
1-Introduction web programming

2- HTML

3- JavaScript

4- ASP

Web programming

Introduction

 Just as there is a diversity of programming languages available

and suitable for conventional programming tasks, there is a

diversity of languages available and suitable for Web

programming.

 The Internet becomes the main method in exchanging

cultures and transferring knowledge between people.

 The Web was originally designed to deliver static Web pages

from a Web server connected somewhere on the Internet to a

Web browser sitting on a user‟s desktop computer. Basically,

all a user could do was click on a hot spot or hypertext link

to retrieve a new page, read it, and then go on to the next

page.

 The Web was not designed to support EC sites, especially

B2C sites. In its original state, it was not possible to create

pages that would allow consumers to easily determine what

products were for sale, to select products as they moved from

page to page (i.e., an electronic shopping cart), to place an

order, or to verify an order. Similarly, there as no simple way

to integrate a Web server with a database system containing

product, pricing,The Web was originally designed to deliver

 and promotional data with transactional systems for

processing orders and with payment systems for handling

credit card purchases and settlements. Over time, these

limitations have been addressed. First, forms were added to

HTML. Forms provided a way to produce Web pages from

which a consumer could select, order, and pay for

products. Second, special programming and scripting

languages (e.g., Java and JavaScript) were created. These

newer languages allowed application developers to produce

interactive Web pages whose functionality emulated the

rich functionality of standard Windows-based applications.

Finally, a standard application programming interface

(API), called the common gateway interface (CGI), was

introduced. Generally speaking, an API provides a way for

one software program to communicate with another,

 whereas CGI provides a way for software developers and

application programmers to integrate Web servers with

various back-end programs and data sources.

 Because of CGI‟s inefficiencies, newer APIs and special

database gateway programs were also introduced. As a result

of these changes, the Web is now well suited for the dynamic

world of EC.

 This appendix examines issues of end-user interactivity and

dynamic data access. The first sections focus on Java and

JavaScript, which are special programming languages that can

be used to create Web pages with rich graphical user

interfaces (GUIs). The remaining sections examine various

methods—CGI programming, specialized APIs, and server-

side scripting—for integrating a Web server with back-end

programs, including relational databases.

Internet
 The Internet is a computer network made up of thousands of

networks worldwide.

 All computers on the Internet communicate with one

another using the Transmission Control Protocol/Internet

Protocol suite, abbreviated toTCP/IP.

 Computers on the Internet use a client/server architecture.

 This means that the remote server machine provides files and

services to the user‟s local client machine.

 Software can be installed on a client computer to take

advantage of the latest access technology.

An Internet user has access to a wide variety of services :

electronic mail, file transfer, vast information resources,

interest group membership, interactive collaboration,

multimedia displays, real-time broadcasting

Web server

 A Web server is a computer that runs special serving

software. That software "serves" HTML pages and the files

associated with those pages when requested by a client,

usually aWeb browser.

Client (“front end”) :

 Presents an interface to the user gathers information from

the user, submits it to a server, then receives, formats, and

presents the results returned from the server

 URLUniform Resource Locator

 A URL is a Web Page‟s address and identifies where the web

page is stored on the Internet.

 It is a four-part addressing scheme.

Internet Service Provider (ISP):

 Provides access to the Internet along with other types of

services such as e-mail.

HyperText Transfer Protocol (HTTP)

 to transmit data Protocols for other Internet applications

 Client-side:
 HTML / XHTML (Extensible HyperText Markup Language)

 JavaScript / VBScript (client-side scripting)

 Applets / ActiveX controls

 Server-side:

 JSP (Java Server Pages)

 ASP (Active Server Pages)

 ASP.NET (next generation of ASP)

 PHP

 Phython

2- Web application

 An application which is accessed via web browser over a

network is called web application or web based application.

All the websites are examples of web applications.

 Web application is written in a server side scripting language

like ASP (active server pages).

 When user types address of website for example

www.programming-web.com, browser transmits request to

the web server which hosts the required site.

 On web server, web server software like email receives this

request and processes it

http://programming-web.com/
http://programming-web.com/
http://programming-web.com/
http://programming-web.com/
http://programming-web.com/
http://programming-web.com/
http://programming-web.com/

 The output generated by web server includes only those

scripts which can be rendered by web browser.

 Above process repeats when user perfumes an action which

requires communication with server such as submitting entry

form or viewing another page.

Platform: PC, Mac, Unix, etc.

Web Server: Apache, IIS, Xitami, etc.

Platform: PC, Mac, Unix, etc.

Browser: IE, Mozilla, Opera, etc.Client

Server

Request:
http://www.gre.ac.uk/about

Response:
<html>…</html>

Network HTTP over TCP/IP

WWW Architecture

The Web Concepts

 The World-Wide Web (W3) was developed to be a pool of

human knowledge, and human culture, which would allow

collaborators in remote sites to share their ideas and all

aspects of a common project.

 There are manyWeb concepts as following:

Hypertext:

 Hypertext links allow the reader to jump instantly from one

electronic document to another.

 Two type : linear text and nonlinear text

three basic “rules” of hypertext:

 A large body of information is organized into numerous

fragments, or in the case of the Web, into pages.

 The pages relate to each other.

 The user needs only a small fraction of the information at any

given moment.

Web Page

 The Web page is a space of information on the Internet, that

presents information about a particular person, business, or

organization or cause.

 The Web consists of files, called Web pages (documents).

 it is containing links to resources (text, images, audios,

videos, and other data), throughout the Internet

Web Site

 AWeb site is a group of relatedWeb pages

 which presents information about a particular person,

business, organization or cause

 A well-designed Web site is a collection of related Web

documents (pages) that share a common theme, look, and

feel.

 The first thing we can see when „enter‟ the site is „Home

Page‟, that offers links to more detailed information on the

different topics in the same subject covered by the site.

Web Browsing

 A web browser is a software application for retrieving,

presenting, and traversing information resources on the

WorldWideWeb.

 An information resource is identified by a Uniform Resource

Identifier (URI) and may be a web page , image, video, or

other piece.

 CGI :(common gateway interface) refer to a specification by

which program can communicate with a web server.

 http://www.icci.org/studies/ips.html .

 1. Protocol: http.

 2. Host computer name: www.

 3. Second-level domain name: icci.

 4. Top-level domain name: org.

 5. Directory name: studies.

 6. File name: ips.html.

Classifying the Web Sites:
 There are several classify for the early Web sites in many

terms, as the follow:

 Environment:

 The General Approach

 Classify in terms of Range of Complexity:

Several Top-level domain are common:

com: commercial enterprise. شركات

edu: educational institution. للمؤسسات التعليمية

gov: government entity. للمؤسسات الحكومية

mil: military entity. للمواقع العسكرية

net: network access provider. للمواقع ذات النشاط الخاص

org: usually nonprofit organizations منظمة رسمية غير حكومبة

Environment:

 There are three main types of Web sites according to this

classify: Internet, Intranet, and ExtranetWeb Sites.

A- Internet Web Sites:

Internet Web Site is traditional Web sites that are intended for

access by the general public.

B- Intranet Web Sites:

Intranet Web Site is intended only for internal (intra-

organizational) use.

C- Extranet Web Sites:

Extranet Web Site is a combination of these. They are typically

private and secured areas for the use of an organization and it

is designated partners.

Intranet

Internet

Extranet

The General Approach:

 There are two main types of Web sites according to this

classify: Static and DynamicWeb sites.

A- Static Web Sites:

B- Dynamic Web Sites:

A- Static Web Sites:

 Static Web Site implies that the Web site will be a flat-file

system of HTML files.

 all pages reside on the server and have fixed content that will

be served “as is” to the user.

B- Dynamic Web Sites:

 Dynamically site requires that the content be stored in a

database, not all sites require complete database

functionality

 part of a site may be dynamic while others are static.

Classify in terms of Range of

Complexity

There are five main types of Web sites according to this classify:

 Static Web Sites.

 Static with Form-Based Interactivity Web Sites.

 Static with Dynamic Data Access Web Sites.

 Dynamically Generated Web Sites.

 Web-Based Software Applications Web Sites.

1

Introduction to

HTML

2

Definitions

 W W W – World Wide Web.

 HTML – HyperText Markup Language –
The Language of Web Pages on the World
Wide Web.

HTML is a text formatting language.

 Browser – A software program which is
used to show web pages.

3

 “Normal text” surrounded by

bracketed tags that tell browsers

how to display web pages

 Pages end with “.htm” or “.html”

 HTML Editor – A word processor

that has been specialized to make

the writing of HTML documents

more effortless.

4

Tags

 Codes enclosed in brackets

 Usually paired

<TITLE>My Web Page</TITLE>

 Not case sensitive

<TITLE> = <title> = <TITLE>

5

Choosing Text Editor

 There are many different programs that
you can use to create web documents.

 HTML Editors enable users to create
documents quickly and easily by pushing a
few buttons. Instead of entering all of the
HTML codes by hand.

 These programs will generate the HTML
Source Code for you.

6

Choosing Text Editor

 HTML Editors are excellent tools for

experienced web developers; however; it

is important that you learn and understand

the HTML language so that you can edit

code and fix “bugs” in your pages.

 For this Course, we will focus on using the

standard Microsoft Windows text editors,

NotePad. We may use also textpad.

7

Starting NotePad

NotePad is the standard text editor that
comes with the microsoft windows
operating system. To start NotePad in
follow the steps bellow:

 Click on the “Start” button located on
your Windows task bar.

 Click on “Programs” and then click on the
directory menu labeled “Accessories”.

 Locate the shortcut “NotePad” and click
the shortcut once.

8

Creating a Basic Starting

Document

<HTML>

<HEAD>

<TITLE>Al al-Bayt University</TITLE>

</HEAD>

<BODY>

This is what is displayed.

</BODY>

</HTML>

9

Previewing Your Work

 Once you have created your basic starting
document and set your document properties it
is a good idea to save your file.

 To save a file, in NotePad, follow these steps:

1. Locate and click on the menu called “File”.

2. Select the option under File Menu labeled
“Save As”.

3. In the “File Name” text box, type in the entire
name of your file (including the extension
name .html).

10

Creating a Basic Starting

Document

 The HEAD of your document point to above

window part. The TITLE of your document

appears in the very top line of the user’s

browser. If the user chooses to “Bookmark”

your page or save as a “Favorite”; it is the

TITLE that is added to the list.

 The text in your TITLE should be as

descriptive as possible because this is what

many search engines, on the internet, use for

indexing your site.

11

Setting Document Properties

 Document properties are controlled
by attributes of the BODY element.
For example, there are color settings
for the background color of the page,
the document’s text and different
states of links.

12

Color Codes

• Colors are set using “RGB” color codes,

which are, represented as hexadecimal

values. Each 2-digit section of the code

represents the amount, in sequence, of

red, green or blue that forms the color. For

example, a RGB value with 00 as the first

two digits has no red in the color.

13

Main Colours

14

RGB Colour Model

15

16 Basic Colors

16

Color Codes
1. WHITE

2. BLACK

3. RED

4. GREEN

5. BLUE

6. MAGENTA

7. CYAN

8. YELLOW

9. AQUAMARINE

10. BAKER’S CHOCOLATE

11. VIOLET

12. BRASS

13. COPPER

14. PINK

15. ORANGE

1. #FFFFFF

2. #000000

3. #FF0000

4. #00FF00

5. #0000FF

6. #FF00FF

7. #00FFFF

8. #FFFF00

9. #70DB93

10. #5C3317

11. #9F5F9F

12. #B5A642

13. #B87333

14. #FF6EC7

15. #FF7F00

17

The Body Element

• The BODY element of a web page is an

important element in regards to the page’s

appearance. Here are the attributes of the

BODY tag to control all the levels:

TEXT="#RRGGBB" to change the color of all

the text on the page (full page text color.)

 This element contains information about the

page’s background color, the background

image, as well as the text and link colors.

18

Background Color

 It is very common to see web pages with

their background color set to white or some

other colors.

 To set your document’s background color,

you need to edit the <BODY> element by

adding the BGCOLOR attribute. The

following example will display a document

with a white background color:

<BODY BGCOLOR=“#FFFFFF”></BODY>

19

TEXT Color

 The TEXT attribute is used to control

the color of all the normal text in the

document. The default color for text is

black. The TEXT attribute would be

added as follows:

<BODY BGCOLOR=“#FFFFFF”

TEXT=“#FF0000”></BODY>

In this example the document’s page

color is white and the text would be red.

20

LINK, VLINK, and ALINK

These attributes control the colors of the different link

states:

1. LINK – initial appearance – default = Blue.

2. VLINK – visited link – default = Purple.

3. ALINK –active link being clicked–default= Yellow.

The Format for setting these attributes is:

<BODY BGCOLOR=“#FFFFFF” TEXT=“#FF0000”

LINK=“#0000FF”

VLINK=“#FF00FF”

ALINK=“FFFF00”> </BODY>

21

Using Image Background

 The BODY element also gives you ability

of setting an image as the document’s

background.

 An example of a background image’s

HTML code is as follows:

<BODY BACKGROUND=“hi.gif”

BGCOLOR=“#FFFFFF”></BODY>

22

Headings, <Hx> </Hx>

 Inside the BODY element, heading elements
H1 through H6 are generally used for major
divisions of the document. Headings are
permitted to appear in any order, but you will
obtain the best results when your documents
are displayed in a browser if you follow these
guidelines:

1. H1: should be used as the highest level of heading, H2
as the next highest, and so forth.

2. You should not skip heading levels: e.g., an H3 should
not appear after an H1, unless there is an H2 between
them.

23

Headings, <Hx> </Hx>

<HTML>

<HEAD>

<TITLE> Example Page</TITLE>

</HEAD>

<BODY>

<H1> Heading 1 </H1>

<H2> Heading 2 </H2>

<H3> Heading 3 </H3>

<H4> Heading 4 </H4>

<H5> Heading 5 </H5>

<H6> Heading 6 </H6>

</BODY>

</HTML>

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

Heading 6

24

Paragraphs, <P> </P>

 Paragraphs allow you to add text to a

document in such a way that it will

automatically adjust the end of line to suite

the window size of the browser in which it

is being displayed. Each line of text will

stretch the entire length of the window.

25

Paragraphs, <P> </P>

<HTML><HEAD>

<TITLE> Example Page</TITLE>

</HEAD>

<BODY></H1> Heading 1 </H1>

<P> Paragraph 1, ….</P>

<H2> Heading 2 </H2>

<P> Paragraph 2, ….</P>

<H3> Heading 3 </H3>

<P> Paragraph 3, ….</P>

<H4> Heading 4 </H4>

<P> Paragraph 4, ….</P>

<H5> Heading 5 </H5>

<P> Paragraph 5, ….</P>

<H6> Heading 6</H6>

<P> Paragraph 6, ….</P>

</BODY></HTML>

Heading 1
Paragraph 1,….

