

Data Mining
Third Edition

The Morgan Kaufmann Series in Data Management Systems (Selected Titles)

Joe Celko’s Data, Measurements, and Standards in SQL
Joe Celko

Information Modeling and Relational Databases, 2nd Edition
Terry Halpin, Tony Morgan

Joe Celko’s Thinking in Sets
Joe Celko

Business Metadata
Bill Inmon, Bonnie O’Neil, Lowell Fryman

Unleashing Web 2.0
Gottfried Vossen, Stephan Hagemann

Enterprise Knowledge Management
David Loshin

The Practitioner’s Guide to Data Quality Improvement
David Loshin

Business Process Change, 2nd Edition
Paul Harmon

IT Manager’s Handbook, 2nd Edition
Bill Holtsnider, Brian Jaffe

Joe Celko’s Puzzles and Answers, 2nd Edition
Joe Celko

Architecture and Patterns for IT Service Management, 2nd Edition, Resource Planning
and Governance
Charles Betz

Joe Celko’s Analytics and OLAP in SQL
Joe Celko

Data Preparation for Data Mining Using SAS
Mamdouh Refaat

Querying XML: XQuery, XPath, and SQL/ XML in Context
Jim Melton, Stephen Buxton

Data Mining: Concepts and Techniques, 3rd Edition
Jiawei Han, Micheline Kamber, Jian Pei

Database Modeling and Design: Logical Design, 5th Edition
Toby J. Teorey, Sam S. Lightstone, Thomas P. Nadeau, H. V. Jagadish

Foundations of Multidimensional and Metric Data Structures
Hanan Samet

Joe Celko’s SQL for Smarties: Advanced SQL Programming, 4th Edition
Joe Celko

Moving Objects Databases
Ralf Hartmut Güting, Markus Schneider

Joe Celko’s SQL Programming Style
Joe Celko

Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration
Earl Cox

Data Modeling Essentials, 3rd Edition
Graeme C. Simsion, Graham C. Witt

Developing High Quality Data Models
Matthew West

Location-Based Services
Jochen Schiller, Agnes Voisard

Managing Time in Relational Databases: How to Design, Update, and Query Temporal Data
Tom Johnston, Randall Weis

Database Modeling with Microsoft R© Visio for Enterprise Architects
Terry Halpin, Ken Evans, Patrick Hallock, Bill Maclean

Designing Data-Intensive Web Applications
Stephano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara Comai, Maristella Matera

Mining the Web: Discovering Knowledge from Hypertext Data
Soumen Chakrabarti

Advanced SQL: 1999—Understanding Object-Relational and Other Advanced Features
Jim Melton

Database Tuning: Principles, Experiments, and Troubleshooting Techniques
Dennis Shasha, Philippe Bonnet

SQL: 1999—Understanding Relational Language Components
Jim Melton, Alan R. Simon

Information Visualization in Data Mining and Knowledge Discovery
Edited by Usama Fayyad, Georges G. Grinstein, Andreas Wierse

Transactional Information Systems
Gerhard Weikum, Gottfried Vossen

Spatial Databases
Philippe Rigaux, Michel Scholl, and Agnes Voisard

Managing Reference Data in Enterprise Databases
Malcolm Chisholm

Understanding SQL and Java Together
Jim Melton, Andrew Eisenberg

Database: Principles, Programming, and Performance, 2nd Edition
Patrick and Elizabeth O’Neil

The Object Data Standard
Edited by R. G. G. Cattell, Douglas Barry

Data on the Web: From Relations to Semistructured Data and XML
Serge Abiteboul, Peter Buneman, Dan Suciu

Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations,
3rd Edition
Ian Witten, Eibe Frank, Mark A. Hall

Joe Celko’s Data and Databases: Concepts in Practice
Joe Celko

Developing Time-Oriented Database Applications in SQL
Richard T. Snodgrass

Web Farming for the Data Warehouse
Richard D. Hackathorn

Management of Heterogeneous and Autonomous Database Systems
Edited by Ahmed Elmagarmid, Marek Rusinkiewicz, Amit Sheth

Object-Relational DBMSs, 2nd Edition
Michael Stonebraker, Paul Brown, with Dorothy Moore

Universal Database Management: A Guide to Object/Relational Technology
Cynthia Maro Saracco

Readings in Database Systems, 3rd Edition
Edited by Michael Stonebraker, Joseph M. Hellerstein

Understanding SQL’s Stored Procedures: A Complete Guide to SQL/PSM
Jim Melton

Principles of Multimedia Database Systems
V. S. Subrahmanian

Principles of Database Query Processing for Advanced Applications
Clement T. Yu, Weiyi Meng

Advanced Database Systems
Carlo Zaniolo, Stefano Ceri, Christos Faloutsos, Richard T. Snodgrass, V. S. Subrahmanian,
Roberto Zicari

Principles of Transaction Processing, 2nd Edition
Philip A. Bernstein, Eric Newcomer

Using the New DB2: IBM’s Object-Relational Database System
Don Chamberlin

Distributed Algorithms
Nancy A. Lynch

Active Database Systems: Triggers and Rules for Advanced Database Processing
Edited by Jennifer Widom, Stefano Ceri

Migrating Legacy Systems: Gateways, Interfaces, and the Incremental Approach
Michael L. Brodie, Michael Stonebraker

Atomic Transactions
Nancy Lynch, Michael Merritt, William Weihl, Alan Fekete

Query Processing for Advanced Database Systems
Edited by Johann Christoph Freytag, David Maier, Gottfried Vossen

Transaction Processing
Jim Gray, Andreas Reuter

Database Transaction Models for Advanced Applications
Edited by Ahmed K. Elmagarmid

A Guide to Developing Client/Server SQL Applications
Setrag Khoshafian, Arvola Chan, Anna Wong, Harry K. T. Wong

Data Mining
Concepts and Techniques

Third Edition

Jiawei Han
University of Illinois at Urbana–Champaign

Micheline Kamber
Jian Pei

Simon Fraser University

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann is an imprint of Elsevier

Morgan Kaufmann Publishers is an imprint of Elsevier.
225 Wyman Street, Waltham, MA 02451, USA

c© 2012 by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek
permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright
Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by
the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and
experience broaden our understanding, changes in research methods or professional practices,
may become necessary. Practitioners and researchers must always rely on their own experience
and knowledge in evaluating and using any information or methods described herein. In using
such information or methods they should be mindful of their own safety and the safety of others,
including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors,
assume any liability for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products,
instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Han, Jiawei.
Data mining : concepts and techniques / Jiawei Han, Micheline Kamber, Jian Pei. – 3rd ed.

p. cm.
ISBN 978-0-12-381479-1

1. Data mining. I. Kamber, Micheline. II. Pei, Jian. III. Title.
QA76.9.D343H36 2011
006.3′12–dc22 2011010635

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Morgan Kaufmann publications, visit our
Web site at www.mkp.com or www.elsevierdirect.com

Printed in the United States of America
11 12 13 14 15 10 9 8 7 6 5 4 3 2 1

To Y. Dora and Lawrence for your love and encouragement

J.H.

To Erik, Kevan, Kian, and Mikael for your love and inspiration

M.K.

To my wife, Jennifer, and daughter, Jacqueline

J.P.

This page intentionally left blank

Contents

Foreword xix

Foreword to Second Edition xxi

Preface xxiii

Acknowledgments xxxi

About the Authors xxxv

Chapter 1 Introduction 1

1.1 Why Data Mining? 1
1.1.1 Moving toward the Information Age 1
1.1.2 Data Mining as the Evolution of Information Technology 2

1.2 What Is Data Mining? 5

1.3 What Kinds of Data Can Be Mined? 8
1.3.1 Database Data 9
1.3.2 Data Warehouses 10
1.3.3 Transactional Data 13
1.3.4 Other Kinds of Data 14

1.4 What Kinds of Patterns Can Be Mined? 15
1.4.1 Class/Concept Description: Characterization and Discrimination 15
1.4.2 Mining Frequent Patterns, Associations, and Correlations 17
1.4.3 Classification and Regression for Predictive Analysis 18
1.4.4 Cluster Analysis 19
1.4.5 Outlier Analysis 20
1.4.6 Are All Patterns Interesting? 21

1.5 Which Technologies Are Used? 23
1.5.1 Statistics 23
1.5.2 Machine Learning 24
1.5.3 Database Systems and Data Warehouses 26
1.5.4 Information Retrieval 26

ix

x Contents

1.6 Which Kinds of Applications Are Targeted? 27
1.6.1 Business Intelligence 27
1.6.2 Web Search Engines 28

1.7 Major Issues in Data Mining 29
1.7.1 Mining Methodology 29
1.7.2 User Interaction 30
1.7.3 Efficiency and Scalability 31
1.7.4 Diversity of Database Types 32
1.7.5 Data Mining and Society 32

1.8 Summary 33

1.9 Exercises 34

1.10 Bibliographic Notes 35

Chapter 2 Getting to Know Your Data 39

2.1 Data Objects and Attribute Types 40
2.1.1 What Is an Attribute? 40
2.1.2 Nominal Attributes 41
2.1.3 Binary Attributes 41
2.1.4 Ordinal Attributes 42
2.1.5 Numeric Attributes 43
2.1.6 Discrete versus Continuous Attributes 44

2.2 Basic Statistical Descriptions of Data 44
2.2.1 Measuring the Central Tendency: Mean, Median, and Mode 45
2.2.2 Measuring the Dispersion of Data: Range, Quartiles, Variance,

Standard Deviation, and Interquartile Range 48
2.2.3 Graphic Displays of Basic Statistical Descriptions of Data 51

2.3 Data Visualization 56
2.3.1 Pixel-Oriented Visualization Techniques 57
2.3.2 Geometric Projection Visualization Techniques 58
2.3.3 Icon-Based Visualization Techniques 60
2.3.4 Hierarchical Visualization Techniques 63
2.3.5 Visualizing Complex Data and Relations 64

2.4 Measuring Data Similarity and Dissimilarity 65
2.4.1 Data Matrix versus Dissimilarity Matrix 67
2.4.2 Proximity Measures for Nominal Attributes 68
2.4.3 Proximity Measures for Binary Attributes 70
2.4.4 Dissimilarity of Numeric Data: Minkowski Distance 72
2.4.5 Proximity Measures for Ordinal Attributes 74
2.4.6 Dissimilarity for Attributes of Mixed Types 75
2.4.7 Cosine Similarity 77

2.5 Summary 79

2.6 Exercises 79

2.7 Bibliographic Notes 81

Contents xi

Chapter 3 Data Preprocessing 83

3.1 Data Preprocessing: An Overview 84
3.1.1 Data Quality: Why Preprocess the Data? 84
3.1.2 Major Tasks in Data Preprocessing 85

3.2 Data Cleaning 88
3.2.1 Missing Values 88
3.2.2 Noisy Data 89
3.2.3 Data Cleaning as a Process 91

3.3 Data Integration 93
3.3.1 Entity Identification Problem 94
3.3.2 Redundancy and Correlation Analysis 94
3.3.3 Tuple Duplication 98
3.3.4 Data Value Conflict Detection and Resolution 99

3.4 Data Reduction 99
3.4.1 Overview of Data Reduction Strategies 99
3.4.2 Wavelet Transforms 100
3.4.3 Principal Components Analysis 102
3.4.4 Attribute Subset Selection 103
3.4.5 Regression and Log-Linear Models: Parametric

Data Reduction 105
3.4.6 Histograms 106
3.4.7 Clustering 108
3.4.8 Sampling 108
3.4.9 Data Cube Aggregation 110

3.5 Data Transformation and Data Discretization 111
3.5.1 Data Transformation Strategies Overview 112
3.5.2 Data Transformation by Normalization 113
3.5.3 Discretization by Binning 115
3.5.4 Discretization by Histogram Analysis 115
3.5.5 Discretization by Cluster, Decision Tree, and Correlation

Analyses 116
3.5.6 Concept Hierarchy Generation for Nominal Data 117

3.6 Summary 120

3.7 Exercises 121

3.8 Bibliographic Notes 123

Chapter 4 Data Warehousing and Online Analytical Processing 125

4.1 Data Warehouse: Basic Concepts 125
4.1.1 What Is a Data Warehouse? 126
4.1.2 Differences between Operational Database Systems

and Data Warehouses 128
4.1.3 But, Why Have a Separate Data Warehouse? 129

xii Contents

4.1.4 Data Warehousing: A Multitiered Architecture 130
4.1.5 Data Warehouse Models: Enterprise Warehouse, Data Mart,

and Virtual Warehouse 132
4.1.6 Extraction, Transformation, and Loading 134
4.1.7 Metadata Repository 134

4.2 Data Warehouse Modeling: Data Cube and OLAP 135
4.2.1 Data Cube: A Multidimensional Data Model 136
4.2.2 Stars, Snowflakes, and Fact Constellations: Schemas

for Multidimensional Data Models 139
4.2.3 Dimensions: The Role of Concept Hierarchies 142
4.2.4 Measures: Their Categorization and Computation 144
4.2.5 Typical OLAP Operations 146
4.2.6 A Starnet Query Model for Querying Multidimensional

Databases 149

4.3 Data Warehouse Design and Usage 150
4.3.1 A Business Analysis Framework for Data Warehouse Design 150
4.3.2 Data Warehouse Design Process 151
4.3.3 Data Warehouse Usage for Information Processing 153
4.3.4 From Online Analytical Processing to Multidimensional

Data Mining 155

4.4 Data Warehouse Implementation 156
4.4.1 Efficient Data Cube Computation: An Overview 156
4.4.2 Indexing OLAP Data: Bitmap Index and Join Index 160
4.4.3 Efficient Processing of OLAP Queries 163
4.4.4 OLAP Server Architectures: ROLAP versus MOLAP

versus HOLAP 164

4.5 Data Generalization by Attribute-Oriented Induction 166
4.5.1 Attribute-Oriented Induction for Data Characterization 167
4.5.2 Efficient Implementation of Attribute-Oriented Induction 172
4.5.3 Attribute-Oriented Induction for Class Comparisons 175

4.6 Summary 178

4.7 Exercises 180

4.8 Bibliographic Notes 184

Chapter 5 Data Cube Technology 187

5.1 Data Cube Computation: Preliminary Concepts 188
5.1.1 Cube Materialization: Full Cube, Iceberg Cube, Closed Cube,

and Cube Shell 188
5.1.2 General Strategies for Data Cube Computation 192

5.2 Data Cube Computation Methods 194
5.2.1 Multiway Array Aggregation for Full Cube Computation 195

Contents xiii

5.2.2 BUC: Computing Iceberg Cubes from the Apex Cuboid
Downward 200

5.2.3 Star-Cubing: Computing Iceberg Cubes Using a Dynamic
Star-Tree Structure 204

5.2.4 Precomputing Shell Fragments for Fast High-Dimensional OLAP 210

5.3 Processing Advanced Kinds of Queries by Exploring Cube
Technology 218
5.3.1 Sampling Cubes: OLAP-Based Mining on Sampling Data 218
5.3.2 Ranking Cubes: Efficient Computation of Top-k Queries 225

5.4 Multidimensional Data Analysis in Cube Space 227
5.4.1 Prediction Cubes: Prediction Mining in Cube Space 227
5.4.2 Multifeature Cubes: Complex Aggregation at Multiple

Granularities 230
5.4.3 Exception-Based, Discovery-Driven Cube Space Exploration 231

5.5 Summary 234

5.6 Exercises 235

5.7 Bibliographic Notes 240

Chapter 6 Mining Frequent Patterns, Associations, and Correlations: Basic
Concepts and Methods 243

6.1 Basic Concepts 243
6.1.1 Market Basket Analysis: A Motivating Example 244
6.1.2 Frequent Itemsets, Closed Itemsets, and Association Rules 246

6.2 Frequent Itemset Mining Methods 248
6.2.1 Apriori Algorithm: Finding Frequent Itemsets by Confined

Candidate Generation 248
6.2.2 Generating Association Rules from Frequent Itemsets 254
6.2.3 Improving the Efficiency of Apriori 254
6.2.4 A Pattern-Growth Approach for Mining Frequent Itemsets 257
6.2.5 Mining Frequent Itemsets Using Vertical Data Format 259
6.2.6 Mining Closed and Max Patterns 262

6.3 Which Patterns Are Interesting?—Pattern Evaluation
Methods 264
6.3.1 Strong Rules Are Not Necessarily Interesting 264
6.3.2 From Association Analysis to Correlation Analysis 265
6.3.3 A Comparison of Pattern Evaluation Measures 267

6.4 Summary 271

6.5 Exercises 273

6.6 Bibliographic Notes 276

xiv Contents

Chapter 7 Advanced Pattern Mining 279

7.1 Pattern Mining: A Road Map 279

7.2 Pattern Mining in Multilevel, Multidimensional Space 283
7.2.1 Mining Multilevel Associations 283
7.2.2 Mining Multidimensional Associations 287
7.2.3 Mining Quantitative Association Rules 289
7.2.4 Mining Rare Patterns and Negative Patterns 291

7.3 Constraint-Based Frequent Pattern Mining 294
7.3.1 Metarule-Guided Mining of Association Rules 295
7.3.2 Constraint-Based Pattern Generation: Pruning Pattern Space

and Pruning Data Space 296

7.4 Mining High-Dimensional Data and Colossal Patterns 301
7.4.1 Mining Colossal Patterns by Pattern-Fusion 302

7.5 Mining Compressed or Approximate Patterns 307
7.5.1 Mining Compressed Patterns by Pattern Clustering 308
7.5.2 Extracting Redundancy-Aware Top-k Patterns 310

7.6 Pattern Exploration and Application 313
7.6.1 Semantic Annotation of Frequent Patterns 313
7.6.2 Applications of Pattern Mining 317

7.7 Summary 319

7.8 Exercises 321

7.9 Bibliographic Notes 323

Chapter 8 Classification: Basic Concepts 327

8.1 Basic Concepts 327
8.1.1 What Is Classification? 327
8.1.2 General Approach to Classification 328

8.2 Decision Tree Induction 330
8.2.1 Decision Tree Induction 332
8.2.2 Attribute Selection Measures 336
8.2.3 Tree Pruning 344
8.2.4 Scalability and Decision Tree Induction 347
8.2.5 Visual Mining for Decision Tree Induction 348

8.3 Bayes Classification Methods 350
8.3.1 Bayes’ Theorem 350
8.3.2 Näıve Bayesian Classification 351

8.4 Rule-Based Classification 355
8.4.1 Using IF-THEN Rules for Classification 355
8.4.2 Rule Extraction from a Decision Tree 357
8.4.3 Rule Induction Using a Sequential Covering Algorithm 359

Contents xv

8.5 Model Evaluation and Selection 364
8.5.1 Metrics for Evaluating Classifier Performance 364
8.5.2 Holdout Method and Random Subsampling 370
8.5.3 Cross-Validation 370
8.5.4 Bootstrap 371
8.5.5 Model Selection Using Statistical Tests of Significance 372
8.5.6 Comparing Classifiers Based on Cost–Benefit and ROC Curves 373

8.6 Techniques to Improve Classification Accuracy 377
8.6.1 Introducing Ensemble Methods 378
8.6.2 Bagging 379
8.6.3 Boosting and AdaBoost 380
8.6.4 Random Forests 382
8.6.5 Improving Classification Accuracy of Class-Imbalanced Data 383

8.7 Summary 385

8.8 Exercises 386

8.9 Bibliographic Notes 389

Chapter 9 Classification: Advanced Methods 393

9.1 Bayesian Belief Networks 393
9.1.1 Concepts and Mechanisms 394
9.1.2 Training Bayesian Belief Networks 396

9.2 Classification by Backpropagation 398
9.2.1 A Multilayer Feed-Forward Neural Network 398
9.2.2 Defining a Network Topology 400
9.2.3 Backpropagation 400
9.2.4 Inside the Black Box: Backpropagation and Interpretability 406

9.3 Support Vector Machines 408
9.3.1 The Case When the Data Are Linearly Separable 408
9.3.2 The Case When the Data Are Linearly Inseparable 413

9.4 Classification Using Frequent Patterns 415
9.4.1 Associative Classification 416
9.4.2 Discriminative Frequent Pattern–Based Classification 419

9.5 Lazy Learners (or Learning from Your Neighbors) 422
9.5.1 k-Nearest-Neighbor Classifiers 423
9.5.2 Case-Based Reasoning 425

9.6 Other Classification Methods 426
9.6.1 Genetic Algorithms 426
9.6.2 Rough Set Approach 427
9.6.3 Fuzzy Set Approaches 428

9.7 Additional Topics Regarding Classification 429
9.7.1 Multiclass Classification 430

xvi Contents

9.7.2 Semi-Supervised Classification 432
9.7.3 Active Learning 433
9.7.4 Transfer Learning 434

9.8 Summary 436

9.9 Exercises 438

9.10 Bibliographic Notes 439

Chapter 10 Cluster Analysis: Basic Concepts and Methods 443

10.1 Cluster Analysis 444
10.1.1 What Is Cluster Analysis? 444
10.1.2 Requirements for Cluster Analysis 445
10.1.3 Overview of Basic Clustering Methods 448

10.2 Partitioning Methods 451
10.2.1 k-Means: A Centroid-Based Technique 451
10.2.2 k-Medoids: A Representative Object-Based Technique 454

10.3 Hierarchical Methods 457
10.3.1 Agglomerative versus Divisive Hierarchical Clustering 459
10.3.2 Distance Measures in Algorithmic Methods 461
10.3.3 BIRCH: Multiphase Hierarchical Clustering Using Clustering

Feature Trees 462
10.3.4 Chameleon: Multiphase Hierarchical Clustering Using Dynamic

Modeling 466
10.3.5 Probabilistic Hierarchical Clustering 467

10.4 Density-Based Methods 471
10.4.1 DBSCAN: Density-Based Clustering Based on Connected

Regions with High Density 471
10.4.2 OPTICS: Ordering Points to Identify the Clustering Structure 473
10.4.3 DENCLUE: Clustering Based on Density Distribution Functions 476

10.5 Grid-Based Methods 479
10.5.1 STING: STatistical INformation Grid 479
10.5.2 CLIQUE: An Apriori-like Subspace Clustering Method 481

10.6 Evaluation of Clustering 483
10.6.1 Assessing Clustering Tendency 484
10.6.2 Determining the Number of Clusters 486
10.6.3 Measuring Clustering Quality 487

10.7 Summary 490

10.8 Exercises 491

10.9 Bibliographic Notes 494

Chapter 11 Advanced Cluster Analysis 497

11.1 Probabilistic Model-Based Clustering 497
11.1.1 Fuzzy Clusters 499

Contents xvii

11.1.2 Probabilistic Model-Based Clusters 501
11.1.3 Expectation-Maximization Algorithm 505

11.2 Clustering High-Dimensional Data 508
11.2.1 Clustering High-Dimensional Data: Problems, Challenges,

and Major Methodologies 508
11.2.2 Subspace Clustering Methods 510
11.2.3 Biclustering 512
11.2.4 Dimensionality Reduction Methods and Spectral Clustering 519

11.3 Clustering Graph and Network Data 522
11.3.1 Applications and Challenges 523
11.3.2 Similarity Measures 525
11.3.3 Graph Clustering Methods 528

11.4 Clustering with Constraints 532
11.4.1 Categorization of Constraints 533
11.4.2 Methods for Clustering with Constraints 535

11.5 Summary 538

11.6 Exercises 539

11.7 Bibliographic Notes 540

Chapter 12 Outlier Detection 543

12.1 Outliers and Outlier Analysis 544
12.1.1 What Are Outliers? 544
12.1.2 Types of Outliers 545
12.1.3 Challenges of Outlier Detection 548

12.2 Outlier Detection Methods 549
12.2.1 Supervised, Semi-Supervised, and Unsupervised Methods 549
12.2.2 Statistical Methods, Proximity-Based Methods, and

Clustering-Based Methods 551

12.3 Statistical Approaches 553
12.3.1 Parametric Methods 553
12.3.2 Nonparametric Methods 558

12.4 Proximity-Based Approaches 560
12.4.1 Distance-Based Outlier Detection and a Nested Loop

Method 561
12.4.2 A Grid-Based Method 562
12.4.3 Density-Based Outlier Detection 564

12.5 Clustering-Based Approaches 567

12.6 Classification-Based Approaches 571

12.7 Mining Contextual and Collective Outliers 573
12.7.1 Transforming Contextual Outlier Detection to Conventional

Outlier Detection 573

xviii Contents

12.7.2 Modeling Normal Behavior with Respect to Contexts 574
12.7.3 Mining Collective Outliers 575

12.8 Outlier Detection in High-Dimensional Data 576
12.8.1 Extending Conventional Outlier Detection 577
12.8.2 Finding Outliers in Subspaces 578
12.8.3 Modeling High-Dimensional Outliers 579

12.9 Summary 581

12.10 Exercises 582

12.11 Bibliographic Notes 583

Chapter 13 Data Mining Trends and Research Frontiers 585

13.1 Mining Complex Data Types 585
13.1.1 Mining Sequence Data: Time-Series, Symbolic Sequences,

and Biological Sequences 586
13.1.2 Mining Graphs and Networks 591
13.1.3 Mining Other Kinds of Data 595

13.2 Other Methodologies of Data Mining 598
13.2.1 Statistical Data Mining 598
13.2.2 Views on Data Mining Foundations 600
13.2.3 Visual and Audio Data Mining 602

13.3 Data Mining Applications 607
13.3.1 Data Mining for Financial Data Analysis 607
13.3.2 Data Mining for Retail and Telecommunication Industries 609
13.3.3 Data Mining in Science and Engineering 611
13.3.4 Data Mining for Intrusion Detection and Prevention 614
13.3.5 Data Mining and Recommender Systems 615

13.4 Data Mining and Society 618
13.4.1 Ubiquitous and Invisible Data Mining 618
13.4.2 Privacy, Security, and Social Impacts of Data Mining 620

13.5 Data Mining Trends 622

13.6 Summary 625

13.7 Exercises 626

13.8 Bibliographic Notes 628

Bibliography 633

Index 673

Foreword

Analyzing large amounts of data is a necessity. Even popular science books, like “super
crunchers,” give compelling cases where large amounts of data yield discoveries and
intuitions that surprise even experts. Every enterprise benefits from collecting and ana-
lyzing its data: Hospitals can spot trends and anomalies in their patient records, search
engines can do better ranking and ad placement, and environmental and public health
agencies can spot patterns and abnormalities in their data. The list continues, with
cybersecurity and computer network intrusion detection; monitoring of the energy
consumption of household appliances; pattern analysis in bioinformatics and pharma-
ceutical data; financial and business intelligence data; spotting trends in blogs, Twitter,
and many more. Storage is inexpensive and getting even less so, as are data sensors. Thus,
collecting and storing data is easier than ever before.

The problem then becomes how to analyze the data. This is exactly the focus of this
Third Edition of the book. Jiawei, Micheline, and Jian give encyclopedic coverage of all
the related methods, from the classic topics of clustering and classification, to database
methods (e.g., association rules, data cubes) to more recent and advanced topics (e.g.,
SVD/PCA, wavelets, support vector machines).

The exposition is extremely accessible to beginners and advanced readers alike. The
book gives the fundamental material first and the more advanced material in follow-up
chapters. It also has numerous rhetorical questions, which I found extremely helpful for
maintaining focus.

We have used the first two editions as textbooks in data mining courses at Carnegie
Mellon and plan to continue to do so with this Third Edition. The new version has
significant additions: Notably, it has more than 100 citations to works from 2006
onward, focusing on more recent material such as graphs and social networks, sen-
sor networks, and outlier detection. This book has a new section for visualization, has
expanded outlier detection into a whole chapter, and has separate chapters for advanced

xix

xx Foreword

methods—for example, pattern mining with top-k patterns and more and clustering
methods with biclustering and graph clustering.

Overall, it is an excellent book on classic and modern data mining methods, and it is
ideal not only for teaching but also as a reference book.

Christos Faloutsos
Carnegie Mellon University

Foreword to Second Edition

We are deluged by data—scientific data, medical data, demographic data, financial data,
and marketing data. People have no time to look at this data. Human attention has
become the precious resource. So, we must find ways to automatically analyze the
data, to automatically classify it, to automatically summarize it, to automatically dis-
cover and characterize trends in it, and to automatically flag anomalies. This is one
of the most active and exciting areas of the database research community. Researchers
in areas including statistics, visualization, artificial intelligence, and machine learning
are contributing to this field. The breadth of the field makes it difficult to grasp the
extraordinary progress over the last few decades.

Six years ago, Jiawei Han’s and Micheline Kamber’s seminal textbook organized and
presented Data Mining. It heralded a golden age of innovation in the field. This revision
of their book reflects that progress; more than half of the references and historical notes
are to recent work. The field has matured with many new and improved algorithms, and
has broadened to include many more datatypes: streams, sequences, graphs, time-series,
geospatial, audio, images, and video. We are certainly not at the end of the golden age—
indeed research and commercial interest in data mining continues to grow—but we are
all fortunate to have this modern compendium.

The book gives quick introductions to database and data mining concepts with
particular emphasis on data analysis. It then covers in a chapter-by-chapter tour the
concepts and techniques that underlie classification, prediction, association, and clus-
tering. These topics are presented with examples, a tour of the best algorithms for each
problem class, and with pragmatic rules of thumb about when to apply each technique.
The Socratic presentation style is both very readable and very informative. I certainly
learned a lot from reading the first edition and got re-educated and updated in reading
the second edition.

Jiawei Han and Micheline Kamber have been leading contributors to data mining
research. This is the text they use with their students to bring them up to speed on

xxi

xxii Foreword to Second Edition

the field. The field is evolving very rapidly, but this book is a quick way to learn the
basic ideas, and to understand where the field is today. I found it very informative and
stimulating, and believe you will too.

Jim Gray
In his memory

Preface

The computerization of our society has substantially enhanced our capabilities for both
generating and collecting data from diverse sources. A tremendous amount of data has
flooded almost every aspect of our lives. This explosive growth in stored or transient
data has generated an urgent need for new techniques and automated tools that can
intelligently assist us in transforming the vast amounts of data into useful information
and knowledge. This has led to the generation of a promising and flourishing frontier
in computer science called data mining, and its various applications. Data mining, also
popularly referred to as knowledge discovery from data (KDD), is the automated or con-
venient extraction of patterns representing knowledge implicitly stored or captured in
large databases, data warehouses, the Web, other massive information repositories, or
data streams.

This book explores the concepts and techniques of knowledge discovery and data min-
ing. As a multidisciplinary field, data mining draws on work from areas including statistics,
machine learning, pattern recognition, database technology, information retrieval,
network science, knowledge-based systems, artificial intelligence, high-performance
computing, and data visualization. We focus on issues relating to the feasibility, use-
fulness, effectiveness, and scalability of techniques for the discovery of patterns hidden
in large data sets. As a result, this book is not intended as an introduction to statis-
tics, machine learning, database systems, or other such areas, although we do provide
some background knowledge to facilitate the reader’s comprehension of their respective
roles in data mining. Rather, the book is a comprehensive introduction to data mining.
It is useful for computing science students, application developers, and business
professionals, as well as researchers involved in any of the disciplines previously listed.

Data mining emerged during the late 1980s, made great strides during the 1990s, and
continues to flourish into the new millennium. This book presents an overall picture
of the field, introducing interesting data mining techniques and systems and discussing
applications and research directions. An important motivation for writing this book was
the need to build an organized framework for the study of data mining—a challenging
task, owing to the extensive multidisciplinary nature of this fast-developing field. We
hope that this book will encourage people with different backgrounds and experiences
to exchange their views regarding data mining so as to contribute toward the further
promotion and shaping of this exciting and dynamic field.

xxiii

xxiv Preface

Organization of the Book

Since the publication of the first two editions of this book, great progress has been
made in the field of data mining. Many new data mining methodologies, systems, and
applications have been developed, especially for handling new kinds of data, includ-
ing information networks, graphs, complex structures, and data streams, as well as text,
Web, multimedia, time-series, and spatiotemporal data. Such fast development and rich,
new technical contents make it difficult to cover the full spectrum of the field in a single
book. Instead of continuously expanding the coverage of this book, we have decided to
cover the core material in sufficient scope and depth, and leave the handling of complex
data types to a separate forthcoming book.

The third edition substantially revises the first two editions of the book, with numer-
ous enhancements and a reorganization of the technical contents. The core technical
material, which handles mining on general data types, is expanded and substantially
enhanced. Several individual chapters for topics from the second edition (e.g., data pre-
processing, frequent pattern mining, classification, and clustering) are now augmented
and each split into two chapters for this new edition. For these topics, one chapter encap-
sulates the basic concepts and techniques while the other presents advanced concepts
and methods.

Chapters from the second edition on mining complex data types (e.g., stream data,
sequence data, graph-structured data, social network data, and multirelational data,
as well as text, Web, multimedia, and spatiotemporal data) are now reserved for a new
book that will be dedicated to advanced topics in data mining. Still, to support readers
in learning such advanced topics, we have placed an electronic version of the relevant
chapters from the second edition onto the book’s web site as companion material for
the third edition.

The chapters of the third edition are described briefly as follows, with emphasis on
the new material.

Chapter 1 provides an introduction to the multidisciplinary field of data mining. It
discusses the evolutionary path of information technology, which has led to the need
for data mining, and the importance of its applications. It examines the data types to be
mined, including relational, transactional, and data warehouse data, as well as complex
data types such as time-series, sequences, data streams, spatiotemporal data, multimedia
data, text data, graphs, social networks, and Web data. The chapter presents a general
classification of data mining tasks, based on the kinds of knowledge to be mined, the
kinds of technologies used, and the kinds of applications that are targeted. Finally, major
challenges in the field are discussed.

Chapter 2 introduces the general data features. It first discusses data objects and
attribute types and then introduces typical measures for basic statistical data descrip-
tions. It overviews data visualization techniques for various kinds of data. In addition
to methods of numeric data visualization, methods for visualizing text, tags, graphs,
and multidimensional data are introduced. Chapter 2 also introduces ways to measure
similarity and dissimilarity for various kinds of data.

Preface xxv

Chapter 3 introduces techniques for data preprocessing. It first introduces the con-
cept of data quality and then discusses methods for data cleaning, data integration, data
reduction, data transformation, and data discretization.

Chapters 4 and 5 provide a solid introduction to data warehouses, OLAP (online ana-
lytical processing), and data cube technology. Chapter 4 introduces the basic concepts,
modeling, design architectures, and general implementations of data warehouses and
OLAP, as well as the relationship between data warehousing and other data generali-
zation methods. Chapter 5 takes an in-depth look at data cube technology, presenting a
detailed study of methods of data cube computation, including Star-Cubing and high-
dimensional OLAP methods. Further explorations of data cube and OLAP technologies
are discussed, such as sampling cubes, ranking cubes, prediction cubes, multifeature
cubes for complex analysis queries, and discovery-driven cube exploration.

Chapters 6 and 7 present methods for mining frequent patterns, associations, and
correlations in large data sets. Chapter 6 introduces fundamental concepts, such as
market basket analysis, with many techniques for frequent itemset mining presented
in an organized way. These range from the basic Apriori algorithm and its vari-
ations to more advanced methods that improve efficiency, including the frequent
pattern growth approach, frequent pattern mining with vertical data format, and min-
ing closed and max frequent itemsets. The chapter also discusses pattern evaluation
methods and introduces measures for mining correlated patterns. Chapter 7 is on
advanced pattern mining methods. It discusses methods for pattern mining in multi-
level and multidimensional space, mining rare and negative patterns, mining colossal
patterns and high-dimensional data, constraint-based pattern mining, and mining com-
pressed or approximate patterns. It also introduces methods for pattern exploration and
application, including semantic annotation of frequent patterns.

Chapters 8 and 9 describe methods for data classification. Due to the importance
and diversity of classification methods, the contents are partitioned into two chapters.
Chapter 8 introduces basic concepts and methods for classification, including decision
tree induction, Bayes classification, and rule-based classification. It also discusses model
evaluation and selection methods and methods for improving classification accuracy,
including ensemble methods and how to handle imbalanced data. Chapter 9 discusses
advanced methods for classification, including Bayesian belief networks, the neural
network technique of backpropagation, support vector machines, classification using
frequent patterns, k-nearest-neighbor classifiers, case-based reasoning, genetic algo-
rithms, rough set theory, and fuzzy set approaches. Additional topics include multiclass
classification, semi-supervised classification, active learning, and transfer learning.

Cluster analysis forms the topic of Chapters 10 and 11. Chapter 10 introduces the
basic concepts and methods for data clustering, including an overview of basic cluster
analysis methods, partitioning methods, hierarchical methods, density-based methods,
and grid-based methods. It also introduces methods for the evaluation of clustering.
Chapter 11 discusses advanced methods for clustering, including probabilistic model-
based clustering, clustering high-dimensional data, clustering graph and network data,
and clustering with constraints.

xxvi Preface

Chapter 12 is dedicated to outlier detection. It introduces the basic concepts of out-
liers and outlier analysis and discusses various outlier detection methods from the view
of degree of supervision (i.e., supervised, semi-supervised, and unsupervised meth-
ods), as well as from the view of approaches (i.e., statistical methods, proximity-based
methods, clustering-based methods, and classification-based methods). It also discusses
methods for mining contextual and collective outliers, and for outlier detection in
high-dimensional data.

Finally, in Chapter 13, we discuss trends, applications, and research frontiers in data
mining. We briefly cover mining complex data types, including mining sequence data
(e.g., time series, symbolic sequences, and biological sequences), mining graphs and
networks, and mining spatial, multimedia, text, and Web data. In-depth treatment of
data mining methods for such data is left to a book on advanced topics in data mining,
the writing of which is in progress. The chapter then moves ahead to cover other data
mining methodologies, including statistical data mining, foundations of data mining,
visual and audio data mining, as well as data mining applications. It discusses data
mining for financial data analysis, for industries like retail and telecommunication, for
use in science and engineering, and for intrusion detection and prevention. It also dis-
cusses the relationship between data mining and recommender systems. Because data
mining is present in many aspects of daily life, we discuss issues regarding data mining
and society, including ubiquitous and invisible data mining, as well as privacy, security,
and the social impacts of data mining. We conclude our study by looking at data mining
trends.

Throughout the text, italic font is used to emphasize terms that are defined, while
bold font is used to highlight or summarize main ideas. Sans serif font is used for
reserved words. Bold italic font is used to represent multidimensional quantities.

This book has several strong features that set it apart from other texts on data mining.
It presents a very broad yet in-depth coverage of the principles of data mining. The
chapters are written to be as self-contained as possible, so they may be read in order of
interest by the reader. Advanced chapters offer a larger-scale view and may be considered
optional for interested readers. All of the major methods of data mining are presented.
The book presents important topics in data mining regarding multidimensional OLAP
analysis, which is often overlooked or minimally treated in other data mining books.
The book also maintains web sites with a number of online resources to aid instructors,
students, and professionals in the field. These are described further in the following.

To the Instructor

This book is designed to give a broad, yet detailed overview of the data mining field. It
can be used to teach an introductory course on data mining at an advanced undergrad-
uate level or at the first-year graduate level. Sample course syllabi are provided on the
book’s web sites (www.cs.uiuc.edu/∼hanj/bk3 and www.booksite.mkp.com/datamining3e)
in addition to extensive teaching resources such as lecture slides, instructors’ manuals,
and reading lists (see p. xxix).

Preface xxvii

Chapter 1.
Introduction

Chapter 2.
Getting to
Know Your

Data

Chapter 3.
Data

Preprocessing

Chapter 6.
Mining

Frequent
Patterns,

Basic
Concepts ...

Chapter 8.
Classification:

Basic Concepts

Chapter 10.
Cluster

Analysis: Basic
Concepts and

Methods

Figure P.1 A suggested sequence of chapters for a short introductory course.

Depending on the length of the instruction period, the background of students, and
your interests, you may select subsets of chapters to teach in various sequential order-
ings. For example, if you would like to give only a short introduction to students on data
mining, you may follow the suggested sequence in Figure P.1. Notice that depending on
the need, you can also omit some sections or subsections in a chapter if desired.

Depending on the length of the course and its technical scope, you may choose to
selectively add more chapters to this preliminary sequence. For example, instructors
who are more interested in advanced classification methods may first add “Chapter 9.
Classification: Advanced Methods”; those more interested in pattern mining may choose
to include “Chapter 7. Advanced Pattern Mining”; whereas those interested in OLAP
and data cube technology may like to add “Chapter 4. Data Warehousing and Online
Analytical Processing” and “Chapter 5. Data Cube Technology.”

Alternatively, you may choose to teach the whole book in a two-course sequence that
covers all of the chapters in the book, plus, when time permits, some advanced topics
such as graph and network mining. Material for such advanced topics may be selected
from the companion chapters available from the book’s web site, accompanied with a
set of selected research papers.

Individual chapters in this book can also be used for tutorials or for special topics in
related courses, such as machine learning, pattern recognition, data warehousing, and
intelligent data analysis.

