$$
\text { LAB NO. } 4:
$$
 The tie - line for three

 component system

 component system Done By:

Assistant Lecturer Hiba Sabah Lecturer Zeina Dawood

Ternary systems with one pair of partially miscible liquids:-

- Water \& benzene are miscible only to a slight extremes so a mixture of the two usually produces 2 phase system the lower layer consist of water saturated with benzene while the lighter phase (upper) consist of benzene saturated with water.

Ternary systems with one pair of partially

 miscible liquids:-- On the other hand, alcohol is completely miscible with both benzene \& water it is expected ,therefore, that the addition of sufficient alcohol to 2 phase of water \& benzene will produce single phase system in which all the three component are miscible.
- It might helpful to consider alcohol as acting in manner comparable to that of Temperature in binary system of phenol \& water.
- As heat used to break the cohesive forces between molecules \longrightarrow miscibility increase until one phase result,
- the addition of alcohol to benzene-water mixture achieves the same but by different means namely solvent effect instead of temperature effect. In this case alcohol serves as intermediate polar solvent that shifts the electric equilibrium of the dramatically opposed highly polar water \& nonpolar benzene solution to provide solvation.

2 component system

3 component system

> Alcohol addition to:

- water
- benzene

Solubilize the mixture

- One phase

Note:
 Adhesive: means force between Alike molecules
 Cohesive: means force between Like molecules

The tie line with the binodal are not necessarily parallel to one another or to the base line as in binary systems , in fact the direction of the tie line are related to the shape of binodal curve, which in turn depends on the solubility of the third component (i.e. alcohol) in the other two components.

only when the added component acts

 equally on the other two component to bring them into solutionWill the binodal perfectly symmetrical \& the tie line run parallel to the base line .

Properties of the tie line of three component

system :-

1- any system prepared a long the tie line both give rise two phase having a constant composition.
2 - the relative amount by weight of the two conjugate phases will depends on the position of the original system along the tie line.

Materials and equipment:-

- 1- $\mathrm{H}_{2} \mathrm{O}, \mathrm{HAC}, \mathrm{CHCl}_{3}, 1 \mathrm{~N} \mathrm{NaOH}$ solution, phenolphthalein indicator.
- 2- Burette, separatory funnel, conical flask, balance.

Procedure:-

- In a small separatory funnel prepare 50 gm of a mixture having composition giving rise to a two phase system (e.g. 4 gm $\mathrm{HAC}+16 \mathrm{gm} \mathrm{CHCl} 3+30 \mathrm{gm} \mathrm{H} 2 \mathrm{O}$).
- Separate each layer in two conical flasks.
- Weigh 10 gm for each layer.
- Titrate each layer with standard 1 N NaOH solution using phenolphthalein as indicator. The end point from colorless to pink.
Obtain tie line, calculate the percent W/W of HAC in each layer and locate the values on the miscibility curve. The straight line joining these points should pass through compositions of the two phase system.

Mixture prepared
$(4 \mathrm{ml}$ of HAC$)+(16 \backslash 1.4=11.4 \mathrm{ml}$ CHCL3 $)+(30 \mathrm{ml} \mathrm{H} 2 \mathrm{O})$

Calculation:-

- $\mathrm{HAC}+\mathrm{NaOH} \rightarrow \mathrm{NaAC}+\mathrm{H} 2 \mathrm{O}$
- 1 M.wt. of $\mathrm{HAC}=1 \mathrm{M} . w t$. of NaOH
- 1 eq.wt of HAC = leq.wt of NaOH
- $60=1000 \mathrm{ml} 1 \mathrm{~N} \mathrm{NaOH}$
$60 / 1000=1 \mathrm{ml} 1 \mathrm{~N} \mathrm{NaOH}$
- So, each 1 ml of 1 N NaOH is equivalent to 0.06 gm , this is the chemical factor (it is the no. of gms of substance which is equivalent to 1 ml of standard solution).
E.P $1 \times 0.06=\mathrm{gm} \mathrm{HAC}$ in 10 gm aqueous layer (upper layer).
- E.P $2 \times 0.06=\mathrm{gm}$ HAC in 10 gm CHCl 3 layer (lower layer).
- Chanoe these values to nercent

No. of grams of HAC=E.P(mL of NaOH added) \times Ch.F

- Upper layer (between HAC and H2O)
- wt. of HAC total vol.
- No. of grams 10 mL of HAC
- X $\quad 100 \mathrm{~mL}$
- $X=? \% w / w$ of HAC
- $100 \%-X \%=? \% \mathrm{w} / \mathrm{w}$ of water
- Lower layer (between HAC and CHCl 3)
- wt. of HAC total vol.
- No. of grams 10 mL of HAC
- X

100 mL

- $X=$? $\% \mathrm{w} / \mathrm{w}$ of HAC
- $100 \%-X \%=? \% \mathrm{w} / \mathrm{w}$ of CHCl 3
- Upper layer
- We assume $\mathrm{NaOH}=$ $25 \mathrm{~mL} \times 0.06$
- $1.5 \mathrm{gm} \quad 10 \mathrm{~mL}$

$X=15 \%$ acetic acid $100 \%-15 \%=85 \%$ water
- Lower layer
- We assume $\mathrm{NaOH}=$ $8.5 \mathrm{~mL} \times 0.06$
- $0.51 \mathrm{gm} \quad 10 \mathrm{~mL}$
- X 100\%
- $X=5 \%$ acetic acid
- $100 \%-5 \%=95 \%$ CHCl3

Note:-

- For the upper layer represent mostly water with little chloroform.
- This layer represents aqueous layer.
- For the lower laver represent mostly chloroform with little water.
- This layer represents chloroformic layer.

Sp. gr for $\mathrm{CHCl} 3=1.4$
Sp. gr for $\mathrm{HAC}=1.009$

