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Chapter One

Linear Equations
Definition 1.1: (Summation Notation)
By >i-,a; wemeana; + a, + -+ a, . Thatis,

ia,=a;ta;+-a,.
The letter i is called the index of summation.
By X121 a; we mean that we first sum on j and then sum the resulting
expression on i.
Example 1.2: Leta; = 10, a, = 12. Then,
2 a;=a;+a, =10+ 12 = 32.
Theorem 1.3:
1- Y +spa; =X na;, + X5
2-Yi—c(ray) = Xisg(er)a; = cQiiina; ).
3-2i=1 Z}n=1 aj; = ;n=1 27 a
Proof :
(1) and (2) exercise.
() Ximi Xjtiay = Xisq(ain +ap + -+ i)
=(a;1 +ap + -+ ap) + (A +ap ++ay,) +
+(an1 t+ay, ++ anm)
= (a1 tay + -+ ay) + (@ +ap +-+ay)+
+(a1m +ayy, + 0t anm)
=2iti(ay +ag + - tay) =X Xingay

Example 1.4:
2

3 3
z a; = Z(an +a;;)
i=1j=1 i=1
= (a11 + a12) + (a1 + azy) + (az; + azy)
= (a1 + ap1 +az) + (a2 + ax +asz;)
Z,Z=1(aj1 +a1+a3) = ZJZ=1 Vo1 aj; .
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Systems of Linear Equations
Definition 1.5: An equation containing n variables is said to be linear if it can be
written in the form
b=ayx; +ayx; + -+ a,x, —------- > (1)

= Xi=1 A X;.
Where x4, x5, -*+, x,, are n distinct variables, a4, a,, -+, a,, , b are constants, and at
least one of the a;’s is not 0.
Definition 1.6: A solution to a linear equation (1) is a sequence of n numbers
S1,S2,°**, Sy, Which has the property that (1) is satisfied when

X1 = S1,X3 = S,"**, X, = Sy,
are substituted in (1).
Example 1.7:
(i) the equation 6x; — 3x, + 4x3 = —13 is linear equation of three variables.
X1 =2, x; =3, x3 =—4isasolution to the linear equation

6:-2—3-3+4-(—4) =—-13.

This is not the only solution to the given linear equation, since

X1=3, x2=1, X3:—7
Is another solution.
(i)
Consider the equation
e +y = 4 x 1
If we substitute x = —2 in the equation, we obtain -9 ]
2«(-2)+y =4 or —4+y =4 or y = 8 —1 6
Hence (—2,8) 13 a solution. If we substitute x =3 in the ¢ 4
equation, we obtain 1 2
2*3+y = 14 or 6+y = 4 or y = —2 2 0
3 —2

Hence (3, —2) is a solution. The table on the right lists six
possible values for x and the corresponding values for y,
i.e. six solutions of the equation.
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Graph of 20 4+ 3¢ — 4

Definition 1.8: A system of m linear equations in n unknowns, or a linear system,
is a set of m linear equations each in n unknowns and it is of the form

Q111 + A2%s + -+ + Andn = bl
@121 + QpXy + -+ + QmXn = bz
Am1 1 + dmaz X2 4+ - + dmn En —_ bm

The numbers a;; are called the coefficients of x; and b; is called the constant
term for each i.
A solution to a linear system is a sequence of n numbers sq, s,, ***, s, Which has
the property that each equation in the system is satisfied when

X1 =S81,Xp = 8Sy,"**, X, = S,
are substituted in the system.
Definition 1.9:
(i) A system which each constant term is zero called homogenous system.
(i) If a system of equations has at least one solution, it is said to be consistent.
(iii) If it has no solution, it is said to be inconsistent.
(iv) If a consistent system of equations has exactly one solution, the equations of
the system are said to be independent.
(v) If it has an infinite number of solutions, the equations are called dependent.
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System of linear equations

I |

Inconsistent Consistent
No Unique Infinite number
solution solution of solutions

Solving by Substitution
1.10: Steps for Solving by Substitution

STEP 1: Pick one of the equations and solve for one of the variables in terms of

the remaining variables.
STEP 2: Substitute the result in the remaining equations.

STEP 3: If one equation in one variable results, solve this equation. Otherwise,

repeat Steps 1 and 2 until a single equation with one variable remains.
STEP 4: Find the values of the remaining variables by back-substitution.

Example 1.11: (1) Solve

w+ y= 5 (1)
—4x + 6y =12 (2)

Solution: Solve the first equation for y, obtaining
2x+y =5 (1)

y = —2x + 5 Subtract 2x from each side

o

Substitute this value of y in the second equation. This results in an equation
containing one variable, which we can solve.
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—4x + 6y = 12 (2)
—4x + 6(—2x +5) =12 Substitute y=-2x+5in (2)
—4x — 12x + 30 = 12 Remove parentheses.
—lox = —18 Combine like terms; subtract 30 from each side.
—18 9
X = —— = — Divide each side by —16.
—16 8

by substituting for x = Z in one of the original equations we get that y = 14—1.
We can also write the solution as the ordered pair

5= ((2.2)

The system is consistent and independent.

Solve Systems of Equations by Elimination

1.12: Rules for Obtaining an Equivalent System of Equations
1- Interchange any two equations in the system.
2- Multiply (or divide) each side of an equation by the same nonzero constant.
3- Replace any equation in the system by the sum (or difference) of that equation
and a nonzero multiple of any other equation in the system.
Example 1.13: (1) Solve

2x + 3y =1—-—-(1)

—x + y =-3-—>>(2)
Solution: Multiply each side of Equation (2) by 2 so that the coefficients of x in
the two equations are opposites of one another. The result is the equivalent system

2x+3y= 1 (1)
—2x+2y=—6 (2

Now replace Equation (2) of this system by the sum of the two equations, to obtain
an equation containing just the variable y, which we can solve.

20+ 3y = 1 (1)
{—Zx + 2y = —6 (2
5y = —5 Add (1) and (2).
¥y = —1 Solvefory.
Back-substitute this value for y in Equation (1) and simplify to get

6
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2x + 3y =1 (1)
2x + 3(—1) = 1 Substitute y=—1in(1).
2x = 4 Simplify.

x = 2 Solve for x.
The solution of the original systemis x = 2,y = —1, or using ordered pairs
S.5={(2,-1)}.
The system is consistent and independent.
(2) Use the method of elimination to solve the system of equations.

x+ y— z=—-1 (1)
dx — 3y + 2z= 16 (2)
(3)

Solution: For a system of three equations, we attempt to eliminate one variable at a
time, using pairs of equations, until an equation with a single variable remains.

L

2x — 2y — 3z =

Use Equation (1) to eliminate the variable x from Equations (2) and (3).

x+ y— z=—1 (1) Multiply by —4. —4x — 4y + 4z = 4 (1)
4x — 3y +2z=16 (9 dx — 3y + 2z = 16 (2)
—7y + 6z=20 Add.
So, we have new equation =7y + 6z = 20 — ——— (4).
x + y— z=—1 (1)Multiply by —2. —2x — 2y +2z=2 (1)
2x —2y—3z= 5 (3 2x — 2y — 3z =15 (3)
—4y — z=7  Add
So, we have new equation —4y—z=7—-——- (5).

Now, to eliminate z using equations (4) and (5).
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=7y +6z=20 (4 =7y +6z=20 (4 x+ y— z=-1 {1
~dy - z=17 (5) Multiply by 6. —My —6z=42 (3 =7yt 6z=20 (4
=3ly =62 Add. =31y = 62

Now solve Equation (6) for y by dividing both sides of the equation by —3.

So, y = —2. Back-substitute in Equation (4) and solve for z, we get z = 1.
Finally, back-substitute y = —2 and z = 1 in Equation (1) and solve for x we get
x = 2.

The solution of the original systemis x = 2, y = —2, z = 1 or, using ordered
triplets, S.S = {(2,—2,1)}. The system is consistent and independent.

(3) Solve
x+ y+ z=3 E
x— y—5%2=1 &
x+3y+5z2=6 E
Solution:

Use E, to eliminate z from E, and replace £, with the result.

Equivalent System

5x + 5y +5z2=15 sE x+ y+ z= 3 &
x— y—52= 1 E, bx + 4y =16 E,
ox + 4y = 16 E, 2x+3y+5z2= 6 &

Use E, to eliminate z from £5 and replace E5 with the result.

Equivalent System

—5x — 5y —5z=—-15 -sg x+ y+z= 3 E
2x + 3y + 5z = 6 Es bx + 4y = 16 &
—3x — 2y = —9 Es —3x — 2y =-9 E
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Now treat £, and E5 as a system of two equations, and eliminate y.

6x + 4y = 16 Eq
—6x — 4y = —18  2E
D - _2 E:

We have obtained a contradiction C!. The original system is inconsistent and has
no solution

(4) Solve
2x + 6y =-3 ————(1)
x + 3y =2 ————> (2)
Solution:
Solution by Substitution Solution by Elimination
Solve the second equation for x Multiply the second equation by —2
and substitute in the first equation. and add to the first equation.
x=2— 3y x + 6y = —3
22— 3y) + 6y = —3 —2x — 6y = —4
4—6y+6y=—3 0= -7
4=-3

Both methods of solution lead to a contradiction (a statement that is false). An
assumption that the original system has solutions must be false. The system has no
solution. The graphs of the equations are parallel and the system is inconsistent.
(5) Solve

1
x =y =4 ———— @
—2x + y =-8 ———— (2)
Solution:
Solution by Substitution Solution by Elimination
Solve the first equation for x Multiply the first equation by 2
and substitute in the second equation. and add to the second equation.



