Practical Clinical Toxicology Toxicity of β–adrenergic Blockers Lab. 5 5th Year 2022-2023 by assistant lecturers dr. nada sahib and dr. Esraa humadi

Mustansiriyah University /College of Pharmacy Department of Pharmacology & Toxicology

- **Beta-blockers** antagonize beta-adrenergic receptors and are mainly used in the treatment of :
- Hypertension
- Heart failure
- Angina pectoris.
- Management of anxiety.
- Migraine headaches.
- Glaucoma.
- Tremors.
- Hyperthyroidism.
- Beta-blockers prevent remodeling of the heart after an ischemic event by reducing the effects of catecholamines on cardiac tissue.

Table 1. Pharmacologic & pharmacokinetic properties of
β-adrenergic blockers.

			0				
	β_1 -selectivity	Intrinsic sympathomimetic activity	Membrane stabilizing activity	Vasodilator effect	Lipophilicity	Elimination	
First-generation							
Nadolol	0	0	0	0	Low	Renal	
Pindolol	0	++	+	0	High	Renal/hepatic	
Propranolol	0	0	++	0	High	Hepatic	
Second-generation							
Acebutolol	+	+	+	0	Moderate	Hepatic	
Atenolol	++	0	0	0	Low	Renal	
Bisoprolol	++	0	0	0	Moderate	Renal/hepatic	
Esmolol	++	0	0	0	Low	Renal	
Metoprolol	++	0	+	0	High	Hepatic	
Third-generation							
Betaxolol	++	0	+	+ (Blockade of calcium channel)	Moderate	Hepatic/renal	
Bucindolol	0	+	0	+ (α_1 -blockade)	Moderate	Hepatic	
Carteolol	0	+	0	+ (α_1 -blockade)	Low	Hepatic/renal	
Carvedilol	0	0	++	++ (α_1 -blockade)	Moderate	Hepatic	
Celiprolol	+	+	0	+ (β ₂ Agonism)	Moderate	Renal	
Labetalol	0	+	+	++ (α ₁ -blockade)	Low	Hepatic	
Nebivolol	++	0	0	++ (NO availability increases)	Moderate	Hepatic	

+: Modest effect; ++: Strong effect; 0: Absence of effect; NO: Nitric oxide.

Pathophysiology

- beta-blockers are classified as selective and nonselective depending on the receptor specificity.
- Specificity is lost in cases involving overdose.
- To better understand the toxicity, betablockers are classified as lipophilic or lipophobic.
- Highly lipophilic beta-blockers can easily cross the blood-brain barrier and may cause various central nervous system (CNS) manifestations.

• Most of the beta-blockers are moderately lipophilic.

Propranolol, the most lipophilic beta-blocker, can easily cross the blood-brain barrier and may cause seizures in overdose cases.

The liver excretes beta-blockers most frequently, **Atenolol, carteolol, and nadolol** are the only exceptions that undergo renal excretion.

Various beta-blockers may cause sodium or potassium channel blockade and therefore cause prolongation in QRS and QTc intervals, respectively.

Sodium channel-blocking beta-blockers are said to possess "membrane stabilizing activity" which potentiates toxicity in overdose.

Bradycardia associated with hypotension may be the first clue to diagnose beta-blocker overdose. patients with BB toxicity have hypoglycemia and altered mental status.

While symptoms secondary to beta-

blocker overdose usually appear early and are

commonly observed within one to two hours.

Table 2. Clinical manifestations of β-adrenergic blockertoxicity.							
Cardiac	CNS	Other					
Arrhythmias	Sleepiness	Bronchospasm					
Bradycardia	Dizziness	Pulmonary edema					
Atrioventricular block	Unconsciousness	Hypoglycemia					
Hypotension	Coma	Hyperkalemia					
	Seizures						
Shock	Respiratory depression						

Treatment / Management

- 1-Premedication with atropine may be necessary
- 2-Bronchospasm may be treated with oxygen and
- inhaled bronchodilators like albuterol.
- 3-Gastric lavage may be necessary for patients who
- present shortly after massive ingestions and/or with serious symptoms.

4-Administer activated charcoal.

5-Consider whole bowel irrigation with PEG in case

of sustained-release preparations.

6-Benzodiazepines are the first line of treatment for seizures.

7-In the case of QRS widening, administer sodium

bicarbonate while magnesium sulfate is

administered for QTc prolongation.

8-glucagon is considered a useful treatment of choice.

9-Cases not responding to fluids, atropine, and glucagon are considered candidates for **high-dose insulin, euglycemia (HIE) treatment.**

High-dose insulin, euglycemia can cause profound hypokalemia and hypoglycemia that can potentiate cardiotoxicity in the setting of betablocker overdose.

Therefore, Potassium and glucose should be checked before initiation of high-dose insulin, euglycemia.

- In general, 1 U/kg of regular insulin bolus along
- with 0.5 g/kg dextrose intravenously (IV) is administered.
- Glucose should be monitored every 30 minutes
- initially for up to four hours to maintain strict
- glycemic control (glucose 100 mg/dL to 200 mg/dL)

Supportive treatment with vasopressors may be needed

- since the inotropic effect of high-dose insulin
- euglycemia may be delayed up to 15 min to 60 min.
- Phosphodiesterases such as inamrinone and milrinone
- increase the cAMP and may prove beneficial in increasing inotropy.
- **Hemoperfusion & and hemodialysis** may be considered in cases involving nadolol & and atenolol.

