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Chapter One 

Linear Equations 
Definition 1.1: (Summation Notation) 

By   𝑎𝑖
𝑛
𝑖=1  we mean 𝑎1 + 𝑎2 + ⋯ 𝑎𝑛  . That is, 

 𝑎𝑖
𝑛
𝑖=1 = 𝑎1 + 𝑎2 + ⋯ 𝑎𝑛  . 

The letter 𝑖 is called the index of summation. 

By    𝑎𝑖𝑗
𝑚
𝑗=1

𝑛
𝑖=1  we mean that we first sum on 𝑗 and then sum the resulting 

expression on 𝑖. 
Example 1.2: Let 𝑎1 = 10,   𝑎2 = 12. Then,  

 𝑎𝑖
2
𝑖=1 = 𝑎1 + 𝑎2 = 10 + 12 = 32. 

Theorem 1.3:  

1-  (𝑟𝑖 + 𝑠𝑖)𝑎𝑖
𝑛
𝑖=1 =  𝑟𝑖𝑎𝑖

𝑛
𝑖=1 +  𝑠𝑖𝑎𝑖

𝑛
𝑖=1 . 

2- 𝑐(𝑟𝑖𝑎𝑖)
𝑛
𝑖=1 =  (𝑐𝑟𝑖)𝑎𝑖

𝑛
𝑖=1 = 𝑐( 𝑟𝑖𝑎𝑖

𝑛
𝑖=1 ). 

3-  𝑎𝑖𝑗
𝑚
𝑗 =1

𝑛
𝑖=1 =   𝑎𝑖𝑗

𝑛
𝑖

𝑚
𝑗 =1 . 

Proof : 

(1) and (2) exercise. 

(3)    𝑎𝑖𝑗
𝑚
𝑗 =1

𝑛
𝑖=1 =  (𝑎𝑖1 +𝑛

𝑖=1 𝑎𝑖2 + ⋯ + 𝑎𝑖𝑚 ) 

                                 =  𝑎11 + 𝑎12 + ⋯ + 𝑎1𝑚  +  𝑎21 + 𝑎22 + ⋯ + 𝑎2𝑚  + 

+(𝑎𝑛1 + 𝑎𝑛2 + ⋯ + 𝑎𝑛𝑚 ) 

=  𝑎11 + 𝑎21 + ⋯ + 𝑎𝑛1 +  𝑎12 + 𝑎22 + ⋯ + 𝑎𝑛2 + 

+(𝑎1𝑚 + 𝑎2𝑚 + ⋯ + 𝑎𝑛𝑚 ) 

=  (𝑎1𝑗 +𝑚
𝑗=1 𝑎2𝑗 + ⋯ + 𝑎𝑛𝑗 ) =   𝑎𝑖𝑗

𝑛
𝑖=1

𝑚
𝑗 =1 . 

 

Example 1.4:  

  𝑎𝑖𝑗

2

𝑗 =1

3

𝑖=1

=  (𝑎𝑖1 +

3

𝑖=1

𝑎𝑖2) 

                                 =  𝑎11 + 𝑎12 +  𝑎21 + 𝑎22 + (𝑎31 + 𝑎32) 

                                 = (𝑎11 + 𝑎21 + 𝑎31) + (𝑎12 + 𝑎22 + 𝑎32) 

 (𝑎𝑗1 +2
𝑗 =1 𝑎𝑗1 + 𝑎𝑗3) =   𝑎𝑖𝑗

3
𝑖=1

2
𝑗 =1 . 
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Systems of Linear Equations 
Definition 1.5: An equation containing n variables is said to be linear if it can be 

written in the form  

                                                      𝑏 = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛  --------> (1) 

=  𝑎𝑖𝑥𝑖
𝑛
𝑖=1 . 

Where 𝑥1, 𝑥2, ⋯ , 𝑥𝑛  are n distinct variables, 𝑎1, 𝑎2, ⋯ , 𝑎𝑛  , b are constants, and at 

least one of the 𝑎𝑖 ′s is not 0. 

Definition 1.6: A solution to a linear equation (1) is a sequence of n numbers 

𝑠1, 𝑠2, ⋯ , 𝑠𝑛 , which has the property that (1) is satisfied when 

                             𝑥1 = 𝑠1 , 𝑥2 = 𝑠2, ⋯ , 𝑥𝑛 = 𝑠𝑛  

are substituted in (1). 

Example 1.7:  

(i)  the equation  6𝑥1 − 3𝑥2 + 4𝑥3 = −13 is linear equation of three variables.  

𝑥1 = 2, 𝑥2 = 3,    𝑥3 = −4 is a solution to the linear equation  

6 ∙ 2 − 3 ∙ 3 + 4 ∙ (−4) = −13. 

This is not the only solution to the given linear equation, since  

𝑥1 = 3, 𝑥2 = 1,    𝑥3 = −7 

is another solution.  

 

(ii)
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Definition 1.8:  A system of  m linear equations in n unknowns, or a linear system, 

is a set of m linear equations each in n unknowns and it is of the form  

 
The numbers 𝑎𝑖𝑗  are called the coefficients of  𝑥𝑗  and 𝑏𝑖  is called the constant 

term for each i. 

A solution to a linear system is a sequence of n numbers 𝑠1 , 𝑠2, ⋯ , 𝑠𝑛 , which has 

the property that each equation in the system is satisfied when                             

𝑥1 = 𝑠1, 𝑥2 = 𝑠2, ⋯ , 𝑥𝑛 = 𝑠𝑛  

are substituted in the system. 

Definition 1.9: 

(i) A system which each constant term is zero called homogenous system. 

(ii) If a system of equations has at least one solution, it is said to be consistent.  

(iii) If it has no solution, it is said to be inconsistent.  

(iv) If a consistent system of equations has exactly one solution, the equations of 

the system are said to be independent. 

(v) If it has an infinite number of solutions, the equations are called dependent. 
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Solving by Substitution 

1.10: Steps for Solving by Substitution 

STEP 1:  Pick one of the equations and solve for one of the variables in terms of   

the remaining variables. 

STEP 2:  Substitute the result in the remaining equations. 

STEP 3:  If one equation in one variable results, solve this equation. Otherwise, 

repeat Steps 1 and 2 until a single equation with one variable remains. 

STEP 4:  Find the values of the remaining variables by back-substitution. 

 

Example 1.11: (1) Solve  

. 

Solution: Solve the first equation for y, obtaining 

 
Substitute this value of y in the second equation. This results in an equation 

containing one variable, which we can solve. 
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by substituting for 𝑥 =
9

8
 in one of the original equations we get that 𝑦 =

11

4
. 

We can also write the solution as the ordered pair 

𝑆. 𝑆. =   
9

8
,

11

4
  . 

The system is consistent and independent. 

 

Solve Systems of Equations by Elimination 
1.12: Rules for Obtaining an Equivalent System of Equations 

1- Interchange any two equations in the system. 

2- Multiply (or divide) each side of an equation by the same nonzero constant. 

3- Replace any equation in the system by the sum (or difference) of that equation 

and a nonzero multiple of any other equation in the system. 

Example 1.13: (1) Solve         
2𝑥 + 3𝑦 = 1 − −− → (1)

−𝑥 + 𝑦 = −3 − −−→ (2)
. 

Solution: Multiply each side of Equation (2) by 2 so that the coefficients of x in 

the two equations are opposites of one another. The result is the equivalent system 

 
Now replace Equation (2) of this system by the sum of the two equations, to obtain 

an equation containing just the variable y, which we can solve. 

 
Back-substitute this value for y in Equation (1) and simplify to get 
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The solution of the original system is  𝑥 = 2, 𝑦 = −1, or using ordered pairs  

𝑆. 𝑆 = { 2, −1 }. 

The system is consistent and independent. 

 (2)  Use the method of elimination to solve the system of equations. 

. 

Solution: For a system of three equations, we attempt to eliminate one variable at a 

time, using pairs of equations, until an equation with a single variable remains. 

 

Use Equation (1) to eliminate the variable x from Equations (2) and (3). 

 
So, we have new equation −7𝑦 + 6𝑧 = 20 − −−→ (4). 

 
So, we have new equation     −4𝑦 − 𝑧 = 7 − −−→ (5). 

Now, to eliminate z using equations (4) and (5). 
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 Now solve Equation (6) for y by dividing both sides of the equation by −3. 

So, 𝑦 = −2. Back-substitute in Equation (4) and solve for z, we get 𝑧 = 1. 

Finally, back-substitute  𝑦 = −2 and 𝑧 = 1 in Equation (1) and solve for x we get 

𝑥 = 2. 

The solution of the original system is 𝑥 = 2, 𝑦 = −2, 𝑧 = 1 or, using ordered 

triplets, 𝑆. 𝑆 = { 2, −2,1 }. The system is consistent and independent. 

 

(3) Solve  

 
Solution:  
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We have obtained a contradiction C!. The original system is inconsistent and has 

no solution 

 

(4) Solve   
2𝑥 + 6𝑦 = −3     − − − −→ (1)

𝑥 + 3𝑦 = 2     − − − −−→ (2)
 

Solution: 

Solution by Substitution 

 

Solution by Elimination 

Solve the second equation for x 

and substitute in the first equation. 
Multiply the second equation by −2 

and add to the first equation. 

 

 
Both methods of solution lead to a contradiction (a statement that is false). An 

assumption that the original system has solutions must be false. The system has no 

solution. The graphs of the equations are parallel and the system is inconsistent. 

(5) Solve 

𝑥 −
1

2
𝑦 = 4     − − − −→ (1)

−2𝑥 + 𝑦 = −8     − − − −→ (2)
 

 

Solution: 

Solution by Substitution 

 

Solution by Elimination 

Solve the first  equation for x 

and substitute in the second equation. 
Multiply the first equation by 2 

and add to the second equation. 
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This time both solution methods lead to a statement that is always true. This means 

that the two original equations are equivalent. The system is dependent and has an 

infinite number of solutions. There are many different ways to represent 

this infinite solution set. For example, 

 
both represent the solutions to this system. 

(6) Solve       

𝑥 + 2𝑦 − 3𝑧 = −4      − − − −→ (𝐸1)

2𝑥 + 𝑦 − 3𝑧 = 4   − − − −−→ (𝐸2)
 

Solution:  

To eliminating  𝑥,  2𝐸1 − 𝐸2 = −3𝑦 + 3𝑧 = 12. 

⇒ 𝑦 = 𝑧 − 4 -------->(3)  where z is any real numbers. 

Back-substitute in  𝐸1 and solve for 𝑥, we get  

𝑥 + 2 𝑧 − 4 − 3𝑧 = −4      ⇒ 𝑥 = 𝑧 + 4 -------->(4)   

Thus a solution to the linear system is  
𝑥 = 𝑧 + 4
𝑦 = 𝑧 − 4

𝑧 = any real numbers.
 