Al-Mustansiriyah University College of Science Dept. of Math.

Finite Mathematics 1-(2015-2016)

x=3y+4 2x—y= 8

28y + 4 +y=-8 —2x +y=—8

—y—8+y=—8 0= 0
-8 = -8

This time both solution methods lead to a statement that is always true. This means
that the two original equations are equivalent. The system is dependent and has an
infinite number of solutions. There are many different ways to represent

this infinite solution set. For example,

S1 = {(x.y)| y = 2x — 8. x any real number}
and

S» = {(x.y)| x = 3¥ + 4., y any real number}

both represent the solutions to this system.

(6) Solve
x + 2y — 3z =—-4 ————(E)
2x + y — 3z =4 —————> (E)
Solution:
To eliminating x, 2E; — E, = =3y + 3z =12.
>y=2z—4---- >(3) where z is any real numbers.
Back-substitute in E; and solve for x, we get
x+2(z—-4)—3z=-4 >=>x=z+4---——--- >(4)
Thus a solution to the linear system is
x=z+4
y=z—4

z = any real numbers.
This means that the linear system has infinitely many solutions.

10



Al-Mustansiriyah University College of Science Dept. of Math.

Finite Mathematics 1-(2015-2016)

Exercise

1.14
Q: Show that if the following linear systems are consistent (dependent or
independent) or inconsistent.

1. x - 3y =-7 x + 2y 4+ 3z =6
2x — 6y =7 2-2x — 3y + 2z =14
3x + Yy — z =-2
x + 2y =10
3- 2x — 2y =-4 4-
3x + 5y =20 x—y+ z= 1
2x+y+ z= 6
Ix — v+ 5z =15
5- 6-
x — 3y = 2a + 4b + 3c = —6
2y +z=—1 a—3b+ 2c= —15
x — y+z= 1 —a +2b— c¢c= 9
/- 8-
2y— z=12 3x+3y+2z= 4
_4:1"4‘22:] X— y— z= 0
,‘(—2‘1-‘+32=D 2}._322_3
9- 10-
3x + 3y +2z= 4 5x — y =13
x—3y+ z=10 2x + 3y =12
5 — 2y — 3z = 8
11- 12-
2x + 3y = 6 e+l = 3
1 2 3
x— y== 1 2

Q: Prove tha.t Z?zl('ri + S; + W; + Ul')ai = ?=1 r;Q; + Z?:l S;4; +
Z?:l w;Qa; + Z?:l v;a; , where Y, Si, Wi, V;, Q4 are in R or C.

11
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Chapter Two
Matrix Algebra

Definition 2.1: A matrix is defined as a rectangular array of the form:
A matrix is defined as a rectangular array of the form:

Column 1 Column 2 Column j Column n
Row 1 aqq a» o ay;j L i
Row 2 sz aya can ﬂg}: ‘i day
i (1)
Row i i i1z “iee a:_'f cae iy
Rowm | ay, A2 i A A v T _|

The symbols a;q,a;,, ... 0f a matrix are referred to as the entries (or elements)
of the matrix. Each entry a;; of the matrix has two indices: the row index, i, and
the column index, j.

The symbols a;, a;y, ... , a;, represent the entries in the ith row, and

the symbols a,;, ayj, ... , a,,; represent the entries in the jth column.

If we denote the matrix in display (1) above by A, then we can abbreviate A by
A= [aij] i=12,..,mand j=1,2,..,n

The matrix A has m rows and n columns.

Definition: The dimension of a matrix A is determined by the number of rows

and the number of columns in the matrix. If a matrix A has m rows and n columns,

we denote the dimension of Aby m x nread as “mby n.”” 4 = [a;; | mxn-

Some Types of Matrices
Definition 2.2: A matrix A = [aij] mxn 1S called a square matrix if a matrix A
has the same number of rows as it has columns; that is, m = n. Dimension of A is

n
o 1 -1 0 -1
Example23: |8 6 0 , | 8 0 :
-2 5 7 3x3 -2 7 3x2

12
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Definition2.4: In a square matrix A = [aij] nxn » theentries for whichi = j

namely
a1, o, ... ,ay, (i = 1,2,---,n) are the diagonal entries of A which form the
main diagonal of A.

Definition 2.5:
1- A matrix whose all entries are all zero is called zero matrix and denoted by 0.

o .- 0]
o - Omxn

2- A square matrix of dimension n whose all diagonal elements are all one and
every term off the main diagonal is zero is called identity matrix and denoted by

I,.
1 - 0
neli 1]
0 - 1l,4n

Definition 2.6: (Diagonal Matrix)
A square matrix A = [aij] nxn TOr which every term off the main diagonal is zero,
that is, a;; = 0 for i # j, is called a diagonal matrix.
Definition 2.7: (Scalar Matrix)
A diagonal matrix 4 = [a;; | ,x, for which all terms on the main diagonal are
equal, thatis, a;; = c fori = jand a;; = 0 for i # j is called a scalar matrix.
Definition 2.8: (Upper Triangular)
A square matrix A = [a;; | nx, is called upper triangular if

a; =0fori>j.

0=

Definition 2.9: (Lower Triangular)
A square matrix A = [aij] axn 1S called lower triangular if
a; =0fori<j.
Definition 2.10: ( Equality of Matrices)
Two matrices A and B are equal if they are of the same dimension and if
corresponding entries are equal.

13
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Examples 2.11:
xX+y 2Z+w 3 5

DIf A= = l ] find x,y,z,w.
xX—=y Z—w 1 4155

2%x2
Solution: The statement above is equivalent to the following:

x+y=3, x—-y=1,
2Zz+w=5 z—w=4
The solutionisx =2, y=1,z=3, w=-1.
(2) Let A and B be two matrices given by
x+y 6 5 5x + 2
A= B =
2x — 3 2—y2x2 y xX—y

2X2

Determine if there are values of x and y so that A and B are equal.

Solution: Both A and B are 2 X 2 matricesso A = B if
x+y=5 (1) 6=5+2 (2)
2x — 3=y (3 2—y=x—y (4

Here we have four equations containing the two variables x and y. From Equation
(4) we see that x = 2. From equation (1), we obtainy = 3. Butx = 2,y = 3

do not satisfy either Equation (2) or Equation (3). There are no values for x and y
satisfying all four equations. This means A and B can never be equal.

Definition 2.12: If A = [a;; | ,uxn iS @ Matrix, then the n x m matrix
AT =la; "] pxm, Where
a;" =a; (1<i<m,1<j<n)
Is called the transpose of A. Thus the transpose of A is obtained by interchanging
the rows and columns of A.
The first row of A7 is the first column of A; the second row of ATis the second

column of A; and so on.

U]

Example 2.13: If

1 2 3
A= B =
0 -1 2

i I e )
L ]
O
[
—
=
|
[a—

14
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then

1 0 Lo o 1
AT =12 -1 BT=|: } ch=1] o0

3 2

Definition 2.14: A matrix A is called symmetric if
A=AT,
that is, (i,j) — element of A = (j, i) — element of A”.
Remark 2.15: (1) A is symmetric if it is a square for which
a; = a;.
(2) If A is symmetric, then the elements of A are symmetric with respect to the
main diagonal of A.

Example 2.16: If

1 1 2 0 1 3 1 2 3 0
(a) |1 0 1 (b | 1 4 7 (c) |2 4 5 0
3 2 3 3 7 5 3 51 0

then (a) is not symmetric (b) is symmetric (c) is not symmetric.
Definition 2.17: A square matrix A is called skew symmetric if

aij = —aji fOI’ a” l,]

0O 1 -2
[_1 0 _5]
2 5 0l3x3

Remark 2.19: The main diagonal elements of a skew symmetric matrix are all
zero.

Definition 2.20: If A = [a;; | is an m x n matrix, the m X n matrix obtained by
replacing each element of A by its complex conjugate is called the matrix
conjugate of 4 and is denoted by A. That is, A = [@]

Definition 2.21: If A = [a;;] isan m x n matrix, the m x n matrix obtained by
the transpose of A is called the transpose conjugate of 4 and is denoted by

—T
A =A%,

Example 2.18:

15
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Example 2.22:
1+i 2 3i o[ 1-i 2 =3i
A= , A= :
—44+i 1 2-—6ilyy3 —4—i 1 2+46ilyy3
1—1i —4 + ]
A =] 2 1 :
—3i 2+ 6ilyx3

Definition 2.23: A square matrix A = [a;; ] is called to be Hermitian if
a; = ay foralli,j

Thatis, 4 = AT.

Example 2.23:

1 —3i

A=

Remark 2.24: The main diagonal elements of a Hermitian matrix are all real.

Definition 2.25: A square matrix A = [a;; ] is called to be skew Hermitian if

a;; = —ay; foralli,j
Thatis, A = —AT.
Example 2.26:
[ 4+
A=
—4 4 6i lruo

Remark 2.27: The main diagonal elements of a skew Hermitian matrix are all not
real.