Each chapter ends with a set of exercises, suitable as assigned homework. The exer-
cises are either short questions that test basic mastery of the material covered, longer
questions that require analytical thinking, or implementation projects. Some exercises
can also be used as research discussion topics. The bibliographic notes at the end of each
chapter can be used to find the research literature that contains the origin of the concepts
and methods presented, in-depth treatment of related topics, and possible extensions.

To the Student

We hope that this textbook will spark your interest in the young yet fast-evolving field of
data mining. We have attempted to present the material in a clear manner, with careful
explanation of the topics covered. Each chapter ends with a summary describing the
main points. We have included many figures and illustrations throughout the text to
make the book more enjoyable and reader-friendly. Although this book was designed as
a textbook, we have tried to organize it so that it will also be useful to you as a reference

xxviii Preface

book or handbook, should you later decide to perform in-depth research in the related
fields or pursue a career in data mining.

What do you need to know to read this book?

You should have some knowledge of the concepts and terminology associated with
statistics, database systems, and machine learning. However, we do try to provide
enough background of the basics, so that if you are not so familiar with these fields
or your memory is a bit rusty, you will not have trouble following the discussions in
the book.

You should have some programming experience. In particular, you should be able to
read pseudocode and understand simple data structures such as multidimensional
arrays.

To the Professional

This book was designed to cover a wide range of topics in the data mining field. As a
result, it is an excellent handbook on the subject. Because each chapter is designed to be
as standalone as possible, you can focus on the topics that most interest you. The book
can be used by application programmers and information service managers who wish
to learn about the key ideas of data mining on their own. The book would also be useful
for technical data analysis staff in banking, insurance, medicine, and retailing industries
who are interested in applying data mining solutions to their businesses. Moreover, the
book may serve as a comprehensive survey of the data mining field, which may also
benefit researchers who would like to advance the state-of-the-art in data mining and
extend the scope of data mining applications.

The techniques and algorithms presented are of practical utility. Rather than selecting
algorithms that perform well on small “toy” data sets, the algorithms described in the
book are geared for the discovery of patterns and knowledge hidden in large, real data
sets. Algorithms presented in the book are illustrated in pseudocode. The pseudocode
is similar to the C programming language, yet is designed so that it should be easy to
follow by programmers unfamiliar with C or C++. If you wish to implement any of the
algorithms, you should find the translation of our pseudocode into the programming
language of your choice to be a fairly straightforward task.

Book Web Sites with Resources

The book has a web site at www.cs.uiuc.edu/∼hanj/bk3 and another with Morgan Kauf-
mann Publishers at www.booksite.mkp.com/datamining3e. These web sites contain many
supplemental materials for readers of this book or anyone else with an interest in data
mining. The resources include the following:

Slide presentations for each chapter. Lecture notes in Microsoft PowerPoint slides
are available for each chapter.

Preface xxix

Companion chapters on advanced data mining. Chapters 8 to 10 of the second
edition of the book, which cover mining complex data types, are available on the
book’s web sites for readers who are interested in learning more about such advanced
topics, beyond the themes covered in this book.

Instructors’ manual. This complete set of answers to the exercises in the book is
available only to instructors from the publisher’s web site.

Course syllabi and lecture plans. These are given for undergraduate and graduate
versions of introductory and advanced courses on data mining, which use the text
and slides.

Supplemental reading lists with hyperlinks. Seminal papers for supplemental read-
ing are organized per chapter.

Links to data mining data sets and software. We provide a set of links to
data mining data sets and sites that contain interesting data mining software
packages, such as IlliMine from the University of Illinois at Urbana-Champaign
(http://illimine.cs.uiuc.edu).

Sample assignments, exams, and course projects. A set of sample assignments,
exams, and course projects is available to instructors from the publisher’s web site.

Figures from the book. This may help you to make your own slides for your
classroom teaching.

Contents of the book in PDF format.

Errata on the different printings of the book. We encourage you to point out any
errors in this book. Once the error is confirmed, we will update the errata list and
include acknowledgment of your contribution.

Comments or suggestions can be sent to hanj@cs.uiuc.edu. We would be happy to hear
from you.

This page intentionally left blank

Acknowledgments

Third Edition of the Book

We would like to express our grateful thanks to all of the previous and current mem-
bers of the Data Mining Group at UIUC, the faculty and students in the Data and
Information Systems (DAIS) Laboratory in the Department of Computer Science at the
University of Illinois at Urbana-Champaign, and many friends and colleagues, whose
constant support and encouragement have made our work on this edition a rewarding
experience. We would also like to thank students in CS412 and CS512 classes at UIUC of
the 2010–2011 academic year, who carefully went through the early drafts of this book,
identified many errors, and suggested various improvements.

We also wish to thank David Bevans and Rick Adams at Morgan Kaufmann Publish-
ers, for their enthusiasm, patience, and support during our writing of this edition of the
book. We thank Marilyn Rash, the Project Manager, and her team members, for keeping
us on schedule.

We are also grateful for the invaluable feedback from all of the reviewers. Moreover,
we would like to thank U.S. National Science Foundation, NASA, U.S. Air Force Office of
Scientific Research, U.S. Army Research Laboratory, and Natural Science and Engineer-
ing Research Council of Canada (NSERC), as well as IBM Research, Microsoft Research,
Google, Yahoo! Research, Boeing, HP Labs, and other industry research labs for their
support of our research in the form of research grants, contracts, and gifts. Such research
support deepens our understanding of the subjects discussed in this book. Finally, we
thank our families for their wholehearted support throughout this project.

Second Edition of the Book

We would like to express our grateful thanks to all of the previous and current mem-
bers of the Data Mining Group at UIUC, the faculty and students in the Data and

xxxi

xxxii Acknowledgments

Information Systems (DAIS) Laboratory in the Department of Computer Science at the
University of Illinois at Urbana-Champaign, and many friends and colleagues, whose
constant support and encouragement have made our work on this edition a rewarding
experience. These include Gul Agha, Rakesh Agrawal, Loretta Auvil, Peter Bajcsy, Geneva
Belford, Deng Cai, Y. Dora Cai, Roy Cambell, Kevin C.-C. Chang, Surajit Chaudhuri,
Chen Chen, Yixin Chen, Yuguo Chen, Hong Cheng, David Cheung, Shengnan Cong,
Gerald DeJong, AnHai Doan, Guozhu Dong, Charios Ermopoulos, Martin Ester, Chris-
tos Faloutsos, Wei Fan, Jack C. Feng, Ada Fu, Michael Garland, Johannes Gehrke, Hector
Gonzalez, Mehdi Harandi, Thomas Huang, Wen Jin, Chulyun Kim, Sangkyum Kim,
Won Kim, Won-Young Kim, David Kuck, Young-Koo Lee, Harris Lewin, Xiaolei Li,
Yifan Li, Chao Liu, Han Liu, Huan Liu, Hongyan Liu, Lei Liu, Ying Lu, Klara Nahrstedt,
David Padua, Jian Pei, Lenny Pitt, Daniel Reed, Dan Roth, Bruce Schatz, Zheng Shao,
Marc Snir, Zhaohui Tang, Bhavani M. Thuraisingham, Josep Torrellas, Peter Tzvetkov,
Benjamin W. Wah, Haixun Wang, Jianyong Wang, Ke Wang, Muyuan Wang, Wei Wang,
Michael Welge, Marianne Winslett, Ouri Wolfson, Andrew Wu, Tianyi Wu, Dong Xin,
Xifeng Yan, Jiong Yang, Xiaoxin Yin, Hwanjo Yu, Jeffrey X. Yu, Philip S. Yu, Maria
Zemankova, ChengXiang Zhai, Yuanyuan Zhou, and Wei Zou.

Deng Cai and ChengXiang Zhai have contributed to the text mining and Web mining
sections, Xifeng Yan to the graph mining section, and Xiaoxin Yin to the multirela-
tional data mining section. Hong Cheng, Charios Ermopoulos, Hector Gonzalez, David
J. Hill, Chulyun Kim, Sangkyum Kim, Chao Liu, Hongyan Liu, Kasif Manzoor, Tianyi
Wu, Xifeng Yan, and Xiaoxin Yin have contributed to the proofreading of the individual
chapters of the manuscript.

We also wish to thank Diane Cerra, our Publisher at Morgan Kaufmann Publishers,
for her constant enthusiasm, patience, and support during our writing of this book. We
are indebted to Alan Rose, the book Production Project Manager, for his tireless and
ever-prompt communications with us to sort out all details of the production process.
We are grateful for the invaluable feedback from all of the reviewers. Finally, we thank
our families for their wholehearted support throughout this project.

First Edition of the Book

We would like to express our sincere thanks to all those who have worked or are
currently working with us on data mining–related research and/or the DBMiner project,
or have provided us with various support in data mining. These include Rakesh Agrawal,
Stella Atkins, Yvan Bedard, Binay Bhattacharya, (Yandong) Dora Cai, Nick Cercone,
Surajit Chaudhuri, Sonny H. S. Chee, Jianping Chen, Ming-Syan Chen, Qing Chen,
Qiming Chen, Shan Cheng, David Cheung, Shi Cong, Son Dao, Umeshwar Dayal,
James Delgrande, Guozhu Dong, Carole Edwards, Max Egenhofer, Martin Ester, Usama
Fayyad, Ling Feng, Ada Fu, Yongjian Fu, Daphne Gelbart, Randy Goebel, Jim Gray,
Robert Grossman, Wan Gong, Yike Guo, Eli Hagen, Howard Hamilton, Jing He, Larry
Henschen, Jean Hou, Mei-Chun Hsu, Kan Hu, Haiming Huang, Yue Huang, Julia Itske-
vitch, Wen Jin, Tiko Kameda, Hiroyuki Kawano, Rizwan Kheraj, Eddie Kim, Won Kim,
Krzysztof Koperski, Hans-Peter Kriegel, Vipin Kumar, Laks V. S. Lakshmanan, Joyce

Acknowledgments xxxiii

Man Lam, James Lau, Deyi Li, George (Wenmin) Li, Jin Li, Ze-Nian Li, Nancy Liao,
Gang Liu, Junqiang Liu, Ling Liu, Alan (Yijun) Lu, Hongjun Lu, Tong Lu, Wei Lu,
Xuebin Lu, Wo-Shun Luk, Heikki Mannila, Runying Mao, Abhay Mehta, Gabor Melli,
Alberto Mendelzon, Tim Merrett, Harvey Miller, Drew Miners, Behzad Mortazavi-Asl,
Richard Muntz, Raymond T. Ng, Vicent Ng, Shojiro Nishio, Beng-Chin Ooi, Tamer
Ozsu, Jian Pei, Gregory Piatetsky-Shapiro, Helen Pinto, Fred Popowich, Amynmohamed
Rajan, Peter Scheuermann, Shashi Shekhar, Wei-Min Shen, Avi Silberschatz, Evangelos
Simoudis, Nebojsa Stefanovic, Yin Jenny Tam, Simon Tang, Zhaohui Tang, Dick Tsur,
Anthony K. H. Tung, Ke Wang, Wei Wang, Zhaoxia Wang, Tony Wind, Lara Winstone,
Ju Wu, Betty (Bin) Xia, Cindy M. Xin, Xiaowei Xu, Qiang Yang, Yiwen Yin, Clement Yu,
Jeffrey Yu, Philip S. Yu, Osmar R. Zaiane, Carlo Zaniolo, Shuhua Zhang, Zhong Zhang,
Yvonne Zheng, Xiaofang Zhou, and Hua Zhu.

We are also grateful to Jean Hou, Helen Pinto, Lara Winstone, and Hua Zhu for their
help with some of the original figures in this book, and to Eugene Belchev for his careful
proofreading of each chapter.

We also wish to thank Diane Cerra, our Executive Editor at Morgan Kaufmann Pub-
lishers, for her enthusiasm, patience, and support during our writing of this book, as
well as Howard Severson, our Production Editor, and his staff for their conscientious
efforts regarding production. We are indebted to all of the reviewers for their invaluable
feedback. Finally, we thank our families for their wholehearted support throughout this
project.

This page intentionally left blank

About the Authors

Jiawei Han is a Bliss Professor of Engineering in the Department of Computer Science
at the University of Illinois at Urbana-Champaign. He has received numerous awards
for his contributions on research into knowledge discovery and data mining, including
ACM SIGKDD Innovation Award (2004), IEEE Computer Society Technical Achieve-
ment Award (2005), and IEEE W. Wallace McDowell Award (2009). He is a Fellow of
ACM and IEEE. He served as founding Editor-in-Chief of ACM Transactions on Know-
ledge Discovery from Data (2006–2011) and as an editorial board member of several jour-
nals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining
and Knowledge Discovery.

Micheline Kamber has a master’s degree in computer science (specializing in artifi-
cial intelligence) from Concordia University in Montreal, Quebec. She was an NSERC
Scholar and has worked as a researcher at McGill University, Simon Fraser University,
and in Switzerland. Her background in data mining and passion for writing in easy-
to-understand terms help make this text a favorite of professionals, instructors, and
students.

Jian Pei is currently an associate professor at the School of Computing Science, Simon
Fraser University in British Columbia. He received a Ph.D. degree in computing sci-
ence from Simon Fraser University in 2002 under Dr. Jiawei Han’s supervision. He has
published prolifically in the premier academic forums on data mining, databases, Web
searching, and information retrieval and actively served the academic community. His
publications have received thousands of citations and several prestigious awards. He is
an associate editor of several data mining and data analytics journals.

xxxv

This page intentionally left blank

1Introduction

This book is an introduction to the young and fast-growing field of data mining (also known
as knowledge discovery from data, or KDD for short). The book focuses on fundamental
data mining concepts and techniques for discovering interesting patterns from data in
various applications. In particular, we emphasize prominent techniques for developing
effective, efficient, and scalable data mining tools.

This chapter is organized as follows. In Section 1.1, you will learn why data mining is
in high demand and how it is part of the natural evolution of information technology.
Section 1.2 defines data mining with respect to the knowledge discovery process. Next,
you will learn about data mining from many aspects, such as the kinds of data that can
be mined (Section 1.3), the kinds of knowledge to be mined (Section 1.4), the kinds of
technologies to be used (Section 1.5), and targeted applications (Section 1.6). In this
way, you will gain a multidimensional view of data mining. Finally, Section 1.7 outlines
major data mining research and development issues.

1.1 Why Data Mining?

Necessity, who is the mother of invention. – Plato

We live in a world where vast amounts of data are collected daily. Analyzing such data
is an important need. Section 1.1.1 looks at how data mining can meet this need by
providing tools to discover knowledge from data. In Section 1.1.2, we observe how data
mining can be viewed as a result of the natural evolution of information technology.

1.1.1 Moving toward the Information Age

“We are living in the information age” is a popular saying; however, we are actually living
in the data age. Terabytes or petabytes1 of data pour into our computer networks, the
World Wide Web (WWW), and various data storage devices every day from business,

1A petabyte is a unit of information or computer storage equal to 1 quadrillion bytes, or a thousand
terabytes, or 1 million gigabytes.

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques 1

2 Chapter 1 Introduction

society, science and engineering, medicine, and almost every other aspect of daily life.
This explosive growth of available data volume is a result of the computerization of
our society and the fast development of powerful data collection and storage tools.
Businesses worldwide generate gigantic data sets, including sales transactions, stock
trading records, product descriptions, sales promotions, company profiles and perfor-
mance, and customer feedback. For example, large stores, such as Wal-Mart, handle
hundreds of millions of transactions per week at thousands of branches around the
world. Scientific and engineering practices generate high orders of petabytes of data in
a continuous manner, from remote sensing, process measuring, scientific experiments,
system performance, engineering observations, and environment surveillance.

Global backbone telecommunication networks carry tens of petabytes of data traffic
every day. The medical and health industry generates tremendous amounts of data from
medical records, patient monitoring, and medical imaging. Billions of Web searches
supported by search engines process tens of petabytes of data daily. Communities and
social media have become increasingly important data sources, producing digital pic-
tures and videos, blogs, Web communities, and various kinds of social networks. The
list of sources that generate huge amounts of data is endless.

This explosively growing, widely available, and gigantic body of data makes our
time truly the data age. Powerful and versatile tools are badly needed to automatically
uncover valuable information from the tremendous amounts of data and to transform
such data into organized knowledge. This necessity has led to the birth of data mining.
The field is young, dynamic, and promising. Data mining has and will continue to make
great strides in our journey from the data age toward the coming information age.

Example 1.1 Data mining turns a large collection of data into knowledge. A search engine (e.g.,
Google) receives hundreds of millions of queries every day. Each query can be viewed
as a transaction where the user describes her or his information need. What novel and
useful knowledge can a search engine learn from such a huge collection of queries col-
lected from users over time? Interestingly, some patterns found in user search queries
can disclose invaluable knowledge that cannot be obtained by reading individual data
items alone. For example, Google’s Flu Trends uses specific search terms as indicators of
flu activity. It found a close relationship between the number of people who search for
flu-related information and the number of people who actually have flu symptoms. A
pattern emerges when all of the search queries related to flu are aggregated. Using aggre-
gated Google search data, Flu Trends can estimate flu activity up to two weeks faster
than traditional systems can.2 This example shows how data mining can turn a large
collection of data into knowledge that can help meet a current global challenge.

1.1.2 Data Mining as the Evolution of Information Technology

Data mining can be viewed as a result of the natural evolution of information tech-
nology. The database and data management industry evolved in the development of

2This is reported in [GMP+09].

1.1 Why Data Mining? 3

Data Collection and Database Creation
(1960s and earlier)

Primitive file processing

Database Management Systems
(1970s to early 1980s)

Hierarchical and network database systems
Relational database systems
Data modeling: entity-relationship models, etc.
Indexing and accessing methods
Query languages: SQL, etc.
User interfaces, forms, and reports
Query processing and optimization
Transactions, concurrency control, and recovery
Online transaction processing (OLTP)

Advanced Database Systems
(mid-1980s to present)

Advanced data models: extended-relational,
object relational, deductive, etc.
Managing complex data: spatial, temporal,
multimedia, sequence and structured,
scientific, engineering, moving objects, etc.
Data streams and cyber-physical data systems
Web-based databases (XML, semantic web)
Managing uncertain data and data cleaning
Integration of heterogeneous sources
Text database systems and integration with
information retrieval
Extremely large data management
Database system tuning and adaptive systems
Advanced queries: ranking, skyline, etc.
Cloud computing and parallel data processing
Issues of data privacy and security

Advanced Data Analysis
(late- 1980s to present)

Data warehouse and OLAP
Data mining and knowledge discovery:
classification, clustering, outlier analysis,
association and correlation, comparative
summary, discrimination analysis, pattern
discovery, trend and deviation analysis, etc.
Mining complex types of data: streams,
sequence, text, spatial, temporal, multimedia,
Web, networks, etc.
Data mining applications: business, society,
retail, banking, telecommunications, science
and engineering, blogs, daily life, etc.
Data mining and society: invisible data
mining, privacy-preserving data mining,
mining social and information networks,
recommender systems, etc.

Future Generation of Information Systems
(Present to future)

Figure 1.1 The evolution of database system technology.

several critical functionalities (Figure 1.1): data collection and database creation, data
management (including data storage and retrieval and database transaction processing),
and advanced data analysis (involving data warehousing and data mining). The early
development of data collection and database creation mechanisms served as a prerequi-
site for the later development of effective mechanisms for data storage and retrieval,
as well as query and transaction processing. Nowadays numerous database systems
offer query and transaction processing as common practice. Advanced data analysis has
naturally become the next step.

4 Chapter 1 Introduction

Since the 1960s, database and information technology has evolved systematically
from primitive file processing systems to sophisticated and powerful database systems.
The research and development in database systems since the 1970s progressed from
early hierarchical and network database systems to relational database systems (where
data are stored in relational table structures; see Section 1.3.1), data modeling tools,
and indexing and accessing methods. In addition, users gained convenient and flexible
data access through query languages, user interfaces, query optimization, and transac-
tion management. Efficient methods for online transaction processing (OLTP), where a
query is viewed as a read-only transaction, contributed substantially to the evolution and
wide acceptance of relational technology as a major tool for efficient storage, retrieval,
and management of large amounts of data.

After the establishment of database management systems, database technology
moved toward the development of advanced database systems, data warehousing, and
data mining for advanced data analysis and web-based databases. Advanced database
systems, for example, resulted from an upsurge of research from the mid-1980s onward.
These systems incorporate new and powerful data models such as extended-relational,
object-oriented, object-relational, and deductive models. Application-oriented database
systems have flourished, including spatial, temporal, multimedia, active, stream and
sensor, scientific and engineering databases, knowledge bases, and office information
bases. Issues related to the distribution, diversification, and sharing of data have been
studied extensively.

Advanced data analysis sprang up from the late 1980s onward. The steady and
dazzling progress of computer hardware technology in the past three decades led to
large supplies of powerful and affordable computers, data collection equipment, and
storage media. This technology provides a great boost to the database and information
industry, and it enables a huge number of databases and information repositories to be
available for transaction management, information retrieval, and data analysis. Data
can now be stored in many different kinds of databases and information repositories.

One emerging data repository architecture is the data warehouse (Section 1.3.2).
This is a repository of multiple heterogeneous data sources organized under a uni-
fied schema at a single site to facilitate management decision making. Data warehouse
technology includes data cleaning, data integration, and online analytical processing
(OLAP)—that is, analysis techniques with functionalities such as summarization, con-
solidation, and aggregation, as well as the ability to view information from different
angles. Although OLAP tools support multidimensional analysis and decision making,
additional data analysis tools are required for in-depth analysis—for example, data min-
ing tools that provide data classification, clustering, outlier/anomaly detection, and the
characterization of changes in data over time.

Huge volumes of data have been accumulated beyond databases and data ware-
houses. During the 1990s, the World Wide Web and web-based databases (e.g., XML
databases) began to appear. Internet-based global information bases, such as the WWW
and various kinds of interconnected, heterogeneous databases, have emerged and play
a vital role in the information industry. The effective and efficient analysis of data from
such different forms of data by integration of information retrieval, data mining, and
information network analysis technologies is a challenging task.

1.2 What Is Data Mining? 5

How can I analyze these data?

Figure 1.2 The world is data rich but information poor.

In summary, the abundance of data, coupled with the need for powerful data analysis
tools, has been described as a data rich but information poor situation (Figure 1.2). The
fast-growing, tremendous amount of data, collected and stored in large and numerous
data repositories, has far exceeded our human ability for comprehension without power-
ful tools. As a result, data collected in large data repositories become “data tombs”—data
archives that are seldom visited. Consequently, important decisions are often made
based not on the information-rich data stored in data repositories but rather on a deci-
sion maker’s intuition, simply because the decision maker does not have the tools to
extract the valuable knowledge embedded in the vast amounts of data. Efforts have
been made to develop expert system and knowledge-based technologies, which typically
rely on users or domain experts to manually input knowledge into knowledge bases.
Unfortunately, however, the manual knowledge input procedure is prone to biases and
errors and is extremely costly and time consuming. The widening gap between data and
information calls for the systematic development of data mining tools that can turn data
tombs into “golden nuggets” of knowledge.

1.2 What Is Data Mining?

It is no surprise that data mining, as a truly interdisciplinary subject, can be defined
in many different ways. Even the term data mining does not really present all the major
components in the picture. To refer to the mining of gold from rocks or sand, we say gold
mining instead of rock or sand mining. Analogously, data mining should have been more

6 Chapter 1 Introduction

Knowledge

Figure 1.3 Data mining—searching for knowledge (interesting patterns) in data.

appropriately named “knowledge mining from data,” which is unfortunately somewhat
long. However, the shorter term, knowledge mining may not reflect the emphasis on
mining from large amounts of data. Nevertheless, mining is a vivid term characterizing
the process that finds a small set of precious nuggets from a great deal of raw material
(Figure 1.3). Thus, such a misnomer carrying both “data” and “mining” became a pop-
ular choice. In addition, many other terms have a similar meaning to data mining—for
example, knowledge mining from data, knowledge extraction, data/pattern analysis, data
archaeology, and data dredging.

Many people treat data mining as a synonym for another popularly used term,
knowledge discovery from data, or KDD, while others view data mining as merely an
essential step in the process of knowledge discovery. The knowledge discovery process is
shown in Figure 1.4 as an iterative sequence of the following steps:

1. Data cleaning (to remove noise and inconsistent data)

2. Data integration (where multiple data sources may be combined)3

3A popular trend in the information industry is to perform data cleaning and data integration as a
preprocessing step, where the resulting data are stored in a data warehouse.

1.2 What Is Data Mining? 7

Flat files
Databases

Data
Warehouse

Patterns

Knowledge

Cleaning and
integration

Selection and
transformation

Data
mining

Evaluation and
presentation

Figure 1.4 Data mining as a step in the process of knowledge discovery.

8 Chapter 1 Introduction

3. Data selection (where data relevant to the analysis task are retrieved from the
database)

4. Data transformation (where data are transformed and consolidated into forms
appropriate for mining by performing summary or aggregation operations)4

5. Data mining (an essential process where intelligent methods are applied to extract
data patterns)

6. Pattern evaluation (to identify the truly interesting patterns representing knowledge
based on interestingness measures—see Section 1.4.6)

7. Knowledge presentation (where visualization and knowledge representation tech-
niques are used to present mined knowledge to users)

Steps 1 through 4 are different forms of data preprocessing, where data are prepared
for mining. The data mining step may interact with the user or a knowledge base. The
interesting patterns are presented to the user and may be stored as new knowledge in the
knowledge base.

The preceding view shows data mining as one step in the knowledge discovery pro-
cess, albeit an essential one because it uncovers hidden patterns for evaluation. However,
in industry, in media, and in the research milieu, the term data mining is often used to
refer to the entire knowledge discovery process (perhaps because the term is shorter
than knowledge discovery from data). Therefore, we adopt a broad view of data min-
ing functionality: Data mining is the process of discovering interesting patterns and
knowledge from large amounts of data. The data sources can include databases, data
warehouses, the Web, other information repositories, or data that are streamed into the
system dynamically.

1.3 What Kinds of Data Can Be Mined?

As a general technology, data mining can be applied to any kind of data as long as the
data are meaningful for a target application. The most basic forms of data for mining
applications are database data (Section 1.3.1), data warehouse data (Section 1.3.2),
and transactional data (Section 1.3.3). The concepts and techniques presented in this
book focus on such data. Data mining can also be applied to other forms of data (e.g.,
data streams, ordered/sequence data, graph or networked data, spatial data, text data,
multimedia data, and the WWW). We present an overview of such data in Section 1.3.4.
Techniques for mining of these kinds of data are briefly introduced in Chapter 13. In-
depth treatment is considered an advanced topic. Data mining will certainly continue
to embrace new data types as they emerge.

4Sometimes data transformation and consolidation are performed before the data selection process,
particularly in the case of data warehousing. Data reduction may also be performed to obtain a smaller
representation of the original data without sacrificing its integrity.

1.3 What Kinds of Data Can Be Mined? 9

1.3.1 Database Data

A database system, also called a database management system (DBMS), consists of a
collection of interrelated data, known as a database, and a set of software programs to
manage and access the data. The software programs provide mechanisms for defining
database structures and data storage; for specifying and managing concurrent, shared,
or distributed data access; and for ensuring consistency and security of the information
stored despite system crashes or attempts at unauthorized access.

A relational database is a collection of tables, each of which is assigned a unique
name. Each table consists of a set of attributes (columns or fields) and usually stores
a large set of tuples (records or rows). Each tuple in a relational table represents an
object identified by a unique key and described by a set of attribute values. A semantic
data model, such as an entity-relationship (ER) data model, is often constructed for
relational databases. An ER data model represents the database as a set of entities and
their relationships.

Example 1.2 A relational database for AllElectronics. The fictitious AllElectronics store is used to
illustrate concepts throughout this book. The company is described by the following
relation tables: customer, item, employee, and branch. The headers of the tables described
here are shown in Figure 1.5. (A header is also called the schema of a relation.)

The relation customer consists of a set of attributes describing the customer infor-
mation, including a unique customer identity number (cust ID), customer name,
address, age, occupation, annual income, credit information, and category.

Similarly, each of the relations item, employee, and branch consists of a set of attri-
butes describing the properties of these entities.

Tables can also be used to represent the relationships between or among multiple
entities. In our example, these include purchases (customer purchases items, creating
a sales transaction handled by an employee), items sold (lists items sold in a given
transaction), and works at (employee works at a branch of AllElectronics).

customer (cust ID, name, address, age, occupation, annual income, credit information,
category, . . .)

item (item ID, brand, category, type, price, place made, supplier, cost, . . .)

employee (empl ID, name, category, group, salary, commission, . . .)

branch (branch ID, name, address, . . .)

purchases (trans ID, cust ID, empl ID, date, time, method paid, amount)

items sold (trans ID, item ID, qty)

works at (empl ID, branch ID)

Figure 1.5 Relational schema for a relational database, AllElectronics.

10 Chapter 1 Introduction

Relational data can be accessed by database queries written in a relational query
language (e.g., SQL) or with the assistance of graphical user interfaces. A given query is
transformed into a set of relational operations, such as join, selection, and projection,
and is then optimized for efficient processing. A query allows retrieval of specified sub-
sets of the data. Suppose that your job is to analyze the AllElectronics data. Through the
use of relational queries, you can ask things like, “Show me a list of all items that were
sold in the last quarter.” Relational languages also use aggregate functions such as sum,
avg (average), count, max (maximum), and min (minimum). Using aggregates allows you
to ask: “Show me the total sales of the last month, grouped by branch,” or “How many sales
transactions occurred in the month of December?” or “Which salesperson had the highest
sales?”

When mining relational databases, we can go further by searching for trends or
data patterns. For example, data mining systems can analyze customer data to predict
the credit risk of new customers based on their income, age, and previous credit
information. Data mining systems may also detect deviations—that is, items with sales
that are far from those expected in comparison with the previous year. Such deviations
can then be further investigated. For example, data mining may discover that there has
been a change in packaging of an item or a significant increase in price.

Relational databases are one of the most commonly available and richest information
repositories, and thus they are a major data form in the study of data mining.

1.3.2 Data Warehouses

Suppose that AllElectronics is a successful international company with branches around
the world. Each branch has its own set of databases. The president of AllElectronics has
asked you to provide an analysis of the company’s sales per item type per branch for the
third quarter. This is a difficult task, particularly since the relevant data are spread out
over several databases physically located at numerous sites.

If AllElectronics had a data warehouse, this task would be easy. A data warehouse
is a repository of information collected from multiple sources, stored under a unified
schema, and usually residing at a single site. Data warehouses are constructed via a
process of data cleaning, data integration, data transformation, data loading, and peri-
odic data refreshing. This process is discussed in Chapters 3 and 4. Figure 1.6 shows the
typical framework for construction and use of a data warehouse for AllElectronics.

To facilitate decision making, the data in a data warehouse are organized around
major subjects (e.g., customer, item, supplier, and activity). The data are stored to pro-
vide information from a historical perspective, such as in the past 6 to 12 months, and are
typically summarized. For example, rather than storing the details of each sales transac-
tion, the data warehouse may store a summary of the transactions per item type for each
store or, summarized to a higher level, for each sales region.

A data warehouse is usually modeled by a multidimensional data structure, called a
data cube, in which each dimension corresponds to an attribute or a set of attributes
in the schema, and each cell stores the value of some aggregate measure such as count

1.3 What Kinds of Data Can Be Mined? 11

Data source in Chicago

Data source in Toronto

Data source in Vancouver

Data source in New York Data
Warehouse

Clean
Integrate
Transform
Load
Refresh

Query and
analysis tools

Client

Client

Figure 1.6 Typical framework of a data warehouse for AllElectronics.

or sum(sales amount). A data cube provides a multidimensional view of data and allows
the precomputation and fast access of summarized data.

Example 1.3 A data cube for AllElectronics. A data cube for summarized sales data of AllElectronics
is presented in Figure 1.7(a). The cube has three dimensions: address (with city values
Chicago, New York, Toronto, Vancouver), time (with quarter values Q1, Q2, Q3, Q4), and
item (with item type values home entertainment, computer, phone, security). The aggregate
value stored in each cell of the cube is sales amount (in thousands). For example, the total
sales for the first quarter, Q1, for the items related to security systems in Vancouver is
$400,000, as stored in cell 〈Vancouver, Q1, security〉. Additional cubes may be used to store
aggregatesumsovereachdimension,correspondingtotheaggregatevaluesobtainedusing
different SQL group-bys (e.g., the total sales amount per city and quarter, or per city and
item, or per quarter and item, or per each individual dimension).

By providing multidimensional data views and the precomputation of summarized
data, data warehouse systems can provide inherent support for OLAP. Online analyti-
cal processing operations make use of background knowledge regarding the domain of
the data being studied to allow the presentation of data at different levels of abstraction.
Such operations accommodate different user viewpoints. Examples of OLAP opera-
tions include drill-down and roll-up, which allow the user to view the data at differing
degrees of summarization, as illustrated in Figure 1.7(b). For instance, we can drill
down on sales data summarized by quarter to see data summarized by month. Sim-
ilarly, we can roll up on sales data summarized by city to view data summarized by
country.

Although data warehouse tools help support data analysis, additional tools for
data mining are often needed for in-depth analysis. Multidimensional data mining
(also called exploratory multidimensional data mining) performs data mining in

12 Chapter 1 Introduction

605 825 14 400Q1

Q2

Q3

Q4

Chicago
New York

Toronto

440
1560

395
Vancouver

tim
e

(q
ua

rt
er

s)

ad
dr

es
s (

cit
ies

)

home
entertainment

computer
phone

item (types)

security

<Vancouver,
Q1, security>

Q1

Q2

Q3

Q4

USA

Canada
2000

1000

tim
e

(q
ua

rt
er

s)

ad
dr

es
s (

co
untri

es)

home
entertainment

computer
phone

item (types)

security

150

100

150

Jan

Feb

March

Chicago
New York

Toronto

Vancouver

tim
e

(m
on

th
s)

ad
dr

es
s (

cit
ies

)

home
entertainment

computer
phone

item (types)

security

Drill-down
on time data for Q1

Roll-up
on address

(a)

(b)

Figure 1.7 A multidimensional data cube, commonly used for data warehousing, (a) showing summa-
rized data for AllElectronics and (b) showing summarized data resulting from drill-down and
roll-up operations on the cube in (a). For improved readability, only some of the cube cell
values are shown.

1.3 What Kinds of Data Can Be Mined? 13

multidimensional space in an OLAP style. That is, it allows the exploration of mul-
tiple combinations of dimensions at varying levels of granularity in data mining,
and thus has greater potential for discovering interesting patterns representing knowl-
edge. An overview of data warehouse and OLAP technology is provided in Chapter 4.
Advanced issues regarding data cube computation and multidimensional data mining
are discussed in Chapter 5.

1.3.3 Transactional Data

In general, each record in a transactional database captures a transaction, such as a
customer’s purchase, a flight booking, or a user’s clicks on a web page. A transaction typ-
ically includes a unique transaction identity number (trans ID) and a list of the items
making up the transaction, such as the items purchased in the transaction. A trans-
actional database may have additional tables, which contain other information related
to the transactions, such as item description, information about the salesperson or the
branch, and so on.

Example 1.4 A transactional database for AllElectronics. Transactions can be stored in a table, with
one record per transaction. A fragment of a transactional database for AllElectronics is
shown in Figure 1.8. From the relational database point of view, the sales table in the
figure is a nested relation because the attribute list of item IDs contains a set of items.
Because most relational database systems do not support nested relational structures,
the transactional database is usually either stored in a flat file in a format similar to
the table in Figure 1.8 or unfolded into a standard relation in a format similar to the
items sold table in Figure 1.5.

As an analyst of AllElectronics, you may ask,“Which items sold well together?” This
kind of market basket data analysis would enable you to bundle groups of items together
as a strategy for boosting sales. For example, given the knowledge that printers are
commonly purchased together with computers, you could offer certain printers at a
steep discount (or even for free) to customers buying selected computers, in the hopes
of selling more computers (which are often more expensive than printers). A tradi-
tional database system is not able to perform market basket data analysis. Fortunately,
data mining on transactional data can do so by mining frequent itemsets, that is, sets

trans ID list of item IDs

T100 I1, I3, I8, I16

T200 I2, I8

.

Figure 1.8 Fragment of a transactional database for sales at AllElectronics.

14 Chapter 1 Introduction

of items that are frequently sold together. The mining of such frequent patterns from
transactional data is discussed in Chapters 6 and 7.

1.3.4 Other Kinds of Data

Besides relational database data, data warehouse data, and transaction data, there are
many other kinds of data that have versatile forms and structures and rather different
semantic meanings. Such kinds of data can be seen in many applications: time-related
or sequence data (e.g., historical records, stock exchange data, and time-series and bio-
logical sequence data), data streams (e.g., video surveillance and sensor data, which are
continuously transmitted), spatial data (e.g., maps), engineering design data (e.g., the
design of buildings, system components, or integrated circuits), hypertext and multi-
media data (including text, image, video, and audio data), graph and networked data
(e.g., social and information networks), and the Web (a huge, widely distributed infor-
mation repository made available by the Internet). These applications bring about new
challenges, like how to handle data carrying special structures (e.g., sequences, trees,
graphs, and networks) and specific semantics (such as ordering, image, audio and video
contents, and connectivity), and how to mine patterns that carry rich structures and
semantics.

Various kinds of knowledge can be mined from these kinds of data. Here, we list
just a few. Regarding temporal data, for instance, we can mine banking data for chang-
ing trends, which may aid in the scheduling of bank tellers according to the volume of
customer traffic. Stock exchange data can be mined to uncover trends that could help
you plan investment strategies (e.g., the best time to purchase AllElectronics stock). We
could mine computer network data streams to detect intrusions based on the anomaly of
message flows, which may be discovered by clustering, dynamic construction of stream
models or by comparing the current frequent patterns with those at a previous time.
With spatial data, we may look for patterns that describe changes in metropolitan
poverty rates based on city distances from major highways. The relationships among
a set of spatial objects can be examined in order to discover which subsets of objects
are spatially autocorrelated or associated. By mining text data, such as literature on data
mining from the past ten years, we can identify the evolution of hot topics in the field. By
mining user comments on products (which are often submitted as short text messages),
we can assess customer sentiments and understand how well a product is embraced by
a market. From multimedia data, we can mine images to identify objects and classify
them by assigning semantic labels or tags. By mining video data of a hockey game, we
can detect video sequences corresponding to goals. Web mining can help us learn about
the distribution of information on the WWW in general, characterize and classify web
pages, and uncover web dynamics and the association and other relationships among
different web pages, users, communities, and web-based activities.

It is important to keep in mind that, in many applications, multiple types of data
are present. For example, in web mining, there often exist text data and multimedia
data (e.g., pictures and videos) on web pages, graph data like web graphs, and map
data on some web sites. In bioinformatics, genomic sequences, biological networks, and

1.4 What Kinds of Patterns Can Be Mined? 15

3-D spatial structures of genomes may coexist for certain biological objects. Mining
multiple data sources of complex data often leads to fruitful findings due to the mutual
enhancement and consolidation of such multiple sources. On the other hand, it is also
challenging because of the difficulties in data cleaning and data integration, as well as
the complex interactions among the multiple sources of such data.

While such data require sophisticated facilities for efficient storage, retrieval, and
updating, they also provide fertile ground and raise challenging research and imple-
mentation issues for data mining. Data mining on such data is an advanced topic. The
methods involved are extensions of the basic techniques presented in this book.

1.4 What Kinds of Patterns Can Be Mined?

We have observed various types of data and information repositories on which data
mining can be performed. Let us now examine the kinds of patterns that can be mined.

There are a number of data mining functionalities. These include characterization
and discrimination (Section 1.4.1); the mining of frequent patterns, associations, and
correlations (Section 1.4.2); classification and regression (Section 1.4.3); clustering anal-
ysis (Section 1.4.4); and outlier analysis (Section 1.4.5). Data mining functionalities are
used to specify the kinds of patterns to be found in data mining tasks. In general, such
tasks can be classified into two categories: descriptive and predictive. Descriptive min-
ing tasks characterize properties of the data in a target data set. Predictive mining tasks
perform induction on the current data in order to make predictions.

Data mining functionalities, and the kinds of patterns they can discover, are described
below. In addition, Section 1.4.6 looks at what makes a pattern interesting. Interesting
patterns represent knowledge.

1.4.1 Class/Concept Description: Characterization
and Discrimination

Data entries can be associated with classes or concepts. For example, in the AllElectronics
store, classes of items for sale include computers and printers, and concepts of customers
include bigSpenders and budgetSpenders. It can be useful to describe individual classes
and concepts in summarized, concise, and yet precise terms. Such descriptions of a class
or a concept are called class/concept descriptions. These descriptions can be derived
using (1) data characterization, by summarizing the data of the class under study (often
called the target class) in general terms, or (2) data discrimination, by comparison of
the target class with one or a set of comparative classes (often called the contrasting
classes), or (3) both data characterization and discrimination.

Data characterization is a summarization of the general characteristics or features
of a target class of data. The data corresponding to the user-specified class are typically
collected by a query. For example, to study the characteristics of software products with
sales that increased by 10% in the previous year, the data related to such products can
be collected by executing an SQL query on the sales database.