Heading 2
Paragraph 2,….

Heading 3
Paragraph 3,….

Heading 4
Paragraph 4,….

Heading 5
Paragraph 5,….

Heading 6

Paragraph 6,….

26

Break,

 Line breaks allow you to decide where the text

will break on a line or continue to the end of the

window.

 A
 is an empty Element, meaning that it

may contain attributes but it does not contain

content.

 The
 element does not have a closing tag.

27

Break,

<HTML>

<HEAD>

<TITLE> Example Page</TITLE>

</HEAD>

<BODY>

<H1> Heading 1 </H1>

<P>Paragraph 1,

Line 2
 Line 3
….

</P>

</BODY>

</HTML>

Heading 1
Paragraph 1,….

Line 2

Line 3

….

28

Horizontal Rule, <HR>

 The <HR> element causes the

browser to display a horizontal

line (rule) in your document.

 <HR> does not use a closing tag,

</HR>.

29

Horizontal Rule, <HR>

<HTML>

<HEAD>

<TITLE> Example Page</TITLE>

</HEAD>

<BODY>

<H1> Heading 1 </H1>

<P>Paragraph 1,

Line 2

<HR>Line 3

</P>

</BODY>

</HTML>

Heading 1
Paragraph 1,….

Line 2

Line 3

30

Bold, Italic and other Character Formatting

Elements

 Two sizes bigger

 The size attribute can be set as an absolute value from 1 to 7

or as a relative value using the “+” or “-” sign. Normal text size

is 3 (from -2 to +4).

 Bold

 <I> Italic </I>

 <U> Underline </U>

 Color = “#RRGGBB” The COLOR attribute of the FONT

element. E.g., this text has

color

31

Bold, Italic and other Character Formatting

Elements

<P> One
Size Larger - Normal
–

 One Size
Smaller

 Bold - <I> italics</I> -
<U> Underlined </U> -

Colored

One Size Larger - Normal – One
Size Smaller
Bold - italics - Underlined -
Colored

32

Alignment

 Some elements have attributes for

alignment (ALIGN) e.g. Headings,

Paragraphs and Horizontal Rules.

 The Three alignment values are : LEFT,

RIGHT, CENTER.

 <CENTER></CENTER> Will center

elements.

33

Special Characters & Symbols

Special

Character

Entity

Name

Special

Character

Entity

Name

Ampersand & & Greater-than

sign
> >

Asterisk ∗

∗∗
Less-than sign < <

Cent sign ¢ ¢ Non-breaking

space

Copyright © © Quotation mark " "

Fraction one

qtr

¼

¼
Registration

mark
® ®

Fraction one

half

½

½
Trademark sign ™

™

34

Lists

In this chapter you will learn how to create a variety of lists.

Objectives

Upon completing this section, you should be able to

1. Create an unordered list.

2. Create an ordered list.

3. Create a defined list.

4. Nest Lists.

35

List Elements

 HTML supplies several list elements. Most list elements

are composed of one or more (List Item) elements.

 UL : Unordered List. Items in this list start with a list mark

such as a bullet. Browsers will usually change the list

mark in nested lists.

 List item …

 List item …

• List item …

• List item …

36

List Elements

 You have the choice of three bullet types: disc(default),
circle, square.

 These are controlled in Netscape Navigator by the
“TYPE” attribute for the element.

<UL TYPE=“square”>

 List item …

 List item …

 List item …

 List item …

 List item …

 List item …

37

List Elements

 OL: Ordered List. Items in this list are numbered
automatically by the browser.

 List item …

 List item …

 List item …

1. List item …

2. List item …

3. List item

 You have the choice of setting the TYPE Attribute to
one of five numbering styles.

38

List Elements

TYPE Numbering Styles

1 Arabic numbers 1,2,3, ……

a Lower alpha a, b, c, ……

A Upper alpha A, B, C, ……

i Lower roman i, ii, iii, ……

I Upper roman I, II, III, ……

39

List Elements

 You can specify a starting number for an
ordered list.

<OL TYPE =“i”>

 List item …

 List item …

<P> text ….</P>

<OL TYPE=“i” START=“3”>

 List item …

40

List Elements

i. List item …

ii. List item …

Text ….

iii. List item …

41

List Elements

 DL: Definition List. This kind of list is different from the
others. Each item in a DL consists of one or more
Definition Terms (DT elements), followed by one or
more Definition Description (DD elements).

<DL>

<DT> HTML </DT>

<DD> Hyper Text Markup Language </DD>

<DT> DOG </DT>

<DD> A human’s best friend!</DD>

</DL>

HTML

Hyper Text Markup Language

DOG

A human’s best friend!

42

Nesting Lists

 You can nest lists by inserting a UL, OL, etc., inside a list
item (LI).

EXample

<UL TYPE = “square”>

 List item …

 List item …

<OL TYPE=“i” START=“3”>

 List item …

 List item …

 List item …

 List item …

 List item …

 List item …

43

<H1 ALIGN="CENTER">SAFETY TIPS FOR CANOEISTS</H1>

<OL TYPE=“a” START=“2”>

Be able to swim

Wear a life jacket at all times

Don't stand up or move around. If canoe tips,

Hang on to the canoe

Use the canoe for support and

Swim to shore

Don't overexert yourself

Use a bow light at night

What will be the output?

44

Images

In this chapter you will learn about images

and how to place images in your pages.

Objectives

Upon completing this section, you should be

able to

1. Add images to your pages.

45

Images

 This element defines a graphic image on
the page.

 Image File (SRC:source): This value will be a
URL (location of the image) E.g.
http://www.domain.com/dir/file.ext or /dir/file.txt.

 Alternate Text (ALT): This is a text field that
describes an image or acts as a label. It is
displayed when they position the cursor over a
graphic image.

 Alignment (ALIGN): This allows you to align the
image on your page.

http://www.domain.com/dir/file.ext

46

Images

 Width (WIDTH): is the width of the image in pixels.

 Height (HEIGHT): is the height of the image in
pixels.

 Border (BORDER): is for a border around the
image, specified in pixels.

47

Some Examples on images

1)

2) <IMG SRC=" jordan.gif" width="60"
height="60">

3) <IMG SRC=“jordan.gif" ALT="This is a
text that goes with the image">

4) <IMG SRC=" jordan.gif “ Hspace="30"
Vspace="10" border=20>

5) < IMG SRC =" jordan.gif“ align="left">

blast blast blast blast blast

48

Anchors, URLs and Image Maps

In this chapter you will learn about Uniform Resource

Locator, and how to add them as Anchor or Links

inside your web pages.

Objectives

Upon completing this section, you should be able to

1. Insert links into documents.

2. Define Link Types.

3. Define URL.

4. List some commonly used URLs.

5. Plan an Image Map.

49

HOW TO MAKE A LINK

1) The tags used to produce links are the <A>

and . The <A> tells where the link should start and

the indicates where the link ends. Everything between

these two will work as a link.

2) The example below shows how to make the word

Here work as a link to yahoo.

Click here to

go to yahoo.

50

<body LINK="#C0C0C0" VLINK="#808080"
ALINK="#FF0000">

• LINK - standard link - to a page the visitor hasn't
been to yet. (standard color is blue - #0000FF).
VLINK - visited link - to a page the visitor has been to
before. (standard color is purple - #800080).
ALINK - active link - the color of the link when the
mouse is on it. (standard color is red - #FF0000).

If the programmer what to change the color

• Click <font
color="FF00CC">here to go to yahoo.

More on LINKs

51

E-Mail (Electronic Mail)

E.g. mailto:kmf@yahoo.com

 The type of service is identified as the mail client

program. This type of link will launch the users

mail client.

 The recipient of the message is

kmf@yahoo.com

Send me

More Information

mailto:kmf
mailto:kmf@yahoo.com
mailto:kMF

52

Image Maps

 Image maps are images, usually in gif format that have
been divided into regions; clicking in a region of the
image cause the web surfer to be connected to a new
URL. Image maps are graphical form of creating links
between pages.

 There are two type of image maps:

Client side and server side

Both types of image maps involve a listing of co-ordinates

that define the mapping regions and which URLs those

coordinates are associated with. This is known as the map

file.

53

Area Shapes Used

54

Client-Side Image Maps

 Client-side image maps (USEMAP) use a map file that is
part of the HTML document (in an element called MAP),
and is linked to the image by the Web browser.

<IMG SRC="note.GIF" Width=200 Height=200

border="5" USEMAP="#map1">

<MAP NAME="map1">

<AREA SHAPE="RECT" COORDS="0,0,90,90"

HREF="hi.html" ALT="see me…">

<AREA SHAPE="RECT" COORDS="100,100,160,160"

HREF="divPara.html" ALT="see him…" >

<AREA SHAPE="CIRCLE" COORDS="150,50,20"

HREF="house.html" ALT="see it…" >

</MAP>

We can use Poly as well as Rect……

55

Shapes, Coords

• Types of Shapes
• Rect  used for squares and ordered shapes.

• Circle  used for circles.

• Poly  used for unordered shapes.

• Number of coordenations for each shape:
• Rect 4 numbers for two corners

• Circle 3 numbers for the center & R

• Poly  depends on the number of corners of the

shape(2 numbers for each corner)

56

Tables

In this chapter you will learn that tables have many uses in

HTML.

Objectives:

Upon completing this section, you should be able to:

1. Insert a table.

2. Explain a table’s attributes.

3. Edit a table.

4. Add a table header.

57

Tables

 The <TABLE></TABLE> element has four
sub-elements:

1. Table Row<TR></TR>.

2. Table Header <TH></TH>.

3. Table Data <TD></TD>.

4. Caption <CAPTION></CAPTION>.

 The table row elements usually contain table
header elements or table data elements.

58

Tables

<table border=“1”>

<tr>

<th> Column 1 header </th>

<th> Column 2 header </th>

</tr>

<tr>

<td> Row1, Col1 </td>

<td> Row1, Col2 </td>

</tr>

<tr>

<td> Row2, Col1 </td>

<td> Row2, Col2 </td>

</tr>

</table>

59

Tables

Column 1 Header Column 2 Header

Row1, Col1 Row1, Col2

Row2, Col1 Row2, Col2

60

Tables Attributes

 BGColor: Some browsers support background

colors in a table.

 Width: you can specify the table width as an

absolute number of pixels or a percentage of the

document width. You can set the width for the

table cells as well.

 Border: You can choose a numerical value for

the border width, which specifies the border in

pixels.

 CellSpacing: Cell Spacing represents the space

between cells and is specified in pixels.

61

Table Attributes

 CellPadding: Cell Padding is the space

between the cell border and the cell

contents and is specified in pixels.

 Align: tables can have left, right, or

center alignment.

 Background: Background Image, will be

titled in IE3.0 and above.

 BorderColor, BorderColorDark.

62

Table Caption

 A table caption allows you to specify a line of

text that will appear centered above or bellow

the table.

<TABLE BORDER=1 CELLPADDING=2>

<CAPTION ALIGN=“BOTTOM”> Label For My Table

</CAPTION>

 The Caption element has one attribute ALIGN

that can be either TOP (Above the table) or

BOTTOM (below the table).

63

Table Header

 Table Data cells are represented by the

TD element. Cells can also be TH (Table

Header) elements which results in the

contents of the table header cells

appearing centered and in bold text.

64

Table Data and Table Header

Attributes

 Colspan: Specifies how many cell columns of the table

this cell should span.

 Rowspan: Specifies how many cell rows of the table this

cell should span.

 Align: cell data can have left, right, or center alignment.

 Valign: cell data can have top, middle, or bottom

alignment.

 Width: you can specify the width as an absolute number

of pixels or a percentage of the document width.

 Height: You can specify the height as an absolute

number of pixels or a percentage of the document height.

65

<TABLE BORDER=1 width=50%>

<CAPTION> <h1>Spare Parts <h1> </Caption>

<TR><TH>Stock Number</TH><TH>Description</TH><TH>List
Price</TH></TR>

<TR><TD bgcolor=red>3476-AB</TD><TD>76mm
Socket</TD><TD>45.00</TD></TR>

<TR><TD >3478-AB</TD><TD>78mm Socket
</TD><TD>47.50</TD></TR>

<TR><TD>3480-AB</TD><TD>80mm Socket</TD><TD>50.00</TD></TR>

</TABLE>

Basic Table Code

66

Table Data and Table Header Attributes

<Table border=1 cellpadding =2>

<tr> <th> Column 1 Header</th> <th>

Column 2 Header</th> </tr>

<tr> <td colspan=2> Row 1 Col 1</td> </tr>

<tr> <td rowspan=2>Row 2 Col 1</td>

<td> Row 2 Col2</td> </tr>

<tr> <td> Row 3 Col2</td> </tr>

</table>

67

Table Data and Table Header

Attributes

Column 1 Header Column 2 Header

Row 1 Col 1

Row 2 Col 1
Row 2 Col 2

Row 3 Col 2

68

Special Things to Note

• TH, TD and TR should always have end tags.
Although the end tags are formally optional, many browsers will
mess up the formatting of the table if you omit the end tags. In
particular, you should always use end tags if you have a TABLE
within a TABLE -- in this situation, the table parser gets
hopelessly confused if you don't close your TH, TD and TR
elements.

• A default TABLE has no borders
By default, tables are drawn without border lines. You need the
BORDER attribute to draw the lines.

• By default, a table is flush with the left margin
TABLEs are plopped over on the left margin. If you want
centered tables, You can either: place the table inside a DIV
element with attribute ALIGN="center".
Most current browsers also supports table alignment, using the
ALIGN attribute. Allowed values are "left", "right", or "center", for
example: <TABLE ALIGN="left">. The values "left" and "right"
float the table to the left or right of the page, with text flow
allowed around the table. This is entirely equivalent to IMG
alignment

69

<TABLE BORDER width=“750”>

<TR> <TD colspan=“4” align=“center”>Page

Banner</TD></TR>

<TR> <TD rowspan=“2” width=“25%”>Nav

Links</TD><TD colspan=“2”>Feature

Article</TD> <TD rowspan=“2”

width=“25%”>Linked Ads</TD></TR>

<TR><TD width=“25%”>News Column 1 </TD>

<TD width=“25%”><News Column 2 </TD></TR>

</TABLE>

What will be the output?

70

The Output

71

Frames

 Frames are a relatively new addition to the HTML

standard. First introduced in Netscape
Navigator 2.0.

Objectives:

Upon completing this section, you should be able to:

 Create a Frame based page.

 Work with the Frameset, Frame, and Noframes
elements.

 Use the attributes of the Frames elements to
control the display.

 Set Targets appropriately.

72

Frames

 A framed page is actually made up of multiple
HTML pages. There is one HTML document
that describes how to break up the single
browser window into multiple windowpanes.
Each windowpane is filled with an HTML
document.

 For Example to make a framed page with a
windowpane on the left and one on the right
requires three HTML pages. Doc1.html and
Doc2.html are the pages that contain
content. Frames.html is the page that
describes the division of the single browser
window into two windowpanes.