This means that the linear system has infinitely many solutions. 
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Exercise 
1.14 

Q: Show that if the following linear systems are consistent (dependent or 

independent) or inconsistent. 

1-          
𝑥 − 3𝑦 = −7 

2𝑥 − 6𝑦 = 7   
 

2- 

𝑥 + 2𝑦 + 3𝑧 = 6 
2𝑥 − 3𝑦 + 2𝑧 = 14 
3𝑥 + 𝑦 − 𝑧 = −2 

 

 

3-      

𝑥 + 2𝑦 = 10   

2𝑥 − 2𝑦 = −4  
3𝑥 + 5𝑦 = 20 

 

 

 

4-   

              

5-  

                    

6- 

               
7- 

                  
          

 

8- 

                 

9- 

          

10-  

      

11- 

           

12-   

      
Q: Prove that   (𝑟𝑖 + 𝑠𝑖 + 𝑤𝑖 + 𝑣𝑖)𝑎𝑖

𝑛
𝑖=1 =  𝑟𝑖𝑎𝑖

𝑛
𝑖=1 +  𝑠𝑖𝑎𝑖

𝑛
𝑖=1 +

 𝑤𝑖𝑎𝑖
𝑛
𝑖=1 +  𝑣𝑖𝑎𝑖

𝑛
𝑖=1 , where 𝑟𝑖 , 𝑠𝑖 , 𝑤𝑖 , 𝑣𝑖 , 𝑎𝑖  are in 𝑅 or ℂ. 
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Chapter Two 

Matrix Algebra 
Definition 2.1:  A matrix is defined as a rectangular array of the form: 

 
The symbols  𝑎11 , 𝑎12 , …   of a matrix are referred to as the entries (or elements) 

of the matrix. Each entry  𝑎𝑖𝑗  of the matrix has two indices: the row index, i, and 

the column index, j. 

 

 The symbols 𝑎𝑖1, 𝑎𝑖2 , … , 𝑎𝑖𝑛  represent the entries in the ith row, and 

the symbols 𝑎1𝑗 , 𝑎2𝑗 , … , 𝑎𝑚𝑗   represent the entries in the jth column. 

If we denote the matrix in display (1) above by A, then we can abbreviate A by 

𝐴 =  𝑎𝑖𝑗                         𝑖 = 1,2, … , 𝑚 and  𝑗 = 1,2, … , 𝑛. 

The matrix A has m rows and n columns. 

Definition:  The dimension of a matrix A is determined by the number of rows 

and the number of columns in the matrix. If a matrix A has m rows and n columns, 

we denote the dimension of A by 𝑚 × 𝑛 read as “m by n.’’ 𝐴 =  𝑎𝑖𝑗    𝑚×𝑛 . 

 

Some Types of Matrices 

Definition 2.2: A matrix 𝐴 =  𝑎𝑖𝑗    𝑚×𝑛   is called a square matrix if a matrix 𝐴 

has the same number of rows as it has columns; that is, 𝑚 = 𝑛. Dimension of 𝐴 is 

𝑛 

Example 2.3:    
𝟎 𝟏 −𝟏
𝟖 𝟔 𝟎

−𝟐 𝟓 𝟕
 

𝟑×𝟑

,    
𝟎 −𝟏
𝟖 𝟎

−𝟐 𝟕

 

𝟑×𝟐

. 
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Definition2.4: In a square matrix  𝐴 =  𝑎𝑖𝑗    𝑛×𝑛  ,  the entries for which 𝑖 = 𝑗 

namely 

𝑎11 , 𝑎22 , … , 𝑎𝑛𝑛  (𝑖 = 1,2, ⋯ , 𝑛 ) are the diagonal entries of A which form the 

main diagonal of A. 

 

Definition 2.5:  

1- A matrix whose all entries are all zero is called zero matrix and denoted by 0.  

𝟎 =  
𝟎 ⋯ 𝟎
⋮ ⋮ ⋮
𝟎 ⋯ 𝟎

 

𝒎×𝒏

 

2- A square matrix of dimension 𝑛 whose all diagonal elements are all one and 

every term off the main diagonal is zero is called identity matrix and denoted by 

𝑰𝒏.   

𝑰𝒏 =  
𝟏 ⋯ 𝟎
⋮ 𝟏 ⋮
𝟎 ⋯ 𝟏

 

𝒏×𝒏

 

 

Definition 2.6: (Diagonal Matrix) 

A square matrix 𝐴 =  𝑎𝑖𝑗    𝑛×𝑛  for which every term off the main diagonal is zero, 

that is, 𝑎𝑖𝑗 = 0 for 𝑖 ≠ 𝑗, is called a diagonal matrix. 

Definition 2.7: (Scalar Matrix) 

A diagonal matrix 𝐴 =  𝑎𝑖𝑗    𝑛×𝑛  for which all terms on the main diagonal are 

equal, that is, 𝑎𝑖𝑗 = 𝑐 for 𝑖 = 𝑗 and 𝑎𝑖𝑗 = 0 for 𝑖 ≠ 𝑗 is called a scalar matrix. 

Definition 2.8: (Upper Triangular) 

A square matrix 𝐴 =  𝑎𝑖𝑗    𝑛×𝑛  is called upper triangular if 

𝑎𝑖𝑗 = 0 for 𝑖 > 𝑗. 

 

Definition 2.9: (Lower Triangular) 

A square matrix 𝐴 =  𝑎𝑖𝑗    𝑛×𝑛  is called lower triangular if 

𝑎𝑖𝑗 = 0 for 𝑖 < 𝑗. 

Definition 2.10: ( Equality of Matrices) 

Two matrices A and B are equal if they are of the same dimension and if 

corresponding entries are equal. 
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Examples 2.11: 

(1) If  𝐴 =  
𝑥 + 𝑦 2𝑧 + 𝑤

𝑥 − 𝑦 𝑧 − 𝑤
 

2×2

=  
3 5

1 4

 

2×2

find 𝑥, 𝑦, 𝑧, 𝑤. 

Solution: The statement above is equivalent to the following: 

𝑥 + 𝑦 = 3,      𝑥 − 𝑦 = 1, 
2𝑧 + 𝑤 = 5,      𝑧 − 𝑤 = 4. 

The solution is 𝑥 = 2,   𝑦 = 1, 𝑧 = 3,      𝑤 = −1. 
(2)  Let 𝐴 and 𝐵 be two matrices given by 

𝐴 =  
𝑥 + 𝑦 6

2𝑥 − 3 2 − 𝑦
 

2×2

𝐵 =  
5 5𝑥 + 2

𝑦 𝑥 − 𝑦
 

2×2

 

 

Determine if there are values of x and y so that A and B are equal. 
 

Solution: Both A and B are 2 × 2 matrices so 𝐴 = 𝐵 if 

 
Here we have four equations containing the two variables x and y. From Equation 

(4) we see that 𝑥 = 2. From equation (1), we obtain 𝑦 = 3. But 𝑥 = 2, 𝑦 = 3 

do not satisfy either Equation (2) or Equation (3). There are no values for x and y 

satisfying all four equations. This means A and B can never be equal. 

Definition 2.12: If 𝐴 =  𝑎𝑖𝑗    𝑚×𝑛  is a matrix, then the 𝑛 × 𝑚 matrix  

𝐴𝑇 =  𝑎𝑖𝑗
𝑇   𝑛×𝑚 , where   

𝑎𝑖𝑗
𝑇 = 𝑎𝑗𝑖   (1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛) 

is called the transpose of 𝐴. Thus the transpose of 𝐴 is obtained by interchanging 

the rows and columns of 𝐴. 
The first row of 𝐴𝑇 is the first column of A; the second row of 𝐴𝑇is the second 

column of A; and so on. 

 

Example 2.13: If 
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then  

 
 

Definition 2.14: A matrix 𝐴 is called symmetric if 

𝐴 = 𝐴𝑇,  

that is,  𝑖, 𝑗 − element of 𝐴 =  𝑗, 𝑖 − element of 𝐴𝑇. 

Remark 2.15: (1) 𝐴 is symmetric if it is a square for which  

𝑎𝑖𝑗 = 𝑎𝑗𝑖 . 

(2) If 𝐴 is symmetric, then the elements of 𝐴 are symmetric with respect to the 

main diagonal of 𝐴. 

Example 2.16: If 

 
then (a) is not symmetric (b) is symmetric (c) is not symmetric. 

Definition 2.17: A square matrix 𝑨 is called skew symmetric if 

𝑎𝑖𝑗 = −𝑎𝑗𝑖  for all 𝑖, 𝑗. 

Example 2.18:  

 
0 1 −2

−1 0 −5
2 5 0

 

𝟑×𝟑

 

Remark 2.19: The main diagonal elements of a skew symmetric matrix are all 

zero. 

Definition 2.20: If 𝐴 =  𝑎𝑖𝑗   is an  𝑚 × 𝑛 matrix, the 𝑚 × 𝑛 matrix obtained by 

replacing each element of  𝐴 by its complex conjugate is called the matrix 

conjugate of 𝐴 and is denoted by 𝐴. That is, 𝐴 =  𝑎𝑖𝑗   

Definition 2.21: If 𝐴 =  𝑎𝑖𝑗   is an  𝑚 × 𝑛 matrix, the 𝑚 × 𝑛 matrix obtained by 

the transpose of 𝐴 is called the transpose conjugate of 𝐴 and is denoted by  

𝐴
𝑇

= 𝐴𝜑 . 
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Example 2.22:  

𝑨 =  
1 + 𝑖 2 3𝑖

−4 + 𝑖 1 2 − 6𝑖
 

𝟐×𝟑

,  𝑨 =  
1 − 𝑖 2 −3𝑖

−4 − 𝑖 1 2 + 6𝑖
 

𝟐×𝟑

,                               

𝑨𝝋 =  
1 − 𝑖 −4 + 𝑖

2 1
−3𝑖 2 + 6𝑖

 

𝟐×𝟑

. 

Definition 2.23: A square matrix 𝐴 =  𝑎𝑖𝑗   is called to be Hermitian if  

𝑎𝑖𝑗 = 𝑎𝑗𝑖  for all 𝑖, 𝑗 

That is, 𝑨 = 𝑨𝑻. 

Example 2.23:  

𝐴 =  
1 −3𝑖

3𝑖 2

 

2×2

. 

Remark 2.24: The main diagonal elements of a Hermitian matrix are all real. 

Definition 2.25: A square matrix 𝐴 =  𝑎𝑖𝑗   is called to be skew Hermitian if  

𝑎𝑖𝑗 = −𝑎𝑗𝑖  for all 𝑖, 𝑗 

That is, 𝑨 = −𝑨𝑻. 

Example 2.26:  

𝑨 =  
𝑖 4 + 𝑖

−4 + 𝑖 6𝑖
 

𝟐×𝟐

. 