16 Chapter 1 Introduction

There are several methods for effective data summarization and characterization.
Simple data summaries based on statistical measures and plots are described in
Chapter 2. The data cube-based OLAP roll-up operation (Section 1.3.2) can be used
to perform user-controlled data summarization along a specified dimension. This pro-
cess is further detailed in Chapters 4 and 5, which discuss data warehousing. An
attribute-oriented induction technique can be used to perform data generalization and
characterization without step-by-step user interaction. This technique is also described
in Chapter 4.

The output of data characterization can be presented in various forms. Examples
include pie charts, bar charts, curves, multidimensional data cubes, and multidimen-
sional tables, including crosstabs. The resulting descriptions can also be presented as
generalized relations or in rule form (called characteristic rules).

Example 1.5 Data characterization. A customer relationship manager at AllElectronics may order the
following data mining task: Summarize the characteristics of customers who spend more
than $5000 a year at AllElectronics. The result is a general profile of these customers,
such as that they are 40 to 50 years old, employed, and have excellent credit ratings. The
data mining system should allow the customer relationship manager to drill down on
any dimension, such as on occupation to view these customers according to their type of
employment.

Data discrimination is a comparison of the general features of the target class data
objects against the general features of objects from one or multiple contrasting classes.
The target and contrasting classes can be specified by a user, and the corresponding
data objects can be retrieved through database queries. For example, a user may want to
compare the general features of software products with sales that increased by 10% last
year against those with sales that decreased by at least 30% during the same period. The
methods used for data discrimination are similar to those used for data characterization.

“How are discrimination descriptions output?” The forms of output presentation
are similar to those for characteristic descriptions, although discrimination descrip-
tions should include comparative measures that help to distinguish between the target
and contrasting classes. Discrimination descriptions expressed in the form of rules are
referred to as discriminant rules.

Example 1.6 Data discrimination. A customer relationship manager at AllElectronics may want to
compare two groups of customers—those who shop for computer products regularly
(e.g., more than twice a month) and those who rarely shop for such products (e.g.,
less than three times a year). The resulting description provides a general comparative
profile of these customers, such as that 80% of the customers who frequently purchase
computer products are between 20 and 40 years old and have a university education,
whereas 60% of the customers who infrequently buy such products are either seniors or
youths, and have no university degree. Drilling down on a dimension like occupation,
or adding a new dimension like income level, may help to find even more discriminative
features between the two classes.

1.4 What Kinds of Patterns Can Be Mined? 17

Concept description, including characterization and discrimination, is described in
Chapter 4.

1.4.2 Mining Frequent Patterns, Associations, and Correlations

Frequent patterns, as the name suggests, are patterns that occur frequently in data.
There are many kinds of frequent patterns, including frequent itemsets, frequent sub-
sequences (also known as sequential patterns), and frequent substructures. A frequent
itemset typically refers to a set of items that often appear together in a transactional
data set—for example, milk and bread, which are frequently bought together in gro-
cery stores by many customers. A frequently occurring subsequence, such as the pattern
that customers, tend to purchase first a laptop, followed by a digital camera, and then
a memory card, is a (frequent) sequential pattern. A substructure can refer to different
structural forms (e.g., graphs, trees, or lattices) that may be combined with itemsets
or subsequences. If a substructure occurs frequently, it is called a (frequent) structured
pattern. Mining frequent patterns leads to the discovery of interesting associations and
correlations within data.

Example 1.7 Association analysis. Suppose that, as a marketing manager at AllElectronics, you want
to know which items are frequently purchased together (i.e., within the same transac-
tion). An example of such a rule, mined from the AllElectronics transactional database, is

buys(X , “computer”) ⇒ buys(X , “software”) [support = 1%, confidence = 50%],

where X is a variable representing a customer. A confidence, or certainty, of 50%
means that if a customer buys a computer, there is a 50% chance that she will buy
software as well. A 1% support means that 1% of all the transactions under analysis
show that computer and software are purchased together. This association rule involves
a single attribute or predicate (i.e., buys) that repeats. Association rules that contain a
single predicate are referred to as single-dimensional association rules. Dropping the
predicate notation, the rule can be written simply as “computer ⇒ software [1%, 50%].”

Suppose, instead, that we are given the AllElectronics relational database related to
purchases. A data mining system may find association rules like

age(X , “20..29”) ∧ income(X , “40K..49K”) ⇒ buys(X , “laptop”)

[support = 2%, confidence = 60%].

The rule indicates that of the AllElectronics customers under study, 2% are 20 to 29 years
old with an income of $40,000 to $49,000 and have purchased a laptop (computer)
at AllElectronics. There is a 60% probability that a customer in this age and income
group will purchase a laptop. Note that this is an association involving more than one
attribute or predicate (i.e., age, income, and buys). Adopting the terminology used in
multidimensional databases, where each attribute is referred to as a dimension, the
above rule can be referred to as a multidimensional association rule.

18 Chapter 1 Introduction

Typically, association rules are discarded as uninteresting if they do not satisfy both a
minimum support threshold and a minimum confidence threshold. Additional anal-
ysis can be performed to uncover interesting statistical correlations between associated
attribute–value pairs.

Frequent itemset mining is a fundamental form of frequent pattern mining. The min-
ing of frequent patterns, associations, and correlations is discussed in Chapters 6 and 7,
where particular emphasis is placed on efficient algorithms for frequent itemset min-
ing. Sequential pattern mining and structured pattern mining are considered advanced
topics.

1.4.3 Classification and Regression for Predictive Analysis

Classification is the process of finding a model (or function) that describes and distin-
guishes data classes or concepts. The model are derived based on the analysis of a set of
training data (i.e., data objects for which the class labels are known). The model is used
to predict the class label of objects for which the the class label is unknown.

“How is the derived model presented?” The derived model may be represented in var-
ious forms, such as classification rules (i.e., IF-THEN rules), decision trees, mathematical
formulae, or neural networks (Figure 1.9). A decision tree is a flowchart-like tree structure,
where each node denotes a test on an attribute value, each branch represents an outcome
of the test, and tree leaves represent classes or class distributions. Decision trees can easily

(a)

age(X, “youth”) AND income(X, “high”)

age(X, “youth”) AND income(X, “low”)

age(X, “middle_aged”)

age(X, “senior”)

class(X, “A”)

class(X, “B”)

class(X, “C”)

class(X, “C”)

middle_aged, senior

(b) (c)

age?

age f1

f2

f3

f4

f5

f6

f7

f8

income?
income

youth

high low

class A

class A

class C

class C

class B

class B

Figure 1.9 A classification model can be represented in various forms: (a) IF-THEN rules, (b) a decision
tree, or (c) a neural network.

1.4 What Kinds of Patterns Can Be Mined? 19

be converted to classification rules. A neural network, when used for classification, is typ-
ically a collection of neuron-like processing units with weighted connections between the
units. There are many other methods for constructing classification models, such as naı̈ve
Bayesian classification, support vector machines, and k-nearest-neighbor classification.

Whereas classification predicts categorical (discrete, unordered) labels, regression
models continuous-valued functions. That is, regression is used to predict missing or
unavailable numerical data values rather than (discrete) class labels. The term prediction
refers to both numeric prediction and class label prediction. Regression analysis is a
statistical methodology that is most often used for numeric prediction, although other
methods exist as well. Regression also encompasses the identification of distribution
trends based on the available data.

Classification and regression may need to be preceded by relevance analysis, which
attempts to identify attributes that are significantly relevant to the classification and
regression process. Such attributes will be selected for the classification and regression
process. Other attributes, which are irrelevant, can then be excluded from consideration.

Example 1.8 Classification and regression. Suppose as a sales manager of AllElectronics you want to
classify a large set of items in the store, based on three kinds of responses to a sales cam-
paign: good response, mild response and no response. You want to derive a model for each
of these three classes based on the descriptive features of the items, such as price, brand,
place made, type, and category. The resulting classification should maximally distinguish
each class from the others, presenting an organized picture of the data set.

Suppose that the resulting classification is expressed as a decision tree. The decision
tree, for instance, may identify price as being the single factor that best distinguishes the
three classes. The tree may reveal that, in addition to price, other features that help to
further distinguish objects of each class from one another include brand and place made.
Such a decision tree may help you understand the impact of the given sales campaign
and design a more effective campaign in the future.

Suppose instead, that rather than predicting categorical response labels for each store
item, you would like to predict the amount of revenue that each item will generate
during an upcoming sale at AllElectronics, based on the previous sales data. This is an
example of regression analysis because the regression model constructed will predict a
continuous function (or ordered value.)

Chapters 8 and 9 discuss classification in further detail. Regression analysis is beyond
the scope of this book. Sources for further information are given in the bibliographic
notes.

1.4.4 Cluster Analysis

Unlike classification and regression, which analyze class-labeled (training) data sets,
clustering analyzes data objects without consulting class labels. In many cases, class-
labeled data may simply not exist at the beginning. Clustering can be used to generate

20 Chapter 1 Introduction

Figure 1.10 A 2-D plot of customer data with respect to customer locations in a city, showing three data
clusters.

class labels for a group of data. The objects are clustered or grouped based on the princi-
ple of maximizing the intraclass similarity and minimizing the interclass similarity. That is,
clusters of objects are formed so that objects within a cluster have high similarity in com-
parison to one another, but are rather dissimilar to objects in other clusters. Each cluster
so formed can be viewed as a class of objects, from which rules can be derived. Clus-
tering can also facilitate taxonomy formation, that is, the organization of observations
into a hierarchy of classes that group similar events together.

Example 1.9 Cluster analysis. Cluster analysis can be performed on AllElectronics customer data to
identify homogeneous subpopulations of customers. These clusters may represent indi-
vidual target groups for marketing. Figure 1.10 shows a 2-D plot of customers with
respect to customer locations in a city. Three clusters of data points are evident.

Cluster analysis forms the topic of Chapters 10 and 11.

1.4.5 Outlier Analysis

A data set may contain objects that do not comply with the general behavior or model
of the data. These data objects are outliers. Many data mining methods discard outliers
as noise or exceptions. However, in some applications (e.g., fraud detection) the rare

1.4 What Kinds of Patterns Can Be Mined? 21

events can be more interesting than the more regularly occurring ones. The analysis of
outlier data is referred to as outlier analysis or anomaly mining.

Outliers may be detected using statistical tests that assume a distribution or proba-
bility model for the data, or using distance measures where objects that are remote from
any other cluster are considered outliers. Rather than using statistical or distance mea-
sures, density-based methods may identify outliers in a local region, although they look
normal from a global statistical distribution view.

Example 1.10 Outlier analysis. Outlier analysis may uncover fraudulent usage of credit cards by
detecting purchases of unusually large amounts for a given account number in compari-
son to regular charges incurred by the same account. Outlier values may also be detected
with respect to the locations and types of purchase, or the purchase frequency.

Outlier analysis is discussed in Chapter 12.

1.4.6 Are All Patterns Interesting?

A data mining system has the potential to generate thousands or even millions of
patterns, or rules.

You may ask, “Are all of the patterns interesting?” Typically, the answer is no—only
a small fraction of the patterns potentially generated would actually be of interest to a
given user.

This raises some serious questions for data mining. You may wonder, “What makes a
pattern interesting? Can a data mining system generate all of the interesting patterns? Or,
Can the system generate only the interesting ones?”

To answer the first question, a pattern is interesting if it is (1) easily understood by
humans, (2) valid on new or test data with some degree of certainty, (3) potentially
useful, and (4) novel. A pattern is also interesting if it validates a hypothesis that the user
sought to confirm. An interesting pattern represents knowledge.

Several objective measures of pattern interestingness exist. These are based on
the structure of discovered patterns and the statistics underlying them. An objective
measure for association rules of the form X ⇒ Y is rule support, representing the per-
centage of transactions from a transaction database that the given rule satisfies. This is
taken to be the probability P(X ∪ Y), where X ∪ Y indicates that a transaction contains
both X and Y , that is, the union of itemsets X and Y . Another objective measure for
association rules is confidence, which assesses the degree of certainty of the detected
association. This is taken to be the conditional probability P(Y |X), that is, the prob-
ability that a transaction containing X also contains Y . More formally, support and
confidence are defined as

support(X ⇒ Y) = P(X ∪ Y),

confidence(X ⇒ Y) = P(Y |X).

In general, each interestingness measure is associated with a threshold, which may be
controlled by the user. For example, rules that do not satisfy a confidence threshold of,

22 Chapter 1 Introduction

say, 50% can be considered uninteresting. Rules below the threshold likely reflect noise,
exceptions, or minority cases and are probably of less value.

Other objective interestingness measures include accuracy and coverage for classifica-
tion (IF-THEN) rules. In general terms, accuracy tells us the percentage of data that are
correctly classified by a rule. Coverage is similar to support, in that it tells us the per-
centage of data to which a rule applies. Regarding understandability, we may use simple
objective measures that assess the complexity or length in bits of the patterns mined.

Although objective measures help identify interesting patterns, they are often insuffi-
cient unless combined with subjective measures that reflect a particular user’s needs and
interests. For example, patterns describing the characteristics of customers who shop
frequently at AllElectronics should be interesting to the marketing manager, but may be
of little interest to other analysts studying the same database for patterns on employee
performance. Furthermore, many patterns that are interesting by objective standards
may represent common sense and, therefore, are actually uninteresting.

Subjective interestingness measures are based on user beliefs in the data. These
measures find patterns interesting if the patterns are unexpected (contradicting a user’s
belief) or offer strategic information on which the user can act. In the latter case, such
patterns are referred to as actionable. For example, patterns like “a large earthquake
often follows a cluster of small quakes” may be highly actionable if users can act on the
information to save lives. Patterns that are expected can be interesting if they confirm a
hypothesis that the user wishes to validate or they resemble a user’s hunch.

The second question—“Can a data mining system generate all of the interesting pat-
terns?”—refers to the completeness of a data mining algorithm. It is often unrealistic
and inefficient for data mining systems to generate all possible patterns. Instead, user-
provided constraints and interestingness measures should be used to focus the search.
For some mining tasks, such as association, this is often sufficient to ensure the com-
pleteness of the algorithm. Association rule mining is an example where the use of
constraints and interestingness measures can ensure the completeness of mining. The
methods involved are examined in detail in Chapter 6.

Finally, the third question—“Can a data mining system generate only interesting pat-
terns?”—is an optimization problem in data mining. It is highly desirable for data
mining systems to generate only interesting patterns. This would be efficient for users
and data mining systems because neither would have to search through the patterns gen-
erated to identify the truly interesting ones. Progress has been made in this direction;
however, such optimization remains a challenging issue in data mining.

Measures of pattern interestingness are essential for the efficient discovery of patterns
by target users. Such measures can be used after the data mining step to rank the dis-
covered patterns according to their interestingness, filtering out the uninteresting ones.
More important, such measures can be used to guide and constrain the discovery pro-
cess, improving the search efficiency by pruning away subsets of the pattern space that
do not satisfy prespecified interestingness constraints. Examples of such a constraint-
based mining process are described in Chapter 7 (with respect to pattern discovery) and
Chapter 11 (with respect to clustering).

1.5 Which Technologies Are Used? 23

Methods to assess pattern interestingness, and their use to improve data mining effi-
ciency, are discussed throughout the book with respect to each kind of pattern that can
be mined.

1.5 Which Technologies Are Used?

As a highly application-driven domain, data mining has incorporated many techniques
from other domains such as statistics, machine learning, pattern recognition, database
and data warehouse systems, information retrieval, visualization, algorithms, high-
performance computing, and many application domains (Figure 1.11). The interdisci-
plinary nature of data mining research and development contributes significantly to the
success of data mining and its extensive applications. In this section, we give examples
of several disciplines that strongly influence the development of data mining methods.

1.5.1 Statistics

Statistics studies the collection, analysis, interpretation or explanation, and presentation
of data. Data mining has an inherent connection with statistics.

A statistical model is a set of mathematical functions that describe the behavior of
the objects in a target class in terms of random variables and their associated proba-
bility distributions. Statistical models are widely used to model data and data classes.
For example, in data mining tasks like data characterization and classification, statistical

Statistics Machine learning Pattern recognition

Visualization

Algorithms

High-performance
computing

ApplicationsInformation
retrieval

Data warehouse

Database systems

Data Mining

Figure 1.11 Data mining adopts techniques from many domains.

24 Chapter 1 Introduction

models of target classes can be built. In other words, such statistical models can be the
outcome of a data mining task. Alternatively, data mining tasks can be built on top of
statistical models. For example, we can use statistics to model noise and missing data
values. Then, when mining patterns in a large data set, the data mining process can use
the model to help identify and handle noisy or missing values in the data.

Statistics research develops tools for prediction and forecasting using data and sta-
tistical models. Statistical methods can be used to summarize or describe a collection
of data. Basic statistical descriptions of data are introduced in Chapter 2. Statistics is
useful for mining various patterns from data as well as for understanding the underlying
mechanisms generating and affecting the patterns. Inferential statistics (or predictive
statistics) models data in a way that accounts for randomness and uncertainty in the
observations and is used to draw inferences about the process or population under
investigation.

Statistical methods can also be used to verify data mining results. For example, after
a classification or prediction model is mined, the model should be verified by statisti-
cal hypothesis testing. A statistical hypothesis test (sometimes called confirmatory data
analysis) makes statistical decisions using experimental data. A result is called statistically
significant if it is unlikely to have occurred by chance. If the classification or prediction
model holds true, then the descriptive statistics of the model increases the soundness of
the model.

Applying statistical methods in data mining is far from trivial. Often, a serious chal-
lenge is how to scale up a statistical method over a large data set. Many statistical
methods have high complexity in computation. When such methods are applied on
large data sets that are also distributed on multiple logical or physical sites, algorithms
should be carefully designed and tuned to reduce the computational cost. This challenge
becomes even tougher for online applications, such as online query suggestions in
search engines, where data mining is required to continuously handle fast, real-time
data streams.

1.5.2 Machine Learning

Machine learning investigates how computers can learn (or improve their performance)
based on data. A main research area is for computer programs to automatically learn to
recognize complex patterns and make intelligent decisions based on data. For example, a
typical machine learning problem is to program a computer so that it can automatically
recognize handwritten postal codes on mail after learning from a set of examples.

Machine learning is a fast-growing discipline. Here, we illustrate classic problems in
machine learning that are highly related to data mining.

Supervised learning is basically a synonym for classification. The supervision in the
learning comes from the labeled examples in the training data set. For example, in
the postal code recognition problem, a set of handwritten postal code images and
their corresponding machine-readable translations are used as the training examples,
which supervise the learning of the classification model.

1.5 Which Technologies Are Used? 25

Unsupervised learning is essentially a synonym for clustering. The learning process
is unsupervised since the input examples are not class labeled. Typically, we may use
clustering to discover classes within the data. For example, an unsupervised learning
method can take, as input, a set of images of handwritten digits. Suppose that it finds
10 clusters of data. These clusters may correspond to the 10 distinct digits of 0 to
9, respectively. However, since the training data are not labeled, the learned model
cannot tell us the semantic meaning of the clusters found.

Semi-supervised learning is a class of machine learning techniques that make use
of both labeled and unlabeled examples when learning a model. In one approach,
labeled examples are used to learn class models and unlabeled examples are used to
refine the boundaries between classes. For a two-class problem, we can think of the
set of examples belonging to one class as the positive examples and those belonging
to the other class as the negative examples. In Figure 1.12, if we do not consider the
unlabeled examples, the dashed line is the decision boundary that best partitions
the positive examples from the negative examples. Using the unlabeled examples,
we can refine the decision boundary to the solid line. Moreover, we can detect that
the two positive examples at the top right corner, though labeled, are likely noise or
outliers.

Active learning is a machine learning approach that lets users play an active role
in the learning process. An active learning approach can ask a user (e.g., a domain
expert) to label an example, which may be from a set of unlabeled examples or
synthesized by the learning program. The goal is to optimize the model quality by
actively acquiring knowledge from human users, given a constraint on how many
examples they can be asked to label.

Positive example

Negative example

Unlabeled example

Decision boundary without unlabeled examples

Decision boundary with unlabeled examples

Noise/outliers

Figure 1.12 Semi-supervised learning.

26 Chapter 1 Introduction

You can see there are many similarities between data mining and machine learning.
For classification and clustering tasks, machine learning research often focuses on the
accuracy of the model. In addition to accuracy, data mining research places strong
emphasis on the efficiency and scalability of mining methods on large data sets, as well
as on ways to handle complex types of data and explore new, alternative methods.

1.5.3 Database Systems and Data Warehouses

Database systems research focuses on the creation, maintenance, and use of databases
for organizations and end-users. Particularly, database systems researchers have estab-
lished highly recognized principles in data models, query languages, query processing
and optimization methods, data storage, and indexing and accessing methods. Database
systems are often well known for their high scalability in processing very large, relatively
structured data sets.

Many data mining tasks need to handle large data sets or even real-time, fast stream-
ing data. Therefore, data mining can make good use of scalable database technologies to
achieve high efficiency and scalability on large data sets. Moreover, data mining tasks can
be used to extend the capability of existing database systems to satisfy advanced users’
sophisticated data analysis requirements.

Recent database systems have built systematic data analysis capabilities on database
data using data warehousing and data mining facilities. A data warehouse integrates
data originating from multiple sources and various timeframes. It consolidates data
in multidimensional space to form partially materialized data cubes. The data cube
model not only facilitates OLAP in multidimensional databases but also promotes
multidimensional data mining (see Section 1.3.2).

1.5.4 Information Retrieval

Information retrieval (IR) is the science of searching for documents or information
in documents. Documents can be text or multimedia, and may reside on the Web. The
differences between traditional information retrieval and database systems are twofold:
Information retrieval assumes that (1) the data under search are unstructured; and (2)
the queries are formed mainly by keywords, which do not have complex structures
(unlike SQL queries in database systems).

The typical approaches in information retrieval adopt probabilistic models. For
example, a text document can be regarded as a bag of words, that is, a multiset of words
appearing in the document. The document’s language model is the probability density
function that generates the bag of words in the document. The similarity between two
documents can be measured by the similarity between their corresponding language
models.

Furthermore, a topic in a set of text documents can be modeled as a probability dis-
tribution over the vocabulary, which is called a topic model. A text document, which
may involve one or multiple topics, can be regarded as a mixture of multiple topic mod-
els. By integrating information retrieval models and data mining techniques, we can find

1.6 Which Kinds of Applications Are Targeted? 27

the major topics in a collection of documents and, for each document in the collection,
the major topics involved.

Increasingly large amounts of text and multimedia data have been accumulated and
made available online due to the fast growth of the Web and applications such as dig-
ital libraries, digital governments, and health care information systems. Their effective
search and analysis have raised many challenging issues in data mining. Therefore, text
mining and multimedia data mining, integrated with information retrieval methods,
have become increasingly important.

1.6 Which Kinds of Applications Are Targeted?

Where there are data, there are data mining applications

As a highly application-driven discipline, data mining has seen great successes in many
applications. It is impossible to enumerate all applications where data mining plays a
critical role. Presentations of data mining in knowledge-intensive application domains,
such as bioinformatics and software engineering, require more in-depth treatment and
are beyond the scope of this book. To demonstrate the importance of applications as
a major dimension in data mining research and development, we briefly discuss two
highly successful and popular application examples of data mining: business intelligence
and search engines.

1.6.1 Business Intelligence

It is critical for businesses to acquire a better understanding of the commercial context
of their organization, such as their customers, the market, supply and resources, and
competitors. Business intelligence (BI) technologies provide historical, current, and
predictive views of business operations. Examples include reporting, online analytical
processing, business performance management, competitive intelligence, benchmark-
ing, and predictive analytics.

“How important is business intelligence?” Without data mining, many businesses may
not be able to perform effective market analysis, compare customer feedback on simi-
lar products, discover the strengths and weaknesses of their competitors, retain highly
valuable customers, and make smart business decisions.

Clearly, data mining is the core of business intelligence. Online analytical process-
ing tools in business intelligence rely on data warehousing and multidimensional data
mining. Classification and prediction techniques are the core of predictive analytics
in business intelligence, for which there are many applications in analyzing markets,
supplies, and sales. Moreover, clustering plays a central role in customer relationship
management, which groups customers based on their similarities. Using characteriza-
tion mining techniques, we can better understand features of each customer group and
develop customized customer reward programs.

28 Chapter 1 Introduction

1.6.2 Web Search Engines

A Web search engine is a specialized computer server that searches for information
on the Web. The search results of a user query are often returned as a list (sometimes
called hits). The hits may consist of web pages, images, and other types of files. Some
search engines also search and return data available in public databases or open directo-
ries. Search engines differ from web directories in that web directories are maintained
by human editors whereas search engines operate algorithmically or by a mixture of
algorithmic and human input.

Web search engines are essentially very large data mining applications. Various data
mining techniques are used in all aspects of search engines, ranging from crawling5

(e.g., deciding which pages should be crawled and the crawling frequencies), indexing
(e.g., selecting pages to be indexed and deciding to which extent the index should be
constructed), and searching (e.g., deciding how pages should be ranked, which adver-
tisements should be added, and how the search results can be personalized or made
“context aware”).

Search engines pose grand challenges to data mining. First, they have to handle a
huge and ever-growing amount of data. Typically, such data cannot be processed using
one or a few machines. Instead, search engines often need to use computer clouds, which
consist of thousands or even hundreds of thousands of computers that collaboratively
mine the huge amount of data. Scaling up data mining methods over computer clouds
and large distributed data sets is an area for further research.

Second, Web search engines often have to deal with online data. A search engine
may be able to afford constructing a model offline on huge data sets. To do this, it may
construct a query classifier that assigns a search query to predefined categories based on
the query topic (i.e., whether the search query “apple” is meant to retrieve information
about a fruit or a brand of computers). Whether a model is constructed offline, the
application of the model online must be fast enough to answer user queries in real time.

Another challenge is maintaining and incrementally updating a model on fast-
growing data streams. For example, a query classifier may need to be incrementally
maintained continuously since new queries keep emerging and predefined categories
and the data distribution may change. Most of the existing model training methods are
offline and static and thus cannot be used in such a scenario.

Third, Web search engines often have to deal with queries that are asked only a very
small number of times. Suppose a search engine wants to provide context-aware query
recommendations. That is, when a user poses a query, the search engine tries to infer
the context of the query using the user’s profile and his query history in order to return
more customized answers within a small fraction of a second. However, although the
total number of queries asked can be huge, most of the queries may be asked only once
or a few times. Such severely skewed data are challenging for many data mining and
machine learning methods.

5A Web crawler is a computer program that browses the Web in a methodical, automated manner.

1.7 Major Issues in Data Mining 29

1.7 Major Issues in Data Mining

Life is short but art is long. – Hippocrates

Data mining is a dynamic and fast-expanding field with great strengths. In this section,
we briefly outline the major issues in data mining research, partitioning them into
five groups: mining methodology, user interaction, efficiency and scalability, diversity of
data types, and data mining and society. Many of these issues have been addressed in
recent data mining research and development to a certain extent and are now consid-
ered data mining requirements; others are still at the research stage. The issues continue
to stimulate further investigation and improvement in data mining.

1.7.1 Mining Methodology

Researchers have been vigorously developing new data mining methodologies. This
involves the investigation of new kinds of knowledge, mining in multidimensional
space, integrating methods from other disciplines, and the consideration of semantic ties
among data objects. In addition, mining methodologies should consider issues such as
data uncertainty, noise, and incompleteness. Some mining methods explore how user-
specified measures can be used to assess the interestingness of discovered patterns as
well as guide the discovery process. Let’s have a look at these various aspects of mining
methodology.

Mining various and new kinds of knowledge: Data mining covers a wide spectrum of
data analysis and knowledge discovery tasks, from data characterization and discrim-
ination to association and correlation analysis, classification, regression, clustering,
outlier analysis, sequence analysis, and trend and evolution analysis. These tasks may
use the same database in different ways and require the development of numerous
data mining techniques. Due to the diversity of applications, new mining tasks con-
tinue to emerge, making data mining a dynamic and fast-growing field. For example,
for effective knowledge discovery in information networks, integrated clustering and
ranking may lead to the discovery of high-quality clusters and object ranks in large
networks.

Mining knowledge in multidimensional space: When searching for knowledge in large
data sets, we can explore the data in multidimensional space. That is, we can search
for interesting patterns among combinations of dimensions (attributes) at varying
levels of abstraction. Such mining is known as (exploratory) multidimensional data
mining. In many cases, data can be aggregated or viewed as a multidimensional data
cube. Mining knowledge in cube space can substantially enhance the power and
flexibility of data mining.

Data mining—an interdisciplinary effort: The power of data mining can be substan-
tially enhanced by integrating new methods from multiple disciplines. For example,

30 Chapter 1 Introduction

to mine data with natural language text, it makes sense to fuse data mining methods
with methods of information retrieval and natural language processing. As another
example, consider the mining of software bugs in large programs. This form of min-
ing, known as bug mining, benefits from the incorporation of software engineering
knowledge into the data mining process.

Boosting the power of discovery in a networked environment: Most data objects reside
in a linked or interconnected environment, whether it be the Web, database rela-
tions, files, or documents. Semantic links across multiple data objects can be used
to advantage in data mining. Knowledge derived in one set of objects can be used
to boost the discovery of knowledge in a “related” or semantically linked set of
objects.

Handling uncertainty, noise, or incompleteness of data: Data often contain noise,
errors, exceptions, or uncertainty, or are incomplete. Errors and noise may confuse
the data mining process, leading to the derivation of erroneous patterns. Data clean-
ing, data preprocessing, outlier detection and removal, and uncertainty reasoning are
examples of techniques that need to be integrated with the data mining process.

Pattern evaluation and pattern- or constraint-guided mining: Not all the patterns gen-
erated by data mining processes are interesting. What makes a pattern interesting
may vary from user to user. Therefore, techniques are needed to assess the inter-
estingness of discovered patterns based on subjective measures. These estimate the
value of patterns with respect to a given user class, based on user beliefs or expec-
tations. Moreover, by using interestingness measures or user-specified constraints to
guide the discovery process, we may generate more interesting patterns and reduce
the search space.

1.7.2 User Interaction

The user plays an important role in the data mining process. Interesting areas of research
include how to interact with a data mining system, how to incorporate a user’s back-
ground knowledge in mining, and how to visualize and comprehend data mining results.
We introduce each of these here.

Interactive mining: The data mining process should be highly interactive. Thus, it is
important to build flexible user interfaces and an exploratory mining environment,
facilitating the user’s interaction with the system. A user may like to first sample a
set of data, explore general characteristics of the data, and estimate potential min-
ing results. Interactive mining should allow users to dynamically change the focus
of a search, to refine mining requests based on returned results, and to drill, dice,
and pivot through the data and knowledge space interactively, dynamically exploring
“cube space” while mining.

Incorporation of background knowledge: Background knowledge, constraints, rules,
and other information regarding the domain under study should be incorporated

1.7 Major Issues in Data Mining 31

into the knowledge discovery process. Such knowledge can be used for pattern
evaluation as well as to guide the search toward interesting patterns.

Ad hoc data mining and data mining query languages: Query languages (e.g., SQL)
have played an important role in flexible searching because they allow users to pose
ad hoc queries. Similarly, high-level data mining query languages or other high-level
flexible user interfaces will give users the freedom to define ad hoc data mining tasks.
This should facilitate specification of the relevant sets of data for analysis, the domain
knowledge, the kinds of knowledge to be mined, and the conditions and constraints
to be enforced on the discovered patterns. Optimization of the processing of such
flexible mining requests is another promising area of study.

Presentation and visualization of data mining results: How can a data mining system
present data mining results, vividly and flexibly, so that the discovered knowledge
can be easily understood and directly usable by humans? This is especially crucial
if the data mining process is interactive. It requires the system to adopt expressive
knowledge representations, user-friendly interfaces, and visualization techniques.

1.7.3 Efficiency and Scalability

Efficiency and scalability are always considered when comparing data mining algo-
rithms. As data amounts continue to multiply, these two factors are especially critical.

Efficiency and scalability of data mining algorithms: Data mining algorithms must be
efficient and scalable in order to effectively extract information from huge amounts
of data in many data repositories or in dynamic data streams. In other words, the
running time of a data mining algorithm must be predictable, short, and acceptable
by applications. Efficiency, scalability, performance, optimization, and the ability to
execute in real time are key criteria that drive the development of many new data
mining algorithms.

Parallel, distributed, and incremental mining algorithms: The humongous size of many
data sets, the wide distribution of data, and the computational complexity of some
data mining methods are factors that motivate the development of parallel and dis-
tributed data-intensive mining algorithms. Such algorithms first partition the data
into “pieces.” Each piece is processed, in parallel, by searching for patterns. The par-
allel processes may interact with one another. The patterns from each partition are
eventually merged.

Cloud computing and cluster computing, which use computers in a distributed
and collaborative way to tackle very large-scale computational tasks, are also active
research themes in parallel data mining. In addition, the high cost of some data min-
ing processes and the incremental nature of input promote incremental data mining,
which incorporates new data updates without having to mine the entire data “from
scratch.” Such methods perform knowledge modification incrementally to amend
and strengthen what was previously discovered.

32 Chapter 1 Introduction

1.7.4 Diversity of Database Types

The wide diversity of database types brings about challenges to data mining. These
include

Handling complex types of data: Diverse applications generate a wide spectrum of
new data types, from structured data such as relational and data warehouse data to
semi-structured and unstructured data; from stable data repositories to dynamic data
streams; from simple data objects to temporal data, biological sequences, sensor data,
spatial data, hypertext data, multimedia data, software program code, Web data, and
social network data. It is unrealistic to expect one data mining system to mine all
kinds of data, given the diversity of data types and the different goals of data mining.
Domain- or application-dedicated data mining systems are being constructed for in-
depth mining of specific kinds of data. The construction of effective and efficient
data mining tools for diverse applications remains a challenging and active area of
research.

Mining dynamic, networked, and global data repositories: Multiple sources of data
are connected by the Internet and various kinds of networks, forming gigantic, dis-
tributed, and heterogeneous global information systems and networks. The discovery
of knowledge from different sources of structured, semi-structured, or unstructured
yet interconnected data with diverse data semantics poses great challenges to data
mining. Mining such gigantic, interconnected information networks may help dis-
close many more patterns and knowledge in heterogeneous data sets than can be dis-
covered from a small set of isolated data repositories. Web mining, multisource data
mining, and information network mining have become challenging and fast-evolving
data mining fields.

1.7.5 Data Mining and Society

How does data mining impact society? What steps can data mining take to preserve the
privacy of individuals? Do we use data mining in our daily lives without even knowing
that we do? These questions raise the following issues:

Social impacts of data mining: With data mining penetrating our everyday lives, it is
important to study the impact of data mining on society. How can we use data mining
technology to benefit society? How can we guard against its misuse? The improper
disclosure or use of data and the potential violation of individual privacy and data
protection rights are areas of concern that need to be addressed.

Privacy-preserving data mining: Data mining will help scientific discovery, business
management, economy recovery, and security protection (e.g., the real-time dis-
covery of intruders and cyberattacks). However, it poses the risk of disclosing an
individual’s personal information. Studies on privacy-preserving data publishing and
data mining are ongoing. The philosophy is to observe data sensitivity and preserve
people’s privacy while performing successful data mining.

1.8 Summary 33

Invisible data mining: We cannot expect everyone in society to learn and master
data mining techniques. More and more systems should have data mining func-
tions built within so that people can perform data mining or use data mining results
simply by mouse clicking, without any knowledge of data mining algorithms. Intelli-
gent search engines and Internet-based stores perform such invisible data mining by
incorporating data mining into their components to improve their functionality and
performance. This is done often unbeknownst to the user. For example, when pur-
chasing items online, users may be unaware that the store is likely collecting data on
the buying patterns of its customers, which may be used to recommend other items
for purchase in the future.

These issues and many additional ones relating to the research, development, and
application of data mining are discussed throughout the book.

1.8 Summary

Necessity is the mother of invention. With the mounting growth of data in every appli-
cation, data mining meets the imminent need for effective, scalable, and flexible data
analysis in our society. Data mining can be considered as a natural evolution of infor-
mation technology and a confluence of several related disciplines and application
domains.

Data mining is the process of discovering interesting patterns from massive amounts
of data. As a knowledge discovery process, it typically involves data cleaning, data inte-
gration, data selection, data transformation, pattern discovery, pattern evaluation,
and knowledge presentation.

A pattern is interesting if it is valid on test data with some degree of certainty, novel,
potentially useful (e.g., can be acted on or validates a hunch about which the user was
curious), and easily understood by humans. Interesting patterns represent knowl-
edge. Measures of pattern interestingness, either objective or subjective, can be used
to guide the discovery process.

We present a multidimensional view of data mining. The major dimensions are
data, knowledge, technologies, and applications.

Data mining can be conducted on any kind of data as long as the data are meaningful
for a target application, such as database data, data warehouse data, transactional
data, and advanced data types. Advanced data types include time-related or sequence
data, data streams, spatial and spatiotemporal data, text and multimedia data, graph
and networked data, and Web data.

A data warehouse is a repository for long-term storage of data from multiple sources,
organized so as to facilitate management decision making. The data are stored
under a unified schema and are typically summarized. Data warehouse systems pro-
vide multidimensional data analysis capabilities, collectively referred to as online
analytical processing.

34 Chapter 1 Introduction

Multidimensional data mining (also called exploratory multidimensional data
mining) integrates core data mining techniques with OLAP-based multidimen-
sional analysis. It searches for interesting patterns among multiple combinations
of dimensions (attributes) at varying levels of abstraction, thereby exploring multi-
dimensional data space.

Data mining functionalities are used to specify the kinds of patterns or knowledge
to be found in data mining tasks. The functionalities include characterization and
discrimination; the mining of frequent patterns, associations, and correlations; clas-
sification and regression; cluster analysis; and outlier detection. As new types of data,
new applications, and new analysis demands continue to emerge, there is no doubt
we will see more and more novel data mining tasks in the future.

Data mining, as a highly application-driven domain, has incorporated technologies
from many other domains. These include statistics, machine learning, database and
data warehouse systems, and information retrieval. The interdisciplinary nature of
data mining research and development contributes significantly to the success of
data mining and its extensive applications.

Data mining has many successful applications, such as business intelligence, Web
search, bioinformatics, health informatics, finance, digital libraries, and digital
governments.

There are many challenging issues in data mining research. Areas include mining
methodology, user interaction, efficiency and scalability, and dealing with diverse
data types. Data mining research has strongly impacted society and will continue to
do so in the future.

1.9 Exercises

1.1 What is data mining? In your answer, address the following:

(a) Is it another hype?

(b) Is it a simple transformation or application of technology developed from databases,
statistics, machine learning, and pattern recognition?

(c) We have presented a view that data mining is the result of the evolution of database
technology. Do you think that data mining is also the result of the evolution of
machine learning research? Can you present such views based on the historical
progress of this discipline? Address the same for the fields of statistics and pattern
recognition.

(d) Describe the steps involved in data mining when viewed as a process of knowledge
discovery.

1.2 How is a data warehouse different from a database? How are they similar?

1.3 Define each of the following data mining functionalities: characterization, discrimi-
nation, association and correlation analysis, classification, regression, clustering, and

1.10 Bibliographic Notes 35

outlier analysis. Give examples of each data mining functionality, using a real-life
database that you are familiar with.

1.4 Present an example where data mining is crucial to the success of a business. What data
mining functionalities does this business need (e.g., think of the kinds of patterns that
could be mined)? Can such patterns be generated alternatively by data query processing
or simple statistical analysis?

1.5 Explain the difference and similarity between discrimination and classification, between
characterization and clustering, and between classification and regression.

1.6 Based on your observations, describe another possible kind of knowledge that needs to
be discovered by data mining methods but has not been listed in this chapter. Does it
require a mining methodology that is quite different from those outlined in this chapter?

1.7 Outliers are often discarded as noise. However, one person’s garbage could be another’s
treasure. For example, exceptions in credit card transactions can help us detect the
fraudulent use of credit cards. Using fraudulence detection as an example, propose two
methods that can be used to detect outliers and discuss which one is more reliable.

1.8 Describe three challenges to data mining regarding data mining methodology and user
interaction issues.

1.9 What are the major challenges of mining a huge amount of data (e.g., billions of tuples)
in comparison with mining a small amount of data (e.g., data set of a few hundred
tuple)?

1.10 Outline the major research challenges of data mining in one specific application domain,
such as stream/sensor data analysis, spatiotemporal data analysis, or bioinformatics.