Definition 2.28: Let A = [a;; ] be an n X n matrix. Then the trace of A denoted
by Tr(A), is defined as the sum of all diagonal elements of A. That is,
Tr(d) = X1y = ay1 + Az + -+ apy.

Example 2.29:
2 1 -2

LetA=|-1 -5 -5 . ThenTr(A) =2+ (-5)+9 =6.
2 5 9133

16
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Chapter Three
Operation on Matrices

Definition 3.1: (Addition of Matrices)
We define the sum A + B of two matrices A and B with the same dimension as
the matrix consisting of the sum of corresponding entries from A and B. That is,

if A= [a;| mxn,B =[bij] mxn are two matrices, the sum is the m x n

Uy g v (i bll b12 o Dy 'ﬂln+b11 ﬂ]Hbm a1:r+b111
o Gy v O s by bn o b _ Gitby Oty o Oty

|||||||||||||||||||||||||||||||||| LI L B I LI O I I I I I T T B T S T B T I |

Uy Uypy  * Oy bml bm‘.’. bmn \aml‘|'bml an12+bart2 anm‘l'bmn

Definition 3.2: If A is any matrix, the additive inverse of A, denoted by - A4 is the
matrix obtained by replacing each number in A by its additive inverse. That is, if
A - [ai]-] mxn ,then —A ES [—aij] mxn-:

Definition 3.3: (Subtraction of Matrices)
We define the difference A — B of two matrices A and B with the same dimension
as the matrix consisting of the difference of corresponding entries from A and B.

Thatis, if A =[a;;| mxn,B = [bij] mxn are two matrices, the difference is
mXn matrlXA — B = [al‘j — blj]

Definition 3.4: (Scalar Multiplication)

Let A be an m X n matrix and let c be a real number, called a scalar. The
product of the matrix A by the scalar c, called scalar multiplication, is the
m X n matrix cA, whose entries are the product of ¢ and the corresponding
entries of A. That is, if A = [a;;| nxn then cA = [ca;| mxn-

17
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Example 3.5: Suppose
| 318 41 0 c_| 90
T l-2 0 6/ s 1 -3/ -3 s

Find: (a) 44 (b) %c (c) 3A — 2B
Solution:

31 5 4.3 4.1 4.5 12 4 20
(a) 44 = 4 - | =
2 0 6 4(—2) 4-0 4-6 8 0 24
1 1
1 1 9 0 37 370 30
37 3| -3 6 1 1 1 2
3 3

3[ 301 5}_2[4 1 (}J
-2 0 6 8§ 1 -3
[33 31 35] [204 201 200
“|3(-2) 30 36 2:8 2+1 2(-3)
|93 5| [ 82 o0
-6 0 18 6 2 -6
_ 1 1 15
| —22 -2 24
Definition 3.6: (Multiplication of Matrices)
Let A denote an m X p matrix, and let B denote an p X n matrix. The product

AB is defined as the m X n matrix whose entry in row i, column j is the product
of the ith row of A and the jth column of B.

(c) 34 — 2B

a1y LR / ST by - b’.[j T ) Ci1 v Cin

dij .ﬁ?i:': . A c e . — . Cij

mi e Ump bpl e bj:u e bgm Cmi Conn
where ¢

ij = ailblj + aizsz + -+ al-pblp.

18
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Example 3.7:

Given

o I R H 4 B 0 AP

Find each product that is defined:
(i) AB (ii) BA (iii)CD (iv) DC
Solution:

(i) 4B = {

| (201 + (1H2) (2 —1) + (1)1} (2)0) + (1M2) (231 + (o)
L= (DD + 02 (=D +O)L) (I(0) + (0X2) (1) + (0)0) ||
L LD+ @@ (-DED + @) (D0) + @02) (—D) + @00
3= 4

4 -1 2 2
={1 -1 0 1}

L3 34 -1

(ii)
Ax2
2 x4

I 1 0 1[E I]

EA=[ ] I 0
2 1 2 0

-1 2

Product is not defined.

(iii)
2x2 R e —— )
CD=[ 2 6][1 2] _[ @+ ©6) @0+ 666 ||
-1 303 61 LEDM +H(E30) (D) + (36
] 2x2
[ 20 40
[ )

19
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(iv)

2xl 2ud 2wl
I 21 2 6]

DC = =
[3 '3”-1 -3

[{ 1)2) + 2)(=1) (1)(6) + 2(-3)] {ﬂ ﬂ]
(3)2) + (6)(=1) (3)6) + (6)=3)]; [0 0
Remark 3.8: Let Dy, and €, ;, be two matrices.

1- From above examples (i) and (ii), if DC is defined not necessary €D is defined.
2- From above examples (iii) and (iv) it is clear that not necessary DC = CD, that
IS, matrix multiplication is not commutative.

Theorem 3.9: Let 4 = [ay; | ,and B = [by |

nXx Xm
(i) The ith row of the matrix product AB is equgl to the matrix product of A;B,
where 4; is the row of A.
(i1) The jth column of the matrix product AB is equal to the matrix product of AB;,
where B; is the column of B.
(iii) If A has a row of zeros, then AB has a row of zeros.

(iv) If B has a column of zeros, then AB has a column of zeros.

Definition3.10: Let A = [a;; ] be an n x n matrix, then
(i) Ais called idempotent if A = A2.
(i) A is called nilpotent if A* = 0 for some integer if k.

Example 3.11:
2 -1 1 0 1 1

A=|-3 3 —2] Is idempotentand B=[0 0 1] IS nilpotent since
—4 4 -3 3%x3 0 0 O 3%x3

B3 =0.
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Theorem 3.12: (Properties of Matrix Addition)

(1) A + B= B + A. (Commutative Property for Addition).

(2)A+ (B+ C)=(A+ B) + C. (Associative Property for Addition).
(3)A+0 = A.

(4) A+ (—A4) = (—A) + A = 0. (Additive Inverse).

Theorem 3.15: (Properties of Scalar Multiplication)

Let k and h be two real numbers and let A and B be two matrices of dimension
m X n. Then

(1) k(hA) = (kh)A.

(2) (k+ h)A = kA + hA.

(3) k(A+B) = kA + kB.

(4)0-4=0.
GYA+A+-+A=n-A.
n—times

Theorem 3.16: (Properties of Matrix Multiplication)
(1) if A, B and C are of the appropriate sizes, then
A(BC) = (AB)C . (Associative Property)

(2) if A, B and C are of the appropriate sizes, then
A(B+C) = AB + AC . (Distributive Property)
(3) if A, B and C are of the appropriate sizes, then
(A+ B)C = AC + BC.
(4)if A, «, isamatrix, then
I,-A=A-1, = A.

Proof: (1) Let A = [a;; l;xn, B = [bijlnxp and € = [c;]5xq

AB = [’LLU ]mxpv ij Zk 1akbk}
BC == [UU ]n><q’ ij = r= blrc '
Now

(i,j) — element of (AB)C = z Uiy Crj = ( aix bkr> Crf
) Cr

- Zr 1(aL1b1r + aleZr + -+ amb
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= (aj1b11 + aipbyy + -+ aybyi)cyy + (@biy + appbyy + -+ Ay b))y + -
+ (ailblp + aizbzp + -+ ainbnp)cpj

= a;1(b1161j + bizCaj + -+ bipcy; ) + aiz(barcyj + baaCaj + -+ bypyy )
+ap, (bn1C1j + anCZj t ot by ij)

p p p
= aj Z biy ¢ |+ aiz z byrCrj |+ -+ aipn z bpy Crj
r=1 r=1 r=1

= Yk=1Qik (Zle by, er) = D=1 Qi Vij = (i,j) — element of A(BC).

(2), (3) and (4) Exercise.
Definition 3.17: Suppose A is a square matrix. If p is a positive integer, then
AP =A-A---A.
p times

If Aisn x n, we define A° = I,,.

Theorem 3.18: Let p, g are nonnegative integers and A, B are square matrix. Then
(1) APA9 = AP,
(2) (AP)2 = (A1)P = APY,
(3) It is not necessary that
(AB)P = APBP.
However, if AB = BA, then this rule does hold.

i o2 4 2
Example 3.19: LetA—[2 1], B = 5 3)

AB = [180 s] (4B)* = [145}3 1;8 !

5, _[5 4 , _[20 14 52 [156 122
4 _[4 51 B _[14 13F) A°B _[150 121F)
but (AB)? # A?B2.

Remark 3.20:

(1) The cancellation law does not hold for matrices as the following example
shows.

LetA = B i] B = [g ;] and C = [_52 _71] Then
AB =AC = [186 150]'
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ButB # C.

(2) AB may be zero with neither A nor B equal to zero; that is, if A and B are two
nonzero matrices, it is not necessary AB # 0. That is, the zero property does not
hold for matrix multiplication as the following example shows.

an=ly =[S an=[0 Oome=? X

Theorem 3.21:

(i) (Triangular Matrices)

(1) The sum and product of upper triangular matrices is upper triangular.
(2) The sum and product of lower triangular matrices is lower triangular.
Proof:

(1) Let A = [a; ]nxn » B = [bijlnxn and a;; = by = 0if i > j.

Sum:

Let A+ B = [¢;j]nxn Where c¢;; = a;; + b, to prove ¢;; = 0if i > j. Since
a; +b; =0ifi > j, thus ¢; = 0. Thatis, A+ B is upper triangular.
Product:

Let A B = [c;j]nxn Where ¢;; = Xi—qayby. T.P.c; =0ifi > .
Ifi>j>t=1i>t, thena; = 0.

ft>i>j=t>]j, thenb; =0.

If i>t>j=>i>tandt>j thena, = b, = 0.

Therefore, ¢; = 0ifi > j. Thatis, A - B is upper triangular,

(i) (Transpose)

Let A = [a;j ]nxn @nd B = [b;j ] xn

W A™ =4, (2)(AB)T = BTAT.

(3) If AAT = 0 then A = 0, where all entries of A are real numbers.

(4) (kAT = kAT, where k is any nonzero real number.

Proof:

(2) Let AT = [¢;;| = [a;;] and BT = [d;; | = [b;]. Then

(i,j) — element of (AB)T = (j,i) — element of AB

= Yhe1 Qb = Yooy ckjdie = Xy dixcry = (i,j) — elementof BTAT.
(3) Let AT = [¢;].

If AA" = 0, then¢;; = O forall i, j. == ¢; = 0 forall i.

== C¢; = Xr—1 Qi Ci = 0.Butc; = ay,. Thus,

Ci = X0 jagax =X _1(ax)? =0 < ay = 0forall i and k. Therefore, A = 0.
(1), (4) Exercise.
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(if) (Symmetric and Skew Symmetric)
LetA = [aij]an and B = [bij]an

(1) AAT and AT A are symmetric

(2) A+ AT is symmetric,

(3) A — AT is skew symmetric.

(4) If A is skew symmetric, then A? is symmetric.
If A and B are symmetric, then

(5) A is symmetric iff AT is symmetric.

(6) A + B is symmetric.

(7) AB is symmetric iff AB = BA.

(iii) (Conjugate and Transpose Conjugate)
Let A = [a;j ]nxp @nd B = [bj; ], xm- Then

(1)A=A. (2 AB=AB.

(3) kA = kA, where k is any nonzero real number.
AHA+B=A+B.

If A% and B? are the transposed conjugate of A and B respectively, then
(5) (49)P=A. (6) (A+B)? = A° + BY.

(7) (kA)? = kA?, where k is any nonzero complex number.
(8) (AB)Y = B9A°.

If n = p, then

(9) A + A? is Hermitian matrix.

(10) A — A is skew Hermitian matrix.

(iv) (Trace)

Let A = [a;j ]nxn @Nd B = [b;; ] xn » then

(1) Tr(kA)= kTr(A), where k is any nonzero real number.

(2) Tr(A + B)="Tr(A) + Tr(B).

(3) Tr(AB)=Tr(BA).

(4) Tr(AT) = Tr(A).

Proof:

Let (i,j) —elementof AB = c; = Y} _; auby; and

(i,j) —elementof BA =d;; = Xj_1 by ay;.

= ¢;; = D=1 Qb = Xr=1briay, belong to the main diagonal of AB.
=Tr(AB) = Xi—1 i = Xi=1 Xk=1Dri @ik = Zle=1 Li=1 by; Qi

EB €A
=Xk=1dkx = Tr(BA).
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Echelon Form of a Matrix
Definition 3.22: An m X n matrix A is said to be in reduced row echelon form if
it satisfies the
following properties:
(i) All zero rows, if there are any, appear at the bottom of the matrix.
(if) The first nonzero entry from the left of a nonzero row is a I. This entry is
called a leading one (leading entry) of its row.
(iii) For each nonzero row, the leading one appears to the right and below any
leading ones in preceding rows.
(iv) If a column contains a leading one, then all other entries in that column are
zero .
An m X n matrix satisfying properties (i), (ii) and (iii) is said to be in row
echelon form.
Definition 3.23: The first column with a nonzero entry (counting from left to right)
is called the pivot column and the first nonzero entry in the pivot column
(counting from top to bottom) is called the pivot.
Remark: A matrix in reduce row echelon form (row echelon form) might not have
any rows that consist entirely of zeros.
Example 3.24:
(i) The following are matrices in reduced row echelon form.

=2 £
"1 0 0 07 1 0O 0 0 2 i
0 | 0 0 4 8
0 1 0 9
A= 001 ol B=|{) 0O 0 1 7 =2
00 0 I 0 0 0 0 0 0
= = | 0 0 0 0 0 0 |

I ol
= |1 O 1 ‘& .3
00 0 0 0

(if) The matrices that follow arc not in reduced row echelon form.

1 2 0 4 | 0 3 4
D= @ 0 0|, E=|0 2 =2 5
0 0 1 3 0 0O 1 2
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—_ —y

i G 3 @ [ 2 3 4
0 1 2 5 0 1 2 2
) = P
0 1 zZ 2 0 0 1 2
o 0 0 0 60 0 0 0

We shall now show that every matrix can be put into row echelon form, or into
reduced row echelon form. by means of certain row operations.

(iii)

0 2 i —4 1]
B B 2 3 4
2=l g -5 2 3
2%0 < © 7
Pivot column ? X Pivot

Definition 3.25: An elementary row (column) operation on a matrix A is anyone of
the following operations:
(1) Interchange any two rows (columns).

¥ £ T (e %% 0y).

(2) Multiply a row (column) by a nonzero number.
JE.'I'E' i {k(:j —r C,‘}I.
(3) Add a multiple of one row (column) to another.
kr;4r; —r; (ke;+c; — ey).
Example 3.25: Let

0 0 1 2
A= |2 3 0 -2
3 3 b =8

Interchanging rows 1 and 3 of A, we obtain
3 3 6 -9

B=lpuw = |2 8 0O =
0 0 1

[ o T oS ]

Multiplying the third row of A by % we obtain
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C:Ai = o

2
3737Ts 1 1 2 =3

0 0 I 2
_ _ 2 3 D -2
D = A—2r2+r3—:r3 - = oy e

iz

Definition 3.26: An m X n matrix B is said to be row (column) equivalent to an
m X n matrix A if B can be produced by applying a finite sequence of elementary
row (column) operations to A.

Example 3.27: Let

| 2 4 3
A= |2 1 3 2
1 =2 2. 3
If we add 2 times row 3 of A to its second row, we obtain
| 2 -+ 3
= tsn=|t 3 ] 1

so B is row equivalent to A.

Theorem 3.28:

(1) Every matrix is row(column) equivalent to itself.

(2) If A is row(column) equivalent to B, then B is row(column) equivalent to A.
(3) If A is row(column) equivalent to B and is B row(column) equivalent to C,
then A is row(column) equivalent to C.

(4) Every nonzero m X n matrix A is row (column) equivalent to a to a unique
matrix in row (column) echelon form.

Remark 3.29: It should be noted that a row echelon form of a matrix is not unique.
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Example 3.30:
(1) Let
g 2 i —4 1]
B9 2 Z &
A=la 2 5 2 4
25§ = 9 T ]
Solution:

Step 1: ldentify the pivot column and the pivot.
Step 2: Interchange the first row if necessary with the row where the pivot occurs.

-

0 2 3 =4 1
G B 0 2 3 9
T & =5 7 4.l
\__ -
_2\‘0 -6 9 7]
Pivot column - ? N Pivot
0 2 3 —4 I (@ 2 -5 2 47
0 0 & 3 4 @ 8@ 2 3 4
, r) &3 .
2 B =5 Z 4§ ] 2 & =4 1
2.0 =6 9 7 (2 0 -6 9 7]
o 4 o2
I 1 -3 1 2
0O 0 2 3 4
ZF—T 2 -
- 2 3 -4 1
|2 0 -6 9 7]
1 1 5 T @
0O 0 2 3 4
—ry+ra—ry
: |0 2 3 -4 1
|0 -2 -1 7 3
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- L o)

_27"3 + T3 L T

>

Is in row echelon form and is row equivalent to A.

3
—gFy+ T =T
.:':,_
53+ — T
—Ir3—|—r[ = r|

-

S o1 2]
P -2
1 F 2
0 0 0
o 9 L
17 B
@ —7 —5
I = 2
O 0 0

Dept. of Math.

N O

This is in reduced row echelon form and is row equivalent to A.
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(2) Let
1 -1 1
A=1|0 2 -1
2 3 0
1 -1 1 I -1 1
=21, + 13 © 13 [0 2 —1] -r, e, 1 _71
*lo 5 -2 > 0 —2
-1 1 -1 1
1 = ~1
—51, + 13 © 13 2 2ryeory (01 -
> 1 >
0 O 2 0 1
1 -1 0 1 0 O
—r3+mn eon [O 1 0] n+tren H=1|0 1 0]
»10 0 1 > 0 0 1

-3+ eon

The matrix H is in reduce row echelon form of A.
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Chapter Four

The Inverse of a Matrix
Definition 4.1: If A is a square matrix of order n and if there exists a matrix A1
(read “A inverse”) such that

AATt =A"1A=1,

then
A~ 1is called the multiplicative inverse of A or, more simply, the inverse of A. If
no such matrix exists, then A is said to be a singular matrix(or noninvertible).
Example 4.2:

(1) Let A= B i] and A™! = [Z ;] such that
AATY=A"14A=1,.