Remark 2.27: The main diagonal elements of a skew Hermitian matrix are all not 

real. 

Definition 2.28: Let 𝐴 =  𝑎𝑖𝑗   be an  𝑛 × 𝑛  matrix. Then the trace of  𝐴 denoted 

by Tr(𝐴), is defined as the sum of all diagonal elements of 𝐴. That is, 

Tr 𝐴 =  𝑎𝑖𝑖
𝑛
𝑖=1 = 𝑎11 + 𝑎22 + ⋯ + 𝑎𝑛𝑛 . 

Example 2.29: 

 Let 𝐴 =  
2 1 −2

−1 −5 −5
2 5 9

 

𝟑×𝟑

. Then Tr 𝐴 = 2 +  −5 + 9 = 6. 
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Chapter Three 

Operation on Matrices 
 

 Definition 3.1: (Addition of Matrices) 

We define the sum 𝑨 + 𝑩 of two matrices A and B with the same dimension as 

the matrix consisting of the sum of corresponding entries from A and B. That is, 

if 𝐴 =  𝑎𝑖𝑗    𝑚×𝑛  , 𝐵 =  𝑏𝑖𝑗    𝑚×𝑛  are two matrices, the sum is the 𝑚 × 𝑛 

matrix 𝑨 + 𝑩 =  𝑎𝑖𝑗 + 𝑏𝑖𝑗  .

 
 

 

Definition 3.2: If A is any matrix, the additive inverse of A, denoted by –𝐴 is the 

matrix obtained by replacing each number in A by its additive inverse. That is, if  

𝐴 =  𝑎𝑖𝑗    𝑚×𝑛  , then −𝐴 =  −𝑎𝑖𝑗    𝑚×𝑛 . 

 

 Definition 3.3: (Subtraction of Matrices) 

We define the difference 𝑨 − 𝑩 of two matrices A and B with the same dimension 

as the matrix consisting of the difference of corresponding entries from A and B. 

That is, if  𝐴 =  𝑎𝑖𝑗    𝑚×𝑛  , 𝐵 =  𝑏𝑖𝑗    𝑚×𝑛  are two matrices, the difference is 

𝑚 × 𝑛 matrix 𝑨 − 𝑩 =  𝑎𝑖𝑗 − 𝑏𝑖𝑗  . 

 

Definition 3.4: (Scalar Multiplication) 

Let A be an 𝑚 × 𝑛  matrix and let c be a real number, called a scalar. The 

product of the matrix A by the scalar c, called scalar multiplication, is the 

𝑚 × 𝑛  matrix cA, whose entries are the product of c and the corresponding 

entries of A. That is, if  𝐴 =  𝑎𝑖𝑗    𝑚×𝑛  then 𝑐𝐴 =  𝑐𝑎𝑖𝑗    𝑚×𝑛 . 
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Example 3.5: Suppose 

 
Solution:  

 
Definition 3.6: (Multiplication of Matrices) 

Let A denote an 𝑚 × 𝑝 matrix, and let B denote an 𝑝 × 𝑛 matrix. The product 

AB is defined as the 𝑚 × 𝑛 matrix whose entry in row i, column j is the product 

of the ith row of A and the jth column of B.  

 
where  𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑝𝑏1𝑝 . 
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Example 3.7: 

. 

Find each product that is defined:  

(i) 𝐴𝐵   (ii) 𝐵𝐴   (iii) 𝐶𝐷    (iv) 𝐷𝐶 

Solution:  

 
  (ii) 

      
(iii)  
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(iv)  

. 

 

Remark 3.8: Let 𝑫𝒎×𝒑 and 𝑪𝒑×𝒏 be two matrices.  

1- From above examples (i) and (ii), if 𝑫𝑪 is defined not necessary 𝑪𝑫 is defined. 

2- From above examples (iii) and (iv) it is clear that not necessary 𝑫𝑪 = 𝑪𝑫, that 

is, matrix multiplication is not commutative. 

Theorem 3.9: Let 𝐴 =  𝑎𝑖𝑗  𝑛×𝑝
 and 𝐵 =  𝑏𝑖𝑗  𝑝×𝑚

 . 

(i) The ith row of the matrix product 𝐴𝐵 is equal to the matrix product of 𝐴𝑖𝐵, 

where 𝐴𝑖  is the row of 𝐴. 

(ii) The jth column of the matrix product 𝐴𝐵 is equal to the matrix product of 𝐴𝐵𝑗 , 

where 𝐵𝑗  is the column of 𝐵. 

(iii) If 𝐴 has a row of zeros, then 𝐴𝐵 has a row of zeros. 

(iv) If 𝐵 has a column of zeros, then 𝐴𝐵 has a column of zeros. 
 

Definition3.10: Let 𝐴 =  𝑎𝑖𝑗   be an  𝑛 × 𝑛  matrix, then  

(i)   𝐴 is called idempotent if 𝐴 = 𝐴2. 

(ii)  𝐴 is called nilpotent  if 𝐴𝑘 = 0 for some integer if 𝑘. 

Example 3.11:  

𝐴 =  
2 −1 1

−3 3 −2
−4 4 −3

 

3×3

is idempotent and  𝐵 =  
0 1 1
0 0 1
0 0 0

 

3×3

is nilpotent since 

𝐵3 = 0.   
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Theorem 3.12: (Properties of Matrix Addition) 

(1) 𝐴 + 𝐵= 𝐵 + 𝐴. (Commutative Property for Addition). 

(2) 𝐴 + (𝐵 + 𝐶)=(𝐴 +  𝐵) + 𝐶. (Associative Property for Addition). 

(3) 𝐴 + 0 = 𝐴.  

(4) 𝐴 +  −𝐴 =  −𝐴 + 𝐴 = 0. (Additive Inverse). 

 

Theorem 3.15: (Properties of Scalar Multiplication) 

Let k and h be two real numbers and let A and B be two matrices of dimension 

𝑚 × 𝑛. Then 

(1) 𝑘 𝑕𝐴 =  𝑘𝑕 𝐴. 

(𝟐)  𝑘 + 𝑕 𝐴 = 𝑘𝐴 + 𝑕𝐴. 
(3) 𝑘 𝐴 + 𝐵 = 𝑘𝐴 + 𝑘𝐵. 

(4) 0 ∙ 𝐴 = 0. 

(5) 𝐴 + 𝐴 + ⋯ + 𝐴           = 𝑛 ∙ 𝐴
𝑛−𝑡𝑖𝑚𝑒𝑠

. 

 

Theorem 3.16: (Properties of Matrix Multiplication)  

(1) if 𝐴, 𝐵 and 𝐶 are of the appropriate sizes, then  

𝐴 𝐵𝐶 =  𝐴𝐵 𝐶 . (Associative Property) 

 

(2) if 𝐴, 𝐵 and 𝐶 are of the appropriate sizes, then  

𝐴 𝐵 + 𝐶 = 𝐴𝐵 + 𝐴𝐶 .  (Distributive Property) 

(3) if 𝐴, 𝐵 and 𝐶 are of the appropriate sizes, then  

 𝐴 + 𝐵 𝐶 = 𝐴𝐶 + 𝐵𝐶. 

(4) if 𝐴𝑚×𝑛   is a matrix,  then      

𝐼𝑚 ∙ 𝐴 = 𝐴 ∙ 𝐼𝑛 = 𝐴. 

 

Proof: (1)  Let 𝐴 = [𝑎𝑖𝑗 ]𝑚×𝑛 , 𝐵 = [𝑏𝑖𝑗 ]𝑛×𝑝  and 𝐶 = [𝑐𝑖𝑗 ]𝑝×𝑞  

𝐴𝐵 = [𝑢𝑖𝑗 ]𝑚×𝑝 ,  𝑢𝑖𝑗 =  𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1 . 

𝐵𝐶 = [𝑣𝑖𝑗 ]𝑛×𝑞 , 𝑣𝑖𝑗 =  𝑏𝑖𝑟𝑐𝑟𝑗
𝑝
𝑟=1 . 

Now  

 𝑖, 𝑗 − element of  𝐴𝐵 𝐶 =  𝑢𝑖𝑟𝑐𝑟𝑗

𝑝

𝑟=1

=    𝑎𝑖𝑘𝑏𝑘𝑟

𝑛

𝑘=1

 

𝑝

𝑟=1

𝑐𝑟𝑗  

            =   𝑎𝑖1𝑏1𝑟 + 𝑎𝑖2𝑏2𝑟 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑟  𝑝
𝑟=1 𝑐𝑟𝑗  
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=  𝑎𝑖1𝑏11 + 𝑎𝑖2𝑏21 + ⋯ + 𝑎𝑖𝑛𝑏𝑛1 𝑐1𝑗 +  𝑎𝑖1𝑏12 + 𝑎𝑖2𝑏22 + ⋯ + 𝑎𝑖𝑛𝑏𝑛2 𝑐2𝑗 + ⋯

+  𝑎𝑖1𝑏1𝑝 + 𝑎𝑖2𝑏2𝑝 + ⋯ + 𝑎𝑖𝑛𝑏𝑛𝑝  𝑐𝑝𝑗  

 

= 𝑎𝑖1 𝑏11𝑐1𝑗 + 𝑏12𝑐2𝑗 + ⋯ + 𝑏1𝑝𝑐𝑝𝑗  + 𝑎𝑖2 𝑏21𝑐1𝑗 + 𝑏22𝑐2𝑗 + ⋯ + 𝑏2𝑝𝑐𝑝𝑗   

+𝑎𝑖𝑛  𝑏𝑛1𝑐1𝑗 + 𝑏𝑛2𝑐2𝑗 + ⋯ + 𝑏𝑛𝑝 𝑐𝑝𝑗   

 

= 𝑎𝑖1   𝑏1𝑟𝑐𝑟𝑗

𝑝

𝑟=1

 + 𝑎𝑖2   𝑏2𝑟𝑐𝑟𝑗

𝑝

𝑟=1

 + ⋯ + 𝑎𝑖𝑛   𝑏𝑛𝑟 𝑐𝑟𝑗

𝑝

𝑟=1

  

 

=  𝑎𝑖𝑘  𝑏𝑘𝑟 𝑐𝑟𝑗
𝑝
𝑟=1  =  𝑎𝑖𝑘𝑣𝑘𝑗

𝑛
𝑘=1

𝑛
𝑘=1 =  𝑖, 𝑗 − element of 𝐴(𝐵𝐶). 

 

(2), (3) and (4) Exercise. 

Definition 3.17: Suppose 𝐴 is a square matrix. If 𝑝 is a positive integer, then 

𝐴𝑝 = 𝐴 ∙ 𝐴⋯𝐴       
𝑝 𝑡𝑖𝑚𝑒𝑠

 . 

If 𝐴 is 𝑛 × 𝑛, we define 𝐴0 = 𝐼𝑛 . 

 

Theorem 3.18: Let 𝑝, 𝑞 are nonnegative integers and 𝐴, 𝐵 are square matrix. Then  

(1) 𝐴𝑝𝐴𝑞 = 𝐴𝑝+𝑞 . 

(2) (𝐴𝑝)𝑞 = (𝐴𝑞)𝑝 = 𝐴𝑝𝑞 . 

(3) It is not necessary that  

(𝐴𝐵)𝑝 = 𝐴𝑝𝐵𝑝 . 

However, if  𝐴𝐵 = 𝐵𝐴, then this rule does hold. 

Example 3.19: Let 𝐴 =  
1 2
2 1

 ,  𝐵 =  
4 2
2 3

 . 

  𝐴𝐵 =  
8 8

10 7
 , (𝐴𝐵)2 =  

144 120
150 129

 ,    

𝐴2 =  
5 4
4 5

 ,     𝐵2 =  
20 14
14 13

 ,       𝐴2𝐵2 =  
156 122
150 121

 , 

but (𝐴𝐵)2 ≠ 𝐴2𝐵2. 

Remark 3.20:  

(1) The cancellation law does not hold for matrices as the following example 

shows. 

Let 𝐴 =  
1 2
2 4

 ,  𝐵 =  
2 1
3 2

 , and 𝐶 =  
−2 7
5 −1

 .  Then 

𝐴𝐵 = 𝐴𝐶 =  
8 5

16 10
 . 
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But 𝐵 ≠ 𝐶. 

(2) 𝐴𝐵 may be zero with neither A nor B equal to zero; that is, if 𝐴 and  𝐵 are two 

nonzero matrices, it is not necessary 𝐴𝐵 ≠ 𝟎. That is, the zero property does not 

hold for matrix multiplication as the following example shows. 

Let 𝐴 =  
1 2
2 4

 ,  𝐵 =  
4 −6

−2 3
 .     𝐴𝐵 =  

0 0
0 0

  ,  𝐵𝐴 =  
−8 −16
4 8

 . 

 

Theorem 3.21: 

(i) (Triangular Matrices) 

(1) The sum and product of upper triangular matrices is upper triangular. 

(2) The sum and product of lower triangular matrices is lower triangular. 

Proof:  

(1) Let 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛  , 𝐵 = [𝑏𝑖𝑗 ]𝑛×𝑛  and 𝑎𝑖𝑗 = 𝑏𝑖𝑗 = 0 if 𝑖 > 𝑗. 

Sum: 

Let 𝐴 + 𝐵 = [𝑐𝑖𝑗 ]𝑛×𝑛  where  𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 , to prove 𝑐𝑖𝑗 = 0 if 𝑖 > 𝑗. Since  

𝑎𝑖𝑗 + 𝑏𝑖𝑗 = 0 if 𝑖 > 𝑗, thus 𝑐𝑖𝑗 = 0. That is, 𝐴 + 𝐵 is upper triangular. 

Product: 

 Let 𝐴 ∙ 𝐵 = [𝑐𝑖𝑗 ]𝑛×𝑛  where  𝑐𝑖𝑗 =  𝑎𝑖𝑡𝑏𝑡𝑗
𝑛
𝑡=1 . T.P. 𝑐𝑖𝑗 = 0 if 𝑖 > 𝑗. 

If  𝑖 > 𝑗 > 𝑡 ⇒ 𝑖 > 𝑡,  then 𝑎𝑖𝑡 = 0. 
If  𝑡 > 𝑖 > 𝑗 ⇒ 𝑡 > 𝑗,  then 𝑏𝑡𝑗 = 0 . 

If  𝑖 > 𝑡 > 𝑗 ⇒ 𝑖 > 𝑡 and 𝑡 > 𝑗  then 𝑎𝑖𝑡 = 𝑏𝑡𝑗 = 0. 

Therefore, 𝑐𝑖𝑗 = 0 if 𝑖 > 𝑗. That is, 𝐴 ∙ 𝐵 is upper triangular. 

(ii) (Transpose)  

Let 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛  and 𝐵 = [𝑏𝑖𝑗 ]𝑛×𝑛  

(1) 𝐴𝑇𝑇
= 𝐴.    (2) (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇.   

(3) If 𝐴𝐴𝑇 = 0 then 𝐴 = 0, where all entries of 𝐴 are real numbers. 

(4) (𝑘𝐴)𝑇 = 𝑘𝐴𝑇, where 𝑘 is any nonzero real number. 

Proof: 

(2) Let  𝐴𝑇 =  𝑐𝑖𝑗  = [𝑎𝑗𝑖 ]  and 𝐵𝑇 =  𝑑𝑖𝑗  = [𝑏𝑗𝑖 ]. Then  

 𝑖, 𝑗 − element of   (𝐴𝐵)𝑇 =  𝑗, 𝑖 − element of   𝐴𝐵 

=  𝑎𝑗𝑘 𝑏𝑘𝑖
𝑝
𝑘=1 =  𝑐𝑘𝑗 𝑑𝑖𝑘 =  𝑑𝑖𝑘𝑐𝑘𝑗

𝑝
𝑘=1

𝑝
𝑘=1 =  𝑖, 𝑗 − element of   𝐵𝑇𝐴𝑇. 

(3) Let  𝐴𝑇 =  𝑐𝑖𝑗  . 

If 𝐴𝐴𝑇 = 0, then 𝑐𝑖𝑗 = 0 for all 𝑖, 𝑗.⟹⟹ 𝑐𝑖𝑖 = 0 for all 𝑖. 

⟹⟹ 𝑐𝑖𝑖 =  𝑎𝑖𝑘𝑐𝑘𝑖 = 0𝑛
𝑘=1 . But 𝑐𝑘𝑖 = 𝑎𝑖𝑘 . Thus, 

𝑐𝑖𝑖 =  𝑎𝑖𝑘𝑎𝑖𝑘 =   𝑎𝑖𝑘 2 =𝑛
𝑘=1 0𝑛

𝑘=1 ⟺ 𝑎𝑖𝑘 = 0 for all 𝑖 and 𝑘. Therefore, 𝐴 = 0. 

(1), (4) Exercise. 
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(ii) (Symmetric and Skew Symmetric)  

Let 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛  and 𝐵 = [𝑏𝑖𝑗 ]𝑛×𝑛  

(1) 𝐴𝐴𝑇 and 𝐴𝑇𝐴 are symmetric 

(2) 𝐴 + 𝐴𝑇 is symmetric.  

(3) 𝐴 − 𝐴𝑇 is skew symmetric. 

(4) If 𝐴 is skew symmetric, then 𝐴2 is symmetric. 

If 𝐴 and 𝐵 are symmetric, then   

(5) 𝐴 is symmetric iff 𝐴𝑇 is symmetric. 

(6) 𝐴 + 𝐵 is symmetric.  

(7) 𝐴𝐵 is symmetric iff 𝐴𝐵 = 𝐵𝐴. 

(iii) (Conjugate and Transpose Conjugate) 

Let 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑝  and 𝐵 = [𝑏𝑖𝑗 ]𝑝×𝑚 . Then 

(1) 𝐴 = 𝐴.    (2) 𝐴𝐵 = 𝐴 𝐵.   

(3) 𝑘𝐴 = 𝑘𝐴, where 𝑘 is any nonzero real number. 

(4) 𝐴 + 𝐵 = 𝐴 + 𝐵 .   
If 𝐴𝜃  and 𝐵𝜃  are the transposed conjugate of 𝐴 and 𝐵 respectively, then 

(5) (𝐴𝜃)𝜃=𝐴.  (6) (𝐴 + 𝐵)𝜃 = 𝐴𝜃 + 𝐵𝜃 . 

(7) (𝑘𝐴)𝜃 = 𝑘𝐴𝜃 ,  where 𝑘 is any nonzero complex number. 

(8) (𝐴𝐵)𝜃 = 𝐵𝜃𝐴𝜃 . 

If 𝑛 = 𝑝, then  

(9) 𝐴 + 𝐴𝜃  is Hermitian matrix. 

(10) 𝐴 − 𝐴𝜃  is skew Hermitian matrix. 

(iv) (Trace) 

Let 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛  and 𝐵 = [𝑏𝑖𝑗 ]𝑛×𝑛  , then 

(1) Tr(𝑘𝐴)= 𝑘Tr(𝐴), where 𝑘 is any nonzero real number. 

(2) Tr(𝐴 + 𝐵)= Tr 𝐴 + Tr(𝐵). 

(3) Tr(𝐴𝐵)= Tr(𝐵𝐴). 

(4) Tr 𝐴𝑇 = Tr(𝐴). 

Proof: 

Let   𝑖, 𝑗 − element of   𝐴𝐵 = 𝑐𝑖𝑗 =  𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1  and  

 𝑖, 𝑗 − element of   𝐵𝐴 = 𝑑𝑖𝑗 =  𝑏𝑖𝑘𝑎𝑘𝑗
𝑛
𝑘=1 . 

⟹ 𝑐𝑖𝑖 =  𝑎𝑖𝑘𝑏𝑘𝑖 =  𝑏𝑘𝑖𝑎𝑖𝑘
𝑛
𝑘=1

𝑛
𝑘=1     belong to the main diagonal of 𝐴𝐵. 

⟹Tr 𝐴𝐵 =  𝑐𝑖𝑖
𝑛
𝑖=1 =   𝑏𝑘𝑖𝑎𝑖𝑘 =   𝑏𝑘𝑖 

∈𝐵

𝑎𝑖𝑘 
∈𝐴

𝑛
𝑖=1

𝑛
𝑘=1

𝑛
𝑘=1

𝑛
𝑖=1  

= 𝑑𝑘𝑘
𝑛
𝑘=1 =  Tr(𝐵𝐴). 
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Echelon Form of a Matrix 
Definition 3.22: An  𝑚 × 𝑛 matrix 𝐴 is said to be in reduced row echelon form if 

it satisfies the 

following properties: 

(i) All zero rows, if there are any, appear at the bottom of the matrix. 

(ii) The first nonzero entry from the left of a nonzero row is a l. This entry is 

called a leading one (leading entry) of its row. 

(iii) For each nonzero row, the leading one appears to the right and below any 

leading ones in preceding rows. 

(iv) If a column contains a leading one, then all other entries in that column are 

zero . 

An  𝑚 × 𝑛 matrix satisfying properties (i), (ii) and (iii) is said to be in row 

echelon form. 

Definition 3.23: The first column with a nonzero entry (counting from left to right) 

is called the pivot column and the first nonzero entry in the pivot column 

(counting from top to bottom) is called the pivot. 

Remark: A matrix in reduce row echelon form (row echelon form) might not have 

any rows that consist entirely of zeros. 

Example 3.24: 
(i) The following are matrices in reduced row echelon form. 

 

 
(ii) The matrices that follow arc not in reduced row echelon form. 
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We shall now show that every matrix can be put into row echelon form, or into 

reduced row echelon form. by means of certain row operations. 