73

Frames

Doc2.htmlDoc1.html

Frames.html

Doc2.htmlDoc1.html

74

Frame Page Architecture

 A <FRAMESET> element is placed in the html

document before the <BODY> element. The

<FRAMESET> describes the amount of screen real

estate given to each windowpane by dividing the

screen into ROWS or COLS.

 The <FRAMESET> will then contain <FRAME>

elements, one per division of the browser window.

 Note: Because there is no BODY container,

FRAMESET pages can't have background images

and background colors associated with them.

75

Frame Page Architecture

<HTML>

<HEAD>

<TITLE> Framed Page </TITLE>

<FRAMeSET COLS=“23%,77%”>

<FRAME SRC=“Doc1.html”>

<FRAME SRC=“Doc2.html”>

</FRAMeSET >

</HEAD>

</HTML>

76

The Diagram below is a graphical view

of the document described above

FRAMESET COLS=”23%, 77%”

FRAME

NAME=right_pane

SRC= Doc2.html

FRAME

NAME=

left_pane

SRC=Doc1.h

tml

77

<FRAMESET> Container

<FRAMESET> : The FRAMESET element creates
divisions in the browser window in a single direction.
This allows you to define divisions as either rows or
columns.

 ROWS : Determines the size and number of
rectangular rows within a <FRAMESET>. They are
set from top of the display area to the bottom.

Possible values are:

 Absolute pixel units, I.e. “360,120”.

 A percentage of screen height, e.g. “75%,25%”.

 Proportional values using the asterisk (*). This is
often combined with a value in pixels , e.g. “360,*”.

 <Frameset cols=“200,20%,*,2*”>

78

Creating a Frames Page

 COLS: Determines the size and number of
rectangular columns within a <FRAMESET>.
They are set from left to right of the display
area.

Possible values are:

 Absolute pixel units, I.e. “480,160”.

 A percentage of screen width, e.g. “75%,25%”.

 Proportional values using the asterisk (*). This is
often combined with a value in pixels , e.g.
“480,*”.

79

Creating a Frames Page

 FRAMEBORDER : Possible values 0, 1, YES, NO. A
setting of zero will create a borderless frame.

 FRAMESPACING: This attribute is specified in
pixels. If you go to borderless frames you will need
to set this value to zero as well, or you will have a
gap between your frames where the border used to
be.

 BORDER(thickness of the Frame): This attribute
specified in pixels. A setting of zero will create a
borderless frame. Default value is 5.

 BORDERCOLOR: This attribute is allows you
choose a color for your border. This attribute is rarely
used.

80

81

<FRAME>

<FRAME>: This element defines a single frame within a

frameset. There will be a FRAME element for each

division created by the FRAMESET element. This tag

has the following attributes:

 SRC: Required, as it provides the URL for the page that

will be displayed in the frame.

 NAME: Required for frames that will allow targeting by

other HTML documents. Works in conjunction with the

target attribute of the <A>, <AREA>, <BASE>, and

<FORM> tags.

82

<FRAME>

 MARGINWIDTH: Optional attribute stated in pixels.
Determines horizontal space between the
<FRAME> contents and the frame’s borders.

 MARGINHEIGHT: Optional attribute stated in
pixels. Determines vertical space between the
<FRAME> contents and the frame’s borders.

 SCROLLING: Displays a scroll bar(s) in the frame.
Possible values are:

1. Yes – always display scroll bar(s).

2. No – never display scroll bar(s).

3. Auto – browser will decide based on frame
contents.

By default: scrolling is auto.

83

<FRAME>

 NORESIZE: Optional – prevents viewers

from resizing the frame. By default the

user can stretch or shrink the frame’s

display by selecting the frame’s border

and moving it up, down, left, or right.

84

<NOFRAMES>

 <NOFRAMES>: Frame – capable browsers ignore all

HTML within this tag including the contents of the BODY

element. This element does not have any attributes.

<HTML>

<HEAD>

<TITLE> Framed Page </TITLE>

</HEAD>

85

<NOFRAMES>

<FRAMESET COLS="23%,77%">

<FRAME SRC="" NAME="left_pane“>

<FRAME SRC="" NAME="right_pane">

<NOFRAMES>

<P> This is a Framed Page. Upgrade your

browser to support frames.</P>

</NOFRAMES></FRAMESET>

86

Compound FRAMESET Divisions

 In this case a second FRAMESET element will

be inserted in the place of the FRAME element

that would describe the second row.

 The second FRAMESET element will divide the

remaining screen real estate into 2 columns.

 This nested FRAMESET will then be followed by

2 FRAME elements to describe each of the

subsequent frame divisions created.

87

Compound FRAMESET Divisions

<html>

<head>

<title> Compound Frames Page</title>

</head>
<frameset rows=“120,*”>

<frame src=“banner_file.html”
name”banner”>

<frameset cols=“120,*”>

<frame src=“links_file.html”
name=“links”>

<frame src=“content_file.html”
name=“content”>

<noframes>

<p>

Default
message

</p>

</noframes>

</frameset>

</frameset>

</head>

88

Compound FRAMESET Divisions
You may want to create a frames design with a

combination of rows and columns.

Banner File

Contents File
Links

File

89

<HEAD>

<FRAMESET ROWS="25%,50%,25%”

<FRAME SRC="">

<FRAMESET COLS="25%,*">

<FRAME SRC="">

<FRAME SRC="">

</FRAMESET>

<FRAME SRC="">

</FRAMESET>

</HEAD>

Compound FRAMESET

Divisions Example

90

Output

91

92

93

94

Frame Formatting
• Example:

<frameset rows=“20%, *, 20%”>

<frame src=“header.html” noresize

scrolling=no>

<frame src=“body.html”>

<frame src=“navigationbar.html”

noresize scrolling=no>

</frameset>

95

1) <FRAMESET COLS="2*, 3*, 5*">

2) <FRAMESET COLS="150, 20%, *, 3*">

So what are the space-allocation priorities?
Absolute pixel values are always
assigned space first, in order from left to
right. These are followed by percentage
values of the total space. Finally,
proportional values are divided based
upon what space is left.

What do the following mean?

96

<FRAMESET ROWS="*, 2*, *" COLS="2*, *">

<FRAME SRC=“”>

<FRAME SRC=“”>

<FRAME SRC=“”>

<FRAME SRC=“”>

<FRAME SRC=“”>

<FRAME SRC=“”>

</FRAMESET>

What will be the Output?

97

Forms
 Forms add the ability to web pages to not only provide the

person viewing the document with dynamic information but

also to obtain information from the person viewing it, and

process the information.

Objectives:

Upon completing this section, you should be able to

1. Create a FORM.

2. Add elements to a FORM.

3. Define CGI (Common Gateway Interface).
4. Describe the purpose of a CGI Application.

5. Specify an action for the FORM.

 Forms work in all browsers.

 Forms are Platform Independent.

98

Forms
 To insert a form we use the <FORM></FORM> tags. The rest of the

form elements must be inserted in between the form tags.

<HTML> <HEAD>

<TITLE> Sample Form</TITLE>

</HEAD>

<BODY BGCOLOR=“FFFFFF”>

<FORM ACTION = http://www.xnu.com/formtest.asp>

<P> First Name: <INPUT TYPE=“TEXT” NAME=“fname”

MAXLENGTH=“50”> </P>

<P> <INPUT TYPE=“SUBMIT” NAME=“fsubmit1” VALUE=“Send Info”>

</P>

</FORM>

</BODY> </HTML>

http://www.xnu.com/formtest.asp

99

<FORM> element attributes

 ACTION: is the URL of the CGI (Common
Gateway Interface) program that is going to
accept the data from the form, process it, and
send a response back to the browser.

 METHOD: GET (default) or POST specifies
which HTTP method will be used to send the
form’s contents to the web server. The CGI
application should be written to accept the
data from either method.

 NAME: is a form name used by VBScript or

JavaScripts.

 TARGET: is the target frame where the
response page will show up.

100

Form Elements

 Form elements have properties: Text

boxes, Password boxes, Checkboxes,

Option(Radio) buttons, Submit, Reset,

File, Hidden and Image.

 The properties are specified in the

TYPE Attribute of the HTML element

<INPUT></INPUT>.

101

Sami Ali

Al al-Bayt University

102

Form Elements

<INPUT> Element’s Properties

TYPE= Type of INPUT entry field.

NAME = Variable name passed to CGI application

VALUE= The data associated with the variable

name to be passed to the CGI application

CHECKED= Button/box checked

SIZE= Number of visible characters in text field

MAXLENGHT= Maximum number of characters

accepted.

103

Text Box

 Text boxes: Used to provide input fields for text,
phone numbers, dates, etc.

<INPUT TYPE= " TEXT " >

Browser will display

Textboxes use the following attributes:

 TYPE: text.

 SIZE: determines the size of the textbox in
characters. Default=20 characters.

 MAXLENGHT : determines the maximum number
of characters that the field will accept.

 NAME: is the name of the variable to be sent to the
CGI application.

 VALUE: will display its contents as the default value.

104

<TITLE>Form_Text_Type</TITLE>

</HEAD> <BODY>

<h1> Please enter the following
bioData</h1>

<FORM name="fome1" Method= " get " Action= " URL " >

First Name: <INPUT TYPE="TEXT" NAME="FName"

SIZE="15" MAXLENGTH="25">

Last Name: <INPUT TYPE="TEXT" NAME="LName"

SIZE="15" MAXLENGTH="25">

Nationality: <INPUT TYPE="TEXT" NAME="Country"

SIZE="25" MAXLENGTH="25">

The Phone Number: <INPUT TYPE="TEXT" NAME="Phone"

SIZE="15" MAXLENGTH="12">

</FORM> </BODY> </HTML>

Example on Text Box

105

Output

106

 Password: Used to allow entry of passwords.

<INPUT TYPE= " PASSWORD " >

Browser will display

Text typed in a password box is starred out in the browser

display.

Password boxes use the following attributes:

 TYPE: password.

 SIZE: determines the size of the textbox in characters.

 MAXLENGHT: determines the maximum size of the

password in characters.

 NAME: is the name of the variable to be sent to the CGI

application.

 VALUE: is usually blank.

Password

107

<HTML><HEAD>

<TITLE>Form_Password_Type</TITLE></HEAD>

<BODY>

<h1> To Access, Please

enter:</h1>

<FORM name="fome2" Action="url" method="get">

User Name: <INPUT TYPE="TEXT" Name="FName"

SIZE="15" MAXLENGTH="25">

Password: <INPUT TYPE="PASSWORD"

NAME="PWord" value="" SIZE="15”

MAXLENGTH="25">

</FORM></BODY> </HTML>

Example on Password Box

108

Output

109

 Hidden: Used to send data to the CGI
application that you don’t want the web surfer to
see, change or have to enter but is necessary for
the application to process the form correctly.

<INPUT TYPE=“HIDDEN”>

Nothing is displayed in the browser.

Hidden inputs have the following attributes:

 TYPE: hidden.

 NAME: is the name of the variable to be sent to
the CGI application.

 VALUE: is usually set a value expected by the
CGI application.

Hidden

110

Check Box

 Check Box: Check boxes allow the users to select
more than one option.

<INPUT TYPE=“CHECKBOX”>

Browser will display

Checkboxes have the following attributes:

 TYPE: checkbox.

 CHECKED: is blank or CHECKED as the initial

status.

 NAME: is the name of the variable to be sent to the

CGI application.

 VALUE: is usually set to a value.

111

<HTML> <HEAD><TITLE>CheckBoxType</TITLE> </HEAD>

<BODY>

<h1> Please check one of the

following</h1>

<FORM name="fome3" Action="url" method="get">

 Select Country:

jordan:<INPUT TYPE="CheckBox" Name="country"

CHECKED>

Yemen<INPUT TYPE="CheckBox" Name="country">

Qatar:<INPUT TYPE="CheckBox" Name="country">

Select Language:

Arabic:<INPUT TYPE="CheckBox" Name="language"

CHECKED>
 English:<INPUT TYPE="CheckBox"

Name="language">

French:<INPUT TYPE="CheckBox" Name="language">

</FORM> </BODY></HTML>

112

Output

113

 Radio Button: Radio buttons allow the users to select

only one option.

<INPUT TYPE=“RADIO”>

Browser will display

Radio buttons have the following attributes:

 TYPE: radio.

 CHECKED: is blank or CHECKED as the initial

status. Only one radio button can be

checked

 NAME: is the name of the variable to be sent to the

CGI application.

 VALUE: usually has a set value.

Radio Button

114

<HTML> <HEAD><TITLE>CheckBoxType</TITLE> </HEAD>

<BODY>

<h1> Please check one of the

following</h1>

<FORM name="fome3" Action="url" method="get">

 Select Country:

jordan:<INPUT TYPE= "RADIO" Name="country"

CHECKED>

Yemen<INPUT TYPE="RADIO " Name="country">

Qatar:<INPUT TYPE="RADIO" Name="country">

Select Language:

Arabic:<INPUT TYPE="RADIO" Name="language"

CHECKED>
 English:<INPUT TYPE=" RADIO "

Name="language">

French:<INPUT TYPE=" RADIO " Name="language">

</FORM> </BODY></HTML>

115

116

<HTML><HEAD>

<TITLE>RADIOBox</TITLE> </HEAD>

<BODY>

Form #1:

<FORM>

<INPUT TYPE="radio" NAME="choice" VALUE="one"> Yes.

<INPUT TYPE="radio" NAME="choice" VALUE="two"> No.

</FORM>

<HR color=red size="10" >
Form #2:

<FORM>

<INPUT TYPE="radio" NAME="choice" VALUE="three"

CHECKED> Yes.

<INPUT TYPE="radio" NAME="choice" VALUE="four"> No.

</FORM>

</BODY></HTML>

117

Output

118

 Push Button: This element would be used with

JavaScript to cause an action to take place.

<INPUT TYPE=“BUTTON”>

Browser will display

Push Button has the following attributes:

 TYPE: button.

 NAME: is the name of the button to be used

in scripting.

 VALUE: determines the text label on the button.

Push Button

119

<DIV align=center>

<FORM>

<h1>Press Here to see a baby crying:

<INPUT TYPE="button"
VALUE="PressMe">

Click Here to see a baby shouting:

<INPUT TYPE="button" VALUE="ClickMe" >

Hit Here to see a baby eating:

<INPUT TYPE="button" VALUE="HitME" >

</FORM></DIV>

120

121

 Submit: Every set of Form tags requires a Submit
button. This is the element causes the browser to
send the names and values of the other elements to
the CGI Application specified by the ACTION
attribute of the FORM element.

<INPUT TYPE=“SUBMIT”>

The browser will display

Submit has the following attributes:

 TYPE: submit.

 NAME: value used by the CGI script for processing.