We can write
A A1 I
{3 3”:: f]zll 0]
1 2]\b d 0 1
(2a + 3b) (2c + 3d) B 1 0
(@+2b) (c+2d) 0 1
2a+3b=1 2¢+ 3d =0

a+ 2b=20 c+2d=1

Using substitution method or elimination method to solve the systems.
a=2, b=-1 c=-3, d=2

Therefore,

at=[y =15 3
2) Let A=B ﬂ,finom—1 if exist.
Solution:

Let A1 = [Z Z] suchthat AA™' =1, = [(1) (1) :
= AA™ = B 42} [(i Z] - [(1) (1) = Zaa-l-_l—zélcc be-l-_l—24dd - [é (1)
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a+2c=1—-——FE;

2a+4c=0—-——E,

2b+4d=1—-——>E,
—2E; +E, — 0=-2 (. So, the linear systems have no solution. Therefore A
has no inverse. That is, A is singular.
(3) Find the inverse, if it exists, of

1 —1 1

A=10 2 -1

2 3 0

Solution:
A A1 I

1 -1 1lla d g 1 0 0
0 2 —1||b e h|=|0 1 0
2 0 0 1

3 0Jle f 1
Equating corresponding terms, we see that this is true only if
a— b+ec=1 d— e+ f=0 ge— h+i=0
2b—¢c=0 le—f=1 2h—1i=0
2a + 3b =0 2d + 3e =0 2g + 3h =1
Use substitution or elimination methods to solve these systems.
a=3,b=-2,c=—-4
d=3,e=-2,f=-5
g=—-1,h=1,i=2.

3 3 -1
Al=|-2 -2 1

-4 -5 2

Therefore,

4.3: Steps for Finding the Inverse of a Matrix of Dimension n X n

STEP 1: Form the matrix

STEP 2: Using row operations, write[A|L,] in reduced row echelon form.

STEP 3: If the resulting matrix is of the form [I,,|B] that is, if the identity matrix
appears on the left side of the bar, then B is the inverse of A. Otherwise,

A has no inverse.
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Example 4.4:
(1) Find the inverse of

=

I
i o
| I N
[ S s T W]

Solution:
STEP 1 Since A is of dimension 3 X 3, use the identity matrix I5. The matrix [A|L;] is

1 1 2|1 0 0O
21 0(0 1 O
1 2 2|0 0 1

STEP 2 Proceed to obtain the reduced row echelon form of this matrix:

Ro— a4 1 1 2| 1 0 o
Use 2° T h to obtain 0 —1 —4|-2 1 0
R3 = —11"1 + r3
0 1 0|—-1 0 1
1 1 2 1 0 0
Use R, = —1n, to obtain 01 4| 2 -1 0
0 1 0| —1 0 1
R Ir + 1 0 —21|—1 1 0
= —1r r
Use 20 to obtain 01 4| 2 -1 0
R3 = _].rg + ry
0o 0 —4| —3 1 1
1 0 —2| -1 1 0
1 ] 0 1 4 2 -1 0
Use R; = K to obtain ; | :
00 1| = —— —=
i 4 4 4

33




Al-Mustansiriyah University College of Science Dept. of Math.

Finite Mathematics 1-(2015-2016)

1 1
1 00| — = —-=
R 2r. + 2 2 2

= r r )
Use ! 3 ! to obtain 0 1 0]—1 0 1
RE=_4I'3+?'2
3 1 1
00 1| = —= —=
i 4 4 4

The matrix [A|I3] is in reduce row echelon form.

STEP 3: Since the identity matrix I; appears on the left side, the matrix appearing
on the right is the inverse. That is,

1 1 1
2 2 2
Atlt=|-1 0 1
3 1 1
4 4 4
(2) Show that the matrix given below has no inverse.
4= 3 2
_ _ 6 4
Solution: Set up the matrix
3 2|1 0
6 410 1
21
1 _ 1 == 0
Use R, = 3N to obtain 313
6 4]0 1
B 2 1
) 1 —| — 0
Use R, = —6r, +r, toobtain 3 3
0 0|—-2 1

The Os in row 2 tell us we cannot get the identity matrix. This, in turn, tells us the
original matrix has no inverse.
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Theorem 4.5:
(1)1f a matrix has an inverse, then the inverse is unique.

(2) The matrix A = [Ccl Z] IS nonsingular < ad — bc # 0 and

Al =

—C a

d —-b
ad—bc ad —bc]

o ] agi —_bc ad —bc_
(3) An n x n matrix is nonsingular < it is row equivalent to I,,.

(4) An n X n matrix A is singular < A is row equivalent to a matrix B that has a
row of zeros. (That is, the reduced row echelon form of A has a row of zeros .)

(5) If A is a nonsingular matrix, then A=! is nonsingular and At =2

(6) If A and B are nonsingular matrices, then AB is nonsingular and
(AB)"' =B~1471,

(7) If A is a nonsingular matrix, then (A=) = (4T)~1.

(8) If A4, A,, -+, A, are n X n nonsingular matrices, then A{A, - ---- A, IS
nonsingular and (4,4, - - A.) "V = A, A Tt e AT
Proof:

(1)Let B and C be inverse matrices of a matrix A. Then
AB=BA=1and AC=CA=1.Toprove B =C.

B=BI=B(AC)=(BA)C=IC=C= B =C.
(2) Check.
(3) and (4) without prove.
(5) Check.
(6)Since

(AB)B™'A ' = A(BB™ DA™l = 4AIA =441 = I.
Therefore, (A4B)™1 = B~1471.
(7) We have
AN =A== UA Y =@ =4ATA ) =1," =1,.

Then, (A™D)TAT = (AA DN =AD" =4TA ™) =1," =1,.
(8) Without prove.
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Chapter Five

Determinants
Definition 5.1: (First- and Second-Order Determinants)
For any square matrix A, the determinant of A is a real number denoted by det(A)
or |A|. If A is a square matrix of order n, then det(A) is called a determinant of
order n. If A = [a44] Is a square matrix of order 1, then

det(4)=ay;

Is a first-order determinant.

. . a;r a2
Given a second-order square matrix A = [a21 azz], the second-order
determinant of A4 is

det (4) = i Ay1@3; — Axdy .
azy  dx
Example 5.2:
— 2
Fmd |
Solution:
_]_-A ,*2
det (4) = ‘_«;}{1,
= (D=4 — (—3)(2)
=4 —(=6)
= 10

Evaluating Third-Order Determinants

air a2 QA3
az1 Gz Qz3], the third-order
aszi1 dszz Qss

Definition 5.3: Given the matrix A =

determinant of A is

ai; Q12 413
dz1 Az Aps
az; 4z d4zs
a11A3032 — A12A21033 — A130d2037 .

We can also obtain |A| using the following diagram(Sarrus diagram).
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dy 4dyp dy3 dyp  dp

N X X S

dy; dyy dy; dy; Ay

/XX N

dy; dyp; dyy dy;  dyp

SN

| A|=sum of the product of the entries on each line.
4 1 1
3 -1 1].
1 1 2
Solution: By using Sarrus diagram we get the following.
|A]

Example: Find |A| where A =

VRO Js'

1
1_,
1
+ +

Al=(4--1-2)+(1-1-1)+(1-3-1)=(1--1-1)—(1-1-4)—(2-3-1)
=—8+1+3+1-4—-6=—-13.

Definition 5.4: Let A = [a;;] be an n X n matrix. Let M;; bean (n — 1) x (n — 1)
submatrix of A obtained by deleting the ith row and jth column of A. The
determinant det(M;; ) is called the minor of a;;
Definition 5.5: Let A = [ U] beann xn matrlx. The cofactor 4;; of a;; is
defined as
Ay = (1) det(M;;)
= (—1)"¥ (minor of a;; ).
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The minor of an element in a third-order determinant is a second-order
determinant obtained by deleting the row and column that contains the element.

Deletions are usually done mentally.

: o |dn dr2 o
Minor of a,; = Gy s = dy,05,
M Fo dyp Ay _

inor of ay;, = 0 = a4y

Example 5.6: Find the cofactors of —2 and 5
-2 0 3
a=|1 =6 5].
-1 2 0
Solution:
—6 35 —6 5
Cofactorof =2 = (—1)'*! ‘ _ ‘
=1 2 0 2 0
=(=6)(0) = (2)(5) = —10
—2 0 -2 0
Cofactor of 5 = (—1)**° ‘ = — ‘
Y —1 2 -1 2

= —[(=2)(2) = (—1)(0)] = 4

— dydy3

If we think of the sign (—1)*/as being located in position (i,j) ofann X n
matrix, then the signs form a checkerboard pattern that has a + in the (1,1) position.

The patterns for n = 3 and n = 4 are as follows:

+ — —+ -+ — A -
—_ 4 - R A |
+ — + -+ T e
—_ 4+ — +
= n =4

38



Al-Mustansiriyah University College of Science Dept. of Math.

Finite Mathematics 1-(2015-2016)

Theorem 5.7:
Let A= [(1,'/'] be an n x n matrix. Then

det(A) = ai1An + aizAiz + -+ - + GinAin
[expansion of det(A) along the ith row]

and

det(A) = a]jAlj 3 aleZ_j s iy anjAn/'
[expansion of det(A) along the jth column].

Example 5.8: (1) Evaluate

2 -2 0
—3 1 2
1 -3 -1

Solution:
We can choose any row or column to expand along. We will choose the first row

because of the zero: we won’t need to find that cofactor because it will be
multiplied by zero.