(iii)  

 
Definition 3.25: An elementary row (column) operation on a matrix A is anyone of 

the following operations: 

(1) Interchange any two rows (columns).  

 
(2) Multiply a row (column) by a nonzero number. 

 
(3) Add a multiple of one row (column) to another. 

 
Example 3.25: Let  

 
Interchanging rows 1 and 3 of A, we obtain 

 

Multiplying the third row of A by 
1

3
, we obtain 
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Adding (−2) times row 2 of A to row 3 of A. we obtain 

 
Definition 3.26: An 𝑚 × 𝑛 matrix 𝐵 is said to be row (column) equivalent to an 

𝑚 × 𝑛 matrix 𝐴 if B can be produced by applying a finite sequence of elementary 

row (column) operations to 𝐴. 

Example 3.27: Let  

 
If we add 2 times row 3 of A to its second row, we obtain 

 
so B is row equivalent to 𝐴. 

Theorem 3.28:  

(1) Every matrix is row(column) equivalent to itself. 

(2) If  𝐴 is row(column) equivalent to 𝐵, then 𝐵 is row(column) equivalent to 𝐴. 

(3) If 𝐴 is row(column) equivalent to 𝐵  and is 𝐵 row(column) equivalent to 𝐶, 

then 𝐴 is row(column) equivalent to 𝐶. 

(4) Every nonzero 𝑚 × 𝑛 matrix 𝐴 is row (column) equivalent to a to a unique 

matrix in row (column) echelon form. 

Remark 3.29: It should be noted that a row echelon form of a matrix is not unique. 
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Example 3.30: 

 (1) Let 

 
Solution:  
 Step 1: Identify the pivot column and the pivot.  

Step 2: Interchange the first row if necessary with the row where the pivot occurs. 
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The matrix 

 

 
is in row echelon form and is row equivalent to 𝐴. 

 
 

This is in reduced row echelon form and is row equivalent to 𝐴. 
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(2) Let  

𝐴 =  
1 −1 1
0 2 −1
2 3 0

  

 

−2𝑟2 + 𝑟3 ↔ 𝑟3   
1 −1 1
0 2 −1
0 5 −2

           
1

2
 𝑟2 ↔ 𝑟2                 

1 −1 1

0 1
−1

2

0 5 −2

  

                    

  

−5𝑟2 + 𝑟3 ↔ 𝑟3   

1 −1 1

0 1
−1

2

0 0
1

2

           2 𝑟3 ↔ 𝑟3                 

1 −1 1

0 1
−1

2

0 0 1

  

                    

−𝑟3 + 𝑟1 ↔ 𝑟1     
1 −1 0
0 1 0
0 0 1

           𝑟2 + 𝑟3 ↔ 𝑟1            𝐻 =  
1 0 0
0 1 0
0 0 1

  

−𝑟3 + 𝑟1 ↔ 𝑟1 

 

The matrix 𝐻 is in reduce row echelon form of 𝐴. 
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Chapter Four 
The Inverse of a Matrix 

Definition 4.1: If 𝐴 is a square matrix of order n and if there exists a matrix 𝐴−1 

(read “A inverse”) such that 

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛  
then 

 𝐴−1 is called the multiplicative inverse of 𝐴 or, more simply, the inverse of 𝐴. If 

no such matrix exists, then 𝐴 is said to be a singular matrix(or noninvertible).  

Example 4.2: 

(1) Let  𝐴 =  
1 2
3 4

   and 𝐴−1 =  
𝑎 𝑐
𝑏 𝑑

   such that  

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼2. 

We can write 

                                

                                    

                     
                              

Using substitution method or elimination method to solve the systems. 

𝑎 = 2,    𝑏 = −1                                                       𝑐 = −3,    𝑑 = 2 

Therefore, 

𝐴−1 =  
𝑎 𝑐
𝑏 𝑑

 =  
2 −3

−1 2
  

(2)  Let  𝐴 =  
1 2
2 4

  , find 𝐴−1 if exist. 

Solution: 

Let  𝐴−1 =  
𝑎 𝑏
𝑐 𝑑

  such that 𝐴𝐴−1 = 𝐼2 =  
1 0
0 1

  . 

⟹ 𝐴𝐴−1 =  
1 2
2 4

  
𝑎 𝑏
𝑐 𝑑

 =  
1 0
0 1

 ⟹  
𝑎 + 2𝑐 𝑏 + 2𝑑

2𝑎 + 4𝑐 2𝑏 + 4𝑑
 =  

1 0
0 1
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𝑎 + 2𝑐 = 1 − −→ 𝐸1 

2𝑎 + 4𝑐 = 0 − −→ 𝐸2 

𝑏 + 2𝑑 = 0 − −→ 𝐸3 

2𝑏 + 4𝑑 = 1 − −→ 𝐸4 

−2𝐸1 + 𝐸2 ⟶ 0 = −2    𝐶!. So, the linear systems have no solution. Therefore 𝐴 

has no inverse. That is, 𝐴 is singular.  

(3) Find the inverse, if it exists, of 

 
Solution:  

 
Equating corresponding terms, we see that this is true only if 

 
Use substitution or elimination methods to solve these systems. 

𝑎 = 3, 𝑏 = −2, 𝑐 = −4 

𝑑 = 3, 𝑒 = −2, 𝑓 = −5 

𝑔 = −1, 𝑕 = 1, 𝑖 = 2. 

Therefore,  

𝐴−1 =  
3 3 −1

−2 −2 1
−4 −5 2

  

 

4.3: Steps for Finding the Inverse of a Matrix of Dimension 𝑛 × 𝑛 

STEP 1: Form the matrix 

STEP 2: Using row operations, write 𝐴|𝐼𝑛   in reduced row echelon form. 

STEP 3: If the resulting matrix is of the form  𝐼𝑛 |𝐵  that is, if the identity matrix 

appears on the left side of the bar, then 𝐵 is the inverse of 𝐴. Otherwise,  

𝐴 has no inverse. 
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Example 4.4: 

(1)  Find the inverse of 

 
Solution:  
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The matrix  𝐴|𝐼3   is in reduce row echelon form. 

STEP 3: Since the identity matrix 𝐼3 appears on the left side, the matrix appearing 

on the right is the inverse. That is, 

 
(2) Show that the matrix given below has no inverse. 

𝐴 =  
3 2
6 4

 . 

Solution: Set up the matrix 

 

 
The 0s in row 2 tell us we cannot get the identity matrix. This, in turn, tells us the 

original matrix has no inverse. 
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Theorem 4.5: 

 (1)If a matrix has an inverse, then the inverse is unique. 

(2) The matrix 𝐴 =  
𝑎 𝑏
𝑐 𝑑

  is nonsingular ⟺ 𝑎𝑑 − 𝑏𝑐 ≠ 0 and  

𝐴−1 =  

𝑑

𝑎𝑑−𝑏𝑐

−𝑏

𝑎𝑑−𝑏𝑐
−𝑐

𝑎𝑑−𝑏𝑐

𝑎

𝑎𝑑−𝑏𝑐

 . 

(3) An 𝑛 × 𝑛 matrix is nonsingular ⟺ it is row equivalent to 𝐼𝑛 . 

(4) An 𝑛 × 𝑛 matrix 𝐴 is singular ⟺ 𝐴 is row equivalent to a matrix 𝐵 that has a 

row of zeros. (That is, the reduced row echelon form of 𝐴 has a row of zeros .) 

(5) If 𝐴 is a nonsingular matrix, then 𝐴−1 is nonsingular and 𝐴−1−1
= 𝐴. 

(6) If 𝐴 and 𝐵 are nonsingular matrices, then 𝐴𝐵 is nonsingular and  

(𝐴𝐵)−1 = 𝐵−1𝐴−1. 

(7) If 𝐴 is a nonsingular matrix, then (𝐴−1)𝑇 = (𝐴𝑇)−1. 

(8) If 𝐴1, 𝐴2, ⋯ , 𝐴𝑟  are 𝑛 × 𝑛 nonsingular matrices, then 𝐴1𝐴2 ∙ ⋯ ∙ 𝐴𝑟  is 

nonsingular and (𝐴1𝐴2 ∙ ⋯ ∙ 𝐴𝑟)−1 = 𝐴𝑟
−1𝐴𝑟−1

−1 ∙ ⋯ ∙ 𝐴1
−1. 

Proof: 

(1)Let  𝐵 and 𝐶 be inverse matrices of  a matrix 𝐴. Then  

𝐴𝐵 = 𝐵𝐴 = 𝐼 and  𝐴𝐶 = 𝐶𝐴 = 𝐼. To prove 𝐵 = 𝐶. 

𝐵 = 𝐵𝐼 = 𝐵 𝐴𝐶 =  𝐵𝐴 𝐶 = 𝐼𝐶 = 𝐶 ⟹ 𝐵 = 𝐶. 

(2) Check. 

(3) and (4) without prove. 

(5) Check. 

(6)Since  

(𝐴𝐵)𝐵−1𝐴−1 = 𝐴 𝐵𝐵−1 𝐴−1 = 𝐴𝐼𝐴−1= 𝐴𝐴−1 = 𝐼. 

Therefore, (𝐴𝐵)−1 = 𝐵−1𝐴−1. 

(7) We have  

 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛 ⟹ (𝐴𝐴−1)𝑇 = (𝐴−1𝐴)𝑇 = 𝐴𝑇(𝐴−1)𝑇 = 𝐼𝑛
𝑇 = 𝐼𝑛 . 

Then, (𝐴−1)𝑇𝐴𝑇 = (𝐴𝐴−1)𝑇 = (𝐴−1𝐴)𝑇 = 𝐴𝑇(𝐴−1)𝑇 = 𝐼𝑛
𝑇 = 𝐼𝑛 . 

(8) Without prove. 
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Chapter Five 
Determinants 

Definition 5.1: (First- and Second-Order Determinants) 

For any square matrix 𝐴, the determinant of 𝐴 is a real number denoted by det(𝑨) 

or  𝐴 . If 𝐴 is a square matrix of order n, then det(𝐴) is called a determinant of 

order n. If 𝐴 = [𝑎11] is a square matrix of order 1, then 

det(𝐴)= 𝑎11  

is a first-order determinant. 

Given a second-order square matrix 𝐴 =  
𝑎11 𝑎12

𝑎21 𝑎22
 , the second-order 

determinant of 𝐴 is 

 
Example 5.2:  

 
Solution:  

 
 

Evaluating Third-Order Determinants 

 

Definition 5.3: Given the matrix 𝐴 =  

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 , the third-order 

determinant of 𝐴 is 

det 𝐴 =  

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

 = 𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 −

𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33 − 𝑎13𝑎22𝑎31 . 

We can also obtain  𝐴  using the following diagram(Sarrus diagram). 
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 𝐴 =sum of the product of the entries on each line. 