 VALUE: determines the text label on the button,
usually Submit Query.

Submit Button

122

<FORM Action="URL" method="get">

First Name: <INPUT TYPE="TEXT" Size=25

name="firstName">

Family Name: <INPUT TYPE="TEXT" Size=25

name="LastName">

Press Here to submit the data:

<INPUT TYPE="submit" VALUE="SubmitData " >

</FORM>

123

124

Reset Button

• Reset: It is a good idea to include one of
these for each form where users are entering
data. It allows the surfer to clear all the input
in the form.

• <INPUT TYPE=“RESET”>

• Browser will display

•

• Reset buttons have the following attributes:

• TYPE: reset.

• VALUE: determines the text label on the
button, usually Reset.

125

<FORM Action="URL" method="get">

First Name: <INPUT TYPE="TEXT" Size=25

name="firstName">

Family Name: <INPUT TYPE="TEXT" Size=25

name="LastName">

Press Here to submit

the data:

<INPUT TYPE="submit" VALUE="SubmitData">

<INPUT TYPE="RESET" VALUE="Reset">

</FORM>

126

127

Image Submit Button

 Image Submit Button: Allows you to substitute

an image for the standard submit button.

<INPUT TYPE=“IMAGE” SRC=“jordan.gif”>

Image submit button has the following attributes:

 TYPE: Image.

 NAME: is the name of the button to be used in

scripting.

 SRC: URL of the Image file.

128

<form>

<H1>

Click to go Jordan’s Map:

<INPUT TYPE="IMAGE" SRC="jordan.gif">

</form>

129

• File Upload: You can use a file upload to allow surfers to

upload files to your web server.

• <INPUT TYPE=“FILE”>

• Browser will display

• File Upload has the following attributes:

• TYPE: file.

• SIZE: is the size of the text box in characters.

• NAME: is the name of the variable to be sent to the

CGI application.

• MAXLENGHT: is the maximum size of the input in the

textbox in characters.

File

130

<BODY bgcolor=lightblue>

<form>

<H3>

Please attach your file here to for uploading to

My SERVER...

<INPUT TYPE="File" name="myFile"
size="30">

<INPUT TYPE="Submit" value="SubmitFile">

</form>

</BODY>

131

Other Elements used in Forms

 <TEXTAREA></TEXTAREA>: is an element

that allows for free form text entry.

Browser will display

Textarea has the following attributes:

 NAME: is the name of the variable to be sent

to the CGI application.

 ROWS: the number of rows to the textbox.

 COLS: the number of columns to the textbox.

132

<BODY bgcolor=lightblue>

<form>

<TEXTAREA COLS=40 ROWS=20

Name="comments" >

From observing the apathy of those

about me during flag raising I

concluded that patriotism if not

actually on the decline is at least

in a state of dormancy.

Written by Khaled Al-Fagih

</TEXTAREA>:

</form>

</BODY>

133

134

135

136

Other Elements used in Forms

 The two following examples are
<SELECT></SELECT> elements, where the
attributes are set differently.

The Select elements attributes are:

 NAME: is the name of the variable to be sent
to the CGI application.

 SIZE: this sets the number of visible choices.

 MULTIPLE: the presence of this attribute
signifies that the user can make multiple
selections. By default only one selection is
allowed.

137

<BODY bgcolor=lightblue>

<form>

Select the cities you have visited:

<SELECT name=“list” size=5>

<option> London</option>

<option> Tokyo</option>

<option> Paris</option>

<option> New York</option>

<option> LA</option>

<option> KL</option>

</SELECT>

</form>

</BODY>

138

139

Other Elements used in Forms

 Drop Down List:

 Name: is the name of the variable to be sent

to the CGI application.

 Size: 1.

140

Other Elements used in Forms

 List Box:

 Name: is the name of the variable to be

sent to the CGI application.

 SIZE: is greater than one.

141

Other Elements used in Forms

 Option

The list items are added to the <SELECT>
element by inserting <OPTION></OPTION>
elements.

The Option Element’s attributes are:

 SELECTED: When this attribute is present,
the option is selected when the document is
initially loaded. It is an error for more than
one option to be selected.

 VALUE: Specifies the value the variable
named in the select element.

142

</HEAD>

<BODY>

<h2>What type of Computer do you

have?<h2>

<FORM>

<SELECT NAME="ComputerType" size=4>

<OPTION value="IBM" SELECTED> IBM</OPTION>

<OPTION value="INTEL"> INTEL</OPTION>

<OPTION value=" Apple"> Apple</OPTION>

<OPTION value="Compaq"> Compaq</OPTION>

</SELECT>

</FORM></BODY></HTML>

143

144

<HEAD> <TITLE>SELECT with Mutiple </TITLE>
</HEAD>

<BODY>

<h2>What type of Computer do you
have?<h2>

<FORM>

<SELECT NAME="ComputerType" size=5 multiple>

<OPTION value="IBM" > IBM</OPTION>

<OPTION value="INTEL"> INTEL</OPTION>

<OPTION value=" Apple"> Apple</OPTION>

<OPTION value="Compaq" SELECTED>
Compaq</OPTION>

<OPTION value=" other"> Other</OPTION>

</SELECT>

</FORM></BODY></HTML>

145

146

 CSS stands for Cascading Style Sheets

 Styles define how to display HTML elements

 Styles were added to HTML 4.0 to solve a
problem

 External Style Sheets can save a lot of work

 A CSS rule has two main parts: a selector, and
one or more declarations:

 The selector is normally the HTML element
you want to style.

 Each declaration consists of a property and a
value.

 The property is the style attribute you want to
change. Each property has a value.

Internal Stylesheet

First we will explore the internal method.

This way you are simply placing the CSS code

within the <head></head> tags of each HTML

file you want to style with the CSS. The format

for this is shown in the example below

 <head>

 <title><title>

 <style type="text/css">

CSS Content Goes Here
 </style>

 </head>

 <body>

With this method each HTML file contains the

CSS code needed to style the page. Meaning

that any changes you want to make to one

page, will have to be made to all. This method

can be good if you need to style only one page,

or if you want different pages to have varying

styles.

p {color:red;text-align:center;}

 <html>

 <head>

 <style type="text/css">

 h1 {color:red;}

 h2 {color:blue;}

 p {color:green;}

 </style>

 </head>

 <body>

 <h1>All header 1 elements will be red</h1>

 <h2>All header 2 elements will be blue</h2>

 <p>All text in paragraphs will be green.</p>

 </body>

 </html>

 1

JavaScript Introduction

JavaScript was released by Netscape and Sun Microsystems in

1995. However, JavaScript is not the same thing as Java.

JavaScript is the most popular scripting language on the internet, and

works in all major browsers, such as Internet Explorer, Firefox, Chrome,

Opera, and Safari.

What is JavaScript?

 JavaScript was designed to add interactivity to HTML pages

 JavaScript is a scripting language

 A scripting language is a lightweight programming language

 JavaScript is usually embedded directly into HTML pages

 JavaScript is an interpreted language (means that scripts execute

without preliminary compilation)

Put a JavaScript into an HTML page

To insert a JavaScript into an HTML page, we use the <script> tag.

Inside the <script> tag we use the type attribute to define the scripting

language.

<script type="text/JavaScript">

...some JavaScript

</script

Installation is not required, nor do you have to torturously work through

any odd library path configurations. JavaScript works, straight out of the

box and in most web browsers, including the big four: Firefox, Internet

Explorer, Opera, and Safari. All you need to do is add a scripting block,

and you’re in business.

The document.write command is a standard JavaScript command for

writing output to a page.

By entering the document.write command between the <script> and

</script> tags, the browser will recognize it as a JavaScript command and

execute the code line. In this case the browser will write Hello World! to

the page

 2

<script type="text/javascript">

document.write("Hello World!");

</script>

The example below shows how to add HTML tags to the JavaScript:

document.write("<h1>Hello World!</h1>");

JavaScript is a sequence of statements to be executed by the browser.

JavaScript is Case Sensitive

Unlike HTML, JavaScript is case sensitive - therefore watch your

capitalization closely when you write JavaScript statements, create or call

variables, objects and functions.

JavaScript Statements

A JavaScript statement is a command to a browser. The purpose of

the command is to tell the browser what to do. This JavaScript statement

tells the browser to write "Hello Dolly" to the web page.

It is normal to add a semicolon at the end of each executable statement.

Most people think this is a good programming practice, and most often

you will see this in JavaScript examples on the web.

The semicolon is optional (according to the JavaScript standard),

and the browser is supposed to interpret the end of the line as the end of

the statement. Because of this you will often see examples without the

semicolon at the end.

JavaScript code (or just JavaScript) is a sequence of JavaScript

statements. Each statement is executed by the browser in the sequence

they are written.

This example will write a heading and two paragraphs to a web page:

<script type="text/javascript">

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

</script>

 3

JavaScript Blocks

JavaScript statements can be grouped together in blocks. Blocks

start with a left curly bracket {, and ends with a right curly bracket }.

The purpose of a block is to make the sequence of statements execute

together.

This example will write a heading and two paragraphs to a web page

<script type="text/javascript">

{

document.write("<h1>This is a heading</h1>");

document.write("<p>This is a paragraph.</p>");

document.write("<p>This is another paragraph.</p>");

}

</script>

The example above is not very useful. It just demonstrates the use of a

block. Normally a block is used to group statements together in a function

or in a condition (where a group of statements should be executed if a

condition is met).

JavaScript Variables

Variables in JavaScript are much like those in any other language;

you use them to hold values in such a way that the values can be

explicitly accessed in different places in the code. Each has an identifier

that is unique to the scope of use, consisting of any combination of

letters, digits, underscores, and dollar signs. An identifier

Rules for JavaScript variable names:

 Variable names are case sensitive (y and Y are two different

variables)

 Variable names must begin with a letter or the underscore character

Table JavaScript keyword

 4

Creating JavaScript Variables

Creating variables in JavaScript is most often referred to as "declaring"

variables.

You can declare JavaScript variables with the var keyword:

var x;

var carname;

After the declaration shown above, the variables are empty (they have no

values yet).

However, you can also assign values to the variables when you declare

them:

var x=5;

var carname="Volvo";

After the execution of the statements above, the variable x will hold the

value 5, and carname will hold the value Volvo.

Note: When you assign a text value to a variable, use quotes around the

value.

 5

The following snippet of code assigns a string literal containing a line-

terminator escape sequence to a variable. When the string is used in a

dialog window, the escape sequence, \n, is interpreted literally, and a

newline is published:

var string_value = "This is the first line\nThis is the second line";

This results in:

This is the first line

This is the second line

Redeclaring JavaScript Variables

If you re declare a JavaScript variable, it will not lose its original value.

Var x=5;

var x;

After the execution of the statements above, the variable x will still have

the value of 5. The value of x is not reset (or cleared) when you redeclare

it.

JavaScript Arithmetic

As with algebra, you can do arithmetic operations with JavaScript

variables:

y=x-5;

z=y+5;

You will learn more about the operators that can be used in the next

chapter of this tutorial.

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic between variables

and/or values.

Given that y=5, the table below explains the arithmetic operators:

Operator Description Example Result

+ Addition x=y+2 x=7

- Subtraction x=y-2 x=3

 6

* Multiplication x=y*2 x=10

/ Division x=y/2 x=2.5

% Modulus (division

remainder)

x=y%2 x=1

++ Increment x=++y x=6

-- Decrement x=--y x=4

JavaScript Assignment Operators

Assignment operators are used to assign values to JavaScript variables.

Given that x=10 and y=5, the table below explains the assignment

operators:

Operator Example Same As Result

= x=y x=5

+= x+=y x=x+y x=15

-= x-=y x=x-y x=5

= x=y x=x*y x=50

/= x/=y x=x/y x=2

%= x%=y x=x%y x=0

The + Operator Used on Strings

The + operator can also be used to add string variables or text values

together.

To add two or more string variables together, use the + operator.

txt1="What a very";

txt2="nice day";

txt3=txt1+txt2;

After the execution of the statements above, the variable txt3 contains

"What a verynice day".

 7

To add a space between the two strings, insert a space into one of the

strings:

txt1="What a very ";

txt2="nice day";

txt3=txt1+txt2;

or insert a space into the expression:

txt1="What a very";

txt2="nice day";

txt3=txt1+" "+txt2;

After the execution of the statements above, the variable txt3 contains:

"What a very nice day"

Adding Strings and Numbers

The rule is: If you add a number and a string, the result will be a string!

Example

x=5+5;

document.write(x);

x="5"+"5";

document.write(x);

x=5+"5";

document.write(x);

x="5"+5;

document.write(x);

JavaScript Comparison and Logical Operators

Comparison and Logical operators are used to test for true or false.

 Given that x=5, the table below explains the comparison operators:

Operator Description Example

== is equal to x==8 is false

=== is exactly equal to (value and

type)

x===5 is true

x==="5" is false

 8

!= is not equal x!=8 is true

> is greater than x>8 is false

< is less than x<8 is true

>= is greater than or equal to x>=8 is false

<= is less than or equal to x<=8 is true

Logical Operators

Logical operators are used to determine the logic between variables or

values.

Given that x=6 and y=3, the table below explains the logical operators:

Operator Description Example

&& And (x < 10 && y > 1) is true

|| Or (x==5 || y==5) is false

! Not !(x==y) is true

Conditional Operator

JavaScript also contains a conditional operator that assigns a value to a

variable based on some condition.

Syntax

variablename=(condition)?value1:value2

Conditional Statements

Very often when you write code, you want to perform different actions

for different decisions. You can use conditional statements in your code

to do this.

In JavaScript we have the following conditional statements:

 if statement - use this statement to execute some code only if a

specified condition is true

 if...else statement - use this statement to execute some code if the

condition is true and another code if the condition is false

 9

 if...else if....else statement - use this statement to select one of

many blocks of code to be executed

 switch statement - use this statement to select one of many blocks

of code to be executed

If Statement

Use the if statement to execute some code only if a specified condition is

true.

Syntax

If (condition)

 {

 code to be executed if condition is true }

Note that if is written in lowercase letters. Using uppercase letters (IF)

will generate a JavaScript error!

<script type="text/javascript">

//Write a "Good morning" greeting if

//the time is less than 10

var d=new Date();

var time=d.getHours();

if (time<10)

 {

 document.write("Good morning"); }

</script>

Notice that there is no ..else.. in this syntax. You tell the browser to

execute some code only if the specified condition is true.

If...else Statement

Use the if....else statement to execute some code if a condition is true and

another code if the condition is not true.

Syntax

if (condition)

 {

 code to be executed if condition is true

 }

else

 {

 10

 code to be executed if condition is not true

 }

If...else if...else Statement

Use the if....else if...else statement to select one of several blocks of code

to be executed.

Syntax

if (condition1)

 {

 code to be executed if condition1 is true

 }

else if (condition2)

 {

 code to be executed if condition2 is true

 }

else

 {

 code to be executed if condition1 and condition2 are not true

 }

The JavaScript Switch Statement

Use the switch statement to select one of many blocks of code to be

executed.

Syntax

switch(n)

{

case 1:

 execute code block 1

 break;

case 2:

 execute code block 2

 break;

default:

 code to be executed if n is different from case 1 and 2

}

 11

This is how it works: First we have a single expression n (most often a

variable), that is evaluated once. The value of the expression is then

compared with the values for each case in the structure. If there is a

match, the block of code associated with that case is executed. Use break

to prevent the code from running into the next case automatically.

Example

<script type="text/javascript">

//You will receive a different greeting based

//on what day it is. Note that Sunday=0,

//Monday=1, Tuesday=2, etc.

var d=new Date();

theDay=d.getDay();

switch (theDay)

{

case 5:

 document.write("Finally Friday");

 break;

case 6:

 document.write("Super Saturday");

 break;

case 0:

 document.write("Sleepy Sunday");

 break;

default:

 document.write("I'm looking forward to this weekend!");

}

</script>

JavaScript Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and

Prompt box.

Alert Box

An alert box is often used if you want to make sure information comes

through to the user.

When an alert box pops up, the user will have to click "OK" to proceed.

Syntax

Alert("sometext");

 12

Confirm Box

A confirm box is often used if you want the user to verify or accept

something.

When a confirm box pops up, the user will have to click either "OK" or

"Cancel" to proceed.

If the user clicks "OK", the box returns true. If the user clicks "Cancel",

the box returns false.

Syntax

confirm("sometext");

Prompt Box

A prompt box is often used if you want the user to input a value before

entering a page.

When a prompt box pops up, the user will have to click either "OK" or

"Cancel" to proceed after entering an input value.

If the user clicks "OK" the box returns the input value. If the user clicks

"Cancel" the box returns null.

Syntax

prompt("sometext","defaultvalue");

JavaScript Functions

A function will be executed by an event or by a call to the function. To

keep the browser from executing a script when the page loads, you can

put your script into a function.

A function contains code that will be executed by an event or by a call to

the function.

You may call a function from anywhere within a page (or even from

other pages if the function is embedded in an external .js file).

Functions can be defined both in the <head> and in the <body> section of

a document. However, to assure that a function is read/loaded by the

browser before it is called, it could be wise to put functions in the <head>

section.

 13

How to Define a Function

Syntax

function functionname(var1,var2,...,varX)

{

some code

}

The parameters var1, var2, etc. are variables or values passed into the

function. The { and the } defines the start and end of the function.

Note: A function with no parameters must include the parentheses () after

the function name.

Note: Do not forget about the importance of capitals in JavaScript! The

word function must be written in lowercase letters, otherwise a JavaScript

error occurs! Also note that you must call a function with the exact same

capitals as in the function name.

Example

<html>

<head>

<script type="text/javascript">

function displaymessage()

{

alert("Hello World!"); }

</script>

</head>

<body>

<form>

<input type="button" value="Click me!" onclick="displaymessage()" />

</form>

</body>

</html>

If the line: alert("Hello world!!") in the example above had not been put

within a function, it would have been executed as soon as the page was

loaded. Now, the script is not executed before a user hits the input button.

The function displaymessage() will be executed if the input button is

clicked.

You will learn more about JavaScript events in the JS Events chapter.

 14

The return Statement

The return statement is used to specify the value that is returned from the

function.So, functions that are going to return a value must use the return

statement. The example below returns the product of two numbers (a and

b):

Example

<html>

<head>

<script type="text/javascript">

function product(a,b)

{

return a*b;

}

</script>

</head>

<body>

<script type="text/javascript">

document.write(product(4,3));

</script></body> </html>

The Lifetime of JavaScript Variables

If you declare a variable within a function, the variable can only be

accessed within that function. When you exit the function, the variable is

destroyed. These variables are called local variables. You can have local

variables with the same name in different functions, because each is

recognized only by the function in which it is declared.

If you declare a variable outside a function, all the functions on your page

can access it. The lifetime of these variables starts when they are <html>

Example

<head>

<script type="text/javascript">

function myfunction(txt)

{ alert(txt);}

 15

</script> </head> <body>

<form>

<input type="button" onclick="myfunction('Hello')" value="Call

function">

</form>

<p>By pressing the button above, a function will be called with "Hello"

as a parameter. The function will alert the parameter.</p>

</body> </html>

JavaScript Loops

Often when you write code, you want the same block of code to run over

and over again in a row. Instead of adding several almost equal lines in a

script we can use loops to perform a task like this.

In JavaScript, there are two different kind of loops:

 for - loops through a block of code a specified number of times

 while - loops through a block of code while a specified condition is

true

The for Loop

The for loop is used when you know in advance how many times the

script should run.

Syntax

 for (var=startvalue;var<=endvalue;var=var+increment)

 {

 code to be executed

 }

The while Loop

The while loop loops through a block of code while a specified condition

is true.

 16

Syntax

while (var<=endvalue)

 {

 code to be executed

 }

The do...while Loop

The do...while loop is a variant of the while loop. This loop will execute

the block of code ONCE, and then it will repeat the loop as long as the

specified condition is true.

Syntax

do

 {

 code to be executed

 }

while (var<=endvalue);

The break Statement

The break statement will break the loop and continue executing the code

that follows after the loop (if any).

The continue Statement

The continue statement will break the current loop and continue with the

next value

What is an Array?

An array is a special variable, which can hold more than one value,

at a time. If you have a list of items (a list of car names, for example),

storing the cars in single variables could look like this:

cars1="Saab";

cars2="Volvo";

cars3="BMW";

 17

However, what if you want to loop through the cars and find a specific

one? And what if you had not 3 cars, but 300?

The best solution here is to use an array! An array can hold all your

variable values under a single name. And you can access the values by

referring to the array name. Each element in the array has its own ID so

that it can be easily accessed.

JavaScript For...In Statement

The for...in statement loops through the elements of an array or through

the properties of an object.

Syntax

for (variable in object)

 {

 code to be executed

 }

Create an Array

An array can be defined in three ways. The following code creates an

Array object called myCars

1:

var myCars=new Array(); // regular array (add an optional integer

myCars[0]="Saab"; // argument to control array's size)

myCars[1]="Volvo";

myCars[2]="BMW";

2:

var myCars=new Array("Saab","Volvo","BMW"); // condensed

array

3:

 18

var myCars=["Saab","Volvo","BMW"]; // literal array

Note: If you specify numbers or true/false values inside the array then the

variable type will be Number or Boolean, instead of String.

Access an Array

You can refer to a particular element in an array by referring to the name

of the array and the index number. The index number starts at 0. The

following code line:

document.write(myCars[0]);

will result in the following output: Saab

Modify Values in an Array

To modify a value in an existing array, just add a new value to the array

with a specified index number:

myCars[0]="Opel";

Now, the following code line:

document.write(myCars[0]);

will result in the following output: Opel

Arrays - concat()

var parents = ["Jani", "Tove"];

var children = ["Cecilie", "Lone"];

var family = parents.concat(children);

document.write(family);

Insert Special Characters

The backslash (\) is used to insert apostrophes, new lines, quotes, and

other special characters into a text string.

Look at the following JavaScript code:

var txt="We are the so-called "Vikings" from the north.";

http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_concat

 19

document.write(txt);

In JavaScript, a string is started and stopped with either single or double

quotes. This means that the string above will be chopped to: We are the

so-called

To solve this problem, you must place a backslash (\) before each double

quote in "Viking". This turns each double quote into a string literal:

var txt="We are the so-called \"Vikings\" from the north.";

document.write(txt);

JavaScript will now output the proper text string: We are the so-called

"Vikings" from the north.

Here is another example:

document.write ("You \& I are singing!");

The example above will produce the following output:

You & I are singing!

The table below lists other special characters that can be added to a text

string with the backslash sign:

Code Outputs

\' single quote

\" Double quote

\& ampersand

\\ backslash

\n new line

\r carriage return

\t Tab

\b backspace

\f form feed

 20

String object

1- Return the length of a string

 var txt = "Hello World!"; document.write(txt.length);

2- Style strings

var txt = "Hello World!";

document.write("<p>Big: " + txt.big() + "</p>");

document.write("<p>Bold: " + txt.bold() + "</p>");

document.write("<p>Italic: " + txt.italics() + "</p>");

3- The toLowerCase() and toUpperCase() methods

 var txt="Hello World!";

document.write(txt.toLowerCase() + "
");

document.write(txt.toUpperCase());

4- The match() method

 var str="Hello world!";

document.write(str.match("world") + "
");

document.write(str.match("World") + "
");

5- Replace characters in a string - replace()

var str="Visit Microsoft!";

document.write(str.replace("Microsoft"," Schools"));

6- The indexOf() method: How to return the position of the first found

occurrence of a specified value in a string.

 var str="Hello world!";

document.write(str.indexOf("d") + "
");

http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_length_string
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_str_style
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_lower_upper
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_match
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_replace
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_indexof

 21

document.write(str.indexOf("world"));

The try...catch Statement

The try...catch statement allows you to test a block of code for errors. The

try block contains the code to be run, and the catch block contains the

code to be executed if an error occurs.

Syntax

Try

 {

 //Run some code here

 }

catch(err)

 {

 //Handle errors here

 }

Note that try...catch is written in lowercase letters. Using uppercase

letters will generate a JavaScript error!

Create a Date Object

The Date object is used to work with dates and times. Date objects are

created with the Date() constructor. There are four ways of instantiating a

date:

new Date() // current date and time

Once a Date object is created, a number of methods allow you to operate

on it. Most methods allow you to get and set the year, month, day, hour,

minute, second, and milliseconds of the object, using either local time or

UTC (universal, or GMT) time.

All dates are calculated in milliseconds from 01 January, 1970 00:00:00

Universal Time (UTC) with a day containing 86,400,000 milliseconds.

Some examples of instantiating a date:

today = new Date()

d1 = new Date("October 13, 1975 11:13:00")

d2 = new Date(79,5,24)

d3 = new Date(79,5,24,11,33,0)

 22

Set Dates

We can easily manipulate the date by using the methods available

for the Date object. In the example below we set a Date object to a

specific date (14th January 2010):

var myDate=new Date();

myDate.setFullYear(2010,0,14);

And in the following example we set a Date object to be 5 days into the

future:

var myDate=new Date();

myDate.setDate(myDate.getDate()+5);

Note: If adding five days to a date shifts the month or year, the changes

are handled automatically by the Date object itself!

Compare Two Dates

The Date object is also used to compare two dates. The following

example compares today's date with the 14th January 2010:

var myDate=new Date();

myDate.setFullYear(2010,0,14);

var today = new Date();

if (myDate>today)

 {

 alert("Today is before 14th January 2010");

 }

else

 {

 alert("Today is after 14th January 2010");

 }

JavaScript Math Object

round()

How to use round().

http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_round

 23

document.write(Math.round(0.60) + "
");

random()

How to use random() to return a random number between 0 and 1.

//return a random number between 0 and 1

document.write(Math.random() + "
");

//return a random integer between 0 and 10

document.write(Math.floor(Math.random()*11));

max()

How to use max() to return the number with the highest value of two

specified numbers.

document.write(Math.max(0,150,30,20,38) + "
");

document.write(Math.max(-5,10) + "
");

min()

How to use min() to return the number with the lowest value of two

specified numbers.

document.write(Math.min(-5,-10) + "
");

document.write(Math.min(1.5,2.5));

 Method of object

Function Description Returned Values

getDate() Day of the month 1-31

getDay() Day of the week (integer) 0-6

getFullYear() Year (full four digit) 1900+

getHours() Hour of the day (integer) 0-23

getMilliseconds() Milliseconds (since last second) 0-999

getMinutes() Minutes (since last hour) 0-59

getMonth() Month 0-11

getSeconds() Seconds (since last minute) 0-59

getTime() Number of milliseconds since 1

http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_random
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_max
http://www.w3schools.com/jsref/tryit.asp?filename=tryjsref_min

 24

January 1970

getTimezoneOffset() Difference between local time

and GMT in minutes

0-1439

getYear() Year 0-99 for years between 1900-

1999

Four digit for 2000+

parse() Returns the number of

milliseconds since midnight 1

January 1970 for a given date

and time string passed to it.

setDate()

Sets the day, given a number

between 1-31

Date in milliseconds

setFullYear()

Sets the year, given a four digit

number

Date in milliseconds

setHours()

Sets the hour, given a number

between 0-23

Date in milliseconds

setMilliseconds()

Sets the milliseconds, given a

number

Date in milliseconds

setMinutes()

Sets the minutes, given a number

between 0-59

Date in milliseconds

setMonth()

Sets the month, given a number

between 0-11

Date in milliseconds

setSeconds()

Sets the seconds,l given a

number between 0-59

Date in milliseconds

setTime() Sets the date, given the number

of milliseconds since 1 January

1970

Date in milliseconds

setYear() Sets the year, given either a two

digit or four digit number

Date in milliseconds

toGMTString()

toUTCString()

GMT date and time as a string day dd mmm yyyy hh:mm:ss

GMT

toLocaleString() Local date and time as a string Depends on operating system,

locale, and browser

toString() Local date and time as a string Depends on operating system,

locale, and browser

UTC() Returns the number of

milliseconds since 1 January

1970 for a given date in year,

month, day (and optionally,

hours, minutes, seconds, and

milliseconds)

Date in milliseconds

valueOf() Number of milliseconds since 1

January 1970

Date in milliseconds

 25

JavaScript Form Validation

There's nothing more troublesome than receiving orders, guestbook

entries, or other form submitted data that are incomplete in some way.

You can avoid these headaches once and for all with JavaScript's amazing

way to combat bad form data with a technique called "form validation".

JavaScript document.getElementById

JavaScript getElementById

Have you ever tried to use JavaScript to do some form validation? Did

you have any trouble using JavaScript to grab the value of your text field?

There's an easy way to access any HTML element, and it's through the

use of id attributes and the getElementById function.

If you want to quickly access the value of an HTML input give it an id to

make your life a lot easier. This small script below will check to see if

there is any text in the text field "myText". The argument that

getElementById requires is the id of the HTML element you wish to

utilize.

<script type="text/javascript">

function notEmpty(){

 var myTextField = document.getElementById('myText');

 if(myTextField.value != "")

 alert("You entered: " + myTextField.value)

 else

 alert("Would you please enter some text?")

}

</script>

<input type='text' id='myText' />

<input type='button' onclick='notEmpty()' value='Form Checker' />

The innerHTML property can be used to modify your document's

HTML on the fly.

When you use innerHTML, you can change the page's content without

refreshing the page. This can make your website feel quicker and more

responsive to user input.

The innerHTML property is used along with getElementById

within your JavaScript code to refer to an HTML element and change its

contents.

