Example 14:

Write an Algorithm to evaluate the following equation and draw its flow chart:
$e^{x}=1+X+\frac{X^{2}}{2!}+\frac{X^{3}}{3!}+\frac{X^{4}}{4!}+\ldots \ldots \ldots \ldots \ldots \cdot \frac{X^{N}}{N!}$

Solution:
1- Start.
2- Read the value of N and X .
3- Let the initial value of the factorial (F) equals to one ($\mathrm{F}=1$).
4- Let the initial value of the summation (S) equals to one ($\mathrm{S}=1$).
5 - Let the initial value of the counter equals to zero ($\mathrm{I}=0$).
6 - Increase the value of the counter by one ($\mathrm{I}=\mathrm{I}+1$).
7-F=F*I
8- $S=S+\frac{X^{1}}{F}$
9- If $\mathrm{I}<\mathrm{N}$, then go to step 6
10-Print S .
11- End

The flowchart of example 14 is shown below:

Example 15: Write an Algorithm to evaluate the following equation:
$\operatorname{Sin}(X)=X-\frac{X^{3}}{3!}+\frac{X^{5}}{5!}-\frac{X^{7}}{7!}+\frac{X^{9}}{9!} \ldots \ldots \ldots \ldots \ldots . N$ Terms

Solution:
The equation is $\operatorname{Sin}(\mathrm{X})=\sum_{\mathrm{I}=1}^{\mathrm{N}}(-1)^{(\mathrm{I}-1)} \frac{\mathrm{X}^{(2 \mathrm{I}-1)}}{(2 \mathrm{I}-1)!}$

1-Start.
2- Read the value of X and N.
3 -Let the initial value of the summation equals to zero($\mathrm{S}=0$).
4-Let the initial value of the counter equals to zero($\mathrm{I}=0$).
5 -Increase the value of the counter by one ($\mathrm{I}=\mathrm{I}+1$).
6 -Let the initial value of the counter of the Factorial equals to zero(IF=0).
7- Let the initial value of the factorial (F) equals to one ($\mathrm{F}=1$).
8- Increase the value of the counter of the Factorial by one (IF=IF+1).
$9-\mathrm{F}=\mathrm{F} * \mathrm{IF}$.
10 - If the value of (IF) is less than ($2 * \mathrm{I}-1$) Return to step 8.
11- $S=S+(-1)^{(\mathrm{I}-1)} * \frac{\mathrm{X}^{(2 \mathrm{I}-1)}}{\mathrm{F}}$.
12- If the value of (I) is less than (N) Return to step 5.
13- Print S .
14- End.

The flowchart of example 15 is:

