2.4. Load factors and Load Combinations

The total factored load effect shall be taken as:

$$
Q=\sum \eta_{i} \gamma_{i} Q_{i}
$$

Where:
Q : total factored force effect.
Q_{i} : force effect.
η_{i} : load modifier
γ_{i} : load factor; a statistically based multiplier applied to force effects.
The values of load factor $\left(\gamma_{i}\right)$, which defined before, depend on the case of design or analysis the bridge system (global) or bridges components (local) and taken according to the intended load combination. ASSHTO specifications adopted these values as tabulated herein for all the limit states.

Table 2-1: Load Combinations and Load Factors
[AASHTO LRFD Table 3.4.1-1]

Load Combination Limit State	$\begin{aligned} & \hline D C \\ & D D \\ & D W \\ & E H \\ & E V \\ & E S \\ & E L \\ & P S \\ & C R \\ & S H \\ & \hline \end{aligned}$	LL IM CE BR PL LS	W A	WS	WL	FR	$\begin{aligned} & T U \\ & C R \\ & S H \end{aligned}$	TG	SE	Use One of These at a Time				
										EQ	BL	IC	CT	CV
Strength I (unless noted)	γ_{p}	1.75	1.00	-	-	1.00	0.50/1.20	$\gamma_{T G}$	$\gamma_{S E}$	-	-	-	-	-
Strength II	γ_{p}	1.35	1.00	-	-	1.00	0.50/1.20	$\gamma_{T G}$	$\gamma_{S E}$	-	-	-	-	-
Strength III	γ_{p}	-	1.00	1.00	-	1.00	0.50/1.20	$\gamma_{T G}$	$\gamma_{S E}$	-	-	-	-	-
Strength IV	γ_{p}	-	1.00	-	-	1.00	0.50/1.20	-	-	-	-	-	-	-
Strength V	γ_{p}	1.35	1.00	1.00	1.00	1.00	0.50/1.20	$\gamma_{T G}$	$\gamma_{S E}$	-	-	-	-	-
Extreme Event I	1.00	$\gamma_{E Q}$	1.00	-	-	1.00	-	-	-	1.00	-	-	-	-
Extreme Event II	1.00	0.50	1.00	-	-	1.00	-	-	-	-	1.00	1.00	1.00	1.00
Service I	1.00	1.00	1.00	1.00	1.00	1.00	0.50/1.20	$\gamma_{T G}$	$\gamma_{S E}$	-	-	-	-	-
Service II	1.00	1.30	1.00	-	-	1.00	0.50/1.20	-	-	-	-	-	-	-
Service III	1.00	$\gamma_{L L}$	1.00	-	-	1.00	0.50/1.20	$\gamma_{T G}$	$\gamma_{S E}$	-	-	-	-	-
Service IV	1.00	-	1.00	1.00	-	1.00	0.50/1.20	-	1.00	-	-	-	-	-
Fatigue I LL, IM \& CE only	-	1.75	-	-	-	-	-	-	-	-	-	-	-	-
Fatigue II LL, IM \& CE only	-	0.80	-	-	-	-	-	-	-	-	-	-	-	-

Table 2-2: Load Factors for Permanent Loads [AASHTO LRFD Table 3.4.1-2]

Table 2-3: Load Factors for Permanent Loads Due to Superimposed Deformation [AASHTO LRFD Table 3.4.1-3]

Bridge Component		Load Factor $\left(\boldsymbol{\gamma}_{\boldsymbol{P}}\right)$	
	$\boldsymbol{P S}$	$\boldsymbol{C R}, \boldsymbol{S H}$	
Segmental Superstructures Supported by Concrete Substructures	1.00	γ_{P} for $D C$	
Non-Segmental Concrete Superstructures	1.00	1.00	
Substructures Supporting Non-Segmental Superstructures	Using I_{g}	0.50	0.50
	Using I_{e}	1.00	1.00
Steel Substructures	1.00	1.00	

Table 2-4: Load Factors for Service III Load Combination [AASHTO LRFD Table 3.4.1-4]

Bridge Component	Load Factor $\left(\boldsymbol{\gamma}_{\boldsymbol{L} L}\right)$
Prestressed Concrete Components Designed Using the Refined Estimates of Time- Dependent Losses in Conjunction with Taking Advantage of the Elastic gain	1.00
All Other Prestressed Concrete Components	0.80

Table 2-5: Load Factors for Permanent Loads Due to Foundation Movements [AASHTO LRFD Table 3.4.1-5]

Foundation Movement and Movement Estimation Method		Load Factor $\left(\gamma_{S E}\right)$
Immediate Settlement	Hough method	1.00
	Schmertmann method	1.40
	Local owner approved method	$*$
Consolidation settlement	1.00	
	Soil-structure interaction method (P-y or Strain Wedge)	1.00
	Local owner approved method	$*$

* To be determined by the owner based on local geologic conditions.