1.10 Bibliographic Notes

The book Knowledge Discovery in Databases, edited by Piatetsky-Shapiro and Frawley
[P-SF91], is an early collection of research papers on knowledge discovery from data.
The book Advances in Knowledge Discovery and Data Mining, edited by Fayyad,
Piatetsky-Shapiro, Smyth, and Uthurusamy [FPSS+96], is a collection of later research
results on knowledge discovery and data mining. There have been many data min-
ing books published in recent years, including The Elements of Statistical Learning
by Hastie, Tibshirani, and Friedman [HTF09]; Introduction to Data Mining by Tan,
Steinbach, and Kumar [TSK05]; Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations by Witten, Frank, and Hall [WFH11]; Predic-
tive Data Mining by Weiss and Indurkhya [WI98]; Mastering Data Mining: The Art
and Science of Customer Relationship Management by Berry and Linoff [BL99]; Prin-
ciples of Data Mining (Adaptive Computation and Machine Learning) by Hand, Mannila,
and Smyth [HMS01]; Mining the Web: Discovering Knowledge from Hypertext Data by
Chakrabarti [Cha03a]; Web Data Mining: Exploring Hyperlinks, Contents, and Usage

36 Chapter 1 Introduction

Data by Liu [Liu06]; Data Mining: Introductory and Advanced Topics by Dunham
[Dun03]; and Data Mining: Multimedia, Soft Computing, and Bioinformatics by Mitra
and Acharya [MA03].

There are also books that contain collections of papers or chapters on particular
aspects of knowledge discovery—for example, Relational Data Mining edited by Dze-
roski and Lavrac [De01]; Mining Graph Data edited by Cook and Holder [CH07]; Data
Streams: Models and Algorithms edited by Aggarwal [Agg06]; Next Generation of Data
Mining edited by Kargupta, Han, Yu, et al. [KHY+08]; Multimedia Data Mining: A Sys-
tematic Introduction to Concepts and Theory edited by Z. Zhang and R. Zhang [ZZ09];
Geographic Data Mining and Knowledge Discovery edited by Miller and Han [MH09];
and Link Mining: Models, Algorithms and Applications edited by Yu, Han, and Falout-
sos [YHF10]. There are many tutorial notes on data mining in major databases, data
mining, machine learning, statistics, and Web technology conferences.

KDNuggets is a regular electronic newsletter containing information relevant to
knowledge discovery and data mining, moderated by Piatetsky-Shapiro since 1991.
The Internet site KDNuggets (www.kdnuggets.com) contains a good collection of KDD-
related information.

The data mining community started its first international conference on knowledge
discovery and data mining in 1995. The conference evolved from the four inter-
national workshops on knowledge discovery in databases, held from 1989 to 1994.
ACM-SIGKDD, a Special Interest Group on Knowledge Discovery in Databases was
set up under ACM in 1998 and has been organizing the international conferences on
knowledge discovery and data mining since 1999. IEEE Computer Science Society has
organized its annual data mining conference, International Conference on Data Min-
ing (ICDM), since 2001. SIAM (Society on Industrial and Applied Mathematics) has
organized its annual data mining conference, SIAM Data Mining Conference (SDM),
since 2002. A dedicated journal, Data Mining and Knowledge Discovery, published by
Kluwers Publishers, has been available since 1997. An ACM journal, ACM Transactions
on Knowledge Discovery from Data, published its first volume in 2007.

ACM-SIGKDD also publishes a bi-annual newsletter, SIGKDD Explorations. There
are a few other international or regional conferences on data mining, such as the
European Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML PKDD), the Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), and the International Conference on Data
Warehousing and Knowledge Discovery (DaWaK).

Research in data mining has also been published in books, conferences, and jour-
nals on databases, statistics, machine learning, and data visualization. References to such
sources are listed at the end of the book.

Popular textbooks on database systems include Database Systems: The Complete Book
by Garcia-Molina, Ullman, and Widom [GMUW08]; Database Management Systems by
Ramakrishnan and Gehrke [RG03]; Database System Concepts by Silberschatz, Korth,
and Sudarshan [SKS10]; and Fundamentals of Database Systems by Elmasri and Navathe
[EN10]. For an edited collection of seminal articles on database systems, see Readings in
Database Systems by Hellerstein and Stonebraker [HS05].

1.10 Bibliographic Notes 37

There are also many books on data warehouse technology, systems, and applica-
tions, such as The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling
by Kimball and Ross [KR02]; The Data Warehouse Lifecycle Toolkit by Kimball, Ross,
Thornthwaite, and Mundy [KRTM08]; Mastering Data Warehouse Design: Relational
and Dimensional Techniques by Imhoff, Galemmo, and Geiger [IGG03]; and Building
the Data Warehouse by Inmon [Inm96]. A set of research papers on materialized views
and data warehouse implementations were collected in Materialized Views: Techniques,
Implementations, and Applications by Gupta and Mumick [GM99]. Chaudhuri and
Dayal [CD97] present an early comprehensive overview of data warehouse technology.

Research results relating to data mining and data warehousing have been pub-
lished in the proceedings of many international database conferences, including the
ACM-SIGMOD International Conference on Management of Data (SIGMOD), the
International Conference on Very Large Data Bases (VLDB), the ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), the Inter-
national Conference on Data Engineering (ICDE), the International Conference on
Extending Database Technology (EDBT), the International Conference on Database
Theory (ICDT), the International Conference on Information and Knowledge Man-
agement (CIKM), the International Conference on Database and Expert Systems Appli-
cations (DEXA), and the International Symposium on Database Systems for Advanced
Applications (DASFAA). Research in data mining is also published in major database
journals, such as IEEE Transactions on Knowledge and Data Engineering (TKDE), ACM
Transactions on Database Systems (TODS), Information Systems, The VLDB Journal,
Data and Knowledge Engineering, International Journal of Intelligent Information Systems
(JIIS), and Knowledge and Information Systems (KAIS).

Many effective data mining methods have been developed by statisticians and intro-
duced in a rich set of textbooks. An overview of classification from a statistical pattern
recognition perspective can be found in Pattern Classification by Duda, Hart, and Stork
[DHS01]. There are also many textbooks covering regression and other topics in statis-
tical analysis, such as Mathematical Statistics: Basic Ideas and Selected Topics by Bickel
and Doksum [BD01]; The Statistical Sleuth: A Course in Methods of Data Analysis by
Ramsey and Schafer [RS01]; Applied Linear Statistical Models by Neter, Kutner, Nacht-
sheim, and Wasserman [NKNW96]; An Introduction to Generalized Linear Models by
Dobson [Dob90]; Applied Statistical Time Series Analysis by Shumway [Shu88]; and
Applied Multivariate Statistical Analysis by Johnson and Wichern [JW92].

Research in statistics is published in the proceedings of several major statistical con-
ferences, including Joint Statistical Meetings, International Conference of the Royal
Statistical Society and Symposium on the Interface: Computing Science and Statistics.
Other sources of publication include the Journal of the Royal Statistical Society, The
Annals of Statistics, the Journal of American Statistical Association, Technometrics, and
Biometrika.

Textbooks and reference books on machine learning and pattern recognition include
Machine Learning by Mitchell [Mit97]; Pattern Recognition and Machine Learning by
Bishop [Bis06]; Pattern Recognition by Theodoridis and Koutroumbas [TK08]; Introduc-
tion to Machine Learning by Alpaydin [Alp11]; Probabilistic Graphical Models: Principles

38 Chapter 1 Introduction

and Techniques by Koller and Friedman [KF09]; and Machine Learning: An Algorithmic
Perspective by Marsland [Mar09]. For an edited collection of seminal articles on machine
learning, see Machine Learning, An Artificial Intelligence Approach, Volumes 1 through 4,
edited by Michalski et al. [MCM83, MCM86, KM90, MT94], and Readings in Machine
Learning by Shavlik and Dietterich [SD90].

Machine learning and pattern recognition research is published in the proceed-
ings of several major machine learning, artificial intelligence, and pattern recognition
conferences, including the International Conference on Machine Learning (ML), the
ACM Conference on Computational Learning Theory (COLT), the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), the International Conference
on Pattern Recognition (ICPR), the International Joint Conference on Artificial Intel-
ligence (IJCAI), and the American Association of Artificial Intelligence Conference
(AAAI). Other sources of publication include major machine learning, artificial intel-
ligence, pattern recognition, and knowledge system journals, some of which have been
mentioned before. Others include Machine Learning (ML), Pattern Recognition (PR),
Artificial Intelligence Journal (AI), IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), and Cognitive Science.

Textbooks and reference books on information retrieval include Introduction to
Information Retrieval by Manning, Raghavan, and Schutz [MRS08]; Information
Retrieval: Implementing and Evaluating Search Engines by Büttcher, Clarke, and Cormack
[BCC10]; Search Engines: Information Retrieval in Practice by Croft, Metzler, and
Strohman [CMS09]; Modern Information Retrieval: The Concepts and Technology Behind
Search by Baeza-Yates and Ribeiro-Neto [BYRN11]; and Information Retrieval: Algo-
rithms and Heuristics by Grossman and Frieder [GR04].

Information retrieval research is published in the proceedings of several informa-
tion retrieval and Web search and mining conferences, including the International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), the International World Wide Web Conference (WWW), the ACM Interna-
tional Conference on Web Search and Data Mining (WSDM), the ACM Conference on
Information and Knowledge Management (CIKM), the European Conference on Infor-
mation Retrieval (ECIR), the Text Retrieval Conference (TREC), and the ACM/IEEE
Joint Conference on Digital Libraries (JCDL). Other sources of publication include
major information retrieval, information systems, and Web journals, such as Journal
of Information Retrieval, ACM Transactions on Information Systems (TOIS), Informa-
tion Processing and Management, Knowledge and Information Systems (KAIS), and IEEE
Transactions on Knowledge and Data Engineering (TKDE).

2Getting to Know Your Data

It’s tempting to jump straight into mining, but first, we need to get the data ready. This involves
having a closer look at attributes and data values. Real-world data are typically noisy,
enormous in volume (often several gigabytes or more), and may originate from a hodge-
podge of heterogenous sources. This chapter is about getting familiar with your data.
Knowledge about your data is useful for data preprocessing (see Chapter 3), the first
major task of the data mining process. You will want to know the following: What are
the types of attributes or fields that make up your data? What kind of values does each
attribute have? Which attributes are discrete, and which are continuous-valued? What
do the data look like? How are the values distributed? Are there ways we can visualize
the data to get a better sense of it all? Can we spot any outliers? Can we measure the
similarity of some data objects with respect to others? Gaining such insight into the data
will help with the subsequent analysis.

“So what can we learn about our data that’s helpful in data preprocessing?” We begin
in Section 2.1 by studying the various attribute types. These include nominal attributes,
binary attributes, ordinal attributes, and numeric attributes. Basic statistical descriptions
can be used to learn more about each attribute’s values, as described in Section 2.2.
Given a temperature attribute, for example, we can determine its mean (average value),
median (middle value), and mode (most common value). These are measures of
central tendency, which give us an idea of the “middle” or center of distribution.

Knowing such basic statistics regarding each attribute makes it easier to fill in missing
values, smooth noisy values, and spot outliers during data preprocessing. Knowledge of
the attributes and attribute values can also help in fixing inconsistencies incurred dur-
ing data integration. Plotting the measures of central tendency shows us if the data are
symmetric or skewed. Quantile plots, histograms, and scatter plots are other graphic dis-
plays of basic statistical descriptions. These can all be useful during data preprocessing
and can provide insight into areas for mining.

The field of data visualization provides many additional techniques for viewing data
through graphical means. These can help identify relations, trends, and biases “hidden”
in unstructured data sets. Techniques may be as simple as scatter-plot matrices (where

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques 39

40 Chapter 2 Getting to Know Your Data

two attributes are mapped onto a 2-D grid) to more sophisticated methods such as tree-
maps (where a hierarchical partitioning of the screen is displayed based on the attribute
values). Data visualization techniques are described in Section 2.3.

Finally, we may want to examine how similar (or dissimilar) data objects are. For
example, suppose we have a database where the data objects are patients, described by
their symptoms. We may want to find the similarity or dissimilarity between individ-
ual patients. Such information can allow us to find clusters of like patients within the
data set. The similarity/dissimilarity between objects may also be used to detect out-
liers in the data, or to perform nearest-neighbor classification. (Clustering is the topic
of Chapters 10 and 11, while nearest-neighbor classification is discussed in Chapter 9.)
There are many measures for assessing similarity and dissimilarity. In general, such mea-
sures are referred to as proximity measures. Think of the proximity of two objects as a
function of the distance between their attribute values, although proximity can also be
calculated based on probabilities rather than actual distance. Measures of data proximity
are described in Section 2.4.

In summary, by the end of this chapter, you will know the different attribute types
and basic statistical measures to describe the central tendency and dispersion (spread)
of attribute data. You will also know techniques to visualize attribute distributions and
how to compute the similarity or dissimilarity between objects.

2.1 Data Objects and Attribute Types

Data sets are made up of data objects. A data object represents an entity—in a sales
database, the objects may be customers, store items, and sales; in a medical database, the
objects may be patients; in a university database, the objects may be students, professors,
and courses. Data objects are typically described by attributes. Data objects can also be
referred to as samples, examples, instances, data points, or objects. If the data objects are
stored in a database, they are data tuples. That is, the rows of a database correspond to
the data objects, and the columns correspond to the attributes. In this section, we define
attributes and look at the various attribute types.

2.1.1 What Is an Attribute?

An attribute is a data field, representing a characteristic or feature of a data object. The
nouns attribute, dimension, feature, and variable are often used interchangeably in the
literature. The term dimension is commonly used in data warehousing. Machine learning
literature tends to use the term feature, while statisticians prefer the term variable. Data
mining and database professionals commonly use the term attribute, and we do here
as well. Attributes describing a customer object can include, for example, customer ID,
name, and address. Observed values for a given attribute are known as observations. A set
of attributes used to describe a given object is called an attribute vector (or feature vec-
tor). The distribution of data involving one attribute (or variable) is called univariate.
A bivariate distribution involves two attributes, and so on.

2.1 Data Objects and Attribute Types 41

The type of an attribute is determined by the set of possible values—nominal, binary,
ordinal, or numeric—the attribute can have. In the following subsections, we introduce
each type.

2.1.2 Nominal Attributes

Nominal means “relating to names.” The values of a nominal attribute are symbols or
names of things. Each value represents some kind of category, code, or state, and so nomi-
nal attributes are also referred to as categorical. The values do not have any meaningful
order. In computer science, the values are also known as enumerations.

Example 2.1 Nominal attributes. Suppose that hair color and marital status are two attributes
describing person objects. In our application, possible values for hair color are black,
brown, blond, red, auburn, gray, and white. The attribute marital status can take on
the values single, married, divorced, and widowed. Both hair color and marital status
are nominal attributes. Another example of a nominal attribute is occupation, with the
values teacher, dentist, programmer, farmer, and so on.

Although we said that the values of a nominal attribute are symbols or “names
of things,” it is possible to represent such symbols or “names” with numbers. With
hair color, for instance, we can assign a code of 0 for black, 1 for brown, and so on.
Another example is customor ID, with possible values that are all numeric. However,
in such cases, the numbers are not intended to be used quantitatively. That is, mathe-
matical operations on values of nominal attributes are not meaningful. It makes no
sense to subtract one customer ID number from another, unlike, say, subtracting an age
value from another (where age is a numeric attribute). Even though a nominal attribute
may have integers as values, it is not considered a numeric attribute because the inte-
gers are not meant to be used quantitatively. We will say more on numeric attributes in
Section 2.1.5.

Because nominal attribute values do not have any meaningful order about them and
are not quantitative, it makes no sense to find the mean (average) value or median
(middle) value for such an attribute, given a set of objects. One thing that is of inter-
est, however, is the attribute’s most commonly occurring value. This value, known as
the mode, is one of the measures of central tendency. You will learn about measures of
central tendency in Section 2.2.

2.1.3 Binary Attributes

A binary attribute is a nominal attribute with only two categories or states: 0 or 1, where
0 typically means that the attribute is absent, and 1 means that it is present. Binary
attributes are referred to as Boolean if the two states correspond to true and false.

Example 2.2 Binary attributes. Given the attribute smoker describing a patient object, 1 indicates
that the patient smokes, while 0 indicates that the patient does not. Similarly, suppose

42 Chapter 2 Getting to Know Your Data

the patient undergoes a medical test that has two possible outcomes. The attribute
medical test is binary, where a value of 1 means the result of the test for the patient
is positive, while 0 means the result is negative.

A binary attribute is symmetric if both of its states are equally valuable and carry
the same weight; that is, there is no preference on which outcome should be coded
as 0 or 1. One such example could be the attribute gender having the states male and
female.

A binary attribute is asymmetric if the outcomes of the states are not equally impor-
tant, such as the positive and negative outcomes of a medical test for HIV. By convention,
we code the most important outcome, which is usually the rarest one, by 1 (e.g., HIV
positive) and the other by 0 (e.g., HIV negative).

2.1.4 Ordinal Attributes

An ordinal attribute is an attribute with possible values that have a meaningful order or
ranking among them, but the magnitude between successive values is not known.

Example 2.3 Ordinal attributes. Suppose that drink size corresponds to the size of drinks available at
a fast-food restaurant. This nominal attribute has three possible values: small, medium,
and large. The values have a meaningful sequence (which corresponds to increasing
drink size); however, we cannot tell from the values how much bigger, say, a medium
is than a large. Other examples of ordinal attributes include grade (e.g., A+, A, A−, B+,
and so on) and professional rank. Professional ranks can be enumerated in a sequential
order: for example, assistant, associate, and full for professors, and private, private first
class, specialist, corporal, and sergeant for army ranks.

Ordinal attributes are useful for registering subjective assessments of qualities that
cannot be measured objectively; thus ordinal attributes are often used in surveys for
ratings. In one survey, participants were asked to rate how satisfied they were as cus-
tomers. Customer satisfaction had the following ordinal categories: 0: very dissatisfied,
1: somewhat dissatisfied, 2: neutral, 3: satisfied, and 4: very satisfied.

Ordinal attributes may also be obtained from the discretization of numeric quantities
by splitting the value range into a finite number of ordered categories as described in
Chapter 3 on data reduction.

The central tendency of an ordinal attribute can be represented by its mode and its
median (the middle value in an ordered sequence), but the mean cannot be defined.

Note that nominal, binary, and ordinal attributes are qualitative. That is, they describe
a feature of an object without giving an actual size or quantity. The values of such
qualitative attributes are typically words representing categories. If integers are used,
they represent computer codes for the categories, as opposed to measurable quantities
(e.g., 0 for small drink size, 1 for medium, and 2 for large). In the following subsec-
tion we look at numeric attributes, which provide quantitative measurements of an
object.

2.1 Data Objects and Attribute Types 43

2.1.5 Numeric Attributes

A numeric attribute is quantitative; that is, it is a measurable quantity, represented in
integer or real values. Numeric attributes can be interval-scaled or ratio-scaled.

Interval-Scaled Attributes
Interval-scaled attributes are measured on a scale of equal-size units. The values of
interval-scaled attributes have order and can be positive, 0, or negative. Thus, in addition
to providing a ranking of values, such attributes allow us to compare and quantify the
difference between values.

Example 2.4 Interval-scaled attributes. A temperature attribute is interval-scaled. Suppose that we
have the outdoor temperature value for a number of different days, where each day is
an object. By ordering the values, we obtain a ranking of the objects with respect to
temperature. In addition, we can quantify the difference between values. For example, a
temperature of 20◦C is five degrees higher than a temperature of 15◦C. Calendar dates
are another example. For instance, the years 2002 and 2010 are eight years apart.

Temperatures in Celsius and Fahrenheit do not have a true zero-point, that is, neither
0◦C nor 0◦F indicates “no temperature.” (On the Celsius scale, for example, the unit of
measurement is 1/100 of the difference between the melting temperature and the boiling
temperature of water in atmospheric pressure.) Although we can compute the difference
between temperature values, we cannot talk of one temperature value as being a multiple
of another. Without a true zero, we cannot say, for instance, that 10◦C is twice as warm
as 5◦C. That is, we cannot speak of the values in terms of ratios. Similarly, there is no
true zero-point for calendar dates. (The year 0 does not correspond to the beginning of
time.) This brings us to ratio-scaled attributes, for which a true zero-point exits.

Because interval-scaled attributes are numeric, we can compute their mean value, in
addition to the median and mode measures of central tendency.

Ratio-Scaled Attributes
A ratio-scaled attribute is a numeric attribute with an inherent zero-point. That is, if
a measurement is ratio-scaled, we can speak of a value as being a multiple (or ratio)
of another value. In addition, the values are ordered, and we can also compute the
difference between values, as well as the mean, median, and mode.

Example 2.5 Ratio-scaled attributes. Unlike temperatures in Celsius and Fahrenheit, the Kelvin (K)
temperature scale has what is considered a true zero-point (0◦K = −273.15◦C): It is
the point at which the particles that comprise matter have zero kinetic energy. Other
examples of ratio-scaled attributes include count attributes such as years of experience
(e.g., the objects are employees) and number of words (e.g., the objects are documents).
Additional examples include attributes to measure weight, height, latitude and longitude

44 Chapter 2 Getting to Know Your Data

coordinates (e.g., when clustering houses), and monetary quantities (e.g., you are 100
times richer with $100 than with $1).

2.1.6 Discrete versus Continuous Attributes

In our presentation, we have organized attributes into nominal, binary, ordinal, and
numeric types. There are many ways to organize attribute types. The types are not
mutually exclusive.

Classification algorithms developed from the field of machine learning often talk of
attributes as being either discrete or continuous. Each type may be processed differently.
A discrete attribute has a finite or countably infinite set of values, which may or may not
be represented as integers. The attributes hair color, smoker, medical test, and drink size
each have a finite number of values, and so are discrete. Note that discrete attributes
may have numeric values, such as 0 and 1 for binary attributes or, the values 0 to 110 for
the attribute age. An attribute is countably infinite if the set of possible values is infinite
but the values can be put in a one-to-one correspondence with natural numbers. For
example, the attribute customer ID is countably infinite. The number of customers can
grow to infinity, but in reality, the actual set of values is countable (where the values can
be put in one-to-one correspondence with the set of integers). Zip codes are another
example.

If an attribute is not discrete, it is continuous. The terms numeric attribute and con-
tinuous attribute are often used interchangeably in the literature. (This can be confusing
because, in the classic sense, continuous values are real numbers, whereas numeric val-
ues can be either integers or real numbers.) In practice, real values are represented
using a finite number of digits. Continuous attributes are typically represented as
floating-point variables.

2.2 Basic Statistical Descriptions of Data

For data preprocessing to be successful, it is essential to have an overall picture of your
data. Basic statistical descriptions can be used to identify properties of the data and
highlight which data values should be treated as noise or outliers.

This section discusses three areas of basic statistical descriptions. We start with mea-
sures of central tendency (Section 2.2.1), which measure the location of the middle or
center of a data distribution. Intuitively speaking, given an attribute, where do most of
its values fall? In particular, we discuss the mean, median, mode, and midrange.

In addition to assessing the central tendency of our data set, we also would like to
have an idea of the dispersion of the data. That is, how are the data spread out? The most
common data dispersion measures are the range, quartiles, and interquartile range; the
five-number summary and boxplots; and the variance and standard deviation of the data
These measures are useful for identifying outliers and are described in Section 2.2.2.

Finally, we can use many graphic displays of basic statistical descriptions to visually
inspect our data (Section 2.2.3). Most statistical or graphical data presentation software

2.2 Basic Statistical Descriptions of Data 45

packages include bar charts, pie charts, and line graphs. Other popular displays of data
summaries and distributions include quantile plots, quantile–quantile plots, histograms,
and scatter plots.

2.2.1 Measuring the Central Tendency: Mean, Median, and Mode

In this section, we look at various ways to measure the central tendency of data. Suppose
that we have some attribute X , like salary, which has been recorded for a set of objects.
Let x1,x2, . . . ,xN be the set of N observed values or observations for X . Here, these val-
ues may also be referred to as the data set (for X). If we were to plot the observations
for salary, where would most of the values fall? This gives us an idea of the central ten-
dency of the data. Measures of central tendency include the mean, median, mode, and
midrange.

The most common and effective numeric measure of the “center” of a set of data is
the (arithmetic) mean. Let x1,x2, . . . ,xN be a set of N values or observations, such as for
some numeric attribute X , like salary. The mean of this set of values is

x̄ =

N∑
i=1

xi

N
= x1 + x2 + ·· · + xN

N
. (2.1)

This corresponds to the built-in aggregate function, average (avg() in SQL), provided in
relational database systems.

Example 2.6 Mean. Suppose we have the following values for salary (in thousands of dollars), shown
in increasing order: 30, 36, 47, 50, 52, 52, 56, 60, 63, 70, 70, 110. Using Eq. (2.1), we have

x̄ = 30 + 36 + 47 + 50 + 52 + 52 + 56 + 60 + 63 + 70 + 70 + 110

12

= 696

12
= 58.

Thus, the mean salary is $58,000.

Sometimes, each value xi in a set may be associated with a weight wi for i = 1, . . . ,N .
The weights reflect the significance, importance, or occurrence frequency attached to
their respective values. In this case, we can compute

x̄ =

N∑
i=1

wixi

N∑
i=1

wi

= w1x1 + w2x2 + ·· · + wN xN

w1 + w2 + ·· · + wN
. (2.2)

This is called the weighted arithmetic mean or the weighted average.

46 Chapter 2 Getting to Know Your Data

Although the mean is the singlemost useful quantity for describing a data set, it is not
always the best way of measuring the center of the data. A major problem with the mean
is its sensitivity to extreme (e.g., outlier) values. Even a small number of extreme values
can corrupt the mean. For example, the mean salary at a company may be substantially
pushed up by that of a few highly paid managers. Similarly, the mean score of a class in
an exam could be pulled down quite a bit by a few very low scores. To offset the effect
caused by a small number of extreme values, we can instead use the trimmed mean,
which is the mean obtained after chopping off values at the high and low extremes. For
example, we can sort the values observed for salary and remove the top and bottom 2%
before computing the mean. We should avoid trimming too large a portion (such as
20%) at both ends, as this can result in the loss of valuable information.

For skewed (asymmetric) data, a better measure of the center of data is the median,
which is the middle value in a set of ordered data values. It is the value that separates the
higher half of a data set from the lower half.

In probability and statistics, the median generally applies to numeric data; however,
we may extend the concept to ordinal data. Suppose that a given data set of N values
for an attribute X is sorted in increasing order. If N is odd, then the median is the
middle value of the ordered set. If N is even, then the median is not unique; it is the two
middlemost values and any value in between. If X is a numeric attribute in this case, by
convention, the median is taken as the average of the two middlemost values.

Example 2.7 Median. Let’s find the median of the data from Example 2.6. The data are already sorted
in increasing order. There is an even number of observations (i.e., 12); therefore, the
median is not unique. It can be any value within the two middlemost values of 52 and
56 (that is, within the sixth and seventh values in the list). By convention, we assign the
average of the two middlemost values as the median; that is, 52+56

2 = 108
2 = 54. Thus,

the median is $54,000.
Suppose that we had only the first 11 values in the list. Given an odd number of

values, the median is the middlemost value. This is the sixth value in this list, which has
a value of $52,000.

The median is expensive to compute when we have a large number of observations.
For numeric attributes, however, we can easily approximate the value. Assume that data
are grouped in intervals according to their xi data values and that the frequency (i.e.,
number of data values) of each interval is known. For example, employees may be
grouped according to their annual salary in intervals such as $10–20,000, $20–30,000,
and so on. Let the interval that contains the median frequency be the median inter-
val. We can approximate the median of the entire data set (e.g., the median salary) by
interpolation using the formula

median = L1 +
(

N/2 − (∑ freq
)

l

freqmedian

)
width, (2.3)

where L1 is the lower boundary of the median interval, N is the number of values in
the entire data set,

(∑
freq

)
l is the sum of the frequencies of all of the intervals that are

2.2 Basic Statistical Descriptions of Data 47

lower than the median interval, freqmedian is the frequency of the median interval, and
width is the width of the median interval.

The mode is another measure of central tendency. The mode for a set of data is the
value that occurs most frequently in the set. Therefore, it can be determined for qualita-
tive and quantitative attributes. It is possible for the greatest frequency to correspond to
several different values, which results in more than one mode. Data sets with one, two,
or three modes are respectively called unimodal, bimodal, and trimodal. In general, a
data set with two or more modes is multimodal. At the other extreme, if each data value
occurs only once, then there is no mode.

Example 2.8 Mode. The data from Example 2.6 are bimodal. The two modes are $52,000 and
$70,000.

For unimodal numeric data that are moderately skewed (asymmetrical), we have the
following empirical relation:

mean − mode ≈ 3 × (mean − median). (2.4)

This implies that the mode for unimodal frequency curves that are moderately skewed
can easily be approximated if the mean and median values are known.

The midrange can also be used to assess the central tendency of a numeric data set.
It is the average of the largest and smallest values in the set. This measure is easy to
compute using the SQL aggregate functions, max() and min().

Example 2.9 Midrange. The midrange of the data of Example 2.6 is 30,000+110,000
2 = $70,000.

In a unimodal frequency curve with perfect symmetric data distribution, the mean,
median, and mode are all at the same center value, as shown in Figure 2.1(a).

Data in most real applications are not symmetric. They may instead be either posi-
tively skewed, where the mode occurs at a value that is smaller than the median
(Figure 2.1b), or negatively skewed, where the mode occurs at a value greater than the
median (Figure 2.1c).

Mode

Median

Mean Mode

Median

MeanMean
Median
Mode

(a) Symmetric data (b) Positively skewed data (c) Negatively skewed data

Figure 2.1 Mean, median, and mode of symmetric versus positively and negatively skewed data.

48 Chapter 2 Getting to Know Your Data

2.2.2 Measuring the Dispersion of Data: Range, Quartiles, Variance,
Standard Deviation, and Interquartile Range

We now look at measures to assess the dispersion or spread of numeric data. The mea-
sures include range, quantiles, quartiles, percentiles, and the interquartile range. The
five-number summary, which can be displayed as a boxplot, is useful in identifying
outliers. Variance and standard deviation also indicate the spread of a data distribution.

Range, Quartiles, and Interquartile Range
To start off, let’s study the range, quantiles, quartiles, percentiles, and the interquartile
range as measures of data dispersion.

Let x1,x2, . . . ,xN be a set of observations for some numeric attribute, X . The range
of the set is the difference between the largest (max()) and smallest (min()) values.

Suppose that the data for attribute X are sorted in increasing numeric order. Imagine
that we can pick certain data points so as to split the data distribution into equal-size
consecutive sets, as in Figure 2.2. These data points are called quantiles. Quantiles are
points taken at regular intervals of a data distribution, dividing it into essentially equal-
size consecutive sets. (We say “essentially” because there may not be data values of X that
divide the data into exactly equal-sized subsets. For readability, we will refer to them as
equal.) The kth q-quantile for a given data distribution is the value x such that at most
k/q of the data values are less than x and at most (q − k)/q of the data values are more
than x, where k is an integer such that 0 < k < q. There are q − 1 q-quantiles.

The 2-quantile is the data point dividing the lower and upper halves of the data dis-
tribution. It corresponds to the median. The 4-quantiles are the three data points that
split the data distribution into four equal parts; each part represents one-fourth of the
data distribution. They are more commonly referred to as quartiles. The 100-quantiles
are more commonly referred to as percentiles; they divide the data distribution into 100
equal-sized consecutive sets. The median, quartiles, and percentiles are the most widely
used forms of quantiles.

Q2 Q3Q1

25th
percentile

75th
percentile

Median

25%

Figure 2.2 A plot of the data distribution for some attribute X . The quantiles plotted are quartiles. The
three quartiles divide the distribution into four equal-size consecutive subsets. The second
quartile corresponds to the median.

2.2 Basic Statistical Descriptions of Data 49

The quartiles give an indication of a distribution’s center, spread, and shape. The first
quartile, denoted by Q1, is the 25th percentile. It cuts off the lowest 25% of the data.
The third quartile, denoted by Q3, is the 75th percentile—it cuts off the lowest 75% (or
highest 25%) of the data. The second quartile is the 50th percentile. As the median, it
gives the center of the data distribution.

The distance between the first and third quartiles is a simple measure of spread
that gives the range covered by the middle half of the data. This distance is called the
interquartile range (IQR) and is defined as

IQR = Q3 − Q1. (2.5)

Example 2.10 Interquartile range. The quartiles are the three values that split the sorted data set into
four equal parts. The data of Example 2.6 contain 12 observations, already sorted in
increasing order. Thus, the quartiles for this data are the third, sixth, and ninth val-
ues, respectively, in the sorted list. Therefore, Q1 = $47,000 and Q3 is $63,000. Thus,
the interquartile range is IQR = 63 − 47 = $16,000. (Note that the sixth value is a
median, $52,000, although this data set has two medians since the number of data values
is even.)

Five-Number Summary, Boxplots, and Outliers
No single numeric measure of spread (e.g., IQR) is very useful for describing skewed
distributions. Have a look at the symmetric and skewed data distributions of Figure 2.1.
In the symmetric distribution, the median (and other measures of central tendency)
splits the data into equal-size halves. This does not occur for skewed distributions.
Therefore, it is more informative to also provide the two quartiles Q1 and Q3, along
with the median. A common rule of thumb for identifying suspected outliers is to
single out values falling at least 1.5 × IQR above the third quartile or below the first
quartile.

Because Q1, the median, and Q3 together contain no information about the end-
points (e.g., tails) of the data, a fuller summary of the shape of a distribution can be
obtained by providing the lowest and highest data values as well. This is known as
the five-number summary. The five-number summary of a distribution consists of the
median (Q2), the quartiles Q1 and Q3, and the smallest and largest individual obser-
vations, written in the order of Minimum, Q1, Median, Q3, Maximum.

Boxplots are a popular way of visualizing a distribution. A boxplot incorporates the
five-number summary as follows:

Typically, the ends of the box are at the quartiles so that the box length is the
interquartile range.

The median is marked by a line within the box.

Two lines (called whiskers) outside the box extend to the smallest (Minimum) and
largest (Maximum) observations.

50 Chapter 2 Getting to Know Your Data

20

40

60

80

100

120

140

160

180

200

220

U
ni

t p
ri

ce
 (

$)

Branch 1 Branch 4Branch 3Branch 2

Figure 2.3 Boxplot for the unit price data for items sold at four branches of AllElectronics during a given
time period.

When dealing with a moderate number of observations, it is worthwhile to plot
potential outliers individually. To do this in a boxplot, the whiskers are extended to the
extreme low and high observations only if these values are less than 1.5 × IQR beyond
the quartiles. Otherwise, the whiskers terminate at the most extreme observations occur-
ring within 1.5 × IQR of the quartiles. The remaining cases are plotted individually.
Boxplots can be used in the comparisons of several sets of compatible data.

Example 2.11 Boxplot. Figure 2.3 shows boxplots for unit price data for items sold at four branches of
AllElectronics during a given time period. For branch 1, we see that the median price of
items sold is $80, Q1 is $60, and Q3 is $100. Notice that two outlying observations for
this branch were plotted individually, as their values of 175 and 202 are more than 1.5
times the IQR here of 40.

Boxplots can be computed in O(n logn) time. Approximate boxplots can be com-
puted in linear or sublinear time depending on the quality guarantee required.

Variance and Standard Deviation

Variance and standard deviation are measures of data dispersion. They indicate how
spread out a data distribution is. A low standard deviation means that the data observa-
tions tend to be very close to the mean, while a high standard deviation indicates that
the data are spread out over a large range of values.

2.2 Basic Statistical Descriptions of Data 51

The variance of N observations, x1,x2, . . . ,xN , for a numeric attribute X is

σ 2 = 1

N

N∑
i=1

(xi − x̄)2 =
(

1

N

N∑
i=1

x2
i

)
− x̄2, (2.6)

where x̄ is the mean value of the observations, as defined in Eq. (2.1). The standard
deviation, σ , of the observations is the square root of the variance, σ 2.

Example 2.12 Variance and standard deviation. In Example 2.6, we found x̄ = $58,000 using Eq. (2.1)
for the mean. To determine the variance and standard deviation of the data from that
example, we set N = 12 and use Eq. (2.6) to obtain

σ 2 = 1

12
(302 + 362 + 472 . . . + 1102) − 582

≈ 379.17

σ ≈ √
379.17 ≈ 19.47.

The basic properties of the standard deviation, σ , as a measure of spread are as
follows:

σ measures spread about the mean and should be considered only when the mean is
chosen as the measure of center.

σ = 0 only when there is no spread, that is, when all observations have the same
value. Otherwise, σ > 0.

Importantly, an observation is unlikely to be more than several standard deviations
away from the mean. Mathematically, using Chebyshev’s inequality, it can be shown that

at least
(

1 − 1
k2

)
× 100% of the observations are no more than k standard deviations

from the mean. Therefore, the standard deviation is a good indicator of the spread of a
data set.

The computation of the variance and standard deviation is scalable in large databases.

2.2.3 Graphic Displays of Basic Statistical Descriptions of Data

In this section, we study graphic displays of basic statistical descriptions. These include
quantile plots, quantile–quantile plots, histograms, and scatter plots. Such graphs are help-
ful for the visual inspection of data, which is useful for data preprocessing. The first
three of these show univariate distributions (i.e., data for one attribute), while scatter
plots show bivariate distributions (i.e., involving two attributes).

Quantile Plot
In this and the following subsections, we cover common graphic displays of data distri-
butions. A quantile plot is a simple and effective way to have a first look at a univariate
data distribution. First, it displays all of the data for the given attribute (allowing the user

52 Chapter 2 Getting to Know Your Data

to assess both the overall behavior and unusual occurrences). Second, it plots quantile
information (see Section 2.2.2). Let xi , for i = 1 to N , be the data sorted in increasing
order so that x1 is the smallest observation and xN is the largest for some ordinal or
numeric attribute X . Each observation, xi , is paired with a percentage, fi , which indicates
that approximately fi × 100% of the data are below the value, xi . We say “approximately”
because there may not be a value with exactly a fraction, fi , of the data below xi . Note
that the 0.25 percentile corresponds to quartile Q1, the 0.50 percentile is the median,
and the 0.75 percentile is Q3.

Let

fi = i − 0.5

N
. (2.7)

These numbers increase in equal steps of 1/N , ranging from 1
2N (which is slightly

above 0) to 1 − 1
2N (which is slightly below 1). On a quantile plot, xi is graphed against

fi . This allows us to compare different distributions based on their quantiles. For exam-
ple, given the quantile plots of sales data for two different time periods, we can compare
their Q1, median, Q3, and other fi values at a glance.

Example 2.13 Quantile plot. Figure 2.4 shows a quantile plot for the unit price data of Table 2.1.

Quantile–Quantile Plot
A quantile–quantile plot, or q-q plot, graphs the quantiles of one univariate distribution
against the corresponding quantiles of another. It is a powerful visualization tool in that it
allows the user to view whether there is a shift in going from one distribution to another.

Suppose that we have two sets of observations for the attribute or variable unit price,
taken from two different branch locations. Let x1, . . . ,xN be the data from the first
branch, and y1, . . . ,yM be the data from the second, where each data set is sorted in
increasing order. If M = N (i.e., the number of points in each set is the same), then we
simply plot yi against xi , where yi and xi are both (i − 0.5)/N quantiles of their respec-
tive data sets. If M < N (i.e., the second branch has fewer observations than the first),
there can be only M points on the q-q plot. Here, yi is the (i − 0.5)/M quantile of the y

140
120
100
80
60
40
20
0
0.00 0.25 0.50 0.75 1.00

f-value

U
ni

t p
ri

ce
 (

$) Median
Q1

Q3

Figure 2.4 A quantile plot for the unit price data of Table 2.1.

2.2 Basic Statistical Descriptions of Data 53

Table 2.1 A Set of Unit Price Data for Items
Sold at a Branch of AllElectronics

Unit price Count of
($) items sold

40 275

43 300

47 250

− −
74 360

75 515

78 540

− −
115 320

117 270

120 350

40

120

110

100

90

80

70

60

50

40
50 60

Median

Q1

Q3

70 80

Branch 1 (unit price $)

B
ra

nc
h

2
(u

ni
t p

ri
ce

 $
)

90 100 110 120

Figure 2.5 A q-q plot for unit price data from two AllElectronics branches.

data, which is plotted against the (i − 0.5)/M quantile of the x data. This computation
typically involves interpolation.

Example 2.14 Quantile–quantile plot. Figure 2.5 shows a quantile–quantile plot for unit price data of
items sold at two branches of AllElectronics during a given time period. Each point cor-
responds to the same quantile for each data set and shows the unit price of items sold at
branch 1 versus branch 2 for that quantile. (To aid in comparison, the straight line rep-
resents the case where, for each given quantile, the unit price at each branch is the same.
The darker points correspond to the data for Q1, the median, and Q3, respectively.)

We see, for example, that at Q1, the unit price of items sold at branch 1 was slightly
less than that at branch 2. In other words, 25% of items sold at branch 1 were less than or

54 Chapter 2 Getting to Know Your Data

equal to $60, while 25% of items sold at branch 2 were less than or equal to $64. At the
50th percentile (marked by the median, which is also Q2), we see that 50% of items
sold at branch 1 were less than $78, while 50% of items at branch 2 were less than $85.
In general, we note that there is a shift in the distribution of branch 1 with respect to
branch 2 in that the unit prices of items sold at branch 1 tend to be lower than those at
branch 2.