2 =2 0
3 | 5| = Cofactor [ Cofactor ~ ( Cofactor
_1 \ 1 —aul ofq,, T of a;, * of a3

2 —3 2
_ 1+ 4= _ 1yl +2
2[{ ' _1] (2{( D

= 2D = (=3)2)] + (=2)(—D[(=3)—1) — (1)2)]
=(2)(5) + (2)1) =12

|+0
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(2) Evaluate

I 2 -3 4
—4 2 1 3
3 0 0 -3
2 0 -2 3
Solution:
1 2 =3 4
3 0 0 3= 2 3i+(—1‘*3(0)‘—4 1 3
5 0 -2 3 0 -2 3l | 2 =2 "s‘
4 1 2 4 I 2 .3
&I —4 2 8 etaPtesy - 2 1
= 3 2 0 -2
2 3 4i I & =9
=32 1 3|+ -4 2 1
b <3 4| 5 0 —2

1 3 -3 4 -4 1 1 -3
-@(el, I-23 ro(caly Lzl )
=3)(2)B+6)-(B)(2)(-9+8)+(3)(-2)(8-2)+ (3)(2)(=2 +6)
=54+6—36+ 24 =48.
(3) Given the fourth order determinant
0O -1 0 2
-5 -6 0 -3
4 5 =2 6|
0 3 0 -4
(i) Find the minor of the element a;; = —2.
(if) Find the cofactor of as;.
(iii) Find the value of the fourth order determinate.

Solution:
0 -1 2 4

(i) Minorof -2 = |-5 -6 -3| = (-5)(-1)*""| | =5(4-6) = -10.
0 3 —4 3 4

(i) Cofactor of —2 = (—1)3*3(minor of — 2) = (minor of — 2) = —10.
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0 -1 0 2
L |-5 —6 0 -3
sy s 2 %
0 3 0 —4

= (—2)(cofactor of — 2) = (—2)(—10) = 20.

Theorem 5.9: (Determinant properties)

(1) If a matrix B results from a matrix A by interchanging two rows (columns) of
A, then |B| = —|A]|.

(2) If two rows (column) of A are equal, then |A| = 0.

(3) If two rows (column) of A consists entirely of zeros, then |A| = 0.

(4) If a matrix B is obtained from a matrix A by multiplying a row (column) of A
by a real number ¢ # 0, then |B| = c|A|.

(5) If amatrix B = [b;;] is obtained from a matrix A = [a;; ] by adding to each
element of the rth row (column) of A a nonzero constant ¢ times the corresponding
element of the sth row (column) r # s of A4, then |B| = |A]|.

a b aa+x a b x
c d ac+y|l=|c d y|.
e [ ae+z e f =z

(6)1f each element of a row (column) of a determinant is the sum of two numbers,
then, the determinant can be expressed as the sum of two determinants.

a b a+x a b «a a b x
c d P+y|l=|c d Bl+|c d vyl
e [ y+z e f v e [ z

(7) The determinant of a matrix and its transpose are equal; that is, |A| = |AT|.
(8) If amatrix A = [a;; ], xn is upper (lower) triangular, then
A=aq; Ay Ay
= Product of the elements on the main diagonal.
(9) |AB| = |A]|B].

(10) If A is a nonsingular matrix, then |A| # 0 and |[A™1| = I%I'

Proof:
Prove (1),(2),(3) and (4) using matrices of dimension two.

a b aa+x d ac+y |c ac+y| c d
B)lc d ac+y|=a —b +(aa+x)| |
e [ ae+z f ae+z e ae+z e f

= a(dae +dz — fac — fy) — b(cae + cz — eac — ey) + (aa + x)(cf — ed).
= adae + adz — afac — afy — bcae — bcz + beac + bey + aacf — aaed +
xcf — xed.
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= adz — afy — bcz + bey + xcf — xed.
=a(dz— fy) — b(cz—ey) + x(cf — ed).

b x
S T A

f z
(6)Check.

(7) Prove it using matrix of dimension 2.

(8) Prove it using matrix of dimension 3.

(9)Without prove.

(10) If 4 is nonsingular matrix, then there exist A~! such that

AATl =A"14=1,.
= |AA7Y| = |I,]. But|I,| = 1. Also, = |AA~ L= |A]|A7| =1
1

= AllA7 =1= 1471 = T

Example 5.10:

2 1 12 2 o
(1) Let 4= 5 0|,A = 0|.=>|A|—(2 0)—(2-1) = —2.
= AT =(2-0)—-(1-2) = -2.

1 2 3
(2)LetA=14 5 6].Find |A| using cofactor expansion.

0 0 O

Solution:
|A|=1|(5) 8|—2|g 8|+3|‘5 g|=(1)(0)-(2)(0)+(3)(0)=o.

2 6

(@) Letd = | 12|.Find 1A].
Solution:
|A|:i 162|:|i 2123 :(Z)H 3?4|:(2)(3)|1 4312(2)(3)(4_3)
= 6.
1 2 3
(4)LetA=1|1 5 3].Find |A| using properties only.
2 8 6
Solution:
1 2 3 1 2 3 1 2 3 1 2 1
|JAl=11 5 3|=[1 5 3 (=@))1 5 31=2)3))1 5 1
2 8 6 2 2-4 2-3 1 4 3 1 4 1

= (2)(3)(0) = 0.
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12 -1
(5)Let,24—[13 2].
=13 =14+2-3=7
LetACl(_wlz —2[2 3] B
|B| = 5 3=—3—4=—7
1 2 3 5 0 9
6) LetA=|2 -1 3|landB =2 -1 3|
1 0 1 1 0 1
1 2 3] 5 0 9
1 0 1. 110 1
4 3 2
(7) LetA=|3 —2 5|. Use determinant properties only to find |A|.
2 4 6
Solution:
4 3 2 4 3 2 4 3 2
3 -2 5[=[3 -2 5 |R;(2) (I3 -2 5
2 4 6 2 2-2 2-3 1 2 3
1 2 3 1 2 3
ner(=2)13 -2 5| Rp=-3n+nr, (-2)[0 -8 —4
’ 4 3 2 - 3 2
1 2 3 1 2 3
- 0 -5 -10 0 -5 -10
1 2 3
R3(=5) (=2)(-H(-5)[0 2 1
e
0 1 2
1 2 3
3
Ry ==t +15 (-2(-D(=5)|0 2 1= (20E00) (5)
g 0 0 =
2

= —120.
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2 —1]
1 2
4 3
= AB =/ :|=141=-2 |Bl=5 = |4lIB] = (-2)(5) = -
= |AB| =20—-30=— 0
(9) Let A4 = [ ] [
ad—bc=4-6=-2=A"1=|3 -1|,|A|l=-2= |4~ =21 2

IAI
2 2
Definition 5.11: Let A = [a;; ] be an n X n matrix. The n X n matrix adj(4)

1 2

(8) LetA = and B =

3 4

called the adjoint of 4, is the matrix whose (i, j)th entry is the cofactor 4;; of a;; .

Thus
A Ay e Apg
adj(A) = N
Ay Agp - Apn
3 =2 1
Example 5.12: LetA= |5 6 2 |. Compute adj(A).
1 0 =3
Solution: We first compute the cofactors of A. We have
6 gl & 2 5 6
— (1)1 : 142 = b i
Ay =(-1) 0 _3 —18, Ap = (=1) | -3 =17. An=(-1) i 6T 0,
|2 1 3 1 ¥ -3
A = (=] = =0, 4. —(_]\H2|* s TR s ] Al
1 = (1) 0 -3 An=(=1) ol 10, Ap=(-1) L @1 2.
=9 3 | ) ey
— (1M _— R AR gy 138 “| 4
Ay =(-1) e 10, Ay = (-1) : B|= [, Ap=(-I) S 6 =28.
Then
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adj(A) =17 -10 -1
-6 =2 28
Theorem 5.13: If A is an n X n matrix, then

(1) ailAkl + aizAkz + -+ ainAkn = det(A) ifi =k ,

-18 -6 —10]

=0ifi #k
alelk + aszzk + -+ anjAnk = det(A) lf] = k,
=0ifj#k
(2) Aadj(A) = adj(A)A = |A|L,.
Proof:
(1) without prove.
(2) We have
CHil @E S G|
a1 @y o Q| [ Ay Ay v Aj
: Ay Axp -+ @9
AladjA) = : \
a4z Ain : 3
: oo A In A.’_n et Ajn
| Apl Qn2 - Gan |

Alfl
Arz?.

/:‘ mnn i)

From (1) we have that the (i, j)th element in the product matrix Aadj(A)

a;1Ajq + apdp + -+ ay Ay, = det(4) if L ifi =,

=0 ifi # j.
This means that
[ det(A) 0 sieis g
(0 det(A) 0
A(adj A) = : _ s = det(A)/,.
o & "3l 0 det(A) |

Thus, deti{i4)

Also, from (1), the (i, j)th element in the product matrix adj(A)A is

Alialj +A2ia2j + °"+Am~anj = det(A) if i =j,
=0if i+#].
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Thus, Aadj(A) = adj(A)A = |A|L,.

