Three Component Systems
 ** Lab. 3

Done By:
Assistant Lecturer
Zeina Dawood

Lecturer
Sura Zuhair

The comparison between two component and three component system

2 component system	3 component system
2 materials	3 materials
Drawn on ordinary graph paper	Drawn on triangular graph paper
Factors affecting are temp. and concentration	The exp. is done under constant pressure and temperature
The tie line is always parallel to base line	The tie line may be parallel or not
Example phenol/water system	Example $\mathrm{HAC,CHCl} 3, \mathrm{H} 2 \mathrm{O}$ system

Two component system

Three component system

Rules relating to triangular diagram:-

1) Each of the corners or apexes of 0 triangle represent 100% by wt. of one component ($\mathrm{A}, \mathrm{B} \& \mathrm{C}$) as a result ,
 the same apex will represents 0% of the other two components.

Triangular graph paper

Triangular graph paper

Rules relating to triangular diagram:-
2) The three lines joining the corner points represent two component mixture of the combination of $A_{\text {}}$ three B

Rules relating to triangular diagram:-

3-The area within the triangle represents all possible combinations of A,B\&C to give three component system.

Three component phase diagram (above):
Red point M : X $=50 \% \mathrm{w} / \mathrm{w}, \mathrm{Z}=20 \% \mathrm{w} / \mathrm{w}$ and $\mathrm{Y}=100-(50+20)=30 \% \mathrm{w} / \mathrm{w}$

Rules relating to triangular

 diagram：－4）If a line is drawn through any apex 0 to a point on the opposite side，then all systems represented by points on
** such line have constant ratio of two components．

Three component phase diagram (above):
Red point M: $X=60 \% \mathrm{w} / \mathrm{w}, \mathrm{Z}=20 \% \mathrm{w} / \mathrm{w}$ and $\mathrm{Y}=100-(60+20)=20 \% \mathrm{w} / \mathrm{w}$, ratio $\mathrm{y} / \mathrm{z}=20 / 20=1$ Green point A : X $=20 \% \mathrm{w} / \mathrm{w}, \mathrm{Z}=40 \% \mathrm{w} / \mathrm{w}$ and $\mathrm{Y}=100-(20+40)=40 \% \mathrm{w} / \mathrm{w}$, ratio $\mathrm{y} / \mathrm{z}=40 / 40=1$

Rules relating to triangular diagram：－

5）Any line drawn parallel to one side of the triangle represents ternary systems in which the proportion（ or \％by wt）of
 one component is constant．

Three component phase diagram (above):
Point M : X $=40 \% \mathrm{w} / \mathrm{w}, Z=30 \% \mathrm{w} / \mathrm{w}$ and $\mathrm{Y}=100-(40+30)=30 \% \mathrm{w} / \mathrm{w}$

Point K : $\quad X=40 \% \mathrm{w} / \mathrm{w}, Z=50 \% \mathrm{w} / \mathrm{w}$ and $Y=100-(40+50)=10 \% \mathrm{w} / \mathrm{w}$
${ }^{B}(100 \% 1 / j 20 \mathrm{JFA}+C)$

Three component phase diagram (above):
Blue point: $\mathrm{A}=20 \% \mathrm{w} / \mathrm{w}, \mathrm{B}=10 \%$ wiw and $\mathrm{C}=70 \% \mathrm{w} / \mathrm{w}$

Procedure:

1-Prepare 10 gm of the following combination of MAC \& $\mathrm{CHCl}_{3}: 5 \%, 10 \%, 20 \%, 30 \%, 40 \%, 50 \%$, $60 \%, 70 \%, 80 \%$, and 90% w/w HAC: CHCl_{3} in a small clean \&dry flask which form one single phase.
2-To these mixtures slowly add water from a burette until a turbidity just appears. Check the weight of water (which is equal to its volume).

Noter-To prepare samples in step no.1, the required amount of HAC\&CHCI3 from burettes by converting the weight in to volume according to the law:
Specific gravity (sp.gr) = weight/volume
Sp.gr of $\mathrm{HAC}=1.009$ and for $\mathrm{CHCl} 3=1.4$

Group NO.	HAC CHCl_{3}	HAC ml HAC gm	CHCl_{3} gm	CHCl_{3} ml	H2Ogm ml
1	5%	0.5	9.5	6.79	
2	20%	2	8	5.7	
3	40%	4	6	4.3	
4	70%	7	3	2.14	
5	80%	8	2	1.42	
6	90%	9	1	0.71	

3-Obtain a miscibility curve by calculating *) the percent w/w of each component in the ${ }^{-\pi}$. turbid mixture and plot this triangular diagram.

For example Group no. 1 if the amount of water

consumed for turbidity just appears $=0.5 \mathrm{ml}$
Total weight of the system $=$ wt of HAC+ wt of CHCL3 + wt of H2O

$$
\begin{aligned}
& =0.5 \mathrm{gm}+9.5 \mathrm{gm}+0.5 \mathrm{gm} \\
& =10.5 \mathrm{gm}
\end{aligned}
$$

FOR HAC: $0.5 / 10.5^{*} 100=4.76 \% w / w$
FOR CHCI3: 9.5/10.5*100=90.5\%w/w
FOR H2O: $0.5 / 10.5 * 100=4.76 \% w / w$

*Tabulated the amount of $\mathrm{HAC}, \mathrm{CHCl} 3$ and H 2 O *Calculate the \% of each point, then drown the binodal curve two phases area separate one phase from

Group NO.	$\mathrm{HAC} /$ CHCl_{3}	$\mathrm{HAC} \%$	$\mathrm{CHCl}_{3} \%$	$\mathrm{H} 20 \%$
1	5%	4.76%	90.5%	4.76%
2	20%			
3	40%			
4	70%			
5	80%			
6	90%			

Three component system (Acetic acid, Choloroform \&Water)

$\mathrm{CHCl}_{3}-\mathrm{H}_{2} \mathrm{O}$-partially miscible pair

* When the amount of HAC is low, the amount of water will be very low and when increase the mixture will separate into 2 phases.