Histograms
Histograms (or frequency histograms) are at least a century old and are widely used.
“Histos” means pole or mast, and “gram” means chart, so a histogram is a chart of
poles. Plotting histograms is a graphical method for summarizing the distribution of a
given attribute, X . If X is nominal, such as automobile model or item type, then a pole
or vertical bar is drawn for each known value of X . The height of the bar indicates the
frequency (i.e., count) of that X value. The resulting graph is more commonly known as
a bar chart.

If X is numeric, the term histogram is preferred. The range of values for X is parti-
tioned into disjoint consecutive subranges. The subranges, referred to as buckets or bins,
are disjoint subsets of the data distribution for X . The range of a bucket is known as
the width. Typically, the buckets are of equal width. For example, a price attribute with
a value range of $1 to $200 (rounded up to the nearest dollar) can be partitioned into
subranges 1 to 20, 21 to 40, 41 to 60, and so on. For each subrange, a bar is drawn with a
height that represents the total count of items observed within the subrange. Histograms
and partitioning rules are further discussed in Chapter 3 on data reduction.

Example 2.15 Histogram. Figure 2.6 shows a histogram for the data set of Table 2.1, where buckets (or
bins) are defined by equal-width ranges representing $20 increments and the frequency
is the count of items sold.

Although histograms are widely used, they may not be as effective as the quantile
plot, q-q plot, and boxplot methods in comparing groups of univariate observations.

Scatter Plots and Data Correlation
A scatter plot is one of the most effective graphical methods for determining if there
appears to be a relationship, pattern, or trend between two numeric attributes. To con-
struct a scatter plot, each pair of values is treated as a pair of coordinates in an algebraic
sense and plotted as points in the plane. Figure 2.7 shows a scatter plot for the set of data
in Table 2.1.

The scatter plot is a useful method for providing a first look at bivariate data to see
clusters of points and outliers, or to explore the possibility of correlation relationships.
Two attributes, X , and Y , are correlated if one attribute implies the other. Correlations
can be positive, negative, or null (uncorrelated). Figure 2.8 shows examples of positive
and negative correlations between two attributes. If the plotted points pattern slopes

2.2 Basic Statistical Descriptions of Data 55

6000

5000

4000

3000

2000

1000

0

C
ou

nt
 o

f
ite

m
s

so
ld

40–59 60–79 80–99 100–119 120–139
Unit price ($)

Figure 2.6 A histogram for the Table 2.1 data set.

Unit price ($)

It
em

s
so

ld

0

700

600

500

400

300

200

100

0
20 40 60 80 100 120 140

Figure 2.7 A scatter plot for the Table 2.1 data set.

(a) (b)

Figure 2.8 Scatter plots can be used to find (a) positive or (b) negative correlations between attributes.

56 Chapter 2 Getting to Know Your Data

Figure 2.9 Three cases where there is no observed correlation between the two plotted attributes in each
of the data sets.

from lower left to upper right, this means that the values of X increase as the values
of Y increase, suggesting a positive correlation (Figure 2.8a). If the pattern of plotted
points slopes from upper left to lower right, the values of X increase as the values of Y
decrease, suggesting a negative correlation (Figure 2.8b). A line of best fit can be drawn
to study the correlation between the variables. Statistical tests for correlation are given
in Chapter 3 on data integration (Eq. (3.3)). Figure 2.9 shows three cases for which
there is no correlation relationship between the two attributes in each of the given data
sets. Section 2.3.2 shows how scatter plots can be extended to n attributes, resulting in a
scatter-plot matrix.

In conclusion, basic data descriptions (e.g., measures of central tendency and mea-
sures of dispersion) and graphic statistical displays (e.g., quantile plots, histograms, and
scatter plots) provide valuable insight into the overall behavior of your data. By helping
to identify noise and outliers, they are especially useful for data cleaning.

2.3 Data Visualization

How can we convey data to users effectively? Data visualization aims to communicate
data clearly and effectively through graphical representation. Data visualization has been
used extensively in many applications—for example, at work for reporting, managing
business operations, and tracking progress of tasks. More popularly, we can take advan-
tage of visualization techniques to discover data relationships that are otherwise not
easily observable by looking at the raw data. Nowadays, people also use data visualization
to create fun and interesting graphics.

In this section, we briefly introduce the basic concepts of data visualization. We start
with multidimensional data such as those stored in relational databases. We discuss
several representative approaches, including pixel-oriented techniques, geometric pro-
jection techniques, icon-based techniques, and hierarchical and graph-based techniques.
We then discuss the visualization of complex data and relations.

2.3 Data Visualization 57

2.3.1 Pixel-Oriented Visualization Techniques

A simple way to visualize the value of a dimension is to use a pixel where the color of
the pixel reflects the dimension’s value. For a data set of m dimensions, pixel-oriented
techniques create m windows on the screen, one for each dimension. The m dimension
values of a record are mapped to m pixels at the corresponding positions in the windows.
The colors of the pixels reflect the corresponding values.

Inside a window, the data values are arranged in some global order shared by all
windows. The global order may be obtained by sorting all data records in a way that’s
meaningful for the task at hand.

Example 2.16 Pixel-oriented visualization. AllElectronics maintains a customer information table,
which consists of four dimensions: income, credit limit, transaction volume, and age. Can
we analyze the correlation between income and the other attributes by visualization?

We can sort all customers in income-ascending order, and use this order to lay out
the customer data in the four visualization windows, as shown in Figure 2.10. The pixel
colors are chosen so that the smaller the value, the lighter the shading. Using pixel-
based visualization, we can easily observe the following: credit limit increases as income
increases; customers whose income is in the middle range are more likely to purchase
more from AllElectronics; there is no clear correlation between income and age.

In pixel-oriented techniques, data records can also be ordered in a query-dependent
way. For example, given a point query, we can sort all records in descending order of
similarity to the point query.

Filling a window by laying out the data records in a linear way may not work well for
a wide window. The first pixel in a row is far away from the last pixel in the previous row,
though they are next to each other in the global order. Moreover, a pixel is next to the
one above it in the window, even though the two are not next to each other in the global
order. To solve this problem, we can lay out the data records in a space-filling curve

(a) income (b) credit_limit (c) transaction_volume (d) age

Figure 2.10 Pixel-oriented visualization of four attributes by sorting all customers in income ascending
order.

58 Chapter 2 Getting to Know Your Data

(a) Hilbert curve (b) Gray code (c) Z-curve

Figure 2.11 Some frequently used 2-D space-filling curves.

Dim 6

Dim 3

Dim 4 Dim 2

Dim 5 Dim 1

One data
record

(a)

Dim 1

Dim 2

Dim 3

Dim 4

Dim 5

Dim 6

(b)

Figure 2.12 The circle segment technique. (a) Representing a data record in circle segments. (b) Laying
out pixels in circle segments.

to fill the windows. A space-filling curve is a curve with a range that covers the entire
n-dimensional unit hypercube. Since the visualization windows are 2-D, we can use any
2-D space-filling curve. Figure 2.11 shows some frequently used 2-D space-filling curves.

Note that the windows do not have to be rectangular. For example, the circle segment
technique uses windows in the shape of segments of a circle, as illustrated in Figure 2.12.
This technique can ease the comparison of dimensions because the dimension windows
are located side by side and form a circle.

2.3.2 Geometric Projection Visualization Techniques

A drawback of pixel-oriented visualization techniques is that they cannot help us much
in understanding the distribution of data in a multidimensional space. For example, they
do not show whether there is a dense area in a multidimensional subspace. Geometric

2.3 Data Visualization 59

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

X

Y

Figure 2.13 Visualization of a 2-D data set using a scatter plot. Source: www.cs.sfu.ca/jpei/publications/
rareevent-geoinformatica06.pdf .

projection techniques help users find interesting projections of multidimensional data
sets. The central challenge the geometric projection techniques try to address is how to
visualize a high-dimensional space on a 2-D display.

A scatter plot displays 2-D data points using Cartesian coordinates. A third dimen-
sion can be added using different colors or shapes to represent different data points.
Figure 2.13 shows an example, where X and Y are two spatial attributes and the third
dimension is represented by different shapes. Through this visualization, we can see that
points of types “+” and “×” tend to be colocated.

A 3-D scatter plot uses three axes in a Cartesian coordinate system. If it also uses
color, it can display up to 4-D data points (Figure 2.14).

For data sets with more than four dimensions, scatter plots are usually ineffective.
The scatter-plot matrix technique is a useful extension to the scatter plot. For an n-
dimensional data set, a scatter-plot matrix is an n × n grid of 2-D scatter plots that
provides a visualization of each dimension with every other dimension. Figure 2.15
shows an example, which visualizes the Iris data set. The data set consists of 450 sam-
ples from each of three species of Iris flowers. There are five dimensions in the data set:
length and width of sepal and petal, and species.

The scatter-plot matrix becomes less effective as the dimensionality increases.
Another popular technique, called parallel coordinates, can handle higher dimensional-
ity. To visualize n-dimensional data points, the parallel coordinates technique draws
n equally spaced axes, one for each dimension, parallel to one of the display axes.

60 Chapter 2 Getting to Know Your Data

Figure 2.14 Visualization of a 3-D data set using a scatter plot. Source: http://upload.wikimedia.org/
wikipedia/commons/c/c4/Scatter plot.jpg.

A data record is represented by a polygonal line that intersects each axis at the point
corresponding to the associated dimension value (Figure 2.16).

A major limitation of the parallel coordinates technique is that it cannot effec-
tively show a data set of many records. Even for a data set of several thousand records,
visual clutter and overlap often reduce the readability of the visualization and make the
patterns hard to find.

2.3.3 Icon-Based Visualization Techniques

Icon-based visualization techniques use small icons to represent multidimensional
data values. We look at two popular icon-based techniques: Chernoff faces and stick
figures.

Chernoff faces were introduced in 1973 by statistician Herman Chernoff. They dis-
play multidimensional data of up to 18 variables (or dimensions) as a cartoon human
face (Figure 2.17). Chernoff faces help reveal trends in the data. Components of the
face, such as the eyes, ears, mouth, and nose, represent values of the dimensions by their
shape, size, placement, and orientation. For example, dimensions can be mapped to the
following facial characteristics: eye size, eye spacing, nose length, nose width, mouth
curvature, mouth width, mouth openness, pupil size, eyebrow slant, eye eccentricity,
and head eccentricity.

Chernoff faces make use of the ability of the human mind to recognize small dif-
ferences in facial characteristics and to assimilate many facial characteristics at once.

2.3 Data Visualization 61

10

Sepal length (mm)

Petal length (mm)

Sepal width (mm)

Petal width (mm)

30 50 70 0 10 20

80

70

60

50

40

45
40
35
30
25
20

40 50 60 70 80 20

Iris Species Setosa Versicolor Virginica

30 40

70

50

30

10

25
20
15
10
5
0

Figure 2.15 Visualization of the Iris data set using a scatter-plot matrix. Source: http://support.sas.com/
documentation/cdl/en/grstatproc/61948/HTML/default/images/gsgscmat.gif .

Viewing large tables of data can be tedious. By condensing the data, Chernoff faces
make the data easier for users to digest. In this way, they facilitate visualization of reg-
ularities and irregularities present in the data, although their power in relating multiple
relationships is limited. Another limitation is that specific data values are not shown.
Furthermore, facial features vary in perceived importance. This means that the similarity
of two faces (representing two multidimensional data points) can vary depending on the
order in which dimensions are assigned to facial characteristics. Therefore, this mapping
should be carefully chosen. Eye size and eyebrow slant have been found to be important.

Asymmetrical Chernoff faces were proposed as an extension to the original technique.
Since a face has vertical symmetry (along the y-axis), the left and right side of a face are
identical, which wastes space. Asymmetrical Chernoff faces double the number of facial
characteristics, thus allowing up to 36 dimensions to be displayed.

The stick figure visualization technique maps multidimensional data to five-piece
stick figures, where each figure has four limbs and a body. Two dimensions are mapped
to the display (x and y) axes and the remaining dimensions are mapped to the angle

62 Chapter 2 Getting to Know Your Data

10
y

5

0

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10

–5

–10

x

Figure 2.16 Here is a visualization that uses parallel coordinates. Source: www.stat.columbia.edu/∼cook/
movabletype/archives/2007/10/parallel coordi.thml.

Figure 2.17 Chernoff faces. Each face represents an n-dimensional data point (n ≤ 18).

and/or length of the limbs. Figure 2.18 shows census data, where age and income are
mapped to the display axes, and the remaining dimensions (gender, education, and so
on) are mapped to stick figures. If the data items are relatively dense with respect to
the two display dimensions, the resulting visualization shows texture patterns, reflecting
data trends.

2.3 Data Visualization 63

income

ag
e

Figure 2.18 Census data represented using stick figures. Source: Professor G. Grinstein, Department of
Computer Science, University of Massachusetts at Lowell.

2.3.4 Hierarchical Visualization Techniques

The visualization techniques discussed so far focus on visualizing multiple dimensions
simultaneously. However, for a large data set of high dimensionality, it would be diffi-
cult to visualize all dimensions at the same time. Hierarchical visualization techniques
partition all dimensions into subsets (i.e., subspaces). The subspaces are visualized in a
hierarchical manner.

“Worlds-within-Worlds,” also known as n-Vision, is a representative hierarchical
visualization method. Suppose we want to visualize a 6-D data set, where the dimensions
are F ,X1, . . . ,X5. We want to observe how dimension F changes with respect to the other
dimensions. We can first fix the values of dimensions X3,X4,X5 to some selected values,
say, c3, c4, c5. We can then visualize F ,X1,X2 using a 3-D plot, called a world, as shown in
Figure 2.19. The position of the origin of the inner world is located at the point (c3, c4, c5)

in the outer world, which is another 3-D plot using dimensions X3,X4,X5. A user can
interactively change, in the outer world, the location of the origin of the inner world.
The user then views the resulting changes of the inner world. Moreover, a user can vary
the dimensions used in the inner world and the outer world. Given more dimensions,
more levels of worlds can be used, which is why the method is called “worlds-within-
worlds.”

As another example of hierarchical visualization methods, tree-maps display hier-
archical data as a set of nested rectangles. For example, Figure 2.20 shows a tree-map
visualizing Google news stories. All news stories are organized into seven categories, each
shown in a large rectangle of a unique color. Within each category (i.e., each rectangle
at the top level), the news stories are further partitioned into smaller subcategories.

64 Chapter 2 Getting to Know Your Data

Figure 2.19 “Worlds-within-Worlds” (also known as n-Vision). Source: http://graphics.cs.columbia.edu/
projects/AutoVisual/images/1.dipstick.5.gif.

2.3.5 Visualizing Complex Data and Relations

In early days, visualization techniques were mainly for numeric data. Recently, more
and more non-numeric data, such as text and social networks, have become available.
Visualizing and analyzing such data attracts a lot of interest.

There are many new visualization techniques dedicated to these kinds of data. For
example, many people on the Web tag various objects such as pictures, blog entries, and
product reviews. A tag cloud is a visualization of statistics of user-generated tags. Often,
in a tag cloud, tags are listed alphabetically or in a user-preferred order. The importance
of a tag is indicated by font size or color. Figure 2.21 shows a tag cloud for visualizing
the popular tags used in a Web site.

Tag clouds are often used in two ways. First, in a tag cloud for a single item, we can
use the size of a tag to represent the number of times that the tag is applied to this item
by different users. Second, when visualizing the tag statistics on multiple items, we can
use the size of a tag to represent the number of items that the tag has been applied to,
that is, the popularity of the tag.

In addition to complex data, complex relations among data entries also raise chal-
lenges for visualization. For example, Figure 2.22 uses a disease influence graph to
visualize the correlations between diseases. The nodes in the graph are diseases, and
the size of each node is proportional to the prevalence of the corresponding disease.
Two nodes are linked by an edge if the corresponding diseases have a strong correlation.
The width of an edge is proportional to the strength of the correlation pattern of the two
corresponding diseases.

2.4 Measuring Data Similarity and Dissimilarity 65

Figure 2.20 Newsmap: Use of tree-maps to visualize Google news headline stories. Source: www.cs.umd.
edu/class/spring2005/cmsc838s/viz4all/ss/newsmap.png.

In summary, visualization provides effective tools to explore data. We have intro-
duced several popular methods and the essential ideas behind them. There are many
existing tools and methods. Moreover, visualization can be used in data mining in vari-
ous aspects. In addition to visualizing data, visualization can be used to represent the
data mining process, the patterns obtained from a mining method, and user interaction
with the data. Visual data mining is an important research and development direction.

2.4 Measuring Data Similarity and Dissimilarity

In data mining applications, such as clustering, outlier analysis, and nearest-neighbor
classification, we need ways to assess how alike or unalike objects are in comparison to
one another. For example, a store may want to search for clusters of customer objects,
resulting in groups of customers with similar characteristics (e.g., similar income, area
of residence, and age). Such information can then be used for marketing. A cluster is

66 Chapter 2 Getting to Know Your Data

Figure 2.21 Using a tag cloud to visualize popular Web site tags. Source: A snapshot of www.flickr.com/
photos/tags/, January 23, 2010.

High blood pressure (Hb)
Allergies (Al)
Overweight (Ov)
High cholesterol level (Hc)
Arthritis (Ar)
Trouble seeing (Tr)
Risk of diabetes (Ri)
Asthma (As)
Diabetes (Di)
Hayfever (Ha)
Thyroid problem (Th)
Heart disease (He)
Cancer (Cn)
Sleep disorder (Sl)
Eczema (Ec)
Chronic bronchitis (Ch)
Osteoporosis (Os)
Prostate (Pr)
Cardiovascular (Ca)
Glaucoma (Gl)
Stroke (St)
Liver condition (Li)

Li

Ki
En

Ca Th

He

Em

Os

Cn

Pr

PS
Ec

Sl

Gl

Di

Ar Hb
Tr

Ov

Al

As

Ch

LiSt

Ri

Ha
Hc

PSA test abnormal (PS)
Kidney (Ki)
Endometriosis (En)
Emphysema (Em)

Figure 2.22 Disease influence graph of people at least 20 years old in the NHANES data set.

a collection of data objects such that the objects within a cluster are similar to one
another and dissimilar to the objects in other clusters. Outlier analysis also employs
clustering-based techniques to identify potential outliers as objects that are highly dis-
similar to others. Knowledge of object similarities can also be used in nearest-neighbor
classification schemes where a given object (e.g., a patient) is assigned a class label
(relating to, say, a diagnosis) based on its similarity toward other objects in the model.

2.4 Measuring Data Similarity and Dissimilarity 67

This section presents similarity and dissimilarity measures, which are referred to as
measures of proximity. Similarity and dissimilarity are related. A similarity measure for
two objects, i and j, will typically return the value 0 if the objects are unalike. The higher
the similarity value, the greater the similarity between objects. (Typically, a value of 1
indicates complete similarity, that is, the objects are identical.) A dissimilarity measure
works the opposite way. It returns a value of 0 if the objects are the same (and therefore,
far from being dissimilar). The higher the dissimilarity value, the more dissimilar the
two objects are.

In Section 2.4.1 we present two data structures that are commonly used in the
above types of applications: the data matrix (used to store the data objects) and the
dissimilarity matrix (used to store dissimilarity values for pairs of objects). We also
switch to a different notation for data objects than previously used in this chapter
since now we are dealing with objects described by more than one attribute. We then
discuss how object dissimilarity can be computed for objects described by nominal
attributes (Section 2.4.2), by binary attributes (Section 2.4.3), by numeric attributes
(Section 2.4.4), by ordinal attributes (Section 2.4.5), or by combinations of these
attribute types (Section 2.4.6). Section 2.4.7 provides similarity measures for very long
and sparse data vectors, such as term-frequency vectors representing documents in
information retrieval. Knowing how to compute dissimilarity is useful in studying
attributes and will also be referenced in later topics on clustering (Chapters 10 and 11),
outlier analysis (Chapter 12), and nearest-neighbor classification (Chapter 9).

2.4.1 Data Matrix versus Dissimilarity Matrix

In Section 2.2, we looked at ways of studying the central tendency, dispersion, and spread
of observed values for some attribute X . Our objects there were one-dimensional, that
is, described by a single attribute. In this section, we talk about objects described by mul-
tiple attributes. Therefore, we need a change in notation. Suppose that we have n objects
(e.g., persons, items, or courses) described by p attributes (also called measurements or
features, such as age, height, weight, or gender). The objects are x1 = (x11,x12, . . . ,x1p),
x2 = (x21,x22, . . . ,x2p), and so on, where xij is the value for object xi of the jth attribute.
For brevity, we hereafter refer to object xi as object i. The objects may be tuples in a
relational database, and are also referred to as data samples or feature vectors.

Main memory-based clustering and nearest-neighbor algorithms typically operate
on either of the following two data structures:

Data matrix (or object-by-attribute structure): This structure stores the n data objects
in the form of a relational table, or n-by-p matrix (n objects ×p attributes):⎡

⎢⎢⎢⎢⎢⎣

x11 · · · x1f · · · x1p

· · · · · · · · · · · · · · ·
xi1 · · · xif · · · xip

· · · · · · · · · · · · · · ·
xn1 · · · xnf · · · xnp

⎤
⎥⎥⎥⎥⎥⎦ . (2.8)

68 Chapter 2 Getting to Know Your Data

Each row corresponds to an object. As part of our notation, we may use f to index
through the p attributes.

Dissimilarity matrix (or object-by-object structure): This structure stores a collection
of proximities that are available for all pairs of n objects. It is often represented by an
n-by-n table: ⎡

⎢⎢⎢⎢⎢⎢⎣

0

d(2, 1) 0

d(3, 1) d(3, 2) 0
...

...
...

d(n, 1) d(n, 2) · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.9)

where d(i, j) is the measured dissimilarity or “difference” between objects i and j. In
general, d(i, j) is a non-negative number that is close to 0 when objects i and j are
highly similar or “near” each other, and becomes larger the more they differ. Note
that d(i, i) = 0; that is, the difference between an object and itself is 0. Furthermore,
d(i, j) = d(j, i). (For readability, we do not show the d(j, i) entries; the matrix is
symmetric.) Measures of dissimilarity are discussed throughout the remainder of this
chapter.

Measures of similarity can often be expressed as a function of measures of dissimilarity.
For example, for nominal data,

sim(i, j) = 1 − d(i, j), (2.10)

where sim(i, j) is the similarity between objects i and j. Throughout the rest of this
chapter, we will also comment on measures of similarity.

A data matrix is made up of two entities or “things,” namely rows (for objects)
and columns (for attributes). Therefore, the data matrix is often called a two-mode
matrix. The dissimilarity matrix contains one kind of entity (dissimilarities) and so is
called a one-mode matrix. Many clustering and nearest-neighbor algorithms operate
on a dissimilarity matrix. Data in the form of a data matrix can be transformed into a
dissimilarity matrix before applying such algorithms.

2.4.2 Proximity Measures for Nominal Attributes

A nominal attribute can take on two or more states (Section 2.1.2). For example,
map color is a nominal attribute that may have, say, five states: red, yellow, green, pink,
and blue.

Let the number of states of a nominal attribute be M . The states can be denoted by
letters, symbols, or a set of integers, such as 1, 2, . . . , M . Notice that such integers are
used just for data handling and do not represent any specific ordering.

2.4 Measuring Data Similarity and Dissimilarity 69

“How is dissimilarity computed between objects described by nominal attributes?”
The dissimilarity between two objects i and j can be computed based on the ratio of
mismatches:

d(i, j) = p − m

p
, (2.11)

where m is the number of matches (i.e., the number of attributes for which i and j are in
the same state), and p is the total number of attributes describing the objects. Weights
can be assigned to increase the effect of m or to assign greater weight to the matches in
attributes having a larger number of states.

Example 2.17 Dissimilarity between nominal attributes. Suppose that we have the sample data of
Table 2.2, except that only the object-identifier and the attribute test-1 are available,
where test-1 is nominal. (We will use test-2 and test-3 in later examples.) Let’s compute
the dissimilarity matrix (Eq. 2.9), that is,⎡

⎢⎢⎢⎣
0

d(2, 1) 0

d(3, 1) d(3, 2) 0

d(4, 1) d(4, 2) d(4, 3) 0

⎤
⎥⎥⎥⎦.

Since here we have one nominal attribute, test-1, we set p = 1 in Eq. (2.11) so that d(i, j)
evaluates to 0 if objects i and j match, and 1 if the objects differ. Thus, we get

⎡
⎢⎢⎢⎣

0

1 0

1 1 0

0 1 1 0

⎤
⎥⎥⎥⎦.

From this, we see that all objects are dissimilar except objects 1 and 4 (i.e., d(4,1) = 0).

Table 2.2 A Sample Data Table Containing Attributes
of Mixed Type

Object test-1 test-2 test-3
Identifier (nominal) (ordinal) (numeric)

1 code A excellent 45

2 code B fair 22

3 code C good 64

4 code A excellent 28

70 Chapter 2 Getting to Know Your Data

Alternatively, similarity can be computed as

sim(i, j) = 1 − d(i, j) = m

p
. (2.12)

Proximity between objects described by nominal attributes can be computed using
an alternative encoding scheme. Nominal attributes can be encoded using asymmetric
binary attributes by creating a new binary attribute for each of the M states. For an
object with a given state value, the binary attribute representing that state is set to 1,
while the remaining binary attributes are set to 0. For example, to encode the nominal
attribute map color, a binary attribute can be created for each of the five colors previ-
ously listed. For an object having the color yellow, the yellow attribute is set to 1, while
the remaining four attributes are set to 0. Proximity measures for this form of encoding
can be calculated using the methods discussed in the next subsection.

2.4.3 Proximity Measures for Binary Attributes

Let’s look at dissimilarity and similarity measures for objects described by either
symmetric or asymmetric binary attributes.

Recall that a binary attribute has only one of two states: 0 and 1, where 0 means that
the attribute is absent, and 1 means that it is present (Section 2.1.3). Given the attribute
smoker describing a patient, for instance, 1 indicates that the patient smokes, while 0
indicates that the patient does not. Treating binary attributes as if they are numeric can
be misleading. Therefore, methods specific to binary data are necessary for computing
dissimilarity.

“So, how can we compute the dissimilarity between two binary attributes?” One
approach involves computing a dissimilarity matrix from the given binary data. If all
binary attributes are thought of as having the same weight, we have the 2 × 2 contin-
gency table of Table 2.3, where q is the number of attributes that equal 1 for both objects
i and j, r is the number of attributes that equal 1 for object i but equal 0 for object j, s is
the number of attributes that equal 0 for object i but equal 1 for object j, and t is the
number of attributes that equal 0 for both objects i and j. The total number of attributes
is p, where p = q + r + s + t .

Recall that for symmetric binary attributes, each state is equally valuable. Dis-
similarity that is based on symmetric binary attributes is called symmetric binary
dissimilarity. If objects i and j are described by symmetric binary attributes, then the

Table 2.3 Contingency Table for Binary Attributes

Object j

1 0 sum

1 q r q + r

Object i 0 s t s + t

sum q + s r + t p

2.4 Measuring Data Similarity and Dissimilarity 71

dissimilarity between i and j is

d(i, j) = r + s

q + r + s + t
. (2.13)

For asymmetric binary attributes, the two states are not equally important, such as
the positive (1) and negative (0) outcomes of a disease test. Given two asymmetric binary
attributes, the agreement of two 1s (a positive match) is then considered more signifi-
cant than that of two 0s (a negative match). Therefore, such binary attributes are often
considered “monary” (having one state). The dissimilarity based on these attributes is
called asymmetric binary dissimilarity, where the number of negative matches, t , is
considered unimportant and is thus ignored in the following computation:

d(i, j) = r + s

q + r + s
. (2.14)

Complementarily, we can measure the difference between two binary attributes based
on the notion of similarity instead of dissimilarity. For example, the asymmetric binary
similarity between the objects i and j can be computed as

sim(i, j) = q

q + r + s
= 1 − d(i, j). (2.15)

The coefficient sim(i, j) of Eq. (2.15) is called the Jaccard coefficient and is popularly
referenced in the literature.

When both symmetric and asymmetric binary attributes occur in the same data set,
the mixed attributes approach described in Section 2.4.6 can be applied.

Example 2.18 Dissimilarity between binary attributes. Suppose that a patient record table (Table 2.4)
contains the attributes name, gender, fever, cough, test-1, test-2, test-3, and test-4, where
name is an object identifier, gender is a symmetric attribute, and the remaining attributes
are asymmetric binary.

For asymmetric attribute values, let the values Y (yes) and P (positive) be set to 1,
and the value N (no or negative) be set to 0. Suppose that the distance between objects

Table 2.4 Relational Table Where Patients Are Described by Binary Attributes

name gender fever cough test-1 test-2 test-3 test-4

Jack M Y N P N N N

Jim M Y Y N N N N

Mary F Y N P N P N
...

...
...

...
...

...
...

...

72 Chapter 2 Getting to Know Your Data

(patients) is computed based only on the asymmetric attributes. According to Eq. (2.14),
the distance between each pair of the three patients—Jack, Mary, and Jim—is

d(Jack, Jim) = 1 + 1

1 + 1 + 1
= 0.67,

d(Jack, Mary) = 0 + 1

2 + 0 + 1
= 0.33,

d(Jim, Mary) = 1 + 2

1 + 1 + 2
= 0.75.

These measurements suggest that Jim and Mary are unlikely to have a similar disease
because they have the highest dissimilarity value among the three pairs. Of the three
patients, Jack and Mary are the most likely to have a similar disease.

2.4.4 Dissimilarity of Numeric Data: Minkowski Distance

In this section, we describe distance measures that are commonly used for computing
the dissimilarity of objects described by numeric attributes. These measures include the
Euclidean, Manhattan, and Minkowski distances.

In some cases, the data are normalized before applying distance calculations. This
involves transforming the data to fall within a smaller or common range, such as [−1,1]
or [0.0, 1.0]. Consider a height attribute, for example, which could be measured in either
meters or inches. In general, expressing an attribute in smaller units will lead to a larger
range for that attribute, and thus tend to give such attributes greater effect or “weight.”
Normalizing the data attempts to give all attributes an equal weight. It may or may not be
useful in a particular application. Methods for normalizing data are discussed in detail
in Chapter 3 on data preprocessing.

The most popular distance measure is Euclidean distance (i.e., straight line or
“as the crow flies”). Let i = (xi1, xi2, . . . , xip) and j = (xj1, xj2, . . . , xjp) be two objects
described by p numeric attributes. The Euclidean distance between objects i and j is
defined as

d(i, j) =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + ·· ·+ (xip − xjp)2. (2.16)

Another well-known measure is the Manhattan (or city block) distance, named so
because it is the distance in blocks between any two points in a city (such as 2 blocks
down and 3 blocks over for a total of 5 blocks). It is defined as

d(i, j) = |xi1 − xj1| + |xi2 − xj2| + · · · + |xip − xjp|. (2.17)

Both the Euclidean and the Manhattan distance satisfy the following mathematical
properties:

Non-negativity: d(i, j) ≥ 0: Distance is a non-negative number.

Identity of indiscernibles: d(i, i) = 0: The distance of an object to itself is 0.

2.4 Measuring Data Similarity and Dissimilarity 73

Symmetry: d(i, j) = d(j, i): Distance is a symmetric function.

Triangle inequality: d(i, j) ≤ d(i, k) + d(k, j): Going directly from object i to object j
in space is no more than making a detour over any other object k.

A measure that satisfies these conditions is known as metric. Please note that the
non-negativity property is implied by the other three properties.

Example 2.19 Euclidean distance and Manhattan distance. Let x1 = (1, 2) and x2 = (3, 5) repre-
sent two objects as shown in Figure 2.23. The Euclidean distance between the two is√

22 + 32 = 3.61. The Manhattan distance between the two is 2 + 3 = 5.

Minkowski distance is a generalization of the Euclidean and Manhattan distances.
It is defined as

d(i, j) = h
√

|xi1 − xj1|h + |xi2 − xj2|h + ·· · + |xip − xjp|h, (2.18)

where h is a real number such that h ≥ 1. (Such a distance is also called Lp norm in
some literature, where the symbol p refers to our notation of h. We have kept p as
the number of attributes to be consistent with the rest of this chapter.) It represents
the Manhattan distance when h = 1 (i.e., L1 norm) and Euclidean distance when h = 2
(i.e., L2 norm).

The supremum distance (also referred to as Lmax, L∞ norm and as the Chebyshev
distance) is a generalization of the Minkowski distance for h → ∞. To compute it, we
find the attribute f that gives the maximum difference in values between the two objects.
This difference is the supremum distance, defined more formally as:

d(i, j) = lim
h→∞

⎛
⎝ p∑

f =1

|xif − xjf |h
⎞
⎠

1
h

= p
max

f
|xif − xjf |. (2.19)

The L∞ norm is also known as the uniform norm.

1 2

2

3

5

4

3
3

2

1

x2 = (3, 5)

x1 = (1, 2)

Euclidean distance
= (22 + 32)1/2 = 3.61

Manhattan distance
= 2 + 3 = 5

Supremum distance
= 5 – 2 = 3

Figure 2.23 Euclidean, Manhattan, and supremum distances between two objects.

74 Chapter 2 Getting to Know Your Data

Example 2.20 Supremum distance. Let’s use the same two objects, x1 = (1, 2) and x2 = (3, 5), as in
Figure 2.23. The second attribute gives the greatest difference between values for the
objects, which is 5 − 2 = 3. This is the supremum distance between both objects.

If each attribute is assigned a weight according to its perceived importance, the
weighted Euclidean distance can be computed as

d(i, j) =
√

w1|xi1 − xj1|2 + w2|xi2 − xj2|2 + ·· · + wm|xip − xjp|2. (2.20)

Weighting can also be applied to other distance measures as well.

2.4.5 Proximity Measures for Ordinal Attributes

The values of an ordinal attribute have a meaningful order or ranking about them,
yet the magnitude between successive values is unknown (Section 2.1.4). An exam-
ple includes the sequence small, medium, large for a size attribute. Ordinal attributes
may also be obtained from the discretization of numeric attributes by splitting the value
range into a finite number of categories. These categories are organized into ranks. That
is, the range of a numeric attribute can be mapped to an ordinal attribute f having Mf

states. For example, the range of the interval-scaled attribute temperature (in Celsius)
can be organized into the following states: −30 to −10, −10 to 10, 10 to 30, repre-
senting the categories cold temperature, moderate temperature, and warm temperature,
respectively. Let M represent the number of possible states that an ordinal attribute can
have. These ordered states define the ranking 1, . . . , Mf .

“How are ordinal attributes handled?” The treatment of ordinal attributes is
quite similar to that of numeric attributes when computing dissimilarity between
objects. Suppose that f is an attribute from a set of ordinal attributes describing
n objects. The dissimilarity computation with respect to f involves the following
steps:

1. The value of f for the ith object is xif , and f has Mf ordered states, representing the
ranking 1, . . . , Mf . Replace each xif by its corresponding rank, rif ∈ {1, . . . , Mf }.

2. Since each ordinal attribute can have a different number of states, it is often
necessary to map the range of each attribute onto [0.0, 1.0] so that each attribute
has equal weight. We perform such data normalization by replacing the rank rif

of the ith object in the f th attribute by

zif = rif − 1

Mf − 1
. (2.21)

3. Dissimilarity can then be computed using any of the distance measures described
in Section 2.4.4 for numeric attributes, using zif to represent the f value for the ith
object.

2.4 Measuring Data Similarity and Dissimilarity 75

Example 2.21 Dissimilarity between ordinal attributes. Suppose that we have the sample data shown
earlier in Table 2.2, except that this time only the object-identifier and the continuous
ordinal attribute, test-2, are available. There are three states for test-2: fair, good, and
excellent, that is, Mf = 3. For step 1, if we replace each value for test-2 by its rank, the
four objects are assigned the ranks 3, 1, 2, and 3, respectively. Step 2 normalizes the
ranking by mapping rank 1 to 0.0, rank 2 to 0.5, and rank 3 to 1.0. For step 3, we can
use, say, the Euclidean distance (Eq. 2.16), which results in the following dissimilarity
matrix:

⎡
⎢⎢⎢⎣

0

1.0 0

0.5 0.5 0

0 1.0 0.5 0

⎤
⎥⎥⎥⎦ .

Therefore, objects 1 and 2 are the most dissimilar, as are objects 2 and 4 (i.e., d(2,1) =
1.0 and d(4,2) = 1.0). This makes intuitive sense since objects 1 and 4 are both excellent.
Object 2 is fair, which is at the opposite end of the range of values for test-2.

Similarity values for ordinal attributes can be interpreted from dissimilarity as
sim(i, j) = 1 − d(i, j).

2.4.6 Dissimilarity for Attributes of Mixed Types

Sections 2.4.2 through 2.4.5 discussed how to compute the dissimilarity between objects
described by attributes of the same type, where these types may be either nominal, sym-
metric binary, asymmetric binary, numeric, or ordinal. However, in many real databases,
objects are described by a mixture of attribute types. In general, a database can contain
all of these attribute types.

“So, how can we compute the dissimilarity between objects of mixed attribute types?”
One approach is to group each type of attribute together, performing separate data
mining (e.g., clustering) analysis for each type. This is feasible if these analyses derive
compatible results. However, in real applications, it is unlikely that a separate analysis
per attribute type will generate compatible results.

A more preferable approach is to process all attribute types together, performing a
single analysis. One such technique combines the different attributes into a single dis-
similarity matrix, bringing all of the meaningful attributes onto a common scale of the
interval [0.0, 1.0].

Suppose that the data set contains p attributes of mixed type. The dissimilarity d(i, j)
between objects i and j is defined as

d(i, j) =
∑p

f =1 δ
(f)
ij d

(f)
ij∑p

f =1 δ
(f)
ij

, (2.22)

76 Chapter 2 Getting to Know Your Data

where the indicator δ
(f)
ij = 0 if either (1) xif or xjf is missing (i.e., there is no mea-

surement of attribute f for object i or object j), or (2) xif = xjf = 0 and attribute

f is asymmetric binary; otherwise, δ
(f)
ij = 1. The contribution of attribute f to the

dissimilarity between i and j (i.e., d
(f)
ij) is computed dependent on its type:

If f is numeric: d
(f)
ij = |xif −xjf |

maxhxhf −minhxhf
, where h runs over all nonmissing objects for

attribute f .

If f is nominal or binary: d
(f)
ij = 0 if xif = xjf ; otherwise, d

(f)
ij = 1.

If f is ordinal: compute the ranks rif and zif = rif −1
Mf −1 , and treat zif as numeric.

These steps are identical to what we have already seen for each of the individual
attribute types. The only difference is for numeric attributes, where we normalize so
that the values map to the interval [0.0, 1.0]. Thus, the dissimilarity between objects
can be computed even when the attributes describing the objects are of different
types.

Example 2.22 Dissimilarity between attributes of mixed type. Let’s compute a dissimilarity matrix
for the objects in Table 2.2. Now we will consider all of the attributes, which are of
different types. In Examples 2.17 and 2.21, we worked out the dissimilarity matrices
for each of the individual attributes. The procedures we followed for test-1 (which is
nominal) and test-2 (which is ordinal) are the same as outlined earlier for processing
attributes of mixed types. Therefore, we can use the dissimilarity matrices obtained for
test-1 and test-2 later when we compute Eq. (2.22). First, however, we need to compute
the dissimilarity matrix for the third attribute, test-3 (which is numeric). That is, we

must compute d(3)
ij . Following the case for numeric attributes, we let maxhxh = 64 and

minhxh = 22. The difference between the two is used in Eq. (2.22) to normalize the
values of the dissimilarity matrix. The resulting dissimilarity matrix for test-3 is

⎡
⎢⎢⎢⎣

0

0.55 0

0.45 1.00 0

0.40 0.14 0.86 0

⎤
⎥⎥⎥⎦ .

We can now use the dissimilarity matrices for the three attributes in our computation of

Eq. (2.22). The indicator δ
(f)
ij = 1 for each of the three attributes, f . We get, for example,

d(3, 1) = 1(1)+1(0.50)+1(0.45)
3 = 0.65. The resulting dissimilarity matrix obtained for the

2.4 Measuring Data Similarity and Dissimilarity 77

data described by the three attributes of mixed types is:

⎡
⎢⎢⎢⎣

0

0.85 0

0.65 0.83 0

0.13 0.71 0.79 0

⎤
⎥⎥⎥⎦ .

From Table 2.2, we can intuitively guess that objects 1 and 4 are the most similar, based
on their values for test-1 and test-2. This is confirmed by the dissimilarity matrix, where
d(4, 1) is the lowest value for any pair of different objects. Similarly, the matrix indicates
that objects 1 and 2 are the least similar.

2.4.7 Cosine Similarity

A document can be represented by thousands of attributes, each recording the frequency
of a particular word (such as a keyword) or phrase in the document. Thus, each docu-
ment is an object represented by what is called a term-frequency vector. For example, in
Table 2.5, we see that Document1 contains five instances of the word team, while hockey
occurs three times. The word coach is absent from the entire document, as indicated by
a count value of 0. Such data can be highly asymmetric.