1 2 3
Example5.14: LetA=|-2 3 1 |.Then
4 5 =2
Ay = (-1)*" 2 ¥ 4 = (=) L Y et
ki & o S HS & o [P and Ay = !
Now

a3 Ary + aznAr» +diz A = (4)(19) + (=1 + (—=2)(3) = 0.

and
a“AH + cfjgf'izg - £E|_‘-.Al_1. — (1){]9} + {2}(—14) + {3){3} — U

|A| = az1421 + az43; + az3Azz = (—2)(19) + (3)(—14) + (1)(3) = —77.
Theorem 5.15: If A is an n X n nonsingular matrix, then

Ay Az Apy
det(A) det(A) det(A)
A A Apd
= ad: Ay — | det(A) det(A) det(A)
[ —_ 1.' 1 — ’ :
dot(A] (adj A)
A In AZn Ann
| det(A) det(A) det(A) |
Proof: Exercise.
3 =2 1
Example5.16: LetA=|[5 6 2 |. Compute A~! using adjoint of A.
1 0 -3
Solution:
-18 -6 -—-10
adj(A) =117 -10 -1
—6 -2 28
and |A] = —94.
Therefore,
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—18 —6 -10
{—94 —-94 —94—I
I

17 -10 -1

A_l — adj (A) —
-94 94 —94|'
28

|A]

—6 -2 J

-94 -94 -94
Theorem 5.17: A matrix A is nonsingular & |A| # 0.
Proof: Exercise.
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Chapter Six

Solution of Linear Systems
6.1: Consider the linear system of m linear equations in n unknown.

ai1X1 Q12X e Ay Xy = by
alel a22x2 o o aann =b2
: : . .  mmmmmmmee- > (1)
) Am1X1 _am2x2 o AqunXp = bm
Now define the following matrices:
_all a12 cee cee aln_ [bl_l x1
asq as-» aZn bl [xl]
A — . . . . . ’ B — . ’ X — | E | ,
a a a. b. lan
-“m1 m2 mnd wn manx1 nx1
_all alz cee cee aln bl_l
a21 azz cee eee azn b2 |
c=|: : ORERE A B = [A|B].
—aml amz e e amn b ‘

M mx(n+1)

The matrix A is called the coefficient matrix of the linear system (1) and the
matrix C is called the augmented matrix of the linear system (1).

Then the linear system (1) can be written in matrix form as

AX =B ----—--- > (2)

The linear system as in (2) is called homogenous system if B = 0; that is
AX = 0 —--mme- > (3)

The solution x; = x, = -+ x,, = 0 to the homogenous system (3) is called trivial

solution.
A solution x;_s1, x,_5s,, - x,, = s, t0 @ homogenous system in which not all the
s; = 0 is called nontrivial solution.
Example 6.2:
(1) Consider the linear system
2x+3y—4z=5
—2x —z=17
3x+2y+2z=3
The augmented matrix of the linear system is
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2 3 —4
The coefficient matrix of the linear systemisA=|-2 0 1 ]and the
3 2 2
2 3 —4|5 5 X1
augmented matrix is [—2 0 17| Also,B = 7] , X = xz] :
3 2 213 313x1 X313%1
AX = B.
1 3 —1]j0
(2) The matrix lz 0 1 1] Is the augmented matrix of the following linear
31 011
system
x+3y—z=0
2x +z=1
3x+y =1
Theorem 6.3:

(1) Let AX = B and CX = D be two linear systems each of m equations in n
unknown. If the augmented matrices [A|B] and [C|D] of these systems are row
equivalent, then both linear systems have exactly the same solutions.
(2) A and C are row equivalent m x n matrices, then the linear systems AX = 0
and CX = 0 have exactly the same solutions.
Proof: Without prove.
Theorem 6.4:
(1) A homogenous system of m equations in n unknown always has a nontrivial
solution if m < n.
(2) If Ais an n X n matrix, then the homogenous system

AX =0
has a nontrivial solution < A is singular & |A| = 0.

The following theorem summarizes results on homogenous systems and
nonsingular matrices.

Theorem 6.5: Let A be an n X n matrix, then the following are equivalent:
(1) A is nonsingular.

(2) AX = 0 has only the trivial solution.

(3) A is row equivalent to the identity matrix I,,.

(4) The linear system AX = B has a unique solution for every n x 1 matrix B.
(5) |A| # 0.

Proof: Exercise.
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Solving Linear System By Gauss-Jordan Reduction

TS
Carl Friedrich Gauss (1777- 1855) Wilhelm Jordan (1842-1899)
Germany Germany

6.6: The Gauss-Jordan reduction procedure for solving a linear system AX = B is
as follows:
STEP 1: Form the augmented matrix [A|B].
STEP 2: Transform the augmented matrix to the matrix [C|D] in reduce row
echelon form by using elementary row operation.
STEP 3: Solve the corresponding equation for the unknown that corresponds to
the leading entry of the row.
Example 6.7: Solve by Gauss—Jordan elimination
(1)

2x1—2x2 +X3 =3

33(,'1 + Xy — X3 = 7

x1—3x2+2x3 =0
Solution: Write the augmented matrix and follow the steps indicated at the right to
produce a reduced form.

-/_- "\.'..
Step 1: Choose the

leftmost nonzero column

"-\_NEEd al here._/_. 3 -l L and get a 1 at the top.
1 -3 2 0
1 -3 2 0 Step 2: Use multiples of
4 . N _ the row containing the 1
\ Need 0's here. ;3 I 1 L (=3)R: + R: = R, from step 1 to get zeros in
c—12 =2 1 3 (-2)R, + R; =R, all remaining places in the

column containing this 1.
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1 -3 2 0 Step 3: Repeat step 1 with
4 N _ the submatrix formed by
\ Need a 1 here. ;l 0 ]‘U 7 7| 0.4R,—R, (mentally) deleting the
oo ,,/ 4 -3 3 top (shaded) row.
PN _ _
/ -3 2 0| 3R,+R,—R, Step 4: Repeat step 2 with

1
e Need 0's \I 0 the entire matnix.
\ eed 0's here. Y,

0

1 :
AN 4 -3 3| (-4R,+R,—R,
- -

§ - |l 0 —0.1 2.1 Step 3: Repeat step 1 with
ff Need a 1 here. \_| ~10 1 —=0.7 0.7 the submatrix formed by
N / (mentally) deleting the top

\\ 0 0 ;D.Z 02] (-5R;—R; two (shaded) rows.

N _
/ 0 “\—.D_l 2.1 0.1R, + R, >R,  Step 4:Repeat step 2 with
' ™, the entire matrix.
:\ Need 0's here. |~ 0 1 =07 | 07| 07R;+R—R,
0 0 1 |-
1 0 0 7 The matrix is now in
reduced form, and we can
~10 1 0 0 proceed to solve the
0 0 1| =1 corresponding reduced
gystem.

The system which has the above augmented matrix is
O+x,+0=0

Therefore, S.S.= {(2,0,—1)}.

2)
2.X'1 - 4X2 +X3 = —4
4x1 — 8X2 + 7X3 =2
—2X1 + 4.X'2 - 3X3 =5

o1
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Solution:
2 4 1|4 e | -2 05]|-2
4 -8 7| 2 4 -8 7| 2
-2 4 =3 5 (To get 1 in upper left corner) -2 4 -3 5

(—4)R;y + R; — R; I -2 05(-2

| =2 05]=2
., 0 0o 5|10] PR

— |00 1 2
2R, +R:—Rs |0 0 =2 1 0 0 -2
(-05R2+R.—R: [1 -2 0] -3
— 0o 0 1| 2
2R, + R3 — Ra 0 0 0l 5

We stop the Gauss—Jordan elimination, even though the matrix is not in reduced
form, since the last row produces a contradiction.
The system is inconsistent and has no solution.

(3)
3X1+6XZ_9X3=15
ZX1+4XZ—6X3=10
—le—3XZ+4X3=—6
Solution:
3 6 =91 15 iR, e»R, 1 2 —-3| 5
2 4 —6/(10 sl 2 4 -6 10
—2 -3 416 2 -3 4l-6
(—2)R, + R, «» RS "1 2 =315 1 2 =315
2R + Rae»R3 0 0 0]0| RaesRs 01 —214
o 1 -21/4 *lo o olo
1 0 1 |—3
(—2R, + R R
S E IR 1
oo o] o0
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This matrix is now in reduced form. Write the corresponding reduced system and

solve.
X1+O+X3=—3 $X1=—X3—3
0+xZ_2.X'3=4‘ $x2:2X3+4‘

This dependent system has an infinite number of solutions. We will use a

parameter to represent all the solutions.

.T]:_I_B
1'2:23‘4‘4
.T}Z.f

Where t € R. Therefore, S.S.= {(—t — 3,2t + 4,t)|t € R}.
(4)

Xp+2x +4x3+ x4 — xs5= 1
2x) +4x> + 8x3 + 3x4 —dxs = 2
X, + 3x, + Txy + Jxs = —2
Solution:
1 2 4 1 -1 | (=2)R; + R, «»R; |
2 4 8 —4 2| (~1R: +Rie»R: 0 0
1 3 7 0 J|-2 10 1
1 2 4 1 -1 ]
Ryes Ry 013 1 4|-3| PRTROR
»lo0o0 1 -2/ 0 ’
(=3)R; + Ry <> R, 1 0 -2 0 -3 7
Ry +Rye» Ry 0 1 30 213

» |0 0 0 1 —=2] 0

This matrix is in reduce row echelon form. Write the corresponding reduced

system and solve.
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X — 2}:3 — 3.1'_-:, = 7
X7 + 31'3 + 2}?5 = —3
Xq — 21"5 = 0

Solve for the leftmost variables x;, x,, and x, in terms of the remaining variables
x3 and xs:

X = 23{'3 + 3.1?5 + 7
Xo = _3:{'3 _2-1'5_3
Xa = 23{"5

If we let x3 = sand x5 = t, then for any real numbers s and t,

X, =28 + 3t +7
X, = —35s — 2t — 3

X3 = 8§
I4:23‘
I::,:r

§$.8.={(2s+3t+7,—3s— 2t —3,5,2t,t)|s,t € R}.

