theorem $4.41 R / p R$ is regular local. By Theorem $4.43 p R$ is a prime ideal and p is a prime element. Let $S=\left\{p^{n}\right\}$, then clearly $K \operatorname{dim} R_{S}<K \operatorname{dim} R$.

Now let T be a rank 1 prime of R_{S}. Let M be a maximal ideal of R_{S}. Then either $T\left(R_{S}\right)_{M}=T R_{S}$ or $T\left(R_{S}\right)_{M}$ is a rank 1 prime ideal of $\left(R_{S}\right)_{M}$. By induction hypothesis $\left(R_{S}\right)_{M}$ is a UFD. So by Proposition $7.5 T\left(R_{S}\right)$ is principal and hence a projective (free) $\left(R_{S}\right)_{M}$-module. So by Proposition $5.13 T$ is a projective R_{S}-module. Now let A be a rank 1 prime of R. By above $A R_{S}$ is a projective R_{S}-module. Since every finitely generated module over R_{S} has finite free resolution by the previous lemma, $A R_{S}$ is stably free. So by Theorem $7.7 A R_{S}$ is free. Thus $A R_{S}$ is a principal ideal. So by Lemma $7.6 A$ is a principal ideal if $p \notin A$. However if $p \in A$ then $p R=A$ since rank A is 1 . So by Proposition $7.5 R$ is a UFD

Key point. R_{S} is not local.

Beyond the Course

Theorem 7.13. Let R be a commutative Noetherian integral domain. The following are equivalent:

1. Every ideal of R is a product of prime ideals
2. R_{M} is a PID for each maximal ideal M
3. R is integrally closed and $K \operatorname{dim} R=1$
(There are various other characterisation) Such a ring is called Dedekind Domain.
Recall that if R is a commutative integral domain, $I \triangleleft R, F$ the field of fraction, then $I^{*}=\{q \in$ $F \mid q I \subseteq R\}$. Then $I^{*} I \subseteq R, I^{*} I \triangleleft R$.
I is said to be invertible if $I^{*} I=R$. By the dual basis lemma I invertible is the same as I_{R} projective. So we can add:
4. Every non-zero ideal of R is invertible
5. Every ideal of R is projective.

Proof. 5) $\Rightarrow 2), M_{R}$ projective implies $M R_{M}$ projective. So $M R_{M}$ is free by Theorem 5.10. Thus $M R_{M}$ is principal, hence by Theorem $4.11 R_{M}$ is a PID.
$2) \Rightarrow 5)$. Let $I \triangleleft R$, then $I R_{M}$ is principal. So for each maximal ideal M of R. So each $I R_{M}$ is R_{M}-projective. Hence by Proposition $5.13 I_{R}$ is projective.

Thus a Dedekind domain is a Noetherian domain R with $D(R)=1$.