In current academic course (HTE403), only gravity loads are considered to design the decking components; thus, load combinations used which normally have only ($D C$), (DC) and $(L L+I M)$ with $\left(\eta_{i}=1.00\right)$. So that the load effect (Q) is given in the following equations relating to various limit states:

$$
\begin{array}{ll}
Q=1.25 D C+1.50 D W+1.75(L L+I M) & \\
Q=1.25 D C+1.50 D W+1.40(L L+I M) & \\
Q=1.50 D C+1.50 D W & \\
Q=1.00 D C+1.00 D W+1.00(L L+I M) & \\
\text { [Strength II III] } \\
Q=1.00 D C+1.00 D W+1.30(L L+I M) & \\
Q=1.00 D C+1.00 D W+0.80(L L+I M) & \\
Q=1.75(L L \text { Service I] II] } \\
\text { Qervice III] } & \\
\text { [Fatigue I] }
\end{array}
$$

By the same way, moment and shear demands for Strength I Limit State shall be:

$$
\begin{aligned}
& M_{u}=\eta\left[1.25 M_{D C}+1.50 M_{D W}+1.75 M_{L L+I M}\right] \\
& V_{u}=\eta\left[1.25 V_{D C}+1.50 V_{D W}+1.75 V_{L L+I M}\right]
\end{aligned}
$$

2.5. Resistance Factors

The strength limit state issues are considered for strength and stability. Factored resistance shall be the product of nominal resistance determined according to AASHTO specifications.

$$
R_{r}=\phi R_{n}
$$

The values of resistance factor (ϕ) for strength limit state shall be taken regardless of concrete density (normal weight or lightweight) as:

$$
\begin{aligned}
\text { - } \phi & =0.90 & & \text { [tension-controlled RC sections] } \\
& =1.00 & & \text { [tension-controlled PC sections with bonded strand or tendons] } \\
& =0.90 & & \text { [tension-controlled PTC sections with unbonded strand or tendons] } \\
& =0.90 & & \text { [shear and torsion in RC sections] } \\
& =0.90 & & \text { [shear and torsion in PC sections with bonded strand or tendons] } \\
& =0.85 & & \text { [shear and torsion in PC sections with unbonded strand or tendons] } \\
& =0.75 & & \text { [compression-controlled sections with spirals or ties] } \\
& =0.70 & & \text { [bearing on concrete] } \\
& =0.70 & & \text { [compression in strut-and-tie models] } \\
& =0.90 & & \text { [tension in strut-and-tie models RC] } \\
& =1.00 & & \text { [tension in strut-and-tie models PC] } \\
& =0.70 & & \text { [compression in strut-and-tie models] } \\
& =0.80 & & \text { [compression in anchorage zones] } \\
& =1.00 & & \text { [resistance during pile driving] } \\
& =1.00 & & \text { [tension in steel in anchorage zones] } \\
& =1.00 & & \text { [flexure in structural steel] } \\
& =1.00 & & \text { [shear in structural steel] } \\
& =0.90 & & \text { [axial compression in structural steel] } \\
& =0.95 & & \text { [tension yielding in steel gross section] }
\end{aligned}
$$

Figure 2-1: Variation of Resistance Factor with Net Tensile Strain at Extreme Fibers for Reinforced and Prestressed Concrete [AASHTO LRFD Figure C5.5.4.2-1]

Concrete sections are classified as tension controlled, transition or compression controlled, depending on the strain at extreme tension fibers $\left(\varepsilon_{t}\right)$ as follows:

- $\varepsilon_{t} \geq 0.005 \quad$ [tension-controlled section]
- $0.005>\varepsilon_{t} \geq 0.002$ [transition section]
- $0.002>\varepsilon_{t} \quad$ [compression-controlled section]

So, the (ϕ) value in transition zone shall be obtained by linear interpolation from:
$\cdot 0.75 \leq \phi=0.75+0.25\left(\varepsilon_{t}-\varepsilon_{c l}\right) /\left(\varepsilon_{t l}-\varepsilon_{c l}\right) \leq 1.00$ [prestressed members]
$\cdot 0.75 \leq \phi=0.75+0.15\left(\varepsilon_{t}-\varepsilon_{c l}\right) /\left(\varepsilon_{t l}-\varepsilon_{c l}\right) \leq 0.90 \quad$ [nonprestressed members]
Where:
R_{r} : factored resistance.
R_{n} : nominal resistance.
ϕ : resistance factor.
RC: reinforced concrete.
PC: prestressed Concrete.
PTC: post-tensioned concrete.
ε_{t} : net tensile strain in the extreme tension steel at nominal resistance.
$\varepsilon_{c l}$: compression-controlled strain limit in the extreme tension steel.
$\varepsilon_{t l}$: tension-controlled strain limit in the extreme tension steel.

- For all other limit states:
- $\phi=1.0$