Term-frequency vectors are typically very long and sparse (i.e., they have many 0 val-
ues). Applications using such structures include information retrieval, text document
clustering, biological taxonomy, and gene feature mapping. The traditional distance
measures that we have studied in this chapter do not work well for such sparse numeric
data. For example, two term-frequency vectors may have many 0 values in common,
meaning that the corresponding documents do not share many words, but this does not
make them similar. We need a measure that will focus on the words that the two docu-
ments do have in common, and the occurrence frequency of such words. In other words,
we need a measure for numeric data that ignores zero-matches.

Cosine similarity is a measure of similarity that can be used to compare docu-
ments or, say, give a ranking of documents with respect to a given vector of query
words. Let x and y be two vectors for comparison. Using the cosine measure as a

Table 2.5 Document Vector or Term-Frequency Vector

Document team coach hockey baseball soccer penalty score win loss season

Document1 5 0 3 0 2 0 0 2 0 0

Document2 3 0 2 0 1 1 0 1 0 1

Document3 0 7 0 2 1 0 0 3 0 0

Document4 0 1 0 0 1 2 2 0 3 0

78 Chapter 2 Getting to Know Your Data

similarity function, we have

sim(x, y) = x · y
||x||||y|| , (2.23)

where ||x|| is the Euclidean norm of vector x = (x1, x2, . . . , xp), defined as√
x2

1 + x2
2 + ·· · + x2

p . Conceptually, it is the length of the vector. Similarly, ||y|| is the

Euclidean norm of vector y. The measure computes the cosine of the angle between vec-
tors x and y. A cosine value of 0 means that the two vectors are at 90 degrees to each
other (orthogonal) and have no match. The closer the cosine value to 1, the smaller the
angle and the greater the match between vectors. Note that because the cosine similarity
measure does not obey all of the properties of Section 2.4.4 defining metric measures, it
is referred to as a nonmetric measure.

Example 2.23 Cosine similarity between two term-frequency vectors. Suppose that x and y are the
first two term-frequency vectors in Table 2.5. That is, x = (5,0,3,0,2,0,0,2,0,0) and
y = (3,0,2,0,1,1,0,1,0,1). How similar are x and y? Using Eq. (2.23) to compute the
cosine similarity between the two vectors, we get:

xt · y = 5 × 3 + 0 × 0 + 3 × 2 + 0 × 0 + 2 × 1 + 0 × 1 + 0 × 0 + 2 × 1

+ 0 × 0 + 0 × 1 = 25

||x|| =
√

52 + 02 + 32 + 02 + 22 + 02 + 02 + 22 + 02 + 02 = 6.48

||y|| =
√

32 + 02 + 22 + 02 + 12 + 12 + 02 + 12 + 02 + 12 = 4.12

sim(x, y) = 0.94

Therefore, if we were using the cosine similarity measure to compare these documents,
they would be considered quite similar.

When attributes are binary-valued, the cosine similarity function can be interpreted
in terms of shared features or attributes. Suppose an object x possesses the ith attribute
if xi = 1. Then xt · y is the number of attributes possessed (i.e., shared) by both x and
y, and |x||y| is the geometric mean of the number of attributes possessed by x and the
number possessed by y. Thus, sim(x, y) is a measure of relative possession of common
attributes.

A simple variation of cosine similarity for the preceding scenario is

sim(x, y) = x · y
x · x + y · y − x · y

, (2.24)

which is the ratio of the number of attributes shared by x and y to the number of
attributes possessed by x or y. This function, known as the Tanimoto coefficient or
Tanimoto distance, is frequently used in information retrieval and biology taxonomy.

2.6 Exercises 79

2.5 Summary

Data sets are made up of data objects. A data object represents an entity. Data objects
are described by attributes. Attributes can be nominal, binary, ordinal, or numeric.

The values of a nominal (or categorical) attribute are symbols or names of things,
where each value represents some kind of category, code, or state.

Binary attributes are nominal attributes with only two possible states (such as 1 and
0 or true and false). If the two states are equally important, the attribute is symmetric;
otherwise it is asymmetric.

An ordinal attribute is an attribute with possible values that have a meaningful order
or ranking among them, but the magnitude between successive values is not known.

A numeric attribute is quantitative (i.e., it is a measurable quantity) represented
in integer or real values. Numeric attribute types can be interval-scaled or ratio-
scaled. The values of an interval-scaled attribute are measured in fixed and equal
units. Ratio-scaled attributes are numeric attributes with an inherent zero-point.
Measurements are ratio-scaled in that we can speak of values as being an order of
magnitude larger than the unit of measurement.

Basic statistical descriptions provide the analytical foundation for data preprocess-
ing. The basic statistical measures for data summarization include mean, weighted
mean, median, and mode for measuring the central tendency of data; and range, quan-
tiles, quartiles, interquartile range, variance, and standard deviation for measuring the
dispersion of data. Graphical representations (e.g., boxplots, quantile plots, quantile–
quantile plots, histograms, and scatter plots) facilitate visual inspection of the data and
are thus useful for data preprocessing and mining.

Data visualization techniques may be pixel-oriented, geometric-based, icon-based, or
hierarchical. These methods apply to multidimensional relational data. Additional
techniques have been proposed for the visualization of complex data, such as text
and social networks.

Measures of object similarity and dissimilarity are used in data mining applications
such as clustering, outlier analysis, and nearest-neighbor classification. Such mea-
sures of proximity can be computed for each attribute type studied in this chapter,
or for combinations of such attributes. Examples include the Jaccard coefficient for
asymmetric binary attributes and Euclidean, Manhattan, Minkowski, and supremum
distances for numeric attributes. For applications involving sparse numeric data vec-
tors, such as term-frequency vectors, the cosine measure and the Tanimoto coefficient
are often used in the assessment of similarity.

2.6 Exercises

2.1 Give three additional commonly used statistical measures that are not already illus-
trated in this chapter for the characterization of data dispersion. Discuss how they can
be computed efficiently in large databases.

80 Chapter 2 Getting to Know Your Data

2.2 Suppose that the data for analysis includes the attribute age. The age values for the data
tuples are (in increasing order) 13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30,
33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

(a) What is the mean of the data? What is the median?

(b) What is the mode of the data? Comment on the data’s modality (i.e., bimodal,
trimodal, etc.).

(c) What is the midrange of the data?

(d) Can you find (roughly) the first quartile (Q1) and the third quartile (Q3) of the data?

(e) Give the five-number summary of the data.

(f) Show a boxplot of the data.

(g) How is a quantile–quantile plot different from a quantile plot?

2.3 Suppose that the values for a given set of data are grouped into intervals. The intervals
and corresponding frequencies are as follows:

age frequency

1–5 200

6–15 450

16–20 300

21–50 1500

51–80 700

81–110 44

Compute an approximate median value for the data.

2.4 Suppose that a hospital tested the age and body fat data for 18 randomly selected adults
with the following results:

age 23 23 27 27 39 41 47 49 50

%fat 9.5 26.5 7.8 17.8 31.4 25.9 27.4 27.2 31.2

age 52 54 54 56 57 58 58 60 61

%fat 34.6 42.5 28.8 33.4 30.2 34.1 32.9 41.2 35.7

(a) Calculate the mean, median, and standard deviation of age and %fat.

(b) Draw the boxplots for age and %fat.

(c) Draw a scatter plot and a q-q plot based on these two variables.

2.5 Briefly outline how to compute the dissimilarity between objects described by the
following:

(a) Nominal attributes

(b) Asymmetric binary attributes

2.7 Bibliographic Notes 81

(c) Numeric attributes

(d) Term-frequency vectors

2.6 Given two objects represented by the tuples (22, 1, 42, 10) and (20, 0, 36, 8):

(a) Compute the Euclidean distance between the two objects.

(b) Compute the Manhattan distance between the two objects.

(c) Compute the Minkowski distance between the two objects, using q = 3.

(d) Compute the supremum distance between the two objects.

2.7 The median is one of the most important holistic measures in data analysis. Pro-
pose several methods for median approximation. Analyze their respective complexity
under different parameter settings and decide to what extent the real value can be
approximated. Moreover, suggest a heuristic strategy to balance between accuracy and
complexity and then apply it to all methods you have given.

2.8 It is important to define or select similarity measures in data analysis. However, there
is no commonly accepted subjective similarity measure. Results can vary depending on
the similarity measures used. Nonetheless, seemingly different similarity measures may
be equivalent after some transformation.

Suppose we have the following 2-D data set:

A1 A2

x1 1.5 1.7

x2 2 1.9

x3 1.6 1.8

x4 1.2 1.5

x5 1.5 1.0

(a) Consider the data as 2-D data points. Given a new data point, x = (1.4,1.6) as a
query, rank the database points based on similarity with the query using Euclidean
distance, Manhattan distance, supremum distance, and cosine similarity.

(b) Normalize the data set to make the norm of each data point equal to 1. Use Euclidean
distance on the transformed data to rank the data points.

2.7 Bibliographic Notes

Methods for descriptive data summarization have been studied in the statistics literature
long before the onset of computers. Good summaries of statistical descriptive data min-
ing methods include Freedman, Pisani, and Purves [FPP07] and Devore [Dev95]. For

82 Chapter 2 Getting to Know Your Data

statistics-based visualization of data using boxplots, quantile plots, quantile–quantile
plots, scatter plots, and loess curves, see Cleveland [Cle93].

Pioneering work on data visualization techniques is described in The Visual Dis-
play of Quantitative Information [Tuf83], Envisioning Information [Tuf90], and Visual
Explanations: Images and Quantities, Evidence and Narrative [Tuf97], all by Tufte, in
addition to Graphics and Graphic Information Processing by Bertin [Ber81], Visualizing
Data by Cleveland [Cle93], and Information Visualization in Data Mining and Knowledge
Discovery edited by Fayyad, Grinstein, and Wierse [FGW01].

Major conferences and symposiums on visualization include ACM Human Factors
in Computing Systems (CHI), Visualization, and the International Symposium on Infor-
mation Visualization. Research on visualization is also published in Transactions on
Visualization and Computer Graphics, Journal of Computational and Graphical Statistics,
and IEEE Computer Graphics and Applications.

Many graphical user interfaces and visualization tools have been developed and can
be found in various data mining products. Several books on data mining (e.g., Data
Mining Solutions by Westphal and Blaxton [WB98]) present many good examples and
visual snapshots. For a survey of visualization techniques, see “Visual techniques for
exploring databases” by Keim [Kei97].

Similarity and distance measures among various variables have been introduced in
many textbooks that study cluster analysis, including Hartigan [Har75]; Jain and Dubes
[JD88]; Kaufman and Rousseeuw [KR90]; and Arabie, Hubert, and de Soete [AHS96].
Methods for combining attributes of different types into a single dissimilarity matrix
were introduced by Kaufman and Rousseeuw [KR90].

3Data Preprocessing

Today’s real-world databases are highly susceptible to noisy, missing, and inconsistent data
due to their typically huge size (often several gigabytes or more) and their likely origin
from multiple, heterogenous sources. Low-quality data will lead to low-quality mining
results. “How can the data be preprocessed in order to help improve the quality of the data
and, consequently, of the mining results? How can the data be preprocessed so as to improve
the efficiency and ease of the mining process?”

There are several data preprocessing techniques. Data cleaning can be applied to
remove noise and correct inconsistencies in data. Data integration merges data from
multiple sources into a coherent data store such as a data warehouse. Data reduction
can reduce data size by, for instance, aggregating, eliminating redundant features, or
clustering. Data transformations (e.g., normalization) may be applied, where data are
scaled to fall within a smaller range like 0.0 to 1.0. This can improve the accuracy and
efficiency of mining algorithms involving distance measurements. These techniques are
not mutually exclusive; they may work together. For example, data cleaning can involve
transformations to correct wrong data, such as by transforming all entries for a date field
to a common format.

In Chapter 2, we learned about the different attribute types and how to use basic
statistical descriptions to study data characteristics. These can help identify erroneous
values and outliers, which will be useful in the data cleaning and integration steps.
Data processing techniques, when applied before mining, can substantially improve the
overall quality of the patterns mined and/or the time required for the actual mining.

In this chapter, we introduce the basic concepts of data preprocessing in Section 3.1.
The methods for data preprocessing are organized into the following categories: data
cleaning (Section 3.2), data integration (Section 3.3), data reduction (Section 3.4), and
data transformation (Section 3.5).

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques 83

84 Chapter 3 Data Preprocessing

3.1 Data Preprocessing: An Overview

This section presents an overview of data preprocessing. Section 3.1.1 illustrates the
many elements defining data quality. This provides the incentive behind data prepro-
cessing. Section 3.1.2 outlines the major tasks in data preprocessing.

3.1.1 Data Quality: Why Preprocess the Data?

Data have quality if they satisfy the requirements of the intended use. There are many
factors comprising data quality, including accuracy, completeness, consistency, timeliness,
believability, and interpretability.

Imagine that you are a manager at AllElectronics and have been charged with ana-
lyzing the company’s data with respect to your branch’s sales. You immediately set out
to perform this task. You carefully inspect the company’s database and data warehouse,
identifying and selecting the attributes or dimensions (e.g., item, price, and units sold)
to be included in your analysis. Alas! You notice that several of the attributes for various
tuples have no recorded value. For your analysis, you would like to include informa-
tion as to whether each item purchased was advertised as on sale, yet you discover that
this information has not been recorded. Furthermore, users of your database system
have reported errors, unusual values, and inconsistencies in the data recorded for some
transactions. In other words, the data you wish to analyze by data mining techniques are
incomplete (lacking attribute values or certain attributes of interest, or containing only
aggregate data); inaccurate or noisy (containing errors, or values that deviate from the
expected); and inconsistent (e.g., containing discrepancies in the department codes used
to categorize items). Welcome to the real world!

This scenario illustrates three of the elements defining data quality: accuracy, com-
pleteness, and consistency. Inaccurate, incomplete, and inconsistent data are common-
place properties of large real-world databases and data warehouses. There are many
possible reasons for inaccurate data (i.e., having incorrect attribute values). The data col-
lection instruments used may be faulty. There may have been human or computer errors
occurring at data entry. Users may purposely submit incorrect data values for manda-
tory fields when they do not wish to submit personal information (e.g., by choosing
the default value “January 1” displayed for birthday). This is known as disguised missing
data. Errors in data transmission can also occur. There may be technology limitations
such as limited buffer size for coordinating synchronized data transfer and consump-
tion. Incorrect data may also result from inconsistencies in naming conventions or data
codes, or inconsistent formats for input fields (e.g., date). Duplicate tuples also require
data cleaning.

Incomplete data can occur for a number of reasons. Attributes of interest may not
always be available, such as customer information for sales transaction data. Other data
may not be included simply because they were not considered important at the time
of entry. Relevant data may not be recorded due to a misunderstanding or because of
equipment malfunctions. Data that were inconsistent with other recorded data may

3.1 Data Preprocessing: An Overview 85

have been deleted. Furthermore, the recording of the data history or modifications may
have been overlooked. Missing data, particularly for tuples with missing values for some
attributes, may need to be inferred.

Recall that data quality depends on the intended use of the data. Two different users
may have very different assessments of the quality of a given database. For example, a
marketing analyst may need to access the database mentioned before for a list of cus-
tomer addresses. Some of the addresses are outdated or incorrect, yet overall, 80% of
the addresses are accurate. The marketing analyst considers this to be a large customer
database for target marketing purposes and is pleased with the database’s accuracy,
although, as sales manager, you found the data inaccurate.

Timeliness also affects data quality. Suppose that you are overseeing the distribu-
tion of monthly sales bonuses to the top sales representatives at AllElectronics. Several
sales representatives, however, fail to submit their sales records on time at the end of
the month. There are also a number of corrections and adjustments that flow in after
the month’s end. For a period of time following each month, the data stored in the
database are incomplete. However, once all of the data are received, it is correct. The fact
that the month-end data are not updated in a timely fashion has a negative impact on
the data quality.

Two other factors affecting data quality are believability and interpretability. Believ-
ability reflects how much the data are trusted by users, while interpretability reflects
how easy the data are understood. Suppose that a database, at one point, had several
errors, all of which have since been corrected. The past errors, however, had caused
many problems for sales department users, and so they no longer trust the data. The
data also use many accounting codes, which the sales department does not know how to
interpret. Even though the database is now accurate, complete, consistent, and timely,
sales department users may regard it as of low quality due to poor believability and
interpretability.

3.1.2 Major Tasks in Data Preprocessing

In this section, we look at the major steps involved in data preprocessing, namely, data
cleaning, data integration, data reduction, and data transformation.

Data cleaning routines work to “clean” the data by filling in missing values, smooth-
ing noisy data, identifying or removing outliers, and resolving inconsistencies. If users
believe the data are dirty, they are unlikely to trust the results of any data mining that has
been applied. Furthermore, dirty data can cause confusion for the mining procedure,
resulting in unreliable output. Although most mining routines have some procedures
for dealing with incomplete or noisy data, they are not always robust. Instead, they may
concentrate on avoiding overfitting the data to the function being modeled. Therefore,
a useful preprocessing step is to run your data through some data cleaning routines.
Section 3.2 discusses methods for data cleaning.

Getting back to your task at AllElectronics, suppose that you would like to include
data from multiple sources in your analysis. This would involve integrating multiple
databases, data cubes, or files (i.e., data integration). Yet some attributes representing a

86 Chapter 3 Data Preprocessing

given concept may have different names in different databases, causing inconsistencies
and redundancies. For example, the attribute for customer identification may be referred
to as customer id in one data store and cust id in another. Naming inconsistencies may
also occur for attribute values. For example, the same first name could be registered as
“Bill” in one database, “William” in another, and “B.” in a third. Furthermore, you sus-
pect that some attributes may be inferred from others (e.g., annual revenue). Having
a large amount of redundant data may slow down or confuse the knowledge discov-
ery process. Clearly, in addition to data cleaning, steps must be taken to help avoid
redundancies during data integration. Typically, data cleaning and data integration are
performed as a preprocessing step when preparing data for a data warehouse. Addi-
tional data cleaning can be performed to detect and remove redundancies that may have
resulted from data integration.

“Hmmm,” you wonder, as you consider your data even further. “The data set I have
selected for analysis is HUGE, which is sure to slow down the mining process. Is there a
way I can reduce the size of my data set without jeopardizing the data mining results?”
Data reduction obtains a reduced representation of the data set that is much smaller in
volume, yet produces the same (or almost the same) analytical results. Data reduction
strategies include dimensionality reduction and numerosity reduction.

In dimensionality reduction, data encoding schemes are applied so as to obtain a
reduced or “compressed” representation of the original data. Examples include data
compression techniques (e.g., wavelet transforms and principal components analysis),
attribute subset selection (e.g., removing irrelevant attributes), and attribute construction
(e.g., where a small set of more useful attributes is derived from the original set).

In numerosity reduction, the data are replaced by alternative, smaller representa-
tions using parametric models (e.g., regression or log-linear models) or nonparametric
models (e.g., histograms, clusters, sampling, or data aggregation). Data reduction is the
topic of Section 3.4.

Getting back to your data, you have decided, say, that you would like to use a distance-
based mining algorithm for your analysis, such as neural networks, nearest-neighbor
classifiers, or clustering.1 Such methods provide better results if the data to be ana-
lyzed have been normalized, that is, scaled to a smaller range such as [0.0, 1.0]. Your
customer data, for example, contain the attributes age and annual salary. The annual
salary attribute usually takes much larger values than age. Therefore, if the attributes
are left unnormalized, the distance measurements taken on annual salary will generally
outweigh distance measurements taken on age. Discretization and concept hierarchy gen-
eration can also be useful, where raw data values for attributes are replaced by ranges or
higher conceptual levels. For example, raw values for age may be replaced by higher-level
concepts, such as youth, adult, or senior.

Discretization and concept hierarchy generation are powerful tools for data min-
ing in that they allow data mining at multiple abstraction levels. Normalization, data

1Neural networks and nearest-neighbor classifiers are described in Chapter 9, and clustering is discussed
in Chapters 10 and 11.

3.2 Data Preprocessing: An Overview 87

discretization, and concept hierarchy generation are forms of data transformation.
You soon realize such data transformation operations are additional data preprocessing
procedures that would contribute toward the success of the mining process. Data
integration and data discretization are discussed in Sections 3.5.

Figure 3.1 summarizes the data preprocessing steps described here. Note that the pre-
vious categorization is not mutually exclusive. For example, the removal of redundant
data may be seen as a form of data cleaning, as well as data reduction.

In summary, real-world data tend to be dirty, incomplete, and inconsistent. Data pre-
processing techniques can improve data quality, thereby helping to improve the accuracy
and efficiency of the subsequent mining process. Data preprocessing is an important step
in the knowledge discovery process, because quality decisions must be based on qual-
ity data. Detecting data anomalies, rectifying them early, and reducing the data to be
analyzed can lead to huge payoffs for decision making.

Data cleaning

Data integration

Data reduction
Attributes Attributes

A1 A2 A3 ... A126

T1
T2
T3
T4
...
T2000

T
ra

ns
ac

tio
ns

T
ra

ns
ac

tio
ns T1

T4
...
T1456

A1 A3 ... A115

Data transformation �2, 32, 100, 59, 48 �0.02, 0.32, 1.00, 0.59, 0.48

Figure 3.1 Forms of data preprocessing.

88 Chapter 3 Data Preprocessing

3.2 Data Cleaning

Real-world data tend to be incomplete, noisy, and inconsistent. Data cleaning (or data
cleansing) routines attempt to fill in missing values, smooth out noise while identi-
fying outliers, and correct inconsistencies in the data. In this section, you will study
basic methods for data cleaning. Section 3.2.1 looks at ways of handling missing values.
Section 3.2.2 explains data smoothing techniques. Section 3.2.3 discusses approaches to
data cleaning as a process.

3.2.1 Missing Values

Imagine that you need to analyze AllElectronics sales and customer data. You note that
many tuples have no recorded value for several attributes such as customer income. How
can you go about filling in the missing values for this attribute? Let’s look at the following
methods.

1. Ignore the tuple: This is usually done when the class label is missing (assuming the
mining task involves classification). This method is not very effective, unless the tuple
contains several attributes with missing values. It is especially poor when the percent-
age of missing values per attribute varies considerably. By ignoring the tuple, we do
not make use of the remaining attributes’ values in the tuple. Such data could have
been useful to the task at hand.

2. Fill in the missing value manually: In general, this approach is time consuming and
may not be feasible given a large data set with many missing values.

3. Use a global constant to fill in the missing value: Replace all missing attribute values
by the same constant such as a label like “Unknown” or −∞. If missing values are
replaced by, say, “Unknown,” then the mining program may mistakenly think that
they form an interesting concept, since they all have a value in common—that of
“Unknown.” Hence, although this method is simple, it is not foolproof.

4. Use a measure of central tendency for the attribute (e.g., the mean or median) to
fill in the missing value: Chapter 2 discussed measures of central tendency, which
indicate the “middle” value of a data distribution. For normal (symmetric) data dis-
tributions, the mean can be used, while skewed data distribution should employ
the median (Section 2.2). For example, suppose that the data distribution regard-
ing the income of AllElectronics customers is symmetric and that the mean income is
$56,000. Use this value to replace the missing value for income.

5. Use the attribute mean or median for all samples belonging to the same class as
the given tuple: For example, if classifying customers according to credit risk, we
may replace the missing value with the mean income value for customers in the same
credit risk category as that of the given tuple. If the data distribution for a given class
is skewed, the median value is a better choice.

6. Use the most probable value to fill in the missing value: This may be determined
with regression, inference-based tools using a Bayesian formalism, or decision tree

3.2 Data Cleaning 89

induction. For example, using the other customer attributes in your data set, you
may construct a decision tree to predict the missing values for income. Decision trees
and Bayesian inference are described in detail in Chapters 8 and 9, respectively, while
regression is introduced in Section 3.4.5.

Methods 3 through 6 bias the data—the filled-in value may not be correct. Method 6,
however, is a popular strategy. In comparison to the other methods, it uses the most
information from the present data to predict missing values. By considering the other
attributes’ values in its estimation of the missing value for income, there is a greater
chance that the relationships between income and the other attributes are preserved.

It is important to note that, in some cases, a missing value may not imply an error
in the data! For example, when applying for a credit card, candidates may be asked to
supply their driver’s license number. Candidates who do not have a driver’s license may
naturally leave this field blank. Forms should allow respondents to specify values such
as “not applicable.” Software routines may also be used to uncover other null values
(e.g., “don’t know,” “?” or “none”). Ideally, each attribute should have one or more rules
regarding the null condition. The rules may specify whether or not nulls are allowed
and/or how such values should be handled or transformed. Fields may also be inten-
tionally left blank if they are to be provided in a later step of the business process. Hence,
although we can try our best to clean the data after it is seized, good database and data
entry procedure design should help minimize the number of missing values or errors in
the first place.

3.2.2 Noisy Data

“What is noise?” Noise is a random error or variance in a measured variable. In
Chapter 2, we saw how some basic statistical description techniques (e.g., boxplots
and scatter plots), and methods of data visualization can be used to identify outliers,
which may represent noise. Given a numeric attribute such as, say, price, how can we
“smooth” out the data to remove the noise? Let’s look at the following data smoothing
techniques.

Binning: Binning methods smooth a sorted data value by consulting its “neighbor-
hood,” that is, the values around it. The sorted values are distributed into a number
of “buckets,” or bins. Because binning methods consult the neighborhood of values,
they perform local smoothing. Figure 3.2 illustrates some binning techniques. In this
example, the data for price are first sorted and then partitioned into equal-frequency
bins of size 3 (i.e., each bin contains three values). In smoothing by bin means, each
value in a bin is replaced by the mean value of the bin. For example, the mean of the
values 4, 8, and 15 in Bin 1 is 9. Therefore, each original value in this bin is replaced
by the value 9.

Similarly, smoothing by bin medians can be employed, in which each bin value
is replaced by the bin median. In smoothing by bin boundaries, the minimum and
maximum values in a given bin are identified as the bin boundaries. Each bin value
is then replaced by the closest boundary value. In general, the larger the width, the

90 Chapter 3 Data Preprocessing

Sorted data for price (in dollars): 4, 8, 15, 21, 21, 24, 25, 28, 34

Partition into (equal-frequency) bins:

Bin 1: 4, 8, 15
Bin 2: 21, 21, 24
Bin 3: 25, 28, 34

Smoothing by bin means:

Bin 1: 9, 9, 9
Bin 2: 22, 22, 22
Bin 3: 29, 29, 29

Smoothing by bin boundaries:

Bin 1: 4, 4, 15
Bin 2: 21, 21, 24
Bin 3: 25, 25, 34

Figure 3.2 Binning methods for data smoothing.

greater the effect of the smoothing. Alternatively, bins may be equal width, where the
interval range of values in each bin is constant. Binning is also used as a discretization
technique and is further discussed in Section 3.5.

Regression: Data smoothing can also be done by regression, a technique that con-
forms data values to a function. Linear regression involves finding the “best” line to
fit two attributes (or variables) so that one attribute can be used to predict the other.
Multiple linear regression is an extension of linear regression, where more than two
attributes are involved and the data are fit to a multidimensional surface. Regression
is further described in Section 3.4.5.

Outlier analysis: Outliers may be detected by clustering, for example, where similar
values are organized into groups, or “clusters.” Intuitively, values that fall outside of
the set of clusters may be considered outliers (Figure 3.3). Chapter 12 is dedicated to
the topic of outlier analysis.

Many data smoothing methods are also used for data discretization (a form of data
transformation) and data reduction. For example, the binning techniques described
before reduce the number of distinct values per attribute. This acts as a form of data
reduction for logic-based data mining methods, such as decision tree induction, which
repeatedly makes value comparisons on sorted data. Concept hierarchies are a form of
data discretization that can also be used for data smoothing. A concept hierarchy for
price, for example, may map real price values into inexpensive, moderately priced, and
expensive, thereby reducing the number of data values to be handled by the mining

3.2 Data Cleaning 91

Figure 3.3 A 2-D customer data plot with respect to customer locations in a city, showing three data
clusters. Outliers may be detected as values that fall outside of the cluster sets.

process. Data discretization is discussed in Section 3.5. Some methods of classification
(e.g., neural networks) have built-in data smoothing mechanisms. Classification is the
topic of Chapters 8 and 9.

3.2.3 Data Cleaning as a Process

Missing values, noise, and inconsistencies contribute to inaccurate data. So far, we have
looked at techniques for handling missing data and for smoothing data. “But data clean-
ing is a big job. What about data cleaning as a process? How exactly does one proceed in
tackling this task? Are there any tools out there to help?”

The first step in data cleaning as a process is discrepancy detection. Discrepancies can
be caused by several factors, including poorly designed data entry forms that have many
optional fields, human error in data entry, deliberate errors (e.g., respondents not want-
ing to divulge information about themselves), and data decay (e.g., outdated addresses).
Discrepancies may also arise from inconsistent data representations and inconsistent use
of codes. Other sources of discrepancies include errors in instrumentation devices that
record data and system errors. Errors can also occur when the data are (inadequately)
used for purposes other than originally intended. There may also be inconsistencies due
to data integration (e.g., where a given attribute can have different names in different
databases).2

2Data integration and the removal of redundant data that can result from such integration are further
described in Section 3.3.

92 Chapter 3 Data Preprocessing

“So, how can we proceed with discrepancy detection?” As a starting point, use any
knowledge you may already have regarding properties of the data. Such knowledge or
“data about data” is referred to as metadata. This is where we can make use of the know-
ledge we gained about our data in Chapter 2. For example, what are the data type and
domain of each attribute? What are the acceptable values for each attribute? The basic
statistical data descriptions discussed in Section 2.2 are useful here to grasp data trends
and identify anomalies. For example, find the mean, median, and mode values. Are the
data symmetric or skewed? What is the range of values? Do all values fall within the
expected range? What is the standard deviation of each attribute? Values that are more
than two standard deviations away from the mean for a given attribute may be flagged
as potential outliers. Are there any known dependencies between attributes? In this step,
you may write your own scripts and/or use some of the tools that we discuss further later.
From this, you may find noise, outliers, and unusual values that need investigation.

As a data analyst, you should be on the lookout for the inconsistent use of codes and
any inconsistent data representations (e.g., “2010/12/25” and “25/12/2010” for date).
Field overloading is another error source that typically results when developers squeeze
new attribute definitions into unused (bit) portions of already defined attributes (e.g.,
an unused bit of an attribute that has a value range that uses only, say, 31 out of
32 bits).

The data should also be examined regarding unique rules, consecutive rules, and null
rules. A unique rule says that each value of the given attribute must be different from
all other values for that attribute. A consecutive rule says that there can be no miss-
ing values between the lowest and highest values for the attribute, and that all values
must also be unique (e.g., as in check numbers). A null rule specifies the use of blanks,
question marks, special characters, or other strings that may indicate the null condition
(e.g., where a value for a given attribute is not available), and how such values should
be handled. As mentioned in Section 3.2.1, reasons for missing values may include
(1) the person originally asked to provide a value for the attribute refuses and/or finds
that the information requested is not applicable (e.g., a license number attribute left
blank by nondrivers); (2) the data entry person does not know the correct value; or (3)
the value is to be provided by a later step of the process. The null rule should specify how
to record the null condition, for example, such as to store zero for numeric attributes, a
blank for character attributes, or any other conventions that may be in use (e.g., entries
like “don’t know” or “?” should be transformed to blank).

There are a number of different commercial tools that can aid in the discrepancy
detection step. Data scrubbing tools use simple domain knowledge (e.g., knowledge
of postal addresses and spell-checking) to detect errors and make corrections in the
data. These tools rely on parsing and fuzzy matching techniques when cleaning data
from multiple sources. Data auditing tools find discrepancies by analyzing the data to
discover rules and relationships, and detecting data that violate such conditions. They
are variants of data mining tools. For example, they may employ statistical analysis to
find correlations, or clustering to identify outliers. They may also use the basic statistical
data descriptions presented in Section 2.2.

Some data inconsistencies may be corrected manually using external references.
For example, errors made at data entry may be corrected by performing a paper

3.3 Data Integration 93

trace. Most errors, however, will require data transformations. That is, once we find
discrepancies, we typically need to define and apply (a series of) transformations to
correct them.

Commercial tools can assist in the data transformation step. Data migration tools
allow simple transformations to be specified such as to replace the string “gender” by
“sex.” ETL (extraction/transformation/loading) tools allow users to specify transforms
through a graphical user interface (GUI). These tools typically support only a restricted
set of transforms so that, often, we may also choose to write custom scripts for this step
of the data cleaning process.

The two-step process of discrepancy detection and data transformation (to correct
discrepancies) iterates. This process, however, is error-prone and time consuming. Some
transformations may introduce more discrepancies. Some nested discrepancies may only
be detected after others have been fixed. For example, a typo such as “20010” in a year
field may only surface once all date values have been converted to a uniform format.
Transformations are often done as a batch process while the user waits without feedback.
Only after the transformation is complete can the user go back and check that no new
anomalies have been mistakenly created. Typically, numerous iterations are required
before the user is satisfied. Any tuples that cannot be automatically handled by a given
transformation are typically written to a file without any explanation regarding the rea-
soning behind their failure. As a result, the entire data cleaning process also suffers from
a lack of interactivity.

New approaches to data cleaning emphasize increased interactivity. Potter’s Wheel,
for example, is a publicly available data cleaning tool that integrates discrepancy detec-
tion and transformation. Users gradually build a series of transformations by composing
and debugging individual transformations, one step at a time, on a spreadsheet-like
interface. The transformations can be specified graphically or by providing examples.
Results are shown immediately on the records that are visible on the screen. The user
can choose to undo the transformations, so that transformations that introduced addi-
tional errors can be “erased.” The tool automatically performs discrepancy checking in
the background on the latest transformed view of the data. Users can gradually develop
and refine transformations as discrepancies are found, leading to more effective and
efficient data cleaning.

Another approach to increased interactivity in data cleaning is the development of
declarative languages for the specification of data transformation operators. Such work
focuses on defining powerful extensions to SQL and algorithms that enable users to
express data cleaning specifications efficiently.

As we discover more about the data, it is important to keep updating the metadata
to reflect this knowledge. This will help speed up data cleaning on future versions of the
same data store.

3.3 Data Integration

Data mining often requires data integration—the merging of data from multiple data
stores. Careful integration can help reduce and avoid redundancies and inconsistencies

94 Chapter 3 Data Preprocessing

in the resulting data set. This can help improve the accuracy and speed of the subsequent
data mining process.

The semantic heterogeneity and structure of data pose great challenges in data inte-
gration. How can we match schema and objects from different sources? This is the
essence of the entity identification problem, described in Section 3.3.1. Are any attributes
correlated? Section 3.3.2 presents correlation tests for numeric and nominal data. Tuple
duplication is described in Section 3.3.3. Finally, Section 3.3.4 touches on the detection
and resolution of data value conflicts.

3.3.1 Entity Identification Problem

It is likely that your data analysis task will involve data integration, which combines data
from multiple sources into a coherent data store, as in data warehousing. These sources
may include multiple databases, data cubes, or flat files.

There are a number of issues to consider during data integration. Schema integration
and object matching can be tricky. How can equivalent real-world entities from multiple
data sources be matched up? This is referred to as the entity identification problem.
For example, how can the data analyst or the computer be sure that customer id in one
database and cust number in another refer to the same attribute? Examples of metadata
for each attribute include the name, meaning, data type, and range of values permitted
for the attribute, and null rules for handling blank, zero, or null values (Section 3.2).
Such metadata can be used to help avoid errors in schema integration. The metadata
may also be used to help transform the data (e.g., where data codes for pay type in one
database may be “H” and “S” but 1 and 2 in another). Hence, this step also relates to
data cleaning, as described earlier.

When matching attributes from one database to another during integration, special
attention must be paid to the structure of the data. This is to ensure that any attribute
functional dependencies and referential constraints in the source system match those in
the target system. For example, in one system, a discount may be applied to the order,
whereas in another system it is applied to each individual line item within the order.
If this is not caught before integration, items in the target system may be improperly
discounted.

3.3.2 Redundancy and Correlation Analysis

Redundancy is another important issue in data integration. An attribute (such as annual
revenue, for instance) may be redundant if it can be “derived” from another attribute
or set of attributes. Inconsistencies in attribute or dimension naming can also cause
redundancies in the resulting data set.

Some redundancies can be detected by correlation analysis. Given two attributes,
such analysis can measure how strongly one attribute implies the other, based on the
available data. For nominal data, we use the χ2 (chi-square) test. For numeric attributes,
we can use the correlation coefficient and covariance, both of which access how one
attribute’s values vary from those of another.

3.3 Data Integration 95

χ2 Correlation Test for Nominal Data
For nominal data, a correlation relationship between two attributes, A and B, can be
discovered by a χ2 (chi-square) test. Suppose A has c distinct values, namely a1,a2, . . .ac .
B has r distinct values, namely b1,b2, . . .br . The data tuples described by A and B can be
shown as a contingency table, with the c values of A making up the columns and the r
values of B making up the rows. Let (Ai ,Bj) denote the joint event that attribute A takes
on value ai and attribute B takes on value bj , that is, where (A = ai ,B = bj). Each and
every possible (Ai ,Bj) joint event has its own cell (or slot) in the table. The χ2 value
(also known as the Pearson χ2 statistic) is computed as

χ2 =
c∑

i=1

r∑
j=1

(oij − eij)
2

eij
, (3.1)

where oij is the observed frequency (i.e., actual count) of the joint event (Ai ,Bj) and eij is
the expected frequency of (Ai ,Bj), which can be computed as

eij = count(A = ai) × count(B = bj)

n
, (3.2)

where n is the number of data tuples, count(A = ai) is the number of tuples having value
ai for A, and count(B = bj) is the number of tuples having value bj for B. The sum in
Eq. (3.1) is computed over all of the r × c cells. Note that the cells that contribute the
most to the χ2 value are those for which the actual count is very different from that
expected.

The χ2 statistic tests the hypothesis that A and B are independent, that is, there is no
correlation between them. The test is based on a significance level, with (r − 1) × (c − 1)

degrees of freedom. We illustrate the use of this statistic in Example 3.1. If the hypothesis
can be rejected, then we say that A and B are statistically correlated.

Example 3.1 Correlation analysis of nominal attributes using χ2. Suppose that a group of 1500
people was surveyed. The gender of each person was noted. Each person was polled as
to whether his or her preferred type of reading material was fiction or nonfiction. Thus,
we have two attributes, gender and preferred reading. The observed frequency (or count)
of each possible joint event is summarized in the contingency table shown in Table 3.1,
where the numbers in parentheses are the expected frequencies. The expected frequen-
cies are calculated based on the data distribution for both attributes using Eq. (3.2).

Using Eq. (3.2), we can verify the expected frequencies for each cell. For example,
the expected frequency for the cell (male, fiction) is

e11 = count(male)× count(fiction)

n
= 300 × 450

1500
= 90,

and so on. Notice that in any row, the sum of the expected frequencies must equal the
total observed frequency for that row, and the sum of the expected frequencies in any
column must also equal the total observed frequency for that column.

96 Chapter 3 Data Preprocessing

Table 3.1 Example 2.1’s 2 × 2 Contingency Table Data

male female Total

fiction 250 (90) 200 (360) 450

non fiction 50 (210) 1000 (840) 1050

Total 300 1200 1500

Note: Are gender and preferred reading correlated?

Using Eq. (3.1) for χ2 computation, we get

χ2 = (250 − 90)2

90
+ (50 − 210)2

210
+ (200 − 360)2

360
+ (1000 − 840)2

840

= 284.44 + 121.90 + 71.11 + 30.48 = 507.93.

For this 2 × 2 table, the degrees of freedom are (2 − 1)(2 − 1) = 1. For 1 degree of free-
dom, the χ2 value needed to reject the hypothesis at the 0.001 significance level is 10.828
(taken from the table of upper percentage points of the χ2 distribution, typically avail-
able from any textbook on statistics). Since our computed value is above this, we can
reject the hypothesis that gender and preferred reading are independent and conclude
that the two attributes are (strongly) correlated for the given group of people.

Correlation Coefficient for Numeric Data
For numeric attributes, we can evaluate the correlation between two attributes, A and B,
by computing the correlation coefficient (also known as Pearson’s product moment
coefficient, named after its inventer, Karl Pearson). This is

rA,B =

n∑
i=1

(ai − Ā)(bi − B̄)

nσAσB
=

n∑
i=1

(aibi) − nĀB̄

nσAσB
, (3.3)

where n is the number of tuples, ai and bi are the respective values of A and B in tuple i,
Ā and B̄ are the respective mean values of A and B, σA and σB are the respective standard
deviations of A and B (as defined in Section 2.2.2), and �(aibi) is the sum of the AB
cross-product (i.e., for each tuple, the value for A is multiplied by the value for B in that
tuple). Note that −1 ≤ rA,B ≤ +1. If rA,B is greater than 0, then A and B are positively
correlated, meaning that the values of A increase as the values of B increase. The higher
the value, the stronger the correlation (i.e., the more each attribute implies the other).
Hence, a higher value may indicate that A (or B) may be removed as a redundancy.