(4) A chemical manufacturer plans to purchase a fleet of 24 railroad tank cars with
a combined carrying capacity of 250,000 gallons. Tank cars with three different
carrying capacities are available: 6000 gallons, 8000 gallons, and 18000 gallons.
How many of each type of tank car should be purchased?

Solution:
Let
x; = Number of 6,000-gallon tank cars
x> = Number of 8,000-gallon tank cars
x3 = Number of 18,000-gallon tank cars
Then
Xy + Xy + Xy = 24 Total number of tank cars

6,000x, + 8.000x, + 18,000x; = 250,000  Total carrying capacity
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Now we can form the augmented matrix of the system and solve by using Gauss—
Jordan reduction:

[ | 1 1‘ 24]@;;,2 + Ry (simpllty Ry) [1 1 1‘ 24]
6,000 8,000 18,000 | 250,000 6 8 18250

[1 1 1‘24]
0 1 653

[
L

v

(=6)Ry + Ry — R, [1 1 ]‘ 24] 1R, >R,
10 2 121106

(—1)R> + Ry — Ry {1 0 -5 ‘ —29]

0 1 6 53
The matrix is in reduce row echelon form.
Xy — S5xy3=-—-29 or Xy = 5S5x3— 29

X, + 6x3 = 33 or X, = —6xy + 53
Let x3 = t. Then for t any real number,

Xp= 5t—29
Xy = —6t + 53
Xy=

is a solution or is it? Since the variables in this system represent the number of
tank cars purchased, the values ofx;, x,, and x; must be nonnegative integers. The
third equation requires that t must be a nonnegative integer. The first equation
requires that 5t — 29 > 0, so t must be at least 6. The middle equation requires
that —6t + 53 > 0, so t can be no larger than 8.

So, 6, 7, and 8 are the only possible values for t. There are three different possible
combinations that meet the company’s specifications of 24 tank cars with a total
carrying capacity of 250,000 gallons, as shown in Table 1:
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Table 1
6.000-Gallon 8.000-Gallon 18.000-Gallon
Tank Cars Tank Cars Tank Cars
I X1 X7 X3
6 1 17 6
7 6 11 7
8 11 5 8

The final choice would probably be influenced by other factors. For example, the
company might want to minimize the cost of the 24 tank cars.

Solving Linear System By Gaussian Elimination

6.8: The Gauss-Jordan reduction procedure for solving a linear system AX = B is
as follows:
STEP 1: Form the augmented matrix [A|B].
STEP 2: Transform the augmented matrix to the matrix [C|D] in reduce row
echelon form by using elementary row operation.
STEP 3: Solution of the linear system corresponding to the augmented matrix
[C|D] using back substitution.
Example 6.9: Solve the following system by Gaussian elimination.

6x — y— z= 4 (1)

—12x + 2y + 2z= —8 (2)
5+ y— z= 3 (3)

Solution:
6 —1 —1| 4 1 =2 ol 1
12 2 2|-s .l -12 2 2|-s
- —
5 1 —1] 3| M=t 5 1 —1| 3

56



Al-Mustansiriyah University College of Science Dept. of Math.

Finite Mathematics 1-(2015-2016)

0 1 —— |-
Ry = —11r; + 13 ) 11
|0 O 0 0 |
This matrix is in row echelon form. Because the bottom row consists entirely of Os,

the system actually consists of only two equations.

x— 2y = 1
1 2
R TEAT)
From the second equation we get y = %z — % Then back-substitute this solution
for y into the first equation to get

1 2 2 7
x=2}'+1=2(—z——)+1=—2+—
11 11

The original system is equivalent to the system
2 7

_1 2
TR

where z, the parameter, can be any real number. If we let z = t then

2 7 2 2
S.85.= {(Ht+ﬁ'ﬁt+a't)|t € R}
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Solving Linear System By Cramer’s Rule

X1
6.10: Let AX = B be an n x n linear system, where X = | : ] Then the Cramer’s
Xn
rule is as follows:
If |[A] # 0, then
|4il
i — _l’ I = 1’2,...,n
4]

where A; is the matrix obtained from A by replacing the ith column by B.
If n = 3 then Cramer’s rule as follows:

Given the system

apx + apy + a3z = ky dyp dpp dps

{13|x + (122‘1’ + 5232’ = kg V\-’]th D= (12[ {122 323 =0

ayx + any + anz =k dz1 dzz dsz

then
ky apn an ay, ki ap ayy app k
ky ax ax ay; ky ax ay; G kK
ks azy ass ay; ks as; ay; Gin k3
X = V= zZ =
D D D

Example 6.11: (Solving a Three-Variable System with Cramer’s Rule)
Solve using Cramer’s rule:

X+ y = 2
Jy—z=—4
X +z= 3
Solution:
1 1 0
|Al=D = |0 3 —1| =2
1 0 1
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2 | 0
—4 3 -1
3 0 1 7
I p— ju— —
2 2
| 2 0
0 —4 -1
1 3 1 3
| E— = —_—
2 2
1 1 2
0 3 —4
e 0 31 1
7 = —
2 2
Remark 6.12:

(1) Cramer’s rule is only applicable in the case where we have n equations and n
unknowns (that is, coefficient matrix is square) and the coefficient matrix is
nonsingular.

(2) Cofactor expansion can be used to find determinants of orders higher than 3, so
Cramer’s rule can be used for systems with more than three variables.

(3) For large systems (n > 4), Cramer’s rule becomes computationally inefficient.
However, the Gauss-Jordan method, which involves fewer arithmetic operations
than Cramer’s Rule, is a more practical choice.
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Solving Linear System Using Inverses

6.13: In general, any system of n linear equations containing n variables
X1, X3, ..., X, Can be written in the form

AX =B
where A is the n X n matrix of the coefficients of the variables, B isann x 1
column matrix whose entries are the numbers appearing to the right of each equal
sign in the system, and X isann X 1 column matrix containing the n variables.

To find X, start with the matrix equation AX = B and use properties of matrices.
Assume that the n X n matrix A has an inverse A~1; that is A4 is nonsingular.
AX =B Ahas an inverse A7,
AYAX) = AT'B Multiply both sides by A™".
(A 1A)X = A'B Apply the Associative Property on the left side.
I.X = A'B Apply the Inverse Property: A'A=1,.
X = A 'B Apply the Identity Property: [,X = X.

This leads to the following result:
Theorem 6.14:

A system of n linear equations containing » variables

AX =B

for which A is a square matrix and A™' exists, always has a unique solution that
is given by

X=A"'B

Example 6.15: Solve the system of equations:
x+y+2z=1
2x + vy =2
x+2y+2z=3
Solution: Here
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1 1 2 X
A=]121 0| X=|y| B=|2
1 2 2 -4 3
1 1 1]
2 2 2
At=]-1 o0 1
3 1 1
4 4 4
the solution X of the system is
X=4A'B
1 1 1] - -
- o = 0
X 2 2 2
2
yl=1-1 0 1 = 1
z 3 1 1 _——
— = == 2
| 4 4 4 - -

Therefore, S.S.= {(0,2, _71)}.

Application: Use Matrices in Cryptography

Cryptography is the art of writing or deciphering secret codes. We begin by
giving examples of elementary codes.

Example 6.17: (Encoding a Message)

A message can be encoded by associating each letter of the alphabet with some
other letter (or numbers) of the alphabet according to a prescribed pattern. For
example, we might have

ABCDEFGHI JKLMNOPQRSTUVWXYL
R ARy
KB5UDLAND BT UB LU0 8765430
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Suppose we want to encode the following message:
TOP SECURITY CLEARANCE

If we decide to divide the message into pairs of letters, the message becomes
TOPSECURIT YCLE AR ANCE

(If there is a letter left over, arbitrarily assign Z to the last position.) Using the
correspondence of letters to numbers given above, and writing each pair of letters

as a column vector, we obtain

T 7 P 11 E 22 U 6 I 18

ol |12l |s| sl lc| [24f |R| |9] [T| |7

Y 2 L 15 A 26 A 26 C 24

C 24 E 22 R 9 N 13 E 22

Next, arbitrarily choose a 2 x 2 matrix A, which has an inverse A~ 1.

Let’s choose
2 3
1 2

P
|

whose its inverse is
2 -3
-1 2

Now transform the column vectors representing the message by multiplying each
of them on the left by matrix A:

A7
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7

—

College of Science

50

26| |79
26] [o1]
1] |52

Dept. of Math.

-5

50 31 46 27 116 70 39 24 57 32 76 50 96 59 79 44 91 52 114 68.

To decode or unscramble the above message, pair the numbers in 2 X 1 column
vectors. Then on the left multiply each column vector by A~1. For example, the
first two column vectors then become

p—

Al

_ﬁ__l

Continuing in this way, the original message is obtained.

50

—

2
—1

2
—1

-3
2
-3
2

p—

50
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