Example: Find  𝐴  where  𝐴 =  
4 1 1
3 −1 1
1 1 2

 . 

Solution: By using Sarrus diagram we get the following. 

 𝐴  

 

 
 𝐴 =  4 ∙ −1 ∙ 2 +  1 ∙ 1 ∙ 1 +  1 ∙ 3 ∙ 1 −  1 ∙ −1 ∙ 1 −  1 ∙ 1 ∙ 4 − (2 ∙ 3 ∙ 1)      

      = −8 + 1 + 3 + 1 − 4 − 6 = −13. 

 

Definition 5.4: Let 𝐴 = [𝑎𝑖𝑗 ] be an 𝑛 × 𝑛 matrix. Let 𝑀𝑖𝑗  be an  𝑛 − 1 × (𝑛 − 1) 

submatrix of 𝐴 obtained by deleting the ith row and jth column of 𝐴. The 

determinant det(𝑀𝑖𝑗 ) is called the minor of 𝑎𝑖𝑗 . 

Definition 5.5: Let 𝐴 =  𝑎𝑖𝑗   be an 𝑛 × 𝑛 matrix. The cofactor 𝐴𝑖𝑗  of 𝑎𝑖𝑗  is 

defined as                                   

                                               𝐴𝑖𝑗 =  −1)𝑖+𝑗 det(𝑀𝑖𝑗   

                   =  −1)𝑖+𝑗 ( minor of 𝑎𝑖𝑗  . 
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The minor of an element in a third-order determinant is a second-order 

determinant obtained by deleting the row and column that contains the element. 

 
Example 5.6: Find the cofactors of −2 and 5  

𝐴 =  
−2 0 3
1 −6 5

−1 2 0
 . 

Solution:  

. 

If we think of the sign (−1)𝑖+𝑗 as being located in position (𝑖, 𝑗) of an 𝑛 × 𝑛 

matrix, then the signs form a checkerboard pattern that has a + in the (1,1) position. 

The patterns for 𝑛 = 3 and 𝑛 = 4 are as follows: 
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Theorem 5.7: 

 
 

Example 5.8: (1) Evaluate  

 
Solution: 

We can choose any row or column to expand along. We will choose the first row 

because of the zero: we won’t need to find that cofactor because it will be 

multiplied by zero. 
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(2) Evaluate 

 
Solution:  

 

                                  

                 =  3  2  
1 3

−2 3
 − 2  

−3 4
−2 3

  +  3   −2  
−4 1
2 −2

 + 2  
1 −3
2 −2

   

=  3  2  3 + 6 −  3  2  −9 + 8 +  3  −2  8 − 2 +  3  2  −2 + 6  

= 54 + 6 − 36 + 24 = 48. 

(3) Given the fourth order determinant 

 

0
−5

−1
−6

0 2
0 −3

4 5 −2 6
0 3 0 −4

 . 

(i) Find the minor of the element 𝑎33 = −2. 

(ii) Find the cofactor of 𝑎33 . 

(iii) Find the value of the fourth order determinate. 

Solution:  

(i) Minor of −2 =  
0 −1 2

−5 −6 −3
0 3 −4

 =  −5 (−1)2+1  
−1 2
3 −4

 = 5 4 − 6 = −10. 

(ii) Cofactor of  −2 = (−1)3+3 minor of − 2 =  minor of − 2 = −10. 
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(iii)  

0
−5

−1
−6

0 2
0 −3

4 5 −2 6
0 3 0 −4

 =  −2  cofactor of − 2 =  −2  −10 = 20. 

 

Theorem 5.9: (Determinant properties) 

(1) If a matrix 𝐵 results from a matrix 𝐴 by interchanging two rows (columns) of 

𝐴, then  𝐵 = −|𝐴|. 
(2) If two rows (column) of 𝐴 are equal, then  𝐴 = 0. 

(3) If two rows (column) of 𝐴 consists entirely of zeros, then  𝐴 = 0. 

(4) If a matrix 𝐵 is obtained from a matrix 𝐴 by multiplying a row (column) of  𝐴 

by a real number 𝑐 ≠ 0, then  𝐵 = 𝑐|𝐴|. 
(5) If a matrix 𝐵 = [𝑏𝑖𝑗 ] is obtained from a matrix 𝐴 = [𝑎𝑖𝑗 ] by adding to each 

element of the 𝑟th row (column) of 𝐴 a nonzero constant 𝑐 times the corresponding 

element of the 𝑠th row (column) 𝑟 ≠ 𝑠 of 𝐴, then  𝐵 = |𝐴|. 

 

𝑎 𝑏 𝛼𝑎 + 𝑥
𝑐 𝑑 𝛼𝑐 + 𝑦
𝑒 𝑓 𝛼𝑒 + 𝑧

 =  

𝑎 𝑏 𝑥
𝑐 𝑑 𝑦
𝑒 𝑓 𝑧

 . 

(6)If each element of a row (column) of a determinant is the sum of two numbers, 

then, the determinant can be expressed as the sum of two determinants. 

 

𝑎 𝑏 𝛼 + 𝑥
𝑐 𝑑 𝛽 + 𝑦
𝑒 𝑓 𝛾 + 𝑧

 =  
𝑎 𝑏 𝛼
𝑐 𝑑 𝛽
𝑒 𝑓 𝛾

 +  

𝑎 𝑏 𝑥
𝑐 𝑑 𝑦
𝑒 𝑓 𝑧

 . 

(7) The determinant of a matrix and its transpose are equal; that is,  𝐴 =  𝐴𝑇 . 
(8) If a matrix 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑛  is upper (lower) triangular, then  

𝐴 = 𝑎11 ∙ 𝑎22 ∙ ⋯ ∙ 𝑎𝑛𝑛  

                                                    = Product of the elements on the main diagonal. 

(9)  𝐴𝐵 =  𝐴  𝐵 . 

(10) If 𝐴 is a nonsingular matrix, then  𝐴 ≠ 0 and  𝐴−1 =
1

|𝐴|
. 

Proof: 

Prove (1),(2),(3) and (4) using matrices of dimension two. 

(5)  

𝑎 𝑏 𝛼𝑎 + 𝑥
𝑐 𝑑 𝛼𝑐 + 𝑦
𝑒 𝑓 𝛼𝑒 + 𝑧

 = 𝑎  
𝑑 𝛼𝑐 + 𝑦
𝑓 𝛼𝑒 + 𝑧

 − 𝑏  
𝑐 𝛼𝑐 + 𝑦
𝑒 𝛼𝑒 + 𝑧

 + (𝛼𝑎 + 𝑥)  
𝑐 𝑑
𝑒 𝑓

  

= 𝑎 𝑑𝛼𝑒 + 𝑑𝑧 − 𝑓𝛼𝑐 − 𝑓𝑦 − 𝑏 𝑐𝛼𝑒 + 𝑐𝑧 − 𝑒𝛼𝑐 − 𝑒𝑦 +  𝛼𝑎 + 𝑥  𝑐𝑓 − 𝑒𝑑 .  

= 𝑎𝑑𝛼𝑒 + 𝑎𝑑𝑧 − 𝑎𝑓𝛼𝑐 − 𝑎𝑓𝑦 − 𝑏𝑐𝛼𝑒 − 𝑏𝑐𝑧 + 𝑏𝑒𝛼𝑐 + 𝑏𝑒𝑦 + 𝛼𝑎𝑐𝑓 − 𝛼𝑎𝑒𝑑 +
𝑥𝑐𝑓 − 𝑥𝑒𝑑. 
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= 𝑎𝑑𝑧 − 𝑎𝑓𝑦 − 𝑏𝑐𝑧 + 𝑏𝑒𝑦 + 𝑥𝑐𝑓 − 𝑥𝑒𝑑. 

= 𝑎 𝑑𝑧 − 𝑓𝑦 − 𝑏 𝑐𝑧 − 𝑒𝑦 + 𝑥(𝑐𝑓 − 𝑒𝑑). 

= 𝑎  
𝑑 𝑦
𝑓 𝑧

 − 𝑏  
𝑐 𝑦
𝑒 𝑧

 + 𝑥  
𝑐 𝑑
𝑒 𝑓

 =  

𝑎 𝑏 𝑥
𝑐 𝑑 𝑦
𝑒 𝑓 𝑧

 . 

(6)Check. 

(7) Prove it using matrix of dimension 2. 

(8) Prove it using matrix of dimension 3. 

(9)Without prove. 

(10) If 𝐴 is nonsingular matrix, then there exist 𝐴−1 such that  

𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛 . 

⟹ |𝐴𝐴−1| = |𝐼𝑛 |. But  𝐼𝑛  = 1. Also, ⟹ |𝐴𝐴−1 =  𝐴 |𝐴−1 = 1 

⟹  𝐴 |𝐴−1| = 1 ⟹  𝐴−1 =
1

|𝐴|
 

Example 5.10:  

(1) Let  𝐴 =  
2 1
2 0

 , 𝐴𝑇 =  
2 2
1 0

 .  ⟹  𝐴 =  2 ∙ 0 −  2 ∙ 1 = −2. 

⟹  𝐴𝑇 =  2 ∙ 0 −  1 ∙ 2 = −2. 

(2) Let 𝐴 =  
1 2 3
4 5 6
0 0 0

 . Find  𝐴  using cofactor expansion.  

Solution: 

 𝐴 = 1  
5 6
0 0

 − 2  
4 6
0 0

 + 3  
4 5
0 0

 =(1)(0) – (2)(0)+(3)(0)=0. 

 

(3) Let 𝐴 =  
2 6
1 12

 . Find  𝐴 . 

Solution:  

 𝐴 =  
2 6
1 12

 =  
2 2 ∙ 3
1 12

 =  2  
1 3
1 3 ∙ 4

 =  2  3  
1 3
1 4

 =  2  3  4 − 3  

        = 6. 

(4) Let 𝐴 =  
1 2 3
1 5 3
2 8 6

 . Find  𝐴  using properties only. 

Solution:  

 𝐴 =  
1 2 3
1 5 3
2 8 6

 =  
1 2 3
1 5 3
2 2 ∙ 4 2 ∙ 3

 =  2  
1 2 3
1 5 3
1 4 3

 =  2  3  
1 2 1
1 5 1
1 4 1

  

           =  2  3  0 = 0. 



Al-Mustansiriyah University        College of Science                  Dept. of Math.                           

                                                                           

Finite Mathematics I-(2015-2016) 

 

43 

 

(5) Let 𝐴 =  
2 −1
3 2

 .  

 𝐴 =  
2 −1
3 2

 = 4 + 3 = 7. 

Let 𝐴𝑐1↔𝑐2
=  

−1 2
2 3

 = 𝐵. 

 𝐵 =  
−1 2
2 3

 = −3 − 4 = −7. 

(6) Let 𝐴 =  
1 2 3
2 −1 3
1 0 1

  and 𝐵 =  
5 0 9
2 −1 3
1 0 1

 .  