The innerHTML property is not actually part of the official DOM

specification. Despite this, it is supported in all major browsers, and has

had widespread use across the web for many years. DOM, which stands

for Document Object Model, is the hierarchy that you can use to access

and manipulate HTML objects from within your JavaScript.

 26

The innerHTML Syntax

The syntax for using innerHTML goes like this:

document.getElementById('{ID of

element}').innerHTML = '{content}';

In this syntax example, {ID of element} is the ID of an HTML

element and {content} is the new content to go into the element.

Basic innerHTML Example

Here's a basic example to demonstrate how innerHTML works.

This code includes two functions and two buttons. Each function displays

a different message and each button triggers a different function.

In the functions, the getElementById refers to the HTML element by

using its ID. We give the HTML element an ID of "myText" using

id="myText".

So in the first function for example, you can see that
document.getElementById('myText').innerHTML =

'Thanks!'; is setting the innerHTML of the "myText" element to

"Thanks!".

Code:

<script type="text/javascript">

function Msg1(){

 document.getElementById('myText').innerHTML = 'Thanks!';

}

function Msg2(){

 document.getElementById('myText').innerHTML = 'Try message 1

again...';

}

</script>

<input type="button" onclick="Msg1()" value="Show Message 1" />

<input type="button" onclick="Msg2()" value="Show Message 2" />

<p id="myText"></p>

Result:

Thanks!

Example 2: innerHTML With User Input

Here's an example of using innerHTML with a text field. Here, we

display whatever the user has entered into the input field.

Code:

<script type="text/javascript">

function showMsg(){

 var userInput = document.getElementById('userInput').value;

 document.getElementById('userMsg').innerHTML = userInput;

}

</script>

 27

<input type="input" maxlength="40" id="userInput"

 onkeyup="showMsg()" value="Enter text here..." />

<p id="userMsg"></p>

Result:

Example 3: Formatting with getElementById

In this example, we use the getElementById property to detect the

color that the user has selected. We can then use style.color to

apply the new color. In both cases, we refer to the HTML elements by

their ID (using getElementById.)

Code:

<script type="text/javascript">

function changeColor(){

 var newColor = document.getElementById('colorPicker').value;

 document.getElementById('colorMsg').style.color = newColor;

}

</script>

<p id="colorMsg">Choose a color...</p>

<select id="colorPicker" onchange="JavaScript:changeColor()">

<option value="#000000">Black</option>

<option value="#000099">Blue</option>

<option value="#990000">Red</option>

<option value="#009900">Green</option>

</select>

Result:

Choose a color...

String Search Function

This string function takes a regular expression and then examines that

string to see if there are any matches for that expression. If there is a

match , it will return the position in the string where the match was found.

If there isn't a match, it will return -1. We won't be going into great depth

about regular expressions, but we will show you how to search for words

in a string.

Search Function Regular Expression

The most important thing to remember when creating a regular

expression is that it must be surrounded with slashes /regular

expression/. With that knowledge let's search a string to see if a common

name "Alex" is inside it.

<script type="text/javascript">

var myRegExp = /Alex/;

var string1 = "Today John went to the store and talked with Alex.";

var matchPos1 = string1.search(myRegExp);

 28

if(matchPos1 != -1)

 document.write("There was a match at position " +

matchPos1);

else

 document.write("There was no match in the first string");

</script>

The quickest way to check if an input's string value is all numbers is to

use a regular expression /^[0-9]+$/ that will only match if the string is all

numbers and is at least one character long.

JavaScript Code:

// If the element's string matches the regular expression it is all

numbers.

 var numericExpression = /^[0-9]+$/;

What we're doing here is using JavaScript existing framework to have it

do all the hard work for us. Inside each string is a function called match

that you can use to see if the string matches a certain regular expression.

We accessed this function like so: elem.value.match(expressionhere).

We wanted to see if the input's string was all numbers so we made a

regular expression to check for numbers [0-9] and stored it as

numericExpression.

We then used the match function with our regular expression. If it is

numeric then match will return true, making our if statement pass the test

and our function isNumeric will also return true. However, if the

expression fails because there is a letter or other character in our input's

string then we'll display our helperMsg and return false.

 if(elem.value.match(numericExpression)){

 return true;

 else return false;

charAt

charAt() gives you the character at a certain position. For instance,

when you do

var b = 'I am a JavaScript hacker.'

document.write(b.charAt(5))

split

split() does not work in Netscape 2 and Explorer 3.

split() is a specialized method that you need sometimes. It allows you to

split a string at the places of a certain character. You must put the result

in an array, not in a simple variable. Let's split b on the spaces.

 29

var b = 'I am a JavaScript hacker.'

var temp = new Array();

temp = b.split(' ');

Now the string has been split into 5 strings that are placed in the array

temp. The spaces themselves are gone.

temp[0] = 'I';

temp[1] = 'am';

temp[2] = 'a';

temp[3] = 'JavaScript';

temp[4] = 'hacker.';

Changing HTML with innerHTML

You can also insert HTML into your elements in the exact same way.

Let's say we didn't like the text that was displayed in our paragraph and

wanted to updated it with some color. The following code will take the

old black text and make it bright white. The only thing we're doing

different here is inserting the html element span to change the color.

JavaScript Code:

 var oldHTML =

document.getElementById('para').innerHTML;

Form Validation - Checking for All Letters

This function will be identical to isNumeric except for the change to the

regular expression we use inside the match function. Instead of checking

for numbers we will want to check for all letters.

If we wanted to see if a string contained only letters we need to specify an

expression that allows for both lowercase and uppercase letters: /^[a-zA-

Z]+$/ .

JavaScript Code:

// If the element's string matches the regular expression it is all letters

function isAlphabet(elem, helperMsg){

 var alphaExp = /^[a-zA-Z]+$/;

 if(elem.value.match(alphaExp)){

 return true;

 }else{

 alert(helperMsg);

 elem.focus();

 return false;

 }

}

Form Validation - Restricting the Length

 30

Being able to restrict the number of characters a user can enter into a field

is one of the best ways to prevent bad data. For example, if you know that

the zip code field should only be 5 numbers you know that 2 numbers is

not sufficient.

Below we have created a lengthRestriction function that takes a text field

and two numbers. The first number is the minimum number of characters

and the second is the maximum number of a characters the input can be.

If you just want to specify an exact number then send the same number

for both minimum and maximum.

JavaScript Code:

function lengthRestriction(elem, min, max){

 var uInput = elem.value;

 if(uInput.length >= min && uInput.length <= max){

 return true;

 }else{

 alert("Please enter between " +min+ " and " +max+ "

characters");

 elem.focus();

 return false;

 }

}

Form Validation - Email Validation

And for our grand finale we will be showing you how to check to see if a

user's email address is valid. Every email is made up for 5 parts:

A combination of letters, numbers, periods, hyphens, plus signs, and/or

underscores

The at symbol @

A combination of letters, numbers, hyphens, and/or periods

A period

The top level domain (com, net, org, us, gov, ...)

Valid Examples:

bobby.jo@filltank.net

jack+jill@hill.com

the-stand@steven.king.com

Invalid Examples:

@deleted.net - no characters before the @

free!dom@bravehe.art - invalid character !

shoes@need_shining.com - underscores are not allowed in the domain

name

The regular expression to check for all of this is a little overkill and

beyond the scope of this tutorial to explain thoroughly. However, test it

out and you'll see that it gets the job done

 31

External JavaScript File

You can place all your scripts into an external file (with a .js extension),

then link to that file from within your HTML document. This is handy if

you need to use the same scripts across multiple HTML pages, or a whole

website.

To link to an external JavaScript file, you add a src attribute to your

HTML script tag and specify the location of the external JavaScript

file.

Linking to an external JavaScript file

<script type="text/javascript"

src="external_javascript.js"></script>

Contents of your external JavaScript file

The code in your .js file should be no different to the code you would

normally have placed in between the script tags. But remember, you don't

need to create script tag again - it is already on the HTML page calling

the external file!

In the previous lesson, we used an event handler to trigger off a call to

our function. There are 18 event handlers that you can use to link your

HTML elements to a piece of JavaScript.

When you write a JavaScript function, you will need to determine when it

will run. Often, this will be when a user does something like click or

hover over something, submit a form, double clicks on something etc.

These are examples of events.

Using JavaScript, you can respond to an event using event handlers. You

can attach an event handler to the HTML element for which you want to

respond to when a specific event occurs.

For example, you could attach JavaScript's onMouseover event handler to

a button and specify some JavaScript to run whenever this event occurs

against that button.

The HTML 4 specification refers to these as intrinsic events and defines

18 as listed below:

Event

Handler

Event that it handles

onBlur User has left the focus of the object. For example,

they clicked away from a text field that was

previously selected.

onChange User has changed the object, then attempts to leave

that field (i.e. clicks elsewhere).

onClick User clicked on the object.

 32

Event

Handler

Event that it handles

onDblClick User clicked twice on the object.

onFocus User brought the focus to the object (i.e. clicked on

it/tabbed to it)

onKeydown A key was pressed over an element.

onKeyup A key was released over an element.

onKeypress A key was pressed over an element then released.

onLoad The object has loaded.

onMousedown The cursor moved over the object and mouse/pointing

device was pressed down.

onMouseup The mouse/pointing device was released after being

pressed down.

onMouseover The cursor moved over the object (i.e. user hovers the

mouse over the object).

onMousemove The cursor moved while hovering over an object.

onMouseout The cursor moved off the object

onReset User has reset a form.

onSelect User selected some or all of the contents of the object.

For example, the user selected some text within a text

field.

onSubmit User submitted a form.

onUnload User left the window (i.e. user closes the browser

window).

The events in the above table provide you with many opportunities to

trigger some JavaScript from within your HTML code.

I encourage you to bookmark this page as a reference - later on you may

need a reminder of which events you can use when solving a particular

coding issue.

Sometimes, you may need to call some JavaSript from within a link.

Normally, when you click a link, the browser loads a new page (or

refreshes the same page).

This might not always be desirable. For example, you might only want to

dynamically update a form field when the user clicks a link.

JavaScript "On Double Click"

You could just have easily used another event to trigger the same

JavaScript. For example, you could run JavaScript only when the double

 33

clicks the HTML element. We can do this using the onDblClick event

handler.

Code:
<input type="button" onDblClick="alert('Hey,

remember to tell your friends about

Quackit.com!');" value="Double Click Me!" />

To prevent the load from refreshing, you could use the JavaScript void()

function and pass a parameter of 0 (zero).

Example of void(0):

We have a link that should only do something (i.e. display a message)

upon two clicks (i.e. a double click). If you click once, nothing should

happen. We can specify the double click code by using JavaScript's

"ondblclick" method. To prevent the page reloading upon a single click,

we can use "JavaScript:void(0);" within the anchor link.

Code:
<a href="JavaScript:void(0);"

ondblclick="alert('Well done!')">Double Click

Me!

Result:

Double Click Me!

Same Example, but without void(0):

Look at what would happen if we didn't use "JavaScript:void(0);" within

the anchor link...

Code:
<a href="" ondblclick="alert('Well

done!')">Double Click Me!

Result:

Double Click Me!

Did you notice the page refresh as soon you clicked the link. Even if you

double clicked and triggered the "ondbclick" event, the page still reloads!

Note: Depending on your browser, your browser might have redirected

you to the "/javascript/tutorial/" index page. Either way, JavaScript's

"void()" method will prevent this from happening.

Void(0) can become useful when you need to call another function that

may have otherwise resulted in an unwanted page refresh.

Refresh code In JavaScript, you refresh the page using

location.reload.

This code can be called automatically upon an event or simply when the

user clicks on a link.

Example JavaScript Refresh code

Typing this code:

javascript:void(0);

 34

<!-- Codes by Quackit.com -->

Refresh this page

You can use JavaScript to automatically open print dialogue box so that

users can print the page. Although most users know they can do

something like "File > Print", a "Print this page" option can be nice, and

may even encourage users to print the page. Also, this code can be

triggered automatically upon loading a printer friendly version.

Creating a "Print this page"

The following code creates a hyperlink and uses the Javascript print

function to print the current page:
Print this

page

Open a new window in javascript

One of the more common requests I see is how to open a new Javascript

window with a certain feature/argument. The Window.open method has

been available since Netscape 2.0 (Javascript 1.0), but additional window

decoration features have been added to the syntax since then.

Syntax

window.open([URL], [Window Name], [Feature List], [Replace]);

where:

[URL] Optional. Specifies the URL of the new window. If no

URL is given, the window opens with no page loaded.

[Window Name] Optional. Specifies a name for the window. This

name can be used to reference the window as a destination for a

hyperlink using the HTML TARGET attribute.

[Features] Optional. Comma separated strings specifying the

features added to the new window. Typical values are booleans

(TRUE/FALSE.) Syntax is of the form

 [feature] "=" [value] ("," [feature] "=" [value])*

[Replace] Optional. Boolean value specifying whether the new

window replaces the current window in the browser's history.

window.open('dummydoc.htm', 'height=480,width=640');

write to new window

 35

How do I write script-generated content to another window?

To write script-generated content to another window, use the method

winRef.document.write() or

winRef.document.writeln(), where winRef is the window

reference, as returned by the window.open() method.

To make sure that your script's output actually shows up in the other

window, use winRef.document.close() after writing the content.

As an example, consider the following function that opens a new window

with the title Console and writes the specified content to the new

window.

In the above example, you might notice that after you write something to

the console several times, the console window will allow you to navigate

back and forth in the output's history. This is not always a desired feature.

If you would like to output the new content without creating a new

history entry, add the following operator after opening the window (and

before the first write):

docRef = top.winRef.document.open("text/html","replace");

Here winRef is the window reference returned by the

window.open() method, and docRef is a global variable in which

the script stores the reference to your new document.

<HTML>

<HEAD>

<TITLE>Writing to Subwindow</TITLE>

<SCRIPT LANGUAGE="JavaScript">

var newWindow

function makeNewWindow() {

 newWindow = window.open("","","status,height=200,width=300")

}

function subWrite() {

 if (newWindow.closed) {

 makeNewWindow()

 }

 newWindow.focus()

 var newContent = "<HTML><HEAD><TITLE>A New Doc</TITLE></HEAD>"

 newContent += "<BODY BGCOLOR='coral'><H1>This document is brand new.</

H1>"

 newContent += "</BODY></HTML>"

 newWindow.document.write(newContent)

 newWindow.document.close() // close layout stream

}

</SCRIPT>

</HEAD>

<BODY onLoad="makeNewWindow()">

http://www.javascripter.net/faq/openinga.htm
http://www.javascripter.net/faq/openinga.htm

 36

<FORM>

<INPUT TYPE="button" VALUE="Write to Subwindow" onClick="subWrite()">

</FORM>

</BODY>

</HTML>

Moving and resizing windows

When you have created a window, you can use Javascript to move it or

resize it.

Moving windows

A window object has two methods for moving it: moveTo and moveBy.