If the resulting value is equal to 0, then A and B are independent and there is no
correlation between them. If the resulting value is less than 0, then A and B are negatively
correlated, where the values of one attribute increase as the values of the other attribute
decrease. This means that each attribute discourages the other. Scatter plots can also be
used to view correlations between attributes (Section 2.2.3). For example, Figure 2.8’s

3.3 Data Integration 97

scatter plots respectively show positively correlated data and negatively correlated data,
while Figure 2.9 displays uncorrelated data.

Note that correlation does not imply causality. That is, if A and B are correlated, this
does not necessarily imply that A causes B or that B causes A. For example, in analyzing a
demographic database, we may find that attributes representing the number of hospitals
and the number of car thefts in a region are correlated. This does not mean that one
causes the other. Both are actually causally linked to a third attribute, namely, population.

Covariance of Numeric Data
In probability theory and statistics, correlation and covariance are two similar measures
for assessing how much two attributes change together. Consider two numeric attributes
A and B, and a set of n observations {(a1,b1), . . . ,(an,bn)}. The mean values of A and B,
respectively, are also known as the expected values on A and B, that is,

E(A) = Ā =
∑n

i=1 ai

n

and

E(B) = B̄ =
∑n

i=1 bi

n
.

The covariance between A and B is defined as

Cov(A,B) = E((A − Ā)(B − B̄)) =
∑n

i=1(ai − Ā)(bi − B̄)

n
. (3.4)

If we compare Eq. (3.3) for rA,B (correlation coefficient) with Eq. (3.4) for covariance,
we see that

rA,B = Cov(A,B)

σAσB
, (3.5)

where σA and σB are the standard deviations of A and B, respectively. It can also be
shown that

Cov(A,B) = E(A · B) − ĀB̄. (3.6)

This equation may simplify calculations.
For two attributes A and B that tend to change together, if A is larger than Ā (the

expected value of A), then B is likely to be larger than B̄ (the expected value of B).
Therefore, the covariance between A and B is positive. On the other hand, if one of
the attributes tends to be above its expected value when the other attribute is below its
expected value, then the covariance of A and B is negative.

If A and B are independent (i.e., they do not have correlation), then E(A · B) = E(A) ·
E(B). Therefore, the covariance is Cov(A,B) = E(A · B) − ĀB̄ = E(A) · E(B) − ĀB̄ = 0.
However, the converse is not true. Some pairs of random variables (attributes) may have
a covariance of 0 but are not independent. Only under some additional assumptions

98 Chapter 3 Data Preprocessing

Table 3.2 Stock Prices for AllElectronics and HighTech

Time point AllElectronics HighTech

t1 6 20

t2 5 10

t3 4 14

t4 3 5

t5 2 5

(e.g., the data follow multivariate normal distributions) does a covariance of 0 imply
independence.

Example 3.2 Covariance analysis of numeric attributes. Consider Table 3.2, which presents a sim-
plified example of stock prices observed at five time points for AllElectronics and
HighTech, a high-tech company. If the stocks are affected by the same industry trends,
will their prices rise or fall together?

E(AllElectronics) = 6 + 5 + 4 + 3 + 2

5
= 20

5
= $4

and

E(HighTech) = 20 + 10 + 14 + 5 + 5

5
= 54

5
= $10.80.

Thus, using Eq. (3.4), we compute

Cov(AllElectroncis,HighTech) = 6 × 20 + 5 × 10 + 4 × 14 + 3 × 5 + 2 × 5

5
− 4 × 10.80

= 50.2 − 43.2 = 7.

Therefore, given the positive covariance we can say that stock prices for both companies
rise together.

Variance is a special case of covariance, where the two attributes are identical (i.e., the
covariance of an attribute with itself). Variance was discussed in Chapter 2.

3.3.3 Tuple Duplication

In addition to detecting redundancies between attributes, duplication should also be
detected at the tuple level (e.g., where there are two or more identical tuples for a given
unique data entry case). The use of denormalized tables (often done to improve per-
formance by avoiding joins) is another source of data redundancy. Inconsistencies often
arise between various duplicates, due to inaccurate data entry or updating some but not
all data occurrences. For example, if a purchase order database contains attributes for

3.4 Data Reduction 99

the purchaser’s name and address instead of a key to this information in a purchaser
database, discrepancies can occur, such as the same purchaser’s name appearing with
different addresses within the purchase order database.

3.3.4 Data Value Conflict Detection and Resolution

Data integration also involves the detection and resolution of data value conflicts. For
example, for the same real-world entity, attribute values from different sources may dif-
fer. This may be due to differences in representation, scaling, or encoding. For instance,
a weight attribute may be stored in metric units in one system and British imperial
units in another. For a hotel chain, the price of rooms in different cities may involve
not only different currencies but also different services (e.g., free breakfast) and taxes.
When exchanging information between schools, for example, each school may have its
own curriculum and grading scheme. One university may adopt a quarter system, offer
three courses on database systems, and assign grades from A+ to F, whereas another
may adopt a semester system, offer two courses on databases, and assign grades from 1
to 10. It is difficult to work out precise course-to-grade transformation rules between
the two universities, making information exchange difficult.

Attributes may also differ on the abstraction level, where an attribute in one sys-
tem is recorded at, say, a lower abstraction level than the “same” attribute in another.
For example, the total sales in one database may refer to one branch of All Electronics,
while an attribute of the same name in another database may refer to the total sales
for All Electronics stores in a given region. The topic of discrepancy detection is further
described in Section 3.2.3 on data cleaning as a process.

3.4 Data Reduction

Imagine that you have selected data from the AllElectronics data warehouse for analysis.
The data set will likely be huge! Complex data analysis and mining on huge amounts of
data can take a long time, making such analysis impractical or infeasible.

Data reduction techniques can be applied to obtain a reduced representation of the
data set that is much smaller in volume, yet closely maintains the integrity of the original
data. That is, mining on the reduced data set should be more efficient yet produce the
same (or almost the same) analytical results. In this section, we first present an overview
of data reduction strategies, followed by a closer look at individual techniques.

3.4.1 Overview of Data Reduction Strategies

Data reduction strategies include dimensionality reduction, numerosity reduction, and
data compression.

Dimensionality reduction is the process of reducing the number of random variables
or attributes under consideration. Dimensionality reduction methods include wavelet

100 Chapter 3 Data Preprocessing

transforms (Section 3.4.2) and principal components analysis (Section 3.4.3), which
transform or project the original data onto a smaller space. Attribute subset selection is a
method of dimensionality reduction in which irrelevant, weakly relevant, or redundant
attributes or dimensions are detected and removed (Section 3.4.4).

Numerosity reduction techniques replace the original data volume by alternative,
smaller forms of data representation. These techniques may be parametric or non-
parametric. For parametric methods, a model is used to estimate the data, so that
typically only the data parameters need to be stored, instead of the actual data. (Out-
liers may also be stored.) Regression and log-linear models (Section 3.4.5) are examples.
Nonparametric methods for storing reduced representations of the data include his-
tograms (Section 3.4.6), clustering (Section 3.4.7), sampling (Section 3.4.8), and data
cube aggregation (Section 3.4.9).

In data compression, transformations are applied so as to obtain a reduced or “com-
pressed” representation of the original data. If the original data can be reconstructed
from the compressed data without any information loss, the data reduction is called
lossless. If, instead, we can reconstruct only an approximation of the original data, then
the data reduction is called lossy. There are several lossless algorithms for string com-
pression; however, they typically allow only limited data manipulation. Dimensionality
reduction and numerosity reduction techniques can also be considered forms of data
compression.

There are many other ways of organizing methods of data reduction. The computa-
tional time spent on data reduction should not outweigh or “erase” the time saved by
mining on a reduced data set size.

3.4.2 Wavelet Transforms

The discrete wavelet transform (DWT) is a linear signal processing technique that,
when applied to a data vector X, transforms it to a numerically different vector, X′, of
wavelet coefficients. The two vectors are of the same length. When applying this tech-
nique to data reduction, we consider each tuple as an n-dimensional data vector, that
is, X = (x1,x2, . . . ,xn), depicting n measurements made on the tuple from n database
attributes.3

“How can this technique be useful for data reduction if the wavelet transformed data are
of the same length as the original data?” The usefulness lies in the fact that the wavelet
transformed data can be truncated. A compressed approximation of the data can be
retained by storing only a small fraction of the strongest of the wavelet coefficients.
For example, all wavelet coefficients larger than some user-specified threshold can be
retained. All other coefficients are set to 0. The resulting data representation is therefore
very sparse, so that operations that can take advantage of data sparsity are computa-
tionally very fast if performed in wavelet space. The technique also works to remove
noise without smoothing out the main features of the data, making it effective for data

3In our notation, any variable representing a vector is shown in bold italic font; measurements depicting
the vector are shown in italic font.

3.4 Data Reduction 101

cleaning as well. Given a set of coefficients, an approximation of the original data can be
constructed by applying the inverse of the DWT used.

The DWT is closely related to the discrete Fourier transform (DFT), a signal process-
ing technique involving sines and cosines. In general, however, the DWT achieves better
lossy compression. That is, if the same number of coefficients is retained for a DWT and
a DFT of a given data vector, the DWT version will provide a more accurate approxima-
tion of the original data. Hence, for an equivalent approximation, the DWT requires less
space than the DFT. Unlike the DFT, wavelets are quite localized in space, contributing
to the conservation of local detail.

There is only one DFT, yet there are several families of DWTs. Figure 3.4 shows
some wavelet families. Popular wavelet transforms include the Haar-2, Daubechies-4,
and Daubechies-6. The general procedure for applying a discrete wavelet transform uses
a hierarchical pyramid algorithm that halves the data at each iteration, resulting in fast
computational speed. The method is as follows:

1. The length, L, of the input data vector must be an integer power of 2. This condition
can be met by padding the data vector with zeros as necessary (L ≥ n).

2. Each transform involves applying two functions. The first applies some data smooth-
ing, such as a sum or weighted average. The second performs a weighted difference,
which acts to bring out the detailed features of the data.

3. The two functions are applied to pairs of data points in X, that is, to all pairs of
measurements (x2i,x2i+1). This results in two data sets of length L/2. In general,
these represent a smoothed or low-frequency version of the input data and the high-
frequency content of it, respectively.

4. The two functions are recursively applied to the data sets obtained in the previous
loop, until the resulting data sets obtained are of length 2.

5. Selected values from the data sets obtained in the previous iterations are designated
the wavelet coefficients of the transformed data.

0 2 4 6

0.8

0.6

0.4

0.2

0.0

�1.0 �0.5 0.0 0.5
(a) Haar-2 (b) Daubechies-4

1.0 1.5 2.0

0.6

0.4

0.2

0.0

Figure 3.4 Examples of wavelet families. The number next to a wavelet name is the number of vanishing
moments of the wavelet. This is a set of mathematical relationships that the coefficients must
satisfy and is related to the number of coefficients.

102 Chapter 3 Data Preprocessing

Equivalently, a matrix multiplication can be applied to the input data in order to
obtain the wavelet coefficients, where the matrix used depends on the given DWT. The
matrix must be orthonormal, meaning that the columns are unit vectors and are mutu-
ally orthogonal, so that the matrix inverse is just its transpose. Although we do not have
room to discuss it here, this property allows the reconstruction of the data from the
smooth and smooth-difference data sets. By factoring the matrix used into a product of
a few sparse matrices, the resulting “fast DWT” algorithm has a complexity of O(n) for
an input vector of length n.

Wavelet transforms can be applied to multidimensional data such as a data cube. This
is done by first applying the transform to the first dimension, then to the second, and so
on. The computational complexity involved is linear with respect to the number of cells
in the cube. Wavelet transforms give good results on sparse or skewed data and on data
with ordered attributes. Lossy compression by wavelets is reportedly better than JPEG
compression, the current commercial standard. Wavelet transforms have many real-
world applications, including the compression of fingerprint images, computer vision,
analysis of time-series data, and data cleaning.

3.4.3 Principal Components Analysis

In this subsection we provide an intuitive introduction to principal components analy-
sis as a method of dimesionality reduction. A detailed theoretical explanation is beyond
the scope of this book. For additional references, please see the bibliographic notes
(Section 3.8) at the end of this chapter.

Suppose that the data to be reduced consist of tuples or data vectors described
by n attributes or dimensions. Principal components analysis (PCA; also called the
Karhunen-Loeve, or K-L, method) searches for k n-dimensional orthogonal vectors that
can best be used to represent the data, where k ≤ n. The original data are thus projected
onto a much smaller space, resulting in dimensionality reduction. Unlike attribute sub-
set selection (Section 3.4.4), which reduces the attribute set size by retaining a subset of
the initial set of attributes, PCA “combines” the essence of attributes by creating an alter-
native, smaller set of variables. The initial data can then be projected onto this smaller
set. PCA often reveals relationships that were not previously suspected and thereby
allows interpretations that would not ordinarily result.

The basic procedure is as follows:

1. The input data are normalized, so that each attribute falls within the same range. This
step helps ensure that attributes with large domains will not dominate attributes with
smaller domains.

2. PCA computes k orthonormal vectors that provide a basis for the normalized input
data. These are unit vectors that each point in a direction perpendicular to the others.
These vectors are referred to as the principal components. The input data are a linear
combination of the principal components.

3. The principal components are sorted in order of decreasing “significance” or
strength. The principal components essentially serve as a new set of axes for the data,

3.4 Data Reduction 103

X2

X1

Y1Y2

Figure 3.5 Principal components analysis. Y1 and Y2 are the first two principal components for the
given data.

providing important information about variance. That is, the sorted axes are such
that the first axis shows the most variance among the data, the second axis shows the
next highest variance, and so on. For example, Figure 3.5 shows the first two princi-
pal components, Y1 and Y2, for the given set of data originally mapped to the axes X1

and X2. This information helps identify groups or patterns within the data.

4. Because the components are sorted in decreasing order of “significance,” the data size
can be reduced by eliminating the weaker components, that is, those with low vari-
ance. Using the strongest principal components, it should be possible to reconstruct
a good approximation of the original data.

PCA can be applied to ordered and unordered attributes, and can handle sparse data
and skewed data. Multidimensional data of more than two dimensions can be han-
dled by reducing the problem to two dimensions. Principal components may be used
as inputs to multiple regression and cluster analysis. In comparison with wavelet trans-
forms, PCA tends to be better at handling sparse data, whereas wavelet transforms are
more suitable for data of high dimensionality.

3.4.4 Attribute Subset Selection

Data sets for analysis may contain hundreds of attributes, many of which may be irrel-
evant to the mining task or redundant. For example, if the task is to classify customers
based on whether or not they are likely to purchase a popular new CD at AllElectronics
when notified of a sale, attributes such as the customer’s telephone number are likely to
be irrelevant, unlike attributes such as age or music taste. Although it may be possible for
a domain expert to pick out some of the useful attributes, this can be a difficult and time-
consuming task, especially when the data’s behavior is not well known. (Hence, a reason
behind its analysis!) Leaving out relevant attributes or keeping irrelevant attributes may
be detrimental, causing confusion for the mining algorithm employed. This can result
in discovered patterns of poor quality. In addition, the added volume of irrelevant or
redundant attributes can slow down the mining process.

104 Chapter 3 Data Preprocessing

Attribute subset selection4 reduces the data set size by removing irrelevant or
redundant attributes (or dimensions). The goal of attribute subset selection is to find
a minimum set of attributes such that the resulting probability distribution of the data
classes is as close as possible to the original distribution obtained using all attributes.
Mining on a reduced set of attributes has an additional benefit: It reduces the number
of attributes appearing in the discovered patterns, helping to make the patterns easier to
understand.

“How can we find a ‘good’ subset of the original attributes?” For n attributes, there are
2n possible subsets. An exhaustive search for the optimal subset of attributes can be pro-
hibitively expensive, especially as n and the number of data classes increase. Therefore,
heuristic methods that explore a reduced search space are commonly used for attribute
subset selection. These methods are typically greedy in that, while searching through
attribute space, they always make what looks to be the best choice at the time. Their
strategy is to make a locally optimal choice in the hope that this will lead to a globally
optimal solution. Such greedy methods are effective in practice and may come close to
estimating an optimal solution.

The “best” (and “worst”) attributes are typically determined using tests of statistical
significance, which assume that the attributes are independent of one another. Many
other attribute evaluation measures can be used such as the information gain measure
used in building decision trees for classification.5

Basic heuristic methods of attribute subset selection include the techniques that
follow, some of which are illustrated in Figure 3.6.

Forward selection

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

Initial reduced set:
{}
=> {A1}
=> {A1, A4}
=> Reduced attribute set:
 {A1, A4, A6}

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

=> {A1, A3, A4, A5, A6}
=> {A1, A4, A5, A6}
=> Reduced attribute set:
 {A1, A4, A6}

Initial attribute set:
{A1, A2, A3, A4, A5, A6}

=> Reduced attribute set:
 {A1, A4, A6}

Backward elimination Decision tree induction

A4?

A1? A6?

Class 1 Class 2 Class 1 Class 2

Y N

Y N Y N

Figure 3.6 Greedy (heuristic) methods for attribute subset selection.

4In machine learning, attribute subset selection is known as feature subset selection.
5The information gain measure is described in detail in Chapter 8.

3.4 Data Reduction 105

1. Stepwise forward selection: The procedure starts with an empty set of attributes as
the reduced set. The best of the original attributes is determined and added to the
reduced set. At each subsequent iteration or step, the best of the remaining original
attributes is added to the set.

2. Stepwise backward elimination: The procedure starts with the full set of attributes.
At each step, it removes the worst attribute remaining in the set.

3. Combination of forward selection and backward elimination: The stepwise for-
ward selection and backward elimination methods can be combined so that, at each
step, the procedure selects the best attribute and removes the worst from among the
remaining attributes.

4. Decision tree induction: Decision tree algorithms (e.g., ID3, C4.5, and CART) were
originally intended for classification. Decision tree induction constructs a flowchart-
like structure where each internal (nonleaf) node denotes a test on an attribute, each
branch corresponds to an outcome of the test, and each external (leaf) node denotes a
class prediction. At each node, the algorithm chooses the “best” attribute to partition
the data into individual classes.

When decision tree induction is used for attribute subset selection, a tree is con-
structed from the given data. All attributes that do not appear in the tree are assumed
to be irrelevant. The set of attributes appearing in the tree form the reduced subset
of attributes.

The stopping criteria for the methods may vary. The procedure may employ a threshold
on the measure used to determine when to stop the attribute selection process.

In some cases, we may want to create new attributes based on others. Such attribute
construction6 can help improve accuracy and understanding of structure in high-
dimensional data. For example, we may wish to add the attribute area based on the
attributes height and width. By combining attributes, attribute construction can dis-
cover missing information about the relationships between data attributes that can be
useful for knowledge discovery.

3.4.5 Regression and Log-Linear Models: Parametric
Data Reduction

Regression and log-linear models can be used to approximate the given data. In (simple)
linear regression, the data are modeled to fit a straight line. For example, a random
variable, y (called a response variable), can be modeled as a linear function of another
random variable, x (called a predictor variable), with the equation

y = wx + b, (3.7)

where the variance of y is assumed to be constant. In the context of data mining, x and y
are numeric database attributes. The coefficients, w and b (called regression coefficients),

6In the machine learning literature, attribute construction is known as feature construction.

106 Chapter 3 Data Preprocessing

specify the slope of the line and the y-intercept, respectively. These coefficients can
be solved for by the method of least squares, which minimizes the error between the
actual line separating the data and the estimate of the line. Multiple linear regression
is an extension of (simple) linear regression, which allows a response variable, y, to be
modeled as a linear function of two or more predictor variables.

Log-linear models approximate discrete multidimensional probability distributions.
Given a set of tuples in n dimensions (e.g., described by n attributes), we can con-
sider each tuple as a point in an n-dimensional space. Log-linear models can be used
to estimate the probability of each point in a multidimensional space for a set of dis-
cretized attributes, based on a smaller subset of dimensional combinations. This allows
a higher-dimensional data space to be constructed from lower-dimensional spaces.
Log-linear models are therefore also useful for dimensionality reduction (since the
lower-dimensional points together typically occupy less space than the original data
points) and data smoothing (since aggregate estimates in the lower-dimensional space
are less subject to sampling variations than the estimates in the higher-dimensional
space).

Regression and log-linear models can both be used on sparse data, although their
application may be limited. While both methods can handle skewed data, regression
does exceptionally well. Regression can be computationally intensive when applied to
high-dimensional data, whereas log-linear models show good scalability for up to 10 or
so dimensions.

Several software packages exist to solve regression problems. Examples include SAS
(www.sas.com), SPSS (www.spss.com), and S-Plus (www.insightful.com). Another useful
resource is the book Numerical Recipes in C, by Press, Teukolsky, Vetterling, and Flannery
[PTVF07], and its associated source code.

3.4.6 Histograms

Histograms use binning to approximate data distributions and are a popular form
of data reduction. Histograms were introduced in Section 2.2.3. A histogram for an
attribute, A, partitions the data distribution of A into disjoint subsets, referred to as
buckets or bins. If each bucket represents only a single attribute–value/frequency pair, the
buckets are called singleton buckets. Often, buckets instead represent continuous ranges
for the given attribute.

Example 3.3 Histograms. The following data are a list of AllElectronics prices for commonly sold
items (rounded to the nearest dollar). The numbers have been sorted: 1, 1, 5, 5, 5,
5, 5, 8, 8, 10, 10, 10, 10, 12, 14, 14, 14, 15, 15, 15, 15, 15, 15, 18, 18, 18, 18, 18,
18, 18, 18, 20, 20, 20, 20, 20, 20, 20, 21, 21, 21, 21, 25, 25, 25, 25, 25, 28, 28, 30,
30, 30.

Figure 3.7 shows a histogram for the data using singleton buckets. To further reduce
the data, it is common to have each bucket denote a continuous value range for
the given attribute. In Figure 3.8, each bucket represents a different $10 range for
price.

3.4 Data Reduction 107

5 10

10

9

8

7

6

5

4

3

2

1

0
15 20 25 30

price ($)

co
un

t

Figure 3.7 A histogram for price using singleton buckets—each bucket represents one price–value/
frequency pair.

1–10 11–20 21–30

price ($)

co
un

t

25

20

15

10

5

0

Figure 3.8 An equal-width histogram for price, where values are aggregated so that each bucket has a
uniform width of $10.

“How are the buckets determined and the attribute values partitioned?” There are
several partitioning rules, including the following:

Equal-width: In an equal-width histogram, the width of each bucket range is
uniform (e.g., the width of $10 for the buckets in Figure 3.8).

Equal-frequency (or equal-depth): In an equal-frequency histogram, the buckets are
created so that, roughly, the frequency of each bucket is constant (i.e., each bucket
contains roughly the same number of contiguous data samples).

108 Chapter 3 Data Preprocessing

Histograms are highly effective at approximating both sparse and dense data, as
well as highly skewed and uniform data. The histograms described before for single
attributes can be extended for multiple attributes. Multidimensional histograms can cap-
ture dependencies between attributes. These histograms have been found effective in
approximating data with up to five attributes. More studies are needed regarding the
effectiveness of multidimensional histograms for high dimensionalities.

Singleton buckets are useful for storing high-frequency outliers.

3.4.7 Clustering

Clustering techniques consider data tuples as objects. They partition the objects into
groups, or clusters, so that objects within a cluster are “similar” to one another and “dis-
similar” to objects in other clusters. Similarity is commonly defined in terms of how
“close” the objects are in space, based on a distance function. The “quality” of a cluster
may be represented by its diameter, the maximum distance between any two objects in
the cluster. Centroid distance is an alternative measure of cluster quality and is defined
as the average distance of each cluster object from the cluster centroid (denoting the
“average object,” or average point in space for the cluster). Figure 3.3 showed a 2-D plot
of customer data with respect to customer locations in a city. Three data clusters are
visible.

In data reduction, the cluster representations of the data are used to replace the actual
data. The effectiveness of this technique depends on the data’s nature. It is much more
effective for data that can be organized into distinct clusters than for smeared data.

There are many measures for defining clusters and cluster quality. Clustering meth-
ods are further described in Chapters 10 and 11.

3.4.8 Sampling

Sampling can be used as a data reduction technique because it allows a large data set to
be represented by a much smaller random data sample (or subset). Suppose that a large
data set, D, contains N tuples. Let’s look at the most common ways that we could sample
D for data reduction, as illustrated in Figure 3.9.

Simple random sample without replacement (SRSWOR) of size s: This is created
by drawing s of the N tuples from D (s < N), where the probability of drawing any
tuple in D is 1/N , that is, all tuples are equally likely to be sampled.

Simple random sample with replacement (SRSWR) of size s: This is similar to
SRSWOR, except that each time a tuple is drawn from D, it is recorded and then
replaced. That is, after a tuple is drawn, it is placed back in D so that it may be drawn
again.

Cluster sample: If the tuples in D are grouped into M mutually disjoint “clusters,”
then an SRS of s clusters can be obtained, where s < M . For example, tuples in a
database are usually retrieved a page at a time, so that each page can be considered

3.4 Data Reduction 109

Cluster sample

Startified sample

Figure 3.9 Sampling can be used for data reduction.

a cluster. A reduced data representation can be obtained by applying, say, SRSWOR
to the pages, resulting in a cluster sample of the tuples. Other clustering criteria con-
veying rich semantics can also be explored. For example, in a spatial database, we
may choose to define clusters geographically based on how closely different areas are
located.

Stratified sample: If D is divided into mutually disjoint parts called strata, a stratified
sample of D is generated by obtaining an SRS at each stratum. This helps ensure a

110 Chapter 3 Data Preprocessing

representative sample, especially when the data are skewed. For example, a stratified
sample may be obtained from customer data, where a stratum is created for each cus-
tomer age group. In this way, the age group having the smallest number of customers
will be sure to be represented.

An advantage of sampling for data reduction is that the cost of obtaining a sample
is proportional to the size of the sample, s, as opposed to N , the data set size. Hence,
sampling complexity is potentially sublinear to the size of the data. Other data reduc-
tion techniques can require at least one complete pass through D. For a fixed sample
size, sampling complexity increases only linearly as the number of data dimensions,
n, increases, whereas techniques using histograms, for example, increase exponentially
in n.

When applied to data reduction, sampling is most commonly used to estimate the
answer to an aggregate query. It is possible (using the central limit theorem) to deter-
mine a sufficient sample size for estimating a given function within a specified degree
of error. This sample size, s, may be extremely small in comparison to N . Sampling is
a natural choice for the progressive refinement of a reduced data set. Such a set can be
further refined by simply increasing the sample size.

3.4.9 Data Cube Aggregation

Imagine that you have collected the data for your analysis. These data consist of the
AllElectronics sales per quarter, for the years 2008 to 2010. You are, however, interested
in the annual sales (total per year), rather than the total per quarter. Thus, the data can
be aggregated so that the resulting data summarize the total sales per year instead of per
quarter. This aggregation is illustrated in Figure 3.10. The resulting data set is smaller in
volume, without loss of information necessary for the analysis task.

Data cubes are discussed in detail in Chapter 4 on data warehousing and Chapter 5
on data cube technology. We briefly introduce some concepts here. Data cubes store

Quarter

Year 2010

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Quarter

Year 2009

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Quarter

Year 2008

Sales

Q1
Q2
Q3
Q4

$224,000
$408,000
$350,000
$586,000

Year Sales

2008
2009
2010

$1,568,000
$2,356,000
$3,594,000

Figure 3.10 Sales data for a given branch of AllElectronics for the years 2008 through 2010. On the left,
the sales are shown per quarter. On the right, the data are aggregated to provide the annual
sales.

3.5 Data Transformation and Data Discretization 111

568

A

B

C

D

750

150

50

home
entertainment

computer

phone

security

2008 2009
year

it
em

_t
yp

e

br
an

ch

2010

Figure 3.11 A data cube for sales at AllElectronics.

multidimensional aggregated information. For example, Figure 3.11 shows a data cube
for multidimensional analysis of sales data with respect to annual sales per item type
for each AllElectronics branch. Each cell holds an aggregate data value, corresponding
to the data point in multidimensional space. (For readability, only some cell values are
shown.) Concept hierarchies may exist for each attribute, allowing the analysis of data
at multiple abstraction levels. For example, a hierarchy for branch could allow branches
to be grouped into regions, based on their address. Data cubes provide fast access to
precomputed, summarized data, thereby benefiting online analytical processing as well
as data mining.

The cube created at the lowest abstraction level is referred to as the base cuboid. The
base cuboid should correspond to an individual entity of interest such as sales or cus-
tomer. In other words, the lowest level should be usable, or useful for the analysis. A cube
at the highest level of abstraction is the apex cuboid. For the sales data in Figure 3.11,
the apex cuboid would give one total—the total sales for all three years, for all item
types, and for all branches. Data cubes created for varying levels of abstraction are often
referred to as cuboids, so that a data cube may instead refer to a lattice of cuboids. Each
higher abstraction level further reduces the resulting data size. When replying to data
mining requests, the smallest available cuboid relevant to the given task should be used.
This issue is also addressed in Chapter 4.

3.5 Data Transformation and Data Discretization

This section presents methods of data transformation. In this preprocessing step, the
data are transformed or consolidated so that the resulting mining process may be more
efficient, and the patterns found may be easier to understand. Data discretization, a form
of data transformation, is also discussed.

112 Chapter 3 Data Preprocessing

3.5.1 Data Transformation Strategies Overview

In data transformation, the data are transformed or consolidated into forms appropriate
for mining. Strategies for data transformation include the following:

1. Smoothing, which works to remove noise from the data. Techniques include binning,
regression, and clustering.

2. Attribute construction (or feature construction), where new attributes are con-
structed and added from the given set of attributes to help the mining process.

3. Aggregation, where summary or aggregation operations are applied to the data. For
example, the daily sales data may be aggregated so as to compute monthly and annual
total amounts. This step is typically used in constructing a data cube for data analysis
at multiple abstraction levels.

4. Normalization, where the attribute data are scaled so as to fall within a smaller range,
such as −1.0 to 1.0, or 0.0 to 1.0.

5. Discretization, where the raw values of a numeric attribute (e.g., age) are replaced by
interval labels (e.g., 0–10, 11–20, etc.) or conceptual labels (e.g., youth, adult, senior).
The labels, in turn, can be recursively organized into higher-level concepts, resulting
in a concept hierarchy for the numeric attribute. Figure 3.12 shows a concept hierarchy
for the attribute price. More than one concept hierarchy can be defined for the same
attribute to accommodate the needs of various users.

6. Concept hierarchy generation for nominal data, where attributes such as street can
be generalized to higher-level concepts, like city or country. Many hierarchies for
nominal attributes are implicit within the database schema and can be automatically
defined at the schema definition level.

Recall that there is much overlap between the major data preprocessing tasks. The first
three of these strategies were discussed earlier in this chapter. Smoothing is a form of

($600...$800] ($800...$1000]($400...$600]($200...$400]($0...$200]

($0...$1000]

($900...
$1000]

($800...
$900]

($700...
$800]

($600...
$700]

($500...
$600]

($100...
$200]

($400...
$500]

($0...
$100]

($200...
$300]

($300...
$400]

Figure 3.12 A concept hierarchy for the attribute price, where an interval ($X . . .$Y] denotes the range
from $X (exclusive) to $Y (inclusive).

3.5 Data Transformation and Data Discretization 113

data cleaning and was addressed in Section 3.2.2. Section 3.2.3 on the data cleaning
process also discussed ETL tools, where users specify transformations to correct data
inconsistencies. Attribute construction and aggregation were discussed in Section 3.4
on data reduction. In this section, we therefore concentrate on the latter three strategies.

Discretization techniques can be categorized based on how the discretization is per-
formed, such as whether it uses class information or which direction it proceeds (i.e.,
top-down vs. bottom-up). If the discretization process uses class information, then we
say it is supervised discretization. Otherwise, it is unsupervised. If the process starts by first
finding one or a few points (called split points or cut points) to split the entire attribute
range, and then repeats this recursively on the resulting intervals, it is called top-down
discretization or splitting. This contrasts with bottom-up discretization or merging, which
starts by considering all of the continuous values as potential split-points, removes some
by merging neighborhood values to form intervals, and then recursively applies this
process to the resulting intervals.

Data discretization and concept hierarchy generation are also forms of data reduc-
tion. The raw data are replaced by a smaller number of interval or concept labels. This
simplifies the original data and makes the mining more efficient. The resulting patterns
mined are typically easier to understand. Concept hierarchies are also useful for mining
at multiple abstraction levels.

The rest of this section is organized as follows. First, normalization techniques are
presented in Section 3.5.2. We then describe several techniques for data discretization,
each of which can be used to generate concept hierarchies for numeric attributes. The
techniques include binning (Section 3.5.3) and histogram analysis (Section 3.5.4), as
well as cluster analysis, decision tree analysis, and correlation analysis (Section 3.5.5).
Finally, Section 3.5.6 describes the automatic generation of concept hierarchies for
nominal data.

3.5.2 Data Transformation by Normalization

The measurement unit used can affect the data analysis. For example, changing mea-
surement units from meters to inches for height, or from kilograms to pounds for weight,
may lead to very different results. In general, expressing an attribute in smaller units will
lead to a larger range for that attribute, and thus tend to give such an attribute greater
effect or “weight.” To help avoid dependence on the choice of measurement units, the
data should be normalized or standardized. This involves transforming the data to fall
within a smaller or common range such as [−1,1] or [0.0, 1.0]. (The terms standardize
and normalize are used interchangeably in data preprocessing, although in statistics, the
latter term also has other connotations.)

Normalizing the data attempts to give all attributes an equal weight. Normaliza-
tion is particularly useful for classification algorithms involving neural networks or
distance measurements such as nearest-neighbor classification and clustering. If using
the neural network backpropagation algorithm for classification mining (Chapter 9),
normalizing the input values for each attribute measured in the training tuples will help
speed up the learning phase. For distance-based methods, normalization helps prevent

114 Chapter 3 Data Preprocessing

attributes with initially large ranges (e.g., income) from outweighing attributes with
initially smaller ranges (e.g., binary attributes). It is also useful when given no prior
knowledge of the data.

There are many methods for data normalization. We study min-max normalization,
z-score normalization, and normalization by decimal scaling. For our discussion, let A be
a numeric attribute with n observed values, v1,v2, . . . ,vn.

Min-max normalization performs a linear transformation on the original data. Sup-
pose that minA and maxA are the minimum and maximum values of an attribute, A.
Min-max normalization maps a value, vi , of A to v′

i in the range [new minA,new maxA]
by computing

v′
i = vi − minA

maxA − minA
(new maxA − new minA) + new minA. (3.8)

Min-max normalization preserves the relationships among the original data values. It
will encounter an “out-of-bounds” error if a future input case for normalization falls
outside of the original data range for A.

Example 3.4 Min-max normalization. Suppose that the minimum and maximum values for the
attribute income are $12,000 and $98,000, respectively. We would like to map income
to the range [0.0,1.0]. By min-max normalization, a value of $73,600 for income is
transformed to 73,600−12,000

98,000−12,000 (1.0 − 0) + 0 = 0.716.

In z-score normalization (or zero-mean normalization), the values for an attribute,
A, are normalized based on the mean (i.e., average) and standard deviation of A. A value,
vi , of A is normalized to v′

i by computing

v′
i = vi − Ā

σA
, (3.9)

where Ā and σA are the mean and standard deviation, respectively, of attribute A. The
mean and standard deviation were discussed in Section 2.2, where Ā = 1

n (v1 + v2 + ·· · +
vn) and σA is computed as the square root of the variance of A (see Eq. (2.6)). This
method of normalization is useful when the actual minimum and maximum of attribute
A are unknown, or when there are outliers that dominate the min-max normalization.

Example 3.5 z-score normalization. Suppose that the mean and standard deviation of the values for
the attribute income are $54,000 and $16,000, respectively. With z-score normalization,
a value of $73,600 for income is transformed to 73,600−54,000

16,000 = 1.225.

A variation of this z-score normalization replaces the standard deviation of Eq. (3.9)
by the mean absolute deviation of A. The mean absolute deviation of A, denoted sA, is

sA = 1

n
(|v1 − Ā| + |v2 − Ā| + · · · + |vn − Ā|). (3.10)

3.5 Data Transformation and Data Discretization 115

Thus, z-score normalization using the mean absolute deviation is

v′
i = vi − Ā

sA
. (3.11)

The mean absolute deviation, sA, is more robust to outliers than the standard deviation,
σA. When computing the mean absolute deviation, the deviations from the mean (i.e.,
|xi − x̄|) are not squared; hence, the effect of outliers is somewhat reduced.

Normalization by decimal scaling normalizes by moving the decimal point of values
of attribute A. The number of decimal points moved depends on the maximum absolute
value of A. A value, vi , of A is normalized to v′

i by computing

v′
i = vi

10j
, (3.12)

where j is the smallest integer such that max(|v′
i |) < 1.

Example 3.6 Decimal scaling. Suppose that the recorded values of A range from −986 to 917. The
maximum absolute value of A is 986. To normalize by decimal scaling, we therefore
divide each value by 1000 (i.e., j = 3) so that −986 normalizes to −0.986 and 917
normalizes to 0.917.

Note that normalization can change the original data quite a bit, especially when
using z-score normalization or decimal scaling. It is also necessary to save the normaliza-
tion parameters (e.g., the mean and standard deviation if using z-score normalization)
so that future data can be normalized in a uniform manner.

3.5.3 Discretization by Binning

Binning is a top-down splitting technique based on a specified number of bins.
Section 3.2.2 discussed binning methods for data smoothing. These methods are also
used as discretization methods for data reduction and concept hierarchy generation. For
example, attribute values can be discretized by applying equal-width or equal-frequency
binning, and then replacing each bin value by the bin mean or median, as in smoothing
by bin means or smoothing by bin medians, respectively. These techniques can be applied
recursively to the resulting partitions to generate concept hierarchies.

Binning does not use class information and is therefore an unsupervised discretiza-
tion technique. It is sensitive to the user-specified number of bins, as well as the presence
of outliers.

3.5.4 Discretization by Histogram Analysis

Like binning, histogram analysis is an unsupervised discretization technique because it
does not use class information. Histograms were introduced in Section 2.2.3. A his-
togram partitions the values of an attribute, A, into disjoint ranges called buckets
or bins.

116 Chapter 3 Data Preprocessing

Various partitioning rules can be used to define histograms (Section 3.4.6). In an
equal-width histogram, for example, the values are partitioned into equal-size partitions
or ranges (e.g., earlier in Figure 3.8 for price, where each bucket has a width of $10).
With an equal-frequency histogram, the values are partitioned so that, ideally, each par-
tition contains the same number of data tuples. The histogram analysis algorithm can be
applied recursively to each partition in order to automatically generate a multilevel con-
cept hierarchy, with the procedure terminating once a prespecified number of concept
levels has been reached. A minimum interval size can also be used per level to control the
recursive procedure. This specifies the minimum width of a partition, or the minimum
number of values for each partition at each level. Histograms can also be partitioned
based on cluster analysis of the data distribution, as described next.

3.5.5 Discretization by Cluster, Decision Tree,
and Correlation Analyses

Clustering, decision tree analysis, and correlation analysis can be used for data dis-
cretization. We briefly study each of these approaches.

Cluster analysis is a popular data discretization method. A clustering algorithm can
be applied to discretize a numeric attribute, A, by partitioning the values of A into clus-
ters or groups. Clustering takes the distribution of A into consideration, as well as the
closeness of data points, and therefore is able to produce high-quality discretization
results.

Clustering can be used to generate a concept hierarchy for A by following either a
top-down splitting strategy or a bottom-up merging strategy, where each cluster forms
a node of the concept hierarchy. In the former, each initial cluster or partition may
be further decomposed into several subclusters, forming a lower level of the hiera-
rchy. In the latter, clusters are formed by repeatedly grouping neighboring clusters in
order to form higher-level concepts. Clustering methods for data mining are studied in
Chapters 10 and 11.

Techniques to generate decision trees for classification (Chapter 8) can be applied to
discretization. Such techniques employ a top-down splitting approach. Unlike the other
methods mentioned so far, decision tree approaches to discretization are supervised,
that is, they make use of class label information. For example, we may have a data set of
patient symptoms (the attributes) where each patient has an associated diagnosis class
label. Class distribution information is used in the calculation and determination of
split-points (data values for partitioning an attribute range). Intuitively, the main idea
is to select split-points so that a given resulting partition contains as many tuples of the
same class as possible. Entropy is the most commonly used measure for this purpose. To
discretize a numeric attribute, A, the method selects the value of A that has the minimum
entropy as a split-point, and recursively partitions the resulting intervals to arrive at a
hierarchical discretization. Such discretization forms a concept hierarchy for A.

Because decision tree–based discretization uses class information, it is more likely
that the interval boundaries (split-points) are defined to occur in places that may help
improve classification accuracy. Decision trees and the entropy measure are described in
greater detail in Section 8.2.2.

3.5 Data Transformation and Data Discretization 117

Measures of correlation can be used for discretization. ChiMerge is a χ2-based
discretization method. The discretization methods that we have studied up to this
point have all employed a top-down, splitting strategy. This contrasts with ChiMerge,
which employs a bottom-up approach by finding the best neighboring intervals and
then merging them to form larger intervals, recursively. As with decision tree analysis,
ChiMerge is supervised in that it uses class information. The basic notion is that for
accurate discretization, the relative class frequencies should be fairly consistent within
an interval. Therefore, if two adjacent intervals have a very similar distribution of classes,
then the intervals can be merged. Otherwise, they should remain separate.