 

 
1 2 3
2 −1 3
1 0 1

 𝑅1 = 2𝑟2 + 𝑟1  
5 0 9
2 −1 3
1 0 1

 = 𝐵. ⟹  𝐴 =  𝐵 = 4. 

 

 (7) Let 𝐴 =  
4 3 2
3 −2 5
2 4 6

 . Use determinant properties only to find |𝐴|. 

Solution: 

 
4 3 2

3 −2 5

2 4 6

 =  
4 3 2

3 −2 5

2 2 ∙ 2 2 ∙ 3

  𝑅3 2     (2)  
4 3 2

3 −2 5

1 2 3

   

 

   𝑟1 ⟷ 𝑟3  −2  
1 2 3
3 −2 5
4 3 2

    𝑅2 = −3𝑟1 + 𝑟2  (−2)  
1 2 3
0 −8 −4
4 3 2

   

𝑅3 = −4𝑟1 + 𝑟3  (−2)  
1 2 3
0 −8 −4
0 −5 −10

  𝑅2 −4     (−2)(−4)  
1 2 3
0 2 1
0 −5 −10

  

  

𝑅3 −5      −2  −4  −5  
1 2 3
0 2 1
0 1 2

  

𝑅3 = −1

2
𝑟2 + 𝑟3   −2  −4  −5  

1 2 3
0 2 1

0 0
𝟑

𝟐

 =  −2  −4  −5  1  2  
3

2
  

                                                                        = −120.      
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(8) Let 𝐴 =  
1 2

3 4

  and 𝐵 =  
2 −1

1 2

 . 

 

⟹ 𝐴𝐵 =  
4 3

10 5
  ⟹  𝐴 = −2,  𝐵 = 5 ⟹  𝐴  𝐵 =  −2  5 = −10. 

⟹  𝐴𝐵 = 20 − 30 = −10. 

(9) Let 𝐴 =  
𝑎 𝑏
𝑐 𝑑

 =  
1 2
3 4

 . 

𝑎𝑑 − 𝑏𝑐 = 4 − 6 = −2 ⟹ 𝐴−1 =  
−2 1

3

2

−1

2

 ,  𝐴 = −2 ⟹ |𝐴−1| =
−𝟏

𝟐
=

𝟏

|𝑨|
. 

Definition 5.11: Let 𝐴 = [𝑎𝑖𝑗 ] be an 𝑛 × 𝑛 matrix. The 𝑛 × 𝑛 matrix 𝑎𝑑𝑗(𝐴) , 

called the adjoint of 𝐴, is the matrix whose (𝑖, 𝑗)th entry is the cofactor 𝐴𝑗𝑖 of 𝑎𝑗𝑖 . 

Thus 

 

𝑎𝑑𝑗(𝐴) =  

𝐴11 𝐴21 ⋯ 𝐴𝑛1

⋱ ⋮
𝐴1𝑛 𝐴2𝑛 ⋯ 𝐴𝑛𝑛

 . 

Example 5.12: Let 𝐴 =  
3 −2 1
5 6 2
1 0 −3

 . Compute 𝑎𝑑𝑗(𝐴). 

Solution: We first compute the cofactors of 𝐴. We have 

 
 

 
 

 
Then  
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𝑎𝑑𝑗(𝐴) =  
−18 −6 −10
17 −10 −1
−6 −2 28

 . 

Theorem 5.13: If 𝐴 is an 𝑛 × 𝑛 matrix, then  

(1)   𝑎𝑖1𝐴𝑘1 + 𝑎𝑖2𝐴𝑘2 + ⋯ + 𝑎𝑖𝑛𝐴𝑘𝑛 = det 𝐴  if 𝑖 = 𝑘 , 
                                                            = 0 if 𝑖 ≠ 𝑘 

       𝑎1𝑗 𝐴1𝑘 + 𝑎2𝑗𝐴2𝑘 + ⋯ + 𝑎𝑛𝑗 𝐴𝑛𝑘 = det 𝐴  if  𝑗 = 𝑘, 

                                                             = 0 if 𝑗 ≠ 𝑘 

(2) 𝐴𝑎𝑑𝑗 𝐴 = 𝑎𝑑𝑗 𝐴 𝐴 = |𝐴|𝐼𝑛 . 

Proof: 

(1) without prove. 

(2) We have 

 
From (1) we have that the (𝑖, 𝑗)th element in the product matrix 𝐴𝑎𝑑𝑗 𝐴   

 

𝑎𝑖1𝐴𝑗1 + 𝑎𝑖2𝐴𝑗2 + ⋯ + 𝑎𝑖𝑛𝐴𝑗𝑛 = det 𝐴  if  , if 𝑖 = 𝑗, 

                                              = 0             if 𝑖 ≠ 𝑗. 
This means that  

 
Thus, det⁡(𝐴)   

 
Also, from (1), the (𝑖, 𝑗)th element in the product matrix 𝑎𝑑𝑗 𝐴 𝐴 is  

  𝐴1𝑖𝑎1𝑗 + 𝐴2𝑖𝑎2𝑗 + ⋯ + 𝐴𝑛𝑖𝑎𝑛𝑗 = det 𝐴  if  𝑖 = 𝑗, 

                                                             = 0 if     𝑖 ≠ 𝑗. 
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Thus,  𝐴𝑎𝑑𝑗 𝐴 = 𝑎𝑑𝑗 𝐴 𝐴 = |𝐴|𝐼𝑛 . 

Example 5.14: Let 𝐴 =  
1 2 3

−2 3 1
4 5 −2

 . Then  

 

 
Now  

 
and  

 
 

 𝐴 = 𝑎21𝐴21 + 𝑎22𝐴22 + 𝑎23𝐴23 =  −2  19 +  3  −14 +  1  3 = −77. 
Theorem 5.15: If  𝐴 is an 𝑛 × 𝑛 nonsingular matrix, then  

 
Proof: Exercise.  

Example 5.16: Let 𝐴 =  
3 −2 1
5 6 2
1 0 −3

 . Compute 𝐴−1 using adjoint of 𝐴. 

Solution: 

𝑎𝑑𝑗(𝐴) =  
−18 −6 −10
17 −10 −1
−6 −2 28

  

and     𝐴 = −94. 
Therefore,  
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𝐴−1 =
𝑎𝑑𝑗 (𝐴)

|𝐴|
=

 
 
 
 
 
−18

−94

−6

−94

−10

−94
17

−94

−10

−94

−1

−94
−6

−94

−2

−94

28

−94 
 
 
 
 

. 

Theorem 5.17: A matrix 𝐴 is nonsingular ⟺ |𝐴| ≠ 0. 

Proof: Exercise. 
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Chapter Six 

Solution of Linear Systems 
6.1: Consider the linear system of 𝑚 linear equations in 𝑛 unknown. 

𝑎11𝑥1 𝑎12𝑥2 ⋯ ⋯ 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 𝑎22𝑥2
⋯ ⋯ 𝑎2𝑛𝑥𝑛 =𝑏2

⋮
⋮

𝑎𝑚1𝑥1

⋮
⋮

𝑎𝑚2𝑥2

⋱ ⋱ ⋮
⋱ ⋱ ⋮

⋯ ⋯ 𝑎𝑚𝑛 𝑥𝑛 = 𝑏𝑚

------------> (1) 

Now define the following matrices: 

 

𝐴 =

 
 
 
 
 
𝑎11 𝑎12

⋯ ⋯ 𝑎1𝑛

𝑎21 𝑎22
⋯ ⋯ 𝑎2𝑛

⋮
⋮

𝑎𝑚1

⋮
⋮

𝑎𝑚2

⋱ ⋱ ⋮
⋱ ⋱ ⋮

⋯ ⋯ 𝑎𝑚𝑛  
 
 
 
 

𝑚×𝑛

, 𝐵 =

 
 
 
 
 
𝑏1

𝑏1

⋮
⋮

𝑏𝑚  
 
 
 
 

𝑚×1

,  𝑋 =

 
 
 
 
𝑥1
𝑥1

⋮
⋮

𝑥𝑛  
 
 
 

𝑛×1

, 

𝐶 =

 
 
 
 
 

 

𝑎11 𝑎12
⋯ ⋯ 𝑎1𝑛

𝑎21 𝑎22
⋯ ⋯ 𝑎2𝑛

⋮
⋮

𝑎𝑚1

⋮
⋮

𝑎𝑚2

⋱ ⋱ ⋮
⋱ ⋱ ⋮

⋯ ⋯ 𝑎𝑚𝑛

 
 

𝑏1

𝑏2

⋮
⋮

𝑏𝑚  
 
 
 
 

𝑚×(𝑛+1)

= [𝐴|𝐵]. 

The matrix 𝐴 is called the coefficient matrix of the linear system (1) and the 

matrix 𝐶 is called the augmented matrix of the linear system (1). 

Then the linear system (1) can be written in matrix form as  

𝐴𝑋 = 𝐵 ------- >  (2) 

The linear system as in (2) is called homogenous system if  𝐵 = 0; that is  

𝐴𝑋 = 0 ---------- > (3) 

The solution 𝑥1 = 𝑥2 = ⋯𝑥𝑛 = 0 to the homogenous system (3) is called trivial 

solution. 

A solution 𝑥1=𝑠1, 𝑥2=𝑠2, ⋯ 𝑥𝑛 = 𝑠𝑛  to a homogenous system in which not all the 

𝑠𝑖 = 0 is called nontrivial solution. 

Example 6.2:  

(1) Consider the linear system   

2𝑥 + 3𝑦 − 4𝑧 = 5 

−2𝑥          − 𝑧 = 7 

3𝑥 + 2𝑦 + 2𝑧 = 3 

The augmented matrix of the linear system is  
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The coefficient matrix of the linear system is 𝐴 =  
2 3 −4

−2 0 1
3 2 2

  and the 

augmented matrix is     
2 3 −4

−2 0 1
3 2 2

 
5
7
3
 . Also, 𝐵 =  

5
7
3
 

3×1

,  𝑋 =  

𝑥1

𝑥2

𝑥3

 

3×1

. 

𝐴𝑋 = 𝐵. 

(2) The matrix    
1 3 −1]
2 0 1
3 1 0

 
0
1
1
  is the augmented matrix of the following linear 

system 

𝑥 + 3𝑦 − 𝑧 = 0 

2𝑥         + 𝑧 = 1 

3𝑥 + 𝑦        = 1 

Theorem 6.3:  

(1) Let 𝐴𝑋 = 𝐵 and 𝐶𝑋 = 𝐷 be two linear systems each of 𝑚 equations in 𝑛 

unknown. If the augmented matrices [𝐴|𝐵] and [𝐶|𝐷] of these systems are row 

equivalent, then both linear systems have exactly the same solutions. 