Both take two numbers as arguments.

The first function moves the window to the specified coordinates,

measured in pixels from the top left corner of the screen. The first

argument is the horizontal, or X, coordinat, and the second is the vertical,

or Y, coordinate.

The second method changes the current coordinates by the given

amounts, which can be negative to move the window left or up.

Not all browsers allow you to move a window. A browser with a tabbed

interface has one window in each tab, and cannot move or resize them

individually. A browser with MDI (e.g., Opera) can only move the

windows inside the parent application's window, and only if the

document window isn't maximized.

window.moveBy(-10,20);

 37

Resizing windows

Similar to the methods for moving, there are two methods for resizing a

window: resizeTo and resizeBy. Like for moving, they either set

the size absolutely or modify the size relatively to the current size.

Most browsers' standard security setting will not let you resize a window

to less than 100 pixels in any direction.

window.resizeBy(100,-100);

Closing windows

Closing a window is simple when it works. All windows have a close

method, so you can attempt to close any window you have a referene to.

myWindow.close();

However, not all windows can be closed without asking the user for

permission. This is to protect the user from accidentally losing his

browsing history.

The cases where you can close a window without a warning are:

 If a window was opened using Javascript, then it can be closed

again without a warning.

 In some browsers, if the browser history contains only the current

page, then the window can be closed without warning.

 In some browsers, setting the "window.opener" property to any

window object will make the browser believe that the window was

opened with Javascript.

Checking whether window has been closed

Given a reference to a window, it is possible to see whether the window

has been closed.

if (myWindow.closed) { /* do something, e.g., open it again */ }

 38

Browsers will generally not allow access to another window's properties,

if it contains a page from a different domain. In some browsers, this even

includes the closed property.

Problems with opening windows

Opening windows is not as safe as it used to be. Pages opening unwanted

windows with advertisements have made people distrust new windows.

Many users have installed software that prevents unwanted windows

from opening.

Such popup blockers work in many different ways, which makes it hard

to say anything definite. Some examples:

 Proximitron, a rewriting web proxy, can add Javascript that

changes the window.open function in different ways. One

option is to have it always return the current window instead of a

new one.

 Some popup blockers work at the operating system level, and

automatically close all new windows created by a browser. The call

to window.open succeedes, but the window disappears before

the user can see it.

 Modern browsers have popup-blockers built in (e.g., Mozilla,

Opera, or MyIE2). They can be set to disable all new windows, or

to allow only those that result from a user action (clicking on a link

or button). A blocked popup can give a Javascript security error,

stopping the script.

 Some specialized browsers, e.g., PDA's and mobile phones,

completely lack the ability to open new windows, and might have

no window.open function at all. Another specialized browser is

WebTV, which can only do full screen pages, and it ignores new

windows with sizes below 400 by 300 pixels and new windows

with no size specified.

In the face of such diverse and unpredictable opposition, anybody trying

to open a window should be prepared for it to fail. And it can fail silently,

visibly, or irrecoverably. Some are of the opinion that window.open is

no longer safe enough to use for anything important.

Windows status

 window.status = "This message will display in the

window status bar."

 39

The window status bar will not always work when written to

immediately when the page loads. Normally it is used when an

event happens such as when the user clicks on something or moves

the mouse over an item or area on the page. The following code

will display a status bar message when the mouse is moved over

the home button

 blur() - This function will take the focus away from the window.

Calling it as follows will perform the function.

 <script language="JavaScript">

 blur()

 </script>

 close() - This function will close the current window or the named

window. Normally a form button is provided to allow the user to

close the window and the function is called by the onClick action.

Otherwise some other event may be used to close the window.

window.close()

 focus() - This function will give the focus to the window.

 moveBy(x,y) - The window is moved the specified number of

pixels in the X and Y direction.

 moveTo(x,y) - The window is moved to the specified X and Y

pixel location in the browser.

 open("URLname","Windowname",["options"]) - A new window is

opened with the name specified by the second parameter. The

document specified by the first parameter is loaded. The options

are not required, and may be set to values of yes or now as in the

below example. Many options are set to default values depending

on whether others are set. For example, if the width and height are

specified, the resizable option is set as default to no. Also if the

toolbar is off, the menubar is set to default of no. The options are:

o alwaysRaised - If yes, the created window is raised.

o directories - The value of yes or no determines if the window

shows directory buttons or not.

o height - Specifies the window height in pixels. This is set to

an integer value, rather than yes or no.

o left - Specifies the distance in pixels the new window will be

placed from the left side of the screen. This is set to an

integer value, rather than yes or no.

o location - The value of yes or no determines if the window

has a location displayed on the address line (or has an

address line) or not.

 40

o menubar - The value of yes or no determines if the window

has a menubar or not.

o outerWidth - Specifies the outer window width in pixels.

This is set to an integer value, rather than yes or no.

o outerHeight - Specifies the outer window height in pixels.

This is set to an integer value, rather than yes or no.

o resizable - The value of yes or no determines if the window

can be resized by the user or not

o status - The value of yes or no determines if the window has

a status bar or not.

o scrollbars - The value of yes or no determines if the window

has scroll bars or not.

o toolbar - The value of yes or no determines if the window

has a toolbar or not.

o top - Specifies the distance in pixels the new window will be

placed from the top of the screen. This is set to an integer

value, rather than yes or no.

o width - Specifies the window width in pixels. This is set to

an integer value, rather than yes or no.

o z-lock - If yes, the created window is in the background.

Example:

<script language="JavaScript">

open("javahere.html","test",

"toolbar=no,menubar=no,width=200,height=200,resizab

le=yes")

</script>



Active Server Pages

Introduction to the ASP
 "ASP is a technology developed by Microsoft . to create

pages and Web applications are strong and dynamic. To

create these pages you can add HTML or a scripting

languages ​​Scripting language such as VBScript or

JavaScript, and you can also connect these pages to a

database such as Access or SQL Server".

 ASP is abbreviated to (Active Server Pages)

 using ASP programming language web pages to do some

events code.

 ASP file code implemented on the server side (Server

Side), either the result be sent to the user's computer

to display.

ASP formats & Basic concepts
 You can not see ASP code

By displaying the source code in the browser, you are the

only one who can repeat to see ASP code when your

design for active server pages, because script implemented

on the server before you show the results sent to the

browser.

Files ASP naturally contain medals of HTML, and also

contain script server, and the texts of the ASP writes

always between those delineated by <% %>, and script

server implemented on the server, and contains Script

server on equations, and sentences, and transactions

correct languages ​​script that you use

The difference between the ASP and HTML?

1 - When a user requests the HTML file, the

server sends the same HTML file to display the

matching program.

2 - When a user requests the ASP file, IIS passes

the request to the ASP engine, the ASP engine

reads the ASP file line by line, and executes the

script inside the file, in the end, the ASP file is

due to the browser as an HTML file

 ASP pages different from HTML pages that address these

pages are from the side of the device server not the user's

computer, where it is installed in a server program features

a dynamic link library called ASP.DLL, when a user requests

a page extension asp service provider processes the

orders existing ASP this and sends the result, and this

result is a HTML commands to display in the browser on

the user's computer. This method provides a degree of

safety to these pages as they preserve the rights of

programmed versions, where the user can not see ASP

commands when viewing the page source, but sees HTML

commands a result of the treatment.The question arises,

do we need a host (server) to tackle the ASP pages that

we create?!! Of course, not! All we need is a web server

programs that address these pages, and the inauguration of

this program we have made ​​our server system and a user

at the same time.

Web server software:

There are two suitable:

1 - PWS program, a shortcut Personal Web

Server

2 - Program IIS which is an a shortcut for Internet

Information Server

The choice of one of these programs on the

operating system you have

Active Server Pages

IIS - Internet Information Server

 IIS is a set of Internet-based services for servers

created by Microsoft for use with Microsoft

Windows.

 IIS comes with Windows 2000, XP, Vista, and

Windows 7. It is also available for Windows NT.

 IIS is easy to install and ideal for developing and

testing web applications.

PWS - Personal Web Server

 PWS is for older Windows system like

Windows 95, 98

How to Install IIS on Windows 7 and

Windows Vista

Follow these steps to install IIS:

 Open the Control Panel from the Start menu

 Double-click Programs and Features

 Click "Turn Windows features on or off" (a link

to the left)

 Select the check box for Internet Information

Services (IIS), and click OK

How to Install IIS on Windows XP and

Windows 2000

Follow these steps to install IIS:

 On the Start menu, click Settings and select Control

Panel

 Double-click Add or Remove Programs

 Click Add/Remove Windows Components

 Click Internet Information Services (IIS)

 Click Details

 Select the check box for World Wide Web Service, and

click OK

 In Windows Component selection, click Next to install

IIS

After you have installed IIS or PWS follow these

steps

 Look for a new folder called Inetpub on your hard

drive

 Open the Inetpub folder, and find a folder named

wwwroot

 Create a new folder, like "MyWeb", under wwwroot

 Write some ASP code and save the file as "test1.asp" in

the new folder

 Make sure your Web server is running (see below)

 Open your browser

"http://localhost/MyWeb/test1.asp", to view your first

web page

 An ASP file normally contains HTML tags,

just like an HTML file. However, an ASP

file can also contain server scripts,

surrounded by the delimiters <% and %>.

 Server scripts are executed on the server,

and can contain any expressions,

statements, procedures, or operators

valid for the scripting language you prefer

to use.

Script languages ​​used with ASP:

There are two different types of (Script Languages) can
be used to write the active code on the ASP pages
are:
1 -VBScript (the default language permitted use in the
pages of the ASP).
2 - JavaScript.

Vbscript
<%@ language= "VBscript" %>

Javascript
<%@ language= "Javascript" %>

Overview

Response object

 used the Response object to send information
/ results from a server to the user's computer

 Response Object , number of properties
(Attributes) and approach (Methods) are as
follows

 <%@ language= "VBscript" %>
<html dir="rtl">
<body>
<%

response.write ("مرحباً بكم في برمجة مواقع الويب")
%>

</body>
</html>

 Definition of variables:
Variables are used to store data. The
following example will explain how variables
are defined in the ASP

 <html dir="rtl">
<head>
</head>
<body>
<%

dim name
name=" برمجة مواقع الويب "
response.write("<center> مرحباً بكم في " &name&

"</b</center>")
%>

</body>
</html>

 dim : used to define the variables.
name: the name of the variable, and we set a value stored inside.
In print command notes that we did not put the variable in quotation
marks "" because we want to print the value of this variable and not
print the same variable.
When we want to print the value of the variable, and we want to
include HTML elements with him must be separated between the two
signal & As is shown in the top

<%

dim fname(5),i
fname(0)=" مرحبا"
fname(1)="بكم"
fname(2)=" في"
fname(3)="برمجة"
fname(4)="مواقع الويب"
for i=0 to 4

response.write("<center>" &fname(i)& "<center>")
next

%>

Active Server Pages

 What is localhost

Let us first see, what we mean by a hostname.
Whenever you connect to a

remote computer using it’s URL, you are in effect
calling it by its hostname.

For example, when you type in
http://www.google.com/

you are really asking the network to connect to a
computer named

www.google.com. It is called the “hostname” of
that computer.

localhost is a special hostname. It always
references your own machine. So what you
just did, was to try to access a webpage on
your own machine (which is what you wanted
to do anyway.) For testing all your pages, you
will need to use localhost as the hostname.

 Response

 The Response Object is responsible for sending data
from the client to the server.

الوصفالمنهج

AddHeader نهـتضٍف عىىان جذٌذHTTP وقٍمت جذٌذة.

Clear انـتقىو بمسح جمٍع انبٍاواث انمخزوت داخم Buffer

End الانمخزوت داخم نهسكرباثتىقف عمهٍت انمعانجت
bufferًوتظهر انىاتج انحان ،.

Flush الٌرسم انمحتىي انمخزن داخمbuffer إنى بروامج
.انتصفح

Redirectإنى رابط آخر ترجع انمستخذو مباشرة.

 و(Attributes)عذد مه انخصائص Response Objectٌمتهك انكائه
-:وهً كانتانً(Methods)انمىهاج

Response Objectمناهج الكائن

Request object

used to deliver data sent by the user's computer
to a server through HTTP request.

 Required object

 There are two ways to get form information:

 1-The Request.QueryString command

 2-The Request.Form command.

 1- Request.QueryString

The Request.QueryString command collects the values in a form
as text. Information sent from a form with the GET method is
visible to everybody (in the address field). Remember that the

GET method limits the amount of information to send.

 Request.Querystring

 Method="get”

 action = “filename.asp"

 Syntax

 Request.QueryString(variable)[(index)|.Count]

 2-Request.Form

 Command Request.form, which is not much different
from something Request.querystring, it is used to gather
the values ​​of the form with the use of method Post,
which may not be visible to anyone, and it does not
specify the amount of.

 Syntax

 Request.Form(element)[(index)|.Count]

 Request.Form

 Method=“post”

 action = “filename.asp"

GET and POST

 One thing we ignored in our discussion about forms was
that the METHOD by which the form is submitted may be
one of the two: GET or POST.

 When to use GET?

 Any data that you pass via a GET can be retrieved in your
script by using the Request.QueryString collection. GET may
be used for small amounts of data

 – the reason being that, the data items are appended to the
URL by your

 browser, and obviously, you cannot have an infinitely long
URL (with the

 QueryString).

 When to use POST?

 Almost always. Stick to POST for your forms, and be sure to
use the Request.Form collection to access them (and not the
Request.QueryString

 collection.)

 Simpleform.asp

 <html>
<body>
<%

request.querystring("fname“)
request.querystring("lname“)

%>
<form method="get" action="simpleform.asp">

fname : <input type="text" name="fname">
</br >

lname: <input type="text" name="lname">
</br ></br >
<input type="submit" value=“sent data” >

</form>
</body>
</html>

 Run

 http://localhost/simpleform.asp?fname=shatha &lname=Habeeb

 <html dir="rtl">
<body>
<%

request.form("username")
request.form("pass")

%>
<form method="post" action="form2.asp">

input type="text" name="fname"></br> :اسم المستخدم >
<"input type="text" name="lname> :كلمة المرور
</br ></br >
<input type="submit" value="إرسال البيانات">

</form>
<request.form("username") %></br& ":اسم المستخدم"= %>
<% request.form("pass")& ":كلمة المرور"= %>

</body>
</html>

Form1.asp

<html dir="rtl">
<body>

<form method="get" action="form2.asp">
fname: <input type="text" name="fname">
</br >
lname: <input type="text" name="lname">
</br ></br >
<input type="submit" value=“send data">

</form>
</body>
</html>

Form2.asp

<html dir="rtl">
<body>
<%

dim fname,lname
request.querystring("fname“)
request.querystring("lname“)

%>
fname:<%=""&fname&""%></br>lname:<%=""&ln
ame &""%>
</body>
</html>

Login Application:

Typically, "Login Application" is used to allow the

authorized users to

access private and secured areas, by using User-

Name and Password strings.