ChiMerge proceeds as follows. Initially, each distinct value of a numeric attribute A is
considered to be one interval. χ2 tests are performed for every pair of adjacent intervals.
Adjacent intervals with the least χ2 values are merged together, because low χ2 values
for a pair indicate similar class distributions. This merging process proceeds recursively
until a predefined stopping criterion is met.

3.5.6 Concept Hierarchy Generation for Nominal Data

We now look at data transformation for nominal data. In particular, we study concept
hierarchy generation for nominal attributes. Nominal attributes have a finite (but pos-
sibly large) number of distinct values, with no ordering among the values. Examples
include geographic location, job category, and item type.

Manual definition of concept hierarchies can be a tedious and time-consuming task
for a user or a domain expert. Fortunately, many hierarchies are implicit within the
database schema and can be automatically defined at the schema definition level. The
concept hierarchies can be used to transform the data into multiple levels of granular-
ity. For example, data mining patterns regarding sales may be found relating to specific
regions or countries, in addition to individual branch locations.

We study four methods for the generation of concept hierarchies for nominal data,
as follows.

1. Specification of a partial ordering of attributes explicitly at the schema level by
users or experts: Concept hierarchies for nominal attributes or dimensions typically
involve a group of attributes. A user or expert can easily define a concept hierarchy by
specifying a partial or total ordering of the attributes at the schema level. For exam-
ple, suppose that a relational database contains the following group of attributes:
street, city, province or state, and country. Similarly, a data warehouse location dimen-
sion may contain the same attributes. A hierarchy can be defined by specifying the
total ordering among these attributes at the schema level such as street < city <

province or state < country.

2. Specification of a portion of a hierarchy by explicit data grouping: This is essen-
tially the manual definition of a portion of a concept hierarchy. In a large database,
it is unrealistic to define an entire concept hierarchy by explicit value enumera-
tion. On the contrary, we can easily specify explicit groupings for a small portion
of intermediate-level data. For example, after specifying that province and country

118 Chapter 3 Data Preprocessing

form a hierarchy at the schema level, a user could define some intermediate levels
manually, such as “{Alberta, Saskatchewan, Manitoba} ⊂ prairies Canada” and
“{British Columbia, prairies Canada} ⊂ Western Canada.”

3. Specification of a set of attributes, but not of their partial ordering: A user may
specify a set of attributes forming a concept hierarchy, but omit to explicitly state
their partial ordering. The system can then try to automatically generate the attribute
ordering so as to construct a meaningful concept hierarchy.

“Without knowledge of data semantics, how can a hierarchical ordering for an
arbitrary set of nominal attributes be found?” Consider the observation that since
higher-level concepts generally cover several subordinate lower-level concepts, an
attribute defining a high concept level (e.g., country) will usually contain a smaller
number of distinct values than an attribute defining a lower concept level (e.g.,
street). Based on this observation, a concept hierarchy can be automatically gener-
ated based on the number of distinct values per attribute in the given attribute set.
The attribute with the most distinct values is placed at the lowest hierarchy level. The
lower the number of distinct values an attribute has, the higher it is in the gener-
ated concept hierarchy. This heuristic rule works well in many cases. Some local-level
swapping or adjustments may be applied by users or experts, when necessary, after
examination of the generated hierarchy.

Let’s examine an example of this third method.

Example 3.7 Concept hierarchy generation based on the number of distinct values per attribute.
Suppose a user selects a set of location-oriented attributes—street, country, province
or state, and city—from the AllElectronics database, but does not specify the hierarchical
ordering among the attributes.

A concept hierarchy for location can be generated automatically, as illustrated in
Figure 3.13. First, sort the attributes in ascending order based on the number of dis-
tinct values in each attribute. This results in the following (where the number of distinct
values per attribute is shown in parentheses): country (15), province or state (365), city
(3567), and street (674,339). Second, generate the hierarchy from the top down accord-
ing to the sorted order, with the first attribute at the top level and the last attribute at the
bottom level. Finally, the user can examine the generated hierarchy, and when necessary,
modify it to reflect desired semantic relationships among the attributes. In this example,
it is obvious that there is no need to modify the generated hierarchy.

Note that this heuristic rule is not foolproof. For example, a time dimension in a
database may contain 20 distinct years, 12 distinct months, and 7 distinct days of the
week. However, this does not suggest that the time hierarchy should be “year < month <

days of the week,” with days of the week at the top of the hierarchy.

4. Specification of only a partial set of attributes: Sometimes a user can be careless
when defining a hierarchy, or have only a vague idea about what should be included
in a hierarchy. Consequently, the user may have included only a small subset of the

3.5 Data Transformation and Data Discretization 119

country 15 distinct values

province_or_state

city

street

365 distinct values

3567 distinct values

674,339 distinct values

Figure 3.13 Automatic generation of a schema concept hierarchy based on the number of distinct
attribute values.

relevant attributes in the hierarchy specification. For example, instead of including
all of the hierarchically relevant attributes for location, the user may have specified
only street and city. To handle such partially specified hierarchies, it is important to
embed data semantics in the database schema so that attributes with tight semantic
connections can be pinned together. In this way, the specification of one attribute
may trigger a whole group of semantically tightly linked attributes to be “dragged in”
to form a complete hierarchy. Users, however, should have the option to override this
feature, as necessary.

Example 3.8 Concept hierarchy generation using prespecified semantic connections. Suppose that
a data mining expert (serving as an administrator) has pinned together the five attri-
butes number, street, city, province or state, and country, because they are closely linked
semantically regarding the notion of location. If a user were to specify only the attribute
city for a hierarchy defining location, the system can automatically drag in all five seman-
tically related attributes to form a hierarchy. The user may choose to drop any of
these attributes (e.g., number and street) from the hierarchy, keeping city as the lowest
conceptual level.

In summary, information at the schema level and on attribute–value counts can be
used to generate concept hierarchies for nominal data. Transforming nominal data with
the use of concept hierarchies allows higher-level knowledge patterns to be found. It
allows mining at multiple levels of abstraction, which is a common requirement for data
mining applications.

120 Chapter 3 Data Preprocessing

3.6 Summary

Data quality is defined in terms of accuracy, completeness, consistency, timeliness,
believability, and interpretabilty. These qualities are assessed based on the intended
use of the data.

Data cleaning routines attempt to fill in missing values, smooth out noise while
identifying outliers, and correct inconsistencies in the data. Data cleaning is usually
performed as an iterative two-step process consisting of discrepancy detection and
data transformation.

Data integration combines data from multiple sources to form a coherent data
store. The resolution of semantic heterogeneity, metadata, correlation analysis,
tuple duplication detection, and data conflict detection contribute to smooth data
integration.

Data reduction techniques obtain a reduced representation of the data while mini-
mizing the loss of information content. These include methods of dimensionality
reduction, numerosity reduction, and data compression. Dimensionality reduction
reduces the number of random variables or attributes under consideration. Methods
include wavelet transforms, principal components analysis, attribute subset selection,
and attribute creation. Numerosity reduction methods use parametric or nonparat-
metric models to obtain smaller representations of the original data. Parametric
models store only the model parameters instead of the actual data. Examples
include regression and log-linear models. Nonparamteric methods include his-
tograms, clustering, sampling, and data cube aggregation. Data compression meth-
ods apply transformations to obtain a reduced or “compressed” representation of
the original data. The data reduction is lossless if the original data can be recon-
structed from the compressed data without any loss of information; otherwise, it is
lossy.

Data transformation routines convert the data into appropriate forms for min-
ing. For example, in normalization, attribute data are scaled so as to fall within a
small range such as 0.0 to 1.0. Other examples are data discretization and concept
hierarchy generation.

Data discretization transforms numeric data by mapping values to interval or con-
cept labels. Such methods can be used to automatically generate concept hierarchies
for the data, which allows for mining at multiple levels of granularity. Discretiza-
tion techniques include binning, histogram analysis, cluster analysis, decision tree
analysis, and correlation analysis. For nominal data, concept hierarchies may be
generated based on schema definitions as well as the number of distinct values per
attribute.

Although numerous methods of data preprocessing have been developed, data pre-
processing remains an active area of research, due to the huge amount of inconsistent
or dirty data and the complexity of the problem.

3.7 Exercises 121

3.7 Exercises

3.1 Data quality can be assessed in terms of several issues, including accuracy, completeness,
and consistency. For each of the above three issues, discuss how data quality assess-
ment can depend on the intended use of the data, giving examples. Propose two other
dimensions of data quality.

3.2 In real-world data, tuples with missing values for some attributes are a common
occurrence. Describe various methods for handling this problem.

3.3 Exercise 2.2 gave the following data (in increasing order) for the attribute age: 13, 15,
16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46,
52, 70.

(a) Use smoothing by bin means to smooth these data, using a bin depth of 3. Illustrate
your steps. Comment on the effect of this technique for the given data.

(b) How might you determine outliers in the data?

(c) What other methods are there for data smoothing?

3.4 Discuss issues to consider during data integration.

3.5 What are the value ranges of the following normalization methods?

(a) min-max normalization

(b) z-score normalization

(c) z-score normalization using the mean absolute deviation instead of standard devia-
tion

(d) normalization by decimal scaling

3.6 Use these methods to normalize the following group of data:

200,300,400,600,1000

(a) min-max normalization by setting min = 0 and max = 1

(b) z-score normalization

(c) z-score normalization using the mean absolute deviation instead of standard devia-
tion

(d) normalization by decimal scaling

3.7 Using the data for age given in Exercise 3.3, answer the following:

(a) Use min-max normalization to transform the value 35 for age onto the range
[0.0,1.0].

(b) Use z-score normalization to transform the value 35 for age, where the standard
deviation of age is 12.94 years.

(c) Use normalization by decimal scaling to transform the value 35 for age.

(d) Comment on which method you would prefer to use for the given data, giving
reasons as to why.

122 Chapter 3 Data Preprocessing

3.8 Using the data for age and body fat given in Exercise 2.4, answer the following:

(a) Normalize the two attributes based on z-score normalization.

(b) Calculate the correlation coefficient (Pearson’s product moment coefficient). Are
these two attributes positively or negatively correlated? Compute their covariance.

3.9 Suppose a group of 12 sales price records has been sorted as follows:

5,10,11,13,15,35,50,55,72,92,204,215.

Partition them into three bins by each of the following methods:

(a) equal-frequency (equal-depth) partitioning

(b) equal-width partitioning

(c) clustering

3.10 Use a flowchart to summarize the following procedures for attribute subset selection:

(a) stepwise forward selection

(b) stepwise backward elimination

(c) a combination of forward selection and backward elimination

3.11 Using the data for age given in Exercise 3.3,

(a) Plot an equal-width histogram of width 10.

(b) Sketch examples of each of the following sampling techniques: SRSWOR, SRSWR,
cluster sampling, and stratified sampling. Use samples of size 5 and the strata
“youth,” “middle-aged,” and “senior.”

3.12 ChiMerge [Ker92] is a supervised, bottom-up (i.e., merge-based) data discretization
method. It relies on χ2 analysis: Adjacent intervals with the least χ2 values are merged
together until the chosen stopping criterion satisfies.

(a) Briefly describe how ChiMerge works.

(b) Take the IRIS data set, obtained from the University of California–Irvine Machine
Learning Data Repository (www.ics.uci.edu/∼mlearn/MLRepository.html), as a data
set to be discretized. Perform data discretization for each of the four numeric
attributes using the ChiMerge method. (Let the stopping criteria be: max-interval
= 6). You need to write a small program to do this to avoid clumsy numerical
computation. Submit your simple analysis and your test results: split-points, final
intervals, and the documented source program.

3.13 Propose an algorithm, in pseudocode or in your favorite programming language, for the
following:

(a) The automatic generation of a concept hierarchy for nominal data based on the
number of distinct values of attributes in the given schema.

(b) The automatic generation of a concept hierarchy for numeric data based on the
equal-width partitioning rule.

3.8 Bibliographic Notes 123

(c) The automatic generation of a concept hierarchy for numeric data based on the
equal-frequency partitioning rule.

3.14 Robust data loading poses a challenge in database systems because the input data are
often dirty. In many cases, an input record may miss multiple values; some records
could be contaminated, with some data values out of range or of a different data type
than expected. Work out an automated data cleaning and loading algorithm so that the
erroneous data will be marked and contaminated data will not be mistakenly inserted
into the database during data loading.

3.8 Bibliographic Notes

Data preprocessing is discussed in a number of textbooks, including English [Eng99],
Pyle [Pyl99], Loshin [Los01], Redman [Red01], and Dasu and Johnson [DJ03]. More
specific references to individual preprocessing techniques are given later.

For discussion regarding data quality, see Redman [Red92]; Wang, Storey, and
Firth [WSF95]; Wand and Wang [WW96]; Ballou and Tayi [BT99]; and Olson [Ols03].
Potter’s Wheel (control.cx.berkely.edu/abc), the interactive data cleaning tool described in
Section 3.2.3, is presented in Raman and Hellerstein [RH01]. An example of the devel-
opment of declarative languages for the specification of data transformation operators is
given in Galhardas et al. [GFS+01]. The handling of missing attribute values is discussed
in Friedman [Fri77]; Breiman, Friedman, Olshen, and Stone [BFOS84]; and Quinlan
[Qui89]. Hua and Pei [HP07] presented a heuristic approach to cleaning disguised miss-
ing data, where such data are captured when users falsely select default values on forms
(e.g., “January 1” for birthdate) when they do not want to disclose personal information.

A method for the detection of outlier or “garbage” patterns in a handwritten char-
acter database is given in Guyon, Matic, and Vapnik [GMV96]. Binning and data
normalization are treated in many texts, including Kennedy et al. [KLV+98], Weiss
and Indurkhya [WI98], and Pyle [Pyl99]. Systems that include attribute (or feature)
construction include BACON by Langley, Simon, Bradshaw, and Zytkow [LSBZ87];
Stagger by Schlimmer [Sch86]; FRINGE by Pagallo [Pag89]; and AQ17-DCI by Bloe-
dorn and Michalski [BM98]. Attribute construction is also described in Liu and Motoda
[LM98a, LM98b]. Dasu et al. built a BELLMAN system and proposed a set of interesting
methods for building a data quality browser by mining database structures [DJMS02].

A good survey of data reduction techniques can be found in Barbará et al. [BDF+97].
For algorithms on data cubes and their precomputation, see Sarawagi and Stonebraker
[SS94]; Agarwal et al. [AAD+96]; Harinarayan, Rajaraman, and Ullman [HRU96]; Ross
and Srivastava [RS97]; and Zhao, Deshpande, and Naughton [ZDN97]. Attribute sub-
set selection (or feature subset selection) is described in many texts such as Neter, Kutner,
Nachtsheim, and Wasserman [NKNW96]; Dash and Liu [DL97]; and Liu and Motoda
[LM98a, LM98b]. A combination forward selection and backward elimination method

124 Chapter 3 Data Preprocessing

was proposed in Siedlecki and Sklansky [SS88]. A wrapper approach to attribute selec-
tion is described in Kohavi and John [KJ97]. Unsupervised attribute subset selection is
described in Dash, Liu, and Yao [DLY97].

For a description of wavelets for dimensionality reduction, see Press, Teukolosky, Vet-
terling, and Flannery [PTVF07]. A general account of wavelets can be found in Hubbard
[Hub96]. For a list of wavelet software packages, see Bruce, Donoho, and Gao [BDG96].
Daubechies transforms are described in Daubechies [Dau92]. The book by Press et al.
[PTVF07] includes an introduction to singular value decomposition for principal com-
ponents analysis. Routines for PCA are included in most statistical software packages
such as SAS (www.sas.com/SASHome.html).

An introduction to regression and log-linear models can be found in several
textbooks such as James [Jam85]; Dobson [Dob90]; Johnson and Wichern [JW92];
Devore [Dev95]; and Neter, Kutner, Nachtsheim, and Wasserman [NKNW96]. For log-
linear models (known as multiplicative models in the computer science literature), see
Pearl [Pea88]. For a general introduction to histograms, see Barbará et al. [BDF+97]
and Devore and Peck [DP97]. For extensions of single-attribute histograms to multiple
attributes, see Muralikrishna and DeWitt [MD88] and Poosala and Ioannidis [PI97].
Several references to clustering algorithms are given in Chapters 10 and 11 of this book,
which are devoted to the topic.

A survey of multidimensional indexing structures is given in Gaede and Günther
[GG98]. The use of multidimensional index trees for data aggregation is discussed in
Aoki [Aok98]. Index trees include R-trees (Guttman [Gut84]), quad-trees (Finkel and
Bentley [FB74]), and their variations. For discussion on sampling and data mining, see
Kivinen and Mannila [KM94] and John and Langley [JL96].

There are many methods for assessing attribute relevance. Each has its own bias. The
information gain measure is biased toward attributes with many values. Many alterna-
tives have been proposed, such as gain ratio (Quinlan [Qui93]), which considers the
probability of each attribute value. Other relevance measures include the Gini index
(Breiman, Friedman, Olshen, and Stone [BFOS84]), the χ2 contingency table statis-
tic, and the uncertainty coefficient (Johnson and Wichern [JW92]). For a comparison
of attribute selection measures for decision tree induction, see Buntine and Niblett
[BN92]. For additional methods, see Liu and Motoda [LM98a], Dash and Liu [DL97],
and Almuallim and Dietterich [AD91].

Liu et al. [LHTD02] performed a comprehensive survey of data discretization
methods. Entropy-based discretization with the C4.5 algorithm is described in Quin-
lan [Qui93]. In Catlett [Cat91], the D-2 system binarizes a numeric feature recursively.
ChiMerge by Kerber [Ker92] and Chi2 by Liu and Setiono [LS95] are methods for the
automatic discretization of numeric attributes that both employ the χ2 statistic. Fayyad
and Irani [FI93] apply the minimum description length principle to determine the num-
ber of intervals for numeric discretization. Concept hierarchies and their automatic
generation from categorical data are described in Han and Fu [HF94].

4Data Warehousing and Online
Analytical Processing

Data warehouses generalize and consolidate data in multidimensional space. The construction
of data warehouses involves data cleaning, data integration, and data transformation,
and can be viewed as an important preprocessing step for data mining. Moreover, data
warehouses provide online analytical processing (OLAP) tools for the interactive analysis
of multidimensional data of varied granularities, which facilitates effective data gene-
ralization and data mining. Many other data mining functions, such as association,
classification, prediction, and clustering, can be integrated with OLAP operations to
enhance interactive mining of knowledge at multiple levels of abstraction. Hence, the
data warehouse has become an increasingly important platform for data analysis and
OLAP and will provide an effective platform for data mining. Therefore, data warehous-
ing and OLAP form an essential step in the knowledge discovery process. This chapter
presents an overview of data warehouse and OLAP technology. This overview is essential
for understanding the overall data mining and knowledge discovery process.

In this chapter, we study a well-accepted definition of the data warehouse and see
why more and more organizations are building data warehouses for the analysis of
their data (Section 4.1). In particular, we study the data cube, a multidimensional data
model for data warehouses and OLAP, as well as OLAP operations such as roll-up, drill-
down, slicing, and dicing (Section 4.2). We also look at data warehouse design and
usage (Section 4.3). In addition, we discuss multidimensional data mining, a power-
ful paradigm that integrates data warehouse and OLAP technology with that of data
mining. An overview of data warehouse implementation examines general strategies
for efficient data cube computation, OLAP data indexing, and OLAP query process-
ing (Section 4.4). Finally, we study data generalization by attribute-oriented induction
(Section 4.5). This method uses concept hierarchies to generalize data to multiple levels
of abstraction.

4.1 Data Warehouse: Basic Concepts

This section gives an introduction to data warehouses. We begin with a definition of the
data warehouse (Section 4.1.1). We outline the differences between operational database

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques 125

126 Chapter 4 Data Warehousing and Online Analytical Processing

systems and data warehouses (Section 4.1.2), then explain the need for using data ware-
houses for data analysis, rather than performing the analysis directly on traditional
databases (Section 4.1.3). This is followed by a presentation of data warehouse architec-
ture (Section 4.1.4). Next, we study three data warehouse models—an enterprise model,
a data mart, and a virtual warehouse (Section 4.1.5). Section 4.1.6 describes back-end
utilities for data warehousing, such as extraction, transformation, and loading. Finally,
Section 4.1.7 presents the metadata repository, which stores data about data.

4.1.1 What Is a Data Warehouse?

Data warehousing provides architectures and tools for business executives to system-
atically organize, understand, and use their data to make strategic decisions. Data
warehouse systems are valuable tools in today’s competitive, fast-evolving world. In the
last several years, many firms have spent millions of dollars in building enterprise-wide
data warehouses. Many people feel that with competition mounting in every industry,
data warehousing is the latest must-have marketing weapon—a way to retain customers
by learning more about their needs.

“Then, what exactly is a data warehouse?” Data warehouses have been defined in many
ways, making it difficult to formulate a rigorous definition. Loosely speaking, a data
warehouse refers to a data repository that is maintained separately from an organiza-
tion’s operational databases. Data warehouse systems allow for integration of a variety of
application systems. They support information processing by providing a solid platform
of consolidated historic data for analysis.

According to William H. Inmon, a leading architect in the construction of data
warehouse systems, “A data warehouse is a subject-oriented, integrated, time-variant,
and nonvolatile collection of data in support of management’s decision making pro-
cess” [Inm96]. This short but comprehensive definition presents the major features of
a data warehouse. The four keywords—subject-oriented, integrated, time-variant, and
nonvolatile—distinguish data warehouses from other data repository systems, such as
relational database systems, transaction processing systems, and file systems.

Let’s take a closer look at each of these key features.

Subject-oriented: A data warehouse is organized around major subjects such as cus-
tomer, supplier, product, and sales. Rather than concentrating on the day-to-day
operations and transaction processing of an organization, a data warehouse focuses
on the modeling and analysis of data for decision makers. Hence, data warehouses
typically provide a simple and concise view of particular subject issues by excluding
data that are not useful in the decision support process.

Integrated: A data warehouse is usually constructed by integrating multiple hetero-
geneous sources, such as relational databases, flat files, and online transaction
records. Data cleaning and data integration techniques are applied to ensure con-
sistency in naming conventions, encoding structures, attribute measures, and so on.

4.1 Data Warehouse: Basic Concepts 127

Time-variant: Data are stored to provide information from an historic perspective
(e.g., the past 5–10 years). Every key structure in the data warehouse contains, either
implicitly or explicitly, a time element.

Nonvolatile: A data warehouse is always a physically separate store of data trans-
formed from the application data found in the operational environment. Due to
this separation, a data warehouse does not require transaction processing, recovery,
and concurrency control mechanisms. It usually requires only two operations in data
accessing: initial loading of data and access of data.

In sum, a data warehouse is a semantically consistent data store that serves as a
physical implementation of a decision support data model. It stores the information
an enterprise needs to make strategic decisions. A data warehouse is also often viewed
as an architecture, constructed by integrating data from multiple heterogeneous sources
to support structured and/or ad hoc queries, analytical reporting, and decision making.

Based on this information, we view data warehousing as the process of construct-
ing and using data warehouses. The construction of a data warehouse requires data
cleaning, data integration, and data consolidation. The utilization of a data warehouse
often necessitates a collection of decision support technologies. This allows “knowledge
workers” (e.g., managers, analysts, and executives) to use the warehouse to quickly and
conveniently obtain an overview of the data, and to make sound decisions based on
information in the warehouse. Some authors use the term data warehousing to refer
only to the process of data warehouse construction, while the term warehouse DBMS is
used to refer to the management and utilization of data warehouses. We will not make
this distinction here.

“How are organizations using the information from data warehouses?” Many orga-
nizations use this information to support business decision-making activities, includ-
ing (1) increasing customer focus, which includes the analysis of customer buying
patterns (such as buying preference, buying time, budget cycles, and appetites for
spending); (2) repositioning products and managing product portfolios by compar-
ing the performance of sales by quarter, by year, and by geographic regions in order
to fine-tune production strategies; (3) analyzing operations and looking for sources of
profit; and (4) managing customer relationships, making environmental corrections,
and managing the cost of corporate assets.

Data warehousing is also very useful from the point of view of heterogeneous database
integration. Organizations typically collect diverse kinds of data and maintain large
databases from multiple, heterogeneous, autonomous, and distributed information
sources. It is highly desirable, yet challenging, to integrate such data and provide easy
and efficient access to it. Much effort has been spent in the database industry and
research community toward achieving this goal.

The traditional database approach to heterogeneous database integration is to build
wrappers and integrators (or mediators) on top of multiple, heterogeneous databases.
When a query is posed to a client site, a metadata dictionary is used to translate the
query into queries appropriate for the individual heterogeneous sites involved. These

128 Chapter 4 Data Warehousing and Online Analytical Processing

queries are then mapped and sent to local query processors. The results returned from
the different sites are integrated into a global answer set. This query-driven approach
requires complex information filtering and integration processes, and competes with
local sites for processing resources. It is inefficient and potentially expensive for frequent
queries, especially queries requiring aggregations.

Data warehousing provides an interesting alternative to this traditional approach.
Rather than using a query-driven approach, data warehousing employs an update-
driven approach in which information from multiple, heterogeneous sources is inte-
grated in advance and stored in a warehouse for direct querying and analysis. Unlike
online transaction processing databases, data warehouses do not contain the most cur-
rent information. However, a data warehouse brings high performance to the integrated
heterogeneous database system because data are copied, preprocessed, integrated, anno-
tated, summarized, and restructured into one semantic data store. Furthermore, query
processing in data warehouses does not interfere with the processing at local sources.
Moreover, data warehouses can store and integrate historic information and support
complex multidimensional queries. As a result, data warehousing has become popular
in industry.

4.1.2 Differences between Operational Database Systems
and Data Warehouses

Because most people are familiar with commercial relational database systems, it is easy
to understand what a data warehouse is by comparing these two kinds of systems.

The major task of online operational database systems is to perform online trans-
action and query processing. These systems are called online transaction processing
(OLTP) systems. They cover most of the day-to-day operations of an organization such
as purchasing, inventory, manufacturing, banking, payroll, registration, and account-
ing. Data warehouse systems, on the other hand, serve users or knowledge workers in
the role of data analysis and decision making. Such systems can organize and present
data in various formats in order to accommodate the diverse needs of different users.
These systems are known as online analytical processing (OLAP) systems.

The major distinguishing features of OLTP and OLAP are summarized as follows:

Users and system orientation: An OLTP system is customer-oriented and is used
for transaction and query processing by clerks, clients, and information technology
professionals. An OLAP system is market-oriented and is used for data analysis by
knowledge workers, including managers, executives, and analysts.

Data contents: An OLTP system manages current data that, typically, are too detailed
to be easily used for decision making. An OLAP system manages large amounts of
historic data, provides facilities for summarization and aggregation, and stores and
manages information at different levels of granularity. These features make the data
easier to use for informed decision making.

4.1 Data Warehouse: Basic Concepts 129

Database design: An OLTP system usually adopts an entity-relationship (ER) data
model and an application-oriented database design. An OLAP system typically
adopts either a star or a snowflake model (see Section 4.2.2) and a subject-oriented
database design.

View: An OLTP system focuses mainly on the current data within an enterprise or
department, without referring to historic data or data in different organizations. In
contrast, an OLAP system often spans multiple versions of a database schema, due to
the evolutionary process of an organization. OLAP systems also deal with informa-
tion that originates from different organizations, integrating information from many
data stores. Because of their huge volume, OLAP data are stored on multiple storage
media.

Access patterns: The access patterns of an OLTP system consist mainly of short,
atomic transactions. Such a system requires concurrency control and recovery mech-
anisms. However, accesses to OLAP systems are mostly read-only operations (because
most data warehouses store historic rather than up-to-date information), although
many could be complex queries.

Other features that distinguish between OLTP and OLAP systems include database
size, frequency of operations, and performance metrics. These are summarized in
Table 4.1.

4.1.3 But, Why Have a Separate Data Warehouse?

Because operational databases store huge amounts of data, you may wonder, “Why not
perform online analytical processing directly on such databases instead of spending addi-
tional time and resources to construct a separate data warehouse?” A major reason for such
a separation is to help promote the high performance of both systems. An operational
database is designed and tuned from known tasks and workloads like indexing and
hashing using primary keys, searching for particular records, and optimizing “canned”
queries. On the other hand, data warehouse queries are often complex. They involve the
computation of large data groups at summarized levels, and may require the use of spe-
cial data organization, access, and implementation methods based on multidimensional
views. Processing OLAP queries in operational databases would substantially degrade
the performance of operational tasks.

Moreover, an operational database supports the concurrent processing of multiple
transactions. Concurrency control and recovery mechanisms (e.g., locking and logging)
are required to ensure the consistency and robustness of transactions. An OLAP query
often needs read-only access of data records for summarization and aggregation. Con-
currency control and recovery mechanisms, if applied for such OLAP operations, may
jeopardize the execution of concurrent transactions and thus substantially reduce the
throughput of an OLTP system.

Finally, the separation of operational databases from data warehouses is based on
the different structures, contents, and uses of the data in these two systems. Decision

130 Chapter 4 Data Warehousing and Online Analytical Processing

Table 4.1 Comparison of OLTP and OLAP Systems

Feature OLTP OLAP

Characteristic operational processing informational processing

Orientation transaction analysis

User clerk, DBA, database professional knowledge worker (e.g., manager,
executive, analyst)

Function day-to-day operations long-term informational
requirements decision support

DB design ER-based, application-oriented star/snowflake, subject-oriented

Data current, guaranteed up-to-date historic, accuracy maintained
over time

Summarization primitive, highly detailed summarized, consolidated

View detailed, flat relational summarized, multidimensional

Unit of work short, simple transaction complex query

Access read/write mostly read

Focus data in information out

Operations index/hash on primary key lots of scans

Number of records
accessed tens millions

Number of users thousands hundreds

DB size GB to high-order GB ≥ TB

Priority high performance, high availability high flexibility, end-user autonomy

Metric transaction throughput query throughput, response time

Note: Table is partially based on Chaudhuri and Dayal [CD97].

support requires historic data, whereas operational databases do not typically maintain
historic data. In this context, the data in operational databases, though abundant, are
usually far from complete for decision making. Decision support requires consolidation
(e.g., aggregation and summarization) of data from heterogeneous sources, resulting
in high-quality, clean, integrated data. In contrast, operational databases contain only
detailed raw data, such as transactions, which need to be consolidated before analy-
sis. Because the two systems provide quite different functionalities and require different
kinds of data, it is presently necessary to maintain separate databases. However, many
vendors of operational relational database management systems are beginning to opti-
mize such systems to support OLAP queries. As this trend continues, the separation
between OLTP and OLAP systems is expected to decrease.

4.1.4 Data Warehousing: A Multitiered Architecture

Data warehouses often adopt a three-tier architecture, as presented in Figure 4.1.

4.1 Data Warehouse: Basic Concepts 131

Query/report Analysis Data mining

OLAP server OLAP server

Top tier:
Front-end tools

Middle tier:
OLAP server

Bottom tier:
Data warehouse
server

Data

Output

Extract
Clean

Transform
Load

Refresh

Data warehouse Data martsMonitoring

Metadata repository

Operational databases External sources

Administration

Figure 4.1 A three-tier data warehousing architecture.

1. The bottom tier is a warehouse database server that is almost always a relational
database system. Back-end tools and utilities are used to feed data into the bot-
tom tier from operational databases or other external sources (e.g., customer profile
information provided by external consultants). These tools and utilities perform data
extraction, cleaning, and transformation (e.g., to merge similar data from different
sources into a unified format), as well as load and refresh functions to update the
data warehouse (see Section 4.1.6). The data are extracted using application pro-
gram interfaces known as gateways. A gateway is supported by the underlying DBMS
and allows client programs to generate SQL code to be executed at a server. Exam-
ples of gateways include ODBC (Open Database Connection) and OLEDB (Object

132 Chapter 4 Data Warehousing and Online Analytical Processing

Linking and Embedding Database) by Microsoft and JDBC (Java Database Connec-
tion). This tier also contains a metadata repository, which stores information about
the data warehouse and its contents. The metadata repository is further described in
Section 4.1.7.

2. The middle tier is an OLAP server that is typically implemented using either (1) a
relational OLAP (ROLAP) model (i.e., an extended relational DBMS that maps oper-
ations on multidimensional data to standard relational operations); or (2) a multi-
dimensional OLAP (MOLAP) model (i.e., a special-purpose server that directly
implements multidimensional data and operations). OLAP servers are discussed in
Section 4.4.4.

3. The top tier is a front-end client layer, which contains query and reporting tools,
analysis tools, and/or data mining tools (e.g., trend analysis, prediction, and so on).

4.1.5 Data Warehouse Models: Enterprise Warehouse,
Data Mart, and Virtual Warehouse

From the architecture point of view, there are three data warehouse models: the
enterprise warehouse, the data mart, and the virtual warehouse.

Enterprise warehouse: An enterprise warehouse collects all of the information about
subjects spanning the entire organization. It provides corporate-wide data inte-
gration, usually from one or more operational systems or external information
providers, and is cross-functional in scope. It typically contains detailed data as
well as summarized data, and can range in size from a few gigabytes to hundreds
of gigabytes, terabytes, or beyond. An enterprise data warehouse may be imple-
mented on traditional mainframes, computer superservers, or parallel architecture
platforms. It requires extensive business modeling and may take years to design
and build.

Data mart: A data mart contains a subset of corporate-wide data that is of value to a
specific group of users. The scope is confined to specific selected subjects. For exam-
ple, a marketing data mart may confine its subjects to customer, item, and sales. The
data contained in data marts tend to be summarized.

Data marts are usually implemented on low-cost departmental servers that are
Unix/Linux or Windows based. The implementation cycle of a data mart is more
likely to be measured in weeks rather than months or years. However, it may
involve complex integration in the long run if its design and planning were not
enterprise-wide.

Depending on the source of data, data marts can be categorized as independent
or dependent. Independent data marts are sourced from data captured from one or
more operational systems or external information providers, or from data generated
locally within a particular department or geographic area. Dependent data marts are
sourced directly from enterprise data warehouses.

4.1 Data Warehouse: Basic Concepts 133

Virtual warehouse: A virtual warehouse is a set of views over operational databases.
For efficient query processing, only some of the possible summary views may be
materialized. A virtual warehouse is easy to build but requires excess capacity on
operational database servers.

“What are the pros and cons of the top-down and bottom-up approaches to data ware-
house development?” The top-down development of an enterprise warehouse serves as a
systematic solution and minimizes integration problems. However, it is expensive, takes
a long time to develop, and lacks flexibility due to the difficulty in achieving consistency
and consensus for a common data model for the entire organization. The bottom-
up approach to the design, development, and deployment of independent data marts
provides flexibility, low cost, and rapid return of investment. It, however, can lead to
problems when integrating various disparate data marts into a consistent enterprise data
warehouse.

A recommended method for the development of data warehouse systems is to imple-
ment the warehouse in an incremental and evolutionary manner, as shown in Figure 4.2.
First, a high-level corporate data model is defined within a reasonably short period
(such as one or two months) that provides a corporate-wide, consistent, integrated
view of data among different subjects and potential usages. This high-level model,
although it will need to be refined in the further development of enterprise data ware-
houses and departmental data marts, will greatly reduce future integration problems.
Second, independent data marts can be implemented in parallel with the enterprise

Enterprise
data

warehouse

Multitier
data

warehouse

Distributed
data marts

Data
mart

Define a high-level corporate data model

Data
mart

Model refinement Model refinement

Figure 4.2 A recommended approach for data warehouse development.

134 Chapter 4 Data Warehousing and Online Analytical Processing

warehouse based on the same corporate data model set noted before. Third, distributed
data marts can be constructed to integrate different data marts via hub servers. Finally,
a multitier data warehouse is constructed where the enterprise warehouse is the sole
custodian of all warehouse data, which is then distributed to the various dependent
data marts.

4.1.6 Extraction, Transformation, and Loading

Data warehouse systems use back-end tools and utilities to populate and refresh their
data (Figure 4.1). These tools and utilities include the following functions:

Data extraction, which typically gathers data from multiple, heterogeneous, and
external sources.

Data cleaning, which detects errors in the data and rectifies them when possible.

Data transformation, which converts data from legacy or host format to warehouse
format.

Load, which sorts, summarizes, consolidates, computes views, checks integrity, and
builds indices and partitions.

Refresh, which propagates the updates from the data sources to the warehouse.

Besides cleaning, loading, refreshing, and metadata definition tools, data warehouse
systems usually provide a good set of data warehouse management tools.

Data cleaning and data transformation are important steps in improving the data
quality and, subsequently, the data mining results (see Chapter 3). Because we are mostly
interested in the aspects of data warehousing technology related to data mining, we will
not get into the details of the remaining tools, and recommend interested readers to
consult books dedicated to data warehousing technology.

4.1.7 Metadata Repository

Metadata are data about data. When used in a data warehouse, metadata are the data
that define warehouse objects. Figure 4.1 showed a metadata repository within the bot-
tom tier of the data warehousing architecture. Metadata are created for the data names
and definitions of the given warehouse. Additional metadata are created and captured
for timestamping any extracted data, the source of the extracted data, and missing fields
that have been added by data cleaning or integration processes.

A metadata repository should contain the following:

A description of the data warehouse structure, which includes the warehouse schema,
view, dimensions, hierarchies, and derived data definitions, as well as data mart
locations and contents.

4.2 Data Warehouse Modeling: Data Cube and OLAP 135

Operational metadata, which include data lineage (history of migrated data and the
sequence of transformations applied to it), currency of data (active, archived, or
purged), and monitoring information (warehouse usage statistics, error reports, and
audit trails).

The algorithms used for summarization, which include measure and dimension
definition algorithms, data on granularity, partitions, subject areas, aggregation,
summarization, and predefined queries and reports.

Mapping from the operational environment to the data warehouse, which includes
source databases and their contents, gateway descriptions, data partitions, data
extraction, cleaning, transformation rules and defaults, data refresh and purging
rules, and security (user authorization and access control).

Data related to system performance, which include indices and profiles that improve
data access and retrieval performance, in addition to rules for the timing and
scheduling of refresh, update, and replication cycles.

Business metadata, which include business terms and definitions, data ownership
information, and charging policies.

A data warehouse contains different levels of summarization, of which metadata is one.
Other types include current detailed data (which are almost always on disk), older
detailed data (which are usually on tertiary storage), lightly summarized data, and highly
summarized data (which may or may not be physically housed).

Metadata play a very different role than other data warehouse data and are important
for many reasons. For example, metadata are used as a directory to help the decision
support system analyst locate the contents of the data warehouse, and as a guide to
the data mapping when data are transformed from the operational environment to the
data warehouse environment. Metadata also serve as a guide to the algorithms used for
summarization between the current detailed data and the lightly summarized data, and
between the lightly summarized data and the highly summarized data. Metadata should
be stored and managed persistently (i.e., on disk).

4.2 Data Warehouse Modeling: Data Cube
and OLAP

Data warehouses and OLAP tools are based on a multidimensional data model. This
model views data in the form of a data cube. In this section, you will learn how data cubes
model n-dimensional data (Section 4.2.1). In Section 4.2.2, various multidimensional
models are shown: star schema, snowflake schema, and fact constellation. You will also
learn about concept hierarchies (Section 4.2.3) and measures (Section 4.2.4) and how
they can be used in basic OLAP operations to allow interactive mining at multiple levels
of abstraction. Typical OLAP operations such as drill-down and roll-up are illustrated

136 Chapter 4 Data Warehousing and Online Analytical Processing

(Section 4.2.5). Finally, the starnet model for querying multidimensional databases is
presented (Section 4.2.6).

4.2.1 Data Cube: A Multidimensional Data Model

“What is a data cube?” A data cube allows data to be modeled and viewed in multiple
dimensions. It is defined by dimensions and facts.

In general terms, dimensions are the perspectives or entities with respect to which
an organization wants to keep records. For example, AllElectronics may create a sales
data warehouse in order to keep records of the store’s sales with respect to the dimen-
sions time, item, branch, and location. These dimensions allow the store to keep track
of things like monthly sales of items and the branches and locations at which the
items were sold. Each dimension may have a table associated with it, called a dimen-
sion table, which further describes the dimension. For example, a dimension table for
item may contain the attributes item name, brand, and type. Dimension tables can be
specified by users or experts, or automatically generated and adjusted based on data
distributions.

A multidimensional data model is typically organized around a central theme, such
as sales. This theme is represented by a fact table. Facts are numeric measures. Think of
them as the quantities by which we want to analyze relationships between dimensions.
Examples of facts for a sales data warehouse include dollars sold (sales amount in dol-
lars), units sold (number of units sold), and amount budgeted. The fact table contains
the names of the facts, or measures, as well as keys to each of the related dimension tables.
You will soon get a clearer picture of how this works when we look at multidimensional
schemas.

Although we usually think of cubes as 3-D geometric structures, in data warehous