(2) 𝐴 and 𝐶 are row equivalent 𝑚 × 𝑛 matrices, then the linear systems 𝐴𝑋 = 0 

and 𝐶𝑋 = 0 have exactly the same solutions. 

Proof: Without prove. 

Theorem 6.4:  

(1) A homogenous system of 𝑚 equations in 𝑛 unknown always has a nontrivial 

solution if 𝑚 < 𝑛.  

(2) If 𝐴 is an 𝑛 × 𝑛 matrix, then the homogenous system 

𝐴𝑋 = 0 

has a nontrivial solution ⟺ 𝐴 is singular ⟺  𝐴 = 0. 

 

The following theorem summarizes results on homogenous systems and 

nonsingular matrices. 

Theorem 6.5: Let 𝐴 be an 𝑛 × 𝑛 matrix, then the following are equivalent: 

(1) 𝐴 is nonsingular. 

(2) 𝐴𝑋 = 0 has only the trivial solution. 

(3) 𝐴 is row equivalent to the identity matrix 𝐼𝑛 . 

(4) The linear system 𝐴𝑋 = 𝐵 has a unique solution for every 𝑛 × 1 matrix 𝐵. 

(5) |𝐴| ≠ 0. 

Proof: Exercise. 
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Solving Linear System By Gauss-Jordan Reduction 
 

                                                   
Carl Friedrich Gauss (1777- 1855)                                                                               Wilhelm Jordan (1842-1899)     

                       Germany                                                                                                                       Germany  

6.6: The Gauss-Jordan reduction procedure for solving a linear system 𝐴𝑋 = 𝐵 is 

as follows: 

STEP 1: Form the augmented matrix [𝐴|𝐵]. 
STEP 2: Transform the augmented matrix to the matrix [𝐶|𝐷] in reduce row 

echelon form by using elementary row operation. 

STEP 3: Solve the corresponding equation for the unknown that corresponds to 

the leading entry of the row. 

Example 6.7: Solve by Gauss–Jordan elimination 

(1) 

2𝑥1 − 2𝑥2 + 𝑥3 = 3 

3𝑥1 + 𝑥2 − 𝑥3 = 7 

𝑥1 − 3𝑥2 + 2𝑥3 = 0 
Solution: Write the augmented matrix and follow the steps indicated at the right to 

produce a reduced form. 
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The system which has the above augmented matrix is  

𝑥1 + 0 + 0 = 2 

                                                        0 + 𝑥2 + 0 = 0 

                                                        0 + 0  + 𝑥1 = −1 

 

Therefore, 𝑆. 𝑆. = { 2,0, −1 }. 

(2)  
2𝑥1 − 4𝑥2 + 𝑥3 = −4 

4𝑥1 − 8𝑥2 + 7𝑥3 = 2 

−2𝑥1 + 4𝑥2 − 3𝑥3 = 5 
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Solution: 

 
We stop the Gauss–Jordan elimination, even though the matrix is not in reduced 

form, since the last row produces a contradiction. 

The system is inconsistent and has no solution. 

(3)  

3𝑥1 + 6𝑥2 − 9𝑥3 = 15 

2𝑥1 + 4𝑥2 − 6𝑥3 = 10 

−2𝑥1 − 3𝑥2 + 4𝑥3 = −6 

 

Solution: 
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This matrix is now in reduced form. Write the corresponding reduced system and 

solve. 

𝑥1 + 0 + 𝑥3 = −3    ⟹ 𝑥1 = −𝑥3 − 3  

0 + 𝑥2 − 2𝑥3 = 4    ⟹ 𝑥2 = 2𝑥3 + 4   
This dependent system has an infinite number of solutions. We will use a 

parameter to represent all the solutions. 

                                                    
Where  𝑡 ∈ 𝑅. Therefore, 𝑆. 𝑆. =   −𝑡 − 3,2𝑡 + 4, 𝑡 |𝑡 ∈ 𝑅 . 
(4)  

                    
Solution: 

 
 

 

 
 

 
This matrix is in reduce row echelon form. Write the corresponding reduced 

system and solve. 
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Solve for the leftmost variables 𝑥1, 𝑥2, and 𝑥4 in terms of the remaining variables 

𝑥3 and 𝑥5: 

 
If we let 𝑥3 = 𝑠and 𝑥5 = 𝑡, then for any real numbers 𝑠 and 𝑡, 

 

 
𝑆. 𝑆. = {(2𝑠 + 3𝑡 + 7, −3𝑠 − 2𝑡 − 3, 𝑠, 2𝑡, 𝑡)|𝑠, 𝑡 ∈ 𝑅}. 

 

(4) A chemical manufacturer plans to purchase a fleet of 24 railroad tank cars with 

a combined carrying capacity of 250,000 gallons. Tank cars with three different 

carrying capacities are available: 6000 gallons, 8000 gallons, and 18000 gallons. 

How many of each type of tank car should be purchased? 

Solution: 

Let  

 
Then  

 



Al-Mustansiriyah University        College of Science                  Dept. of Math.                           

                                                                           

Finite Mathematics I-(2015-2016) 

 

55 

 

Now we can form the augmented matrix of the system and solve by using Gauss–

Jordan reduction: 

 

 
 

 
The matrix is in reduce row echelon form.  

 
Let 𝑥3 = 𝑡. Then for 𝑡 any real number, 

 

is a solution or is it? Since the variables in this system represent the number of 

tank cars purchased, the values of𝑥1, 𝑥2, and 𝑥3 must be nonnegative integers. The 

third equation requires that 𝑡 must be a nonnegative integer. The first equation 

requires that 5𝑡 − 29 ≥ 0, so 𝑡 must be at least 6. The middle equation requires 

that −6𝑡 + 53 ≥ 0, so 𝑡 can be no larger than 8. 

So, 6, 7, and 8 are the only possible values for 𝑡. There are three different possible 

combinations that meet the company’s specifications of 24 tank cars with a total 

carrying capacity of 250,000 gallons, as shown in Table 1: 
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The final choice would probably be influenced by other factors. For example, the 

company might want to minimize the cost of the 24 tank cars. 

 

Solving Linear System By Gaussian Elimination 

 
6.8: The Gauss-Jordan reduction procedure for solving a linear system 𝐴𝑋 = 𝐵 is 

as follows: 

STEP 1: Form the augmented matrix [𝐴|𝐵]. 
STEP 2: Transform the augmented matrix to the matrix [𝐶|𝐷] in reduce row 

echelon form by using elementary row operation. 

STEP 3: Solution of the linear system corresponding to the augmented matrix 

[𝐶|𝐷] using back substitution.  

Example 6.9: Solve the following system by Gaussian elimination. 

 
Solution:  
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This matrix is in row echelon form. Because the bottom row consists entirely of 0s, 

the system actually consists of only two equations. 

 

From the second equation we get  𝑦 =
1

11
𝑧 −

2

11
. Then back-substitute this solution 

for y into the first equation to get 

 
The original system is equivalent to the system 

 
where z, the parameter, can be any real number. If we let 𝑧 = 𝑡 then 

𝑆. 𝑆. =   
2

11
𝑡 +

7

11
,

2

11
𝑡 +

2

11
, 𝑡  𝑡 ∈ 𝑅}. 
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Solving Linear System By Cramer’s Rule 

6.10: Let 𝐴𝑋 = 𝐵 be an 𝑛 × 𝑛 linear system, where 𝑋 =  

𝑥1

⋮
𝑥𝑛

 . Then the Cramer’s 

rule is as follows: 

If |𝐴| ≠ 0, then  

𝑥𝑖 =
|𝐴𝑖 |

|𝐴|
, 𝑖 = 1,2, ⋯ , 𝑛 

where 𝐴𝑖  is the matrix obtained from 𝐴 by replacing the 𝑖th column by 𝐵. 

If 𝑛 = 3 then Cramer’s rule as follows: 

 
Example 6.11: (Solving a Three-Variable System with Cramer’s Rule) 

Solve using Cramer’s rule: 

 
Solution: 
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. 

Remark 6.12: 

(1) Cramer’s rule is only applicable in the case where we have 𝑛 equations and 𝑛 

unknowns (that is, coefficient matrix is square) and the coefficient matrix is 

nonsingular.   

(2)  Cofactor expansion can be used to find determinants of orders higher than 3, so 

Cramer’s rule can be used for systems with more than three variables. 

(3)  For large systems (𝑛 > 4), Cramer’s rule becomes computationally inefficient. 

However, the Gauss-Jordan method, which involves fewer arithmetic operations 

than Cramer’s Rule, is a more practical choice. 
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Solving Linear System Using Inverses  
 

6.13: In general, any system of 𝑛 linear equations containing 𝑛 variables 

𝑥1, 𝑥2, … , 𝑥𝑛  can be written in the form 

𝐴𝑋 = 𝐵 

where 𝐴 is the 𝑛 × 𝑛 matrix of the coefficients of the variables, 𝐵 is an 𝑛 × 1  

column matrix whose entries are the numbers appearing to the right of each equal 

sign in the system, and 𝑋 is an 𝑛 × 1  column matrix containing the 𝑛 variables. 

 

To find 𝑋, start with the matrix equation 𝐴𝑋 = 𝐵 and use properties of matrices. 

Assume that the 𝑛 × 𝑛 matrix 𝐴 has an inverse 𝐴−1; that is 𝐴 is nonsingular. 

 
This leads to the following result: 

Theorem 6.14:  

 
 

Example 6.15: Solve the system of equations: 

 
Solution: Here 
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the solution X of the system is 

 

Therefore, 𝑆. 𝑆. = {(0,2,
−1

2
)}. 

 

Application: Use Matrices in Cryptography 

 
Cryptography is the art of writing or deciphering secret codes. We begin by 

giving examples of elementary codes. 

Example 6.17:  (Encoding a Message) 

A message can be encoded by associating each letter of the alphabet with some 

other letter (or numbers) of the alphabet according to a prescribed pattern. For 

example, we might have 
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 Suppose we want to encode the following message: 

TOP SECURITY CLEARANCE 

If we decide to divide the message into pairs of letters, the message becomes 

TO PS EC UR IT YC LE AR AN CE 

(If there is a letter left over, arbitrarily assign Z to the last position.) Using the 

correspondence of letters to numbers given above, and writing each pair of letters 

as a column vector, we obtain 

 
Next, arbitrarily choose a 2 × 2 matrix 𝐴, which has an inverse  𝐴−1. 

 

Let’s choose 

 
whose its inverse is  

 
Now transform the column vectors representing the message by multiplying each 

of them on the left by matrix 𝐴:  
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The coded message is 

50  31  46  27  116  70  39  24  57  32  76  50  96  59  79  44  91  52  114  68. 

 

     To decode or unscramble the above message, pair the numbers in 2 × 1 column 

vectors. Then on the left multiply each column vector by 𝐴−1. For example, the 

first two column vectors then become 

 
 

Continuing in this way, the original message is obtained. 