 However, the internal pages ('ok. asp' and 'in
.asp' pages) must be having "Guarding
Code" to prevent any direct access to them.
So if any user write the following address
(http:// / ok. asp) to access the 'ok. Asp'
page without coming from login-form (in
other word to by- passing the checking
code), the guarding-code must be prevent
this unauthorized access and the process
must be return to the 'default, asp' page The
"Guarding Code" must be written inside all
internal pages

 The Guarding-Code is work by check if the
user access to this page by follows authorized-
path or not. If the user access 'default.asp' page
and enter correct username and password
strings, then the 'check.asp' page must be not
only redirect the process to the 'ok.asp' page
but must register the username inside cookie
file. So when access the 'ok.asp' page the
process must be check cookie file, if cookie
hold username then this means that the user
access 'ok.asp' page by follow the authorized
path, else if cookie hold nothing then this
means that the user try to access to the
'ok.asp' page by by-passing checking code.

Cookie

 A cookie is often used to identify a user. A

cookie is a small file that the server embeds

on the user's computer. Each time the same

computer requests a page with a browser, it

will send the cookie too. With ASP, you can

both create and retrieve cookie values.

How to Create a Cookie?

 The "Response.Cookies" command is used to create
cookies.

 <%
Response.Cookies("firstname")="Alex"

 %>

 It is also possible to assign properties to a cookie, like
setting a date when the cookie should expire:

 <%
Response.Cookies("firstname")="Alex"
Response.Cookies("firstname").Expires=#May 10,2012#
%>

How to Retrieve a Cookie Value?

 The "Request.Cookies" command is used

to retrieve a cookie value.

 <%

fname=Request.Cookies("firstname")

response.write("Firstname=" & fname)

%>

 Output: Firstname=Alex

A Cookie with Keys

 If a cookie contains a collection of multiple

values, we say that the cookie has Keys.

 In the example below, we will create a cookie

collection named "user". The "user" cookie has

Keys that contains information about a user:

 <%

Response.Cookies("user")("firstname")="John"

Response.Cookies("user")("lastname")="Smith"

Response.Cookies("user")("country")="Norway"

Response.Cookies("user")("age")="25"

%>

 However, when user wants to leave 'ok.asp'
page, so the user must be sign out this page,
this means that the user must put nothing
inside cookie file.

Read all Cookies

Look at the following code:

 <%

Response.Cookies("firstname")="Alex"

Response.Cookies("user")("firstname")="John"

Response.Cookies("user")("lastname")="Smith"

Response.Cookies("user")("country")="Norway"

Response.Cookies("user")("age")="25"

%>

 Assume that your server has sent all the cookies above to

a user

Active Server Pages:

Open, Read and Create files

FileSystemObject

 The FileSystemObject object is used to access
the file system on a server. This object can
manipulate files, folders, and directory paths. It
is also possible to retrieve file system
information with this object.

Syntax

 Scripting.FileSystemObject

 Set fs = CreateObject("Scripting.FileSystemObject")

 Set a = fs.CreateTextFile("c:\testfile.txt", True)

 a.WriteLine("This is a test.")

 a.Close

1- Open and Read content from a text

file

<%

Set fs = CreateObject("Scripting.FileSystemObject")

Set wfile = fs.OpenTextFile("c:\Mydir\myfile.txt")
filecontent = wfile.ReadAll

wfile.close
Set wfile=nothing
Set fs=nothing

response.write(filecontent)
%>

ReadLine

<%
Set fs = CreateObject("Scripting.FileSystemObject")

Set wfile = fs.OpenTextFile("c:\Mydir\myfile.txt")
firstname = wfile.ReadLine
lastname = wfile.ReadLine
theage = wfile.ReadLine

wfile.close
Set wfile=nothing
Set fs=nothing

%>

Your first name is <% =firstname %>

Your last name is <% =lastname %>

Your are <% =thaage %> years old

AtEndOfStream

 <%
Set fs = CreateObject("Scripting.FileSystemObject")

 Set wfile = fs.OpenTextFile("c:\Mydir\myfile.txt")

 counter=0
do while not wfile.AtEndOfStream
counter=counter+1
singleline=wfile.readline
response.write (counter & singleline & "
")
loop

 wfile.close
Set wfile=nothing
Set fs=nothing

 %>

2- Create and Write a text file

Example 1: The basic code we need to create a file is
very similar to that one we have used to open a file:

<%
dim fs,f
set fs=Server.CreateObject("Scripting.FileSystemObject")

set f=fs.CreateTextFile("c:\test.txt",true)
f.WriteLine("Hello World!")
f.Close
set f=nothing
set fs=nothing
%>

The #include Directive

 You can insert the content of one ASP file

into another ASP file before the server

executes it, with the #include directive.

 The #include directive is used to create

functions, headers, footers, or elements

that will be reused on multiple pages.

Here is a file called "mypage.asp"

 <html>

<body>

<h3>Words :</h3>

<p><!--#include file=“inclu.inc"--></p>

<h3>The time is:</h3>

<p><!--#include file="time.inc"--></p>

</body>

</html>

 <%

 response.write(date())

 %>

What is ADO?

ADO can be used to access databases from

your web pages

 ADO is a Microsoft technology

 ADO stands for ActiveX Data Objects

 ADO is automatically installed with Microsoft

IIS

 ADO is a programming interface to access data

in a database

Accessing a Database from an ASP Page

The common way to access a database from inside an ASP

page is:

 Create an ADO connection to a database

 Open the database connection

 Create an ADO recordset

 Open the recordset

 Extract the data you need from the recordset

 Close the recordset

 Close the connection

Before a database can be accessed from a web page, a

database connection has to be established.

 The ADO Connection Object is used to create an open

connection to a data source.Through this connection, you

can access and manipulate a database.

 If you want to access a database multiple times, you should

establish a connection using the Connection object. You can

also make a connection to a database by passing a onnection

string via a Command or Recordset object. However, this

type of connection is only good for one specific, single query.

set objConnection

=Server.CreateObject("ADODB.connection")

Methods

 Cancel

 Cancels an execution

 Close

 Closes a connection

 Execute

 Executes a query, statement, procedure or provider specific text

 Open

 Opens a connection

 OpenSchema

 Returns schema information from the provider about the data

source

http://www.w3schools.com/ado/met_conn_cancel.asp
http://www.w3schools.com/ado/met_conn_close.asp
http://www.w3schools.com/ado/met_conn_execute.asp
http://www.w3schools.com/ado/met_conn_open.asp
http://www.w3schools.com/ado/met_conn_openschema.asp

Create a DSN-less Database

Connection

 The easiest way to connect to a database is to use a

DSN-less connection. A DSN-less connection can be

used against any Microsoft Access database on your

web site.

 If you have a database called "northwind.mdb" located

in a web directory like "c:/webdata/", you can connect

to the database with the following ASP code:

 <%

set conn=Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

%>

 Note, from the example above, that you have to specify

the Microsoft Access database driver (Provider) and the

physical path to the database on your computer.

ADO Recordset

 The ADO Recordset object is used to hold a set of

records from a database table. A Recordset object

consist of records and columns (fields).

 To be able to read database data, the data must first be

loaded into a recordset.

 Suppose we have a database named "Northwind", we

can get access to the "Customers" table inside the

database with the following lines:

set

objRecordset=Server.CreateObject("ADODB.recordset")

 <%

set

conn=Server.CreateObject("ADODB.Connectio

n")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set

rs=Server.CreateObject("ADODB.recordset")

rs.Open "Customers", conn

%>

 When you first open a Recordset, the current record

pointer will point to the first record and the BOF and

EOF properties are False. If there are no records, the

BOF and EOF property are True.

Create an ADO SQL Recordset

We can also get access to the data in the "Customers" table

using SQL:

 <%

set conn =

Server.CreateObject("ADODB.Connection")

conn.Provider="Microsoft.Jet.OLEDB.4.0"

conn.Open "c:/webdata/northwind.mdb"

set rs=Server.CreateObject("ADODB.recordset")

rs.Open "Select * from Customers", conn

%>

Structured Query Language

(SQL)
 The Structured Query Language (SQL)

forms the backbone of all relational

databases. This language offers a flexible

interface for databases of all shapes and

sizes and is used as the basis for all user

and administrator interactions with the

database.

Definition of a Relational

Database

 A relational database is a collection of relations or

two-dimensional tables.

Database

EMPNO ENAME JOB DEPTNO

7839 KING PRESIDENT 10

7698 BLAKE MANAGER 30

7782 CLARK MANAGER 10

7566 JONES MANAGER 20

Table Name: EMP

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

Table Name: DEPT

SQL> SELECT loc

FROM dept;

SQL statement

is entered

Database

Statement is sent to

database

LOC

NEW YORK

DALLAS

CHICAGO

BOSTON

Data is displayed

Basic SELECT Statement

SELECT [DISTINCT] {*, column [alias],...}

FROM table;

◦ SELECT identifies what columns.

◦ FROM identifies which table.

Selecting All Columns

DEPTNO DNAME LOC

--------- -------------- -------------

10 ACCOUNTING NEW YORK

20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

SQL> SELECT *

FROM dept;

22

Selecting Specific Columns

DEPTNO LOC

--------- -------------

10 NEW YORK

20 DALLAS

30 CHICAGO

40 BOSTON

SQL> SELECT deptno, loc

FROM dept;

23

Arithmetic Expressions

Create expressions on NUMBER and DATE

data by using arithmetic operators.

Operator

+

-

*

/

Description

Add

Subtract

Multiply

Divide

24

Using Arithmetic Operators

SQL> SELECT ename, sal, sal+300

FROMemp;

ENAME SAL SAL+300

---------- --------- ---------

KING 5000 5300

BLAKE 2850 3150

CLARK 2450 2750

JONES 2975 3275

MARTIN 1250 1550

ALLEN 1600 1900

...

14 rows selected.

25

Limiting Rows Selected

◦Restrict the rows returned by using the

WHERE clause.

◦The WHERE clause follows the FROM clause.

SELECT [DISTINCT] {*| column [alias], ...}

FROM table

[WHERE condition(s)];

26

Using the WHERE Clause

SQL> SELECT ename, job, deptno

FROM emp

WHERE job='CLERK';

ENAME JOB DEPTNO

---------- --------- ---------

JAMES CLERK 30

SMITH CLERK 20

ADAMS CLERK 20

MILLER CLERK 10

27

Comparison Operators

Operator

=

>

>=

<

<=

<>

Meaning

Equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Not equal to

28

Using the Comparison Operators

SQL> SELECT ename, sal, comm

FROM emp

WHERE sal<=comm;

ENAME SAL COMM

---------- --------- ---------

MARTIN 1250 1400

29

Other Comparison Operators

Operator

BETWEEN

...AND...

IN(list)

LIKE

IS NULL

Meaning

Between two values (inclusive)

Match any of a list of values

Match a character pattern

Is a null value

30

Using the BETWEEN Operator

ENAME SAL

---------- ---------

MARTIN 1250

TURNER 1500

WARD 1250

ADAMS 1100

MILLER 1300

Lower

limit

Higher

limit

Use the BETWEEN operator to display rows

based on a range of values.

SQL> SELECT ename, sal

FROM emp

WHERE sal BETWEEN 1000 AND 1500;

31

Using the IN Operator

Use the IN operator to test for values in

a list.

SQL> SELECT empno, ename, sal, mgr

FROM emp

WHERE mgr IN (7902, 7566, 7788);

EMPNO ENAME SAL MGR

--------- ---------- --------- ---------

7902 FORD 3000 7566

7369 SMITH 800 7902

7788 SCOTT 3000 7566

7876 ADAMS 1100 7788

32

Using the LIKE Operator

• Use the LIKE operator to perform
wildcard searches of valid search string
values.

• Search conditions can contain either
literal characters or numbers.

– % denotes zero or many characters.

– _ denotes one character.

SQL> SELECT ename

FROM emp

WHERE ename LIKE 'S%';

33

Using the LIKE Operator

◦ You can combine pattern-matching characters.

SQL> SELECT ename

FROM emp

WHERE ename LIKE '_A%';

ENAME

MARTIN

JAMES

WARD

34

Using the IS NULL Operator

 Test for null values with the IS NULL

operator.

SQL> SELECT ename, mgr

FROM emp

WHERE mgr IS NULL;

ENAME MGR

---------- ---------

KING

35

Using the NOT Operator

SQL> SELECT ename, job

FROM emp

WHERE job NOT IN ('CLERK','MANAGER','ANALYST');

ENAME JOB

---------- ---------

KING PRESIDENT

MARTIN SALESMAN

ALLEN SALESMAN

TURNER SALESMAN

WARD SALESMAN

36

ORDER BY Clause
◦ Sort rows with the ORDER BY clause
 ASC: ascending order, default
 DESC: descending order

◦ The ORDER BY clause comes last in the
SELECT statement.

SQL> SELECT ename, job, deptno, hiredate

FROM emp

ORDER BY hiredate;

ENAME JOB DEPTNO HIREDATE

---------- --------- --------- ---------

SMITH CLERK 20 17-DEC-80

ALLEN SALESMAN 30 20-FEB-81

...

14 rows selected.

The INSERT Statement

◦ Add new rows to a table by using the

INSERT statement.

◦ Only one row is inserted at a time with

this syntax.

INSERT INTO table [(column [, column...])]

VALUES (value [, value...]);

Inserting New Rows

◦ Insert a new row containing values for each
column.

◦ List values in the default order of the
columns in the table.

◦ Optionally list the columns in the INSERT
clause.

◦ Enclose character and date values within
single quotation marks.

SQL> INSERT INTO dept (deptno, dname, loc)

VALUES (50, 'DEVELOPMENT', 'DETROIT');

1 row created.

The UPDATE Statement

◦ Modify existing rows with the UPDATE

statement.

◦ Update more than one row at a time, if

required.

UPDATE table

SET column = value [, column = value, ...]

[WHERE condition];

Updating Rows in a Table

◦ Specific row or rows are modified when you

specify the WHERE clause.

◦ All rows in the table are modified if you omit

the WHERE clause.

SQL> UPDATE emp

SET deptno = 20

WHERE empno = 7782;

1 row updated.

SQL> UPDATE employee

SET deptno = 20;

14 rows updated.

The DELETE Statement

 You can remove existing rows from a

table by using the DELETE statement.

DELETE [FROM] table

[WHERE condition];

◦ Specific rows are deleted when you specify

the WHERE clause.

◦ All rows in the table are deleted if you omit

the WHERE clause.

Deleting Rows from a Table

SQL> DELETE FROM department

WHERE dname = 'DEVELOPMENT';

1 row deleted.

SQL> DELETE FROM department;

4 rows deleted.

	introduction
	HTML
	CSS
	javascript
	asp 1
	asp 2
	asp 3
	asp 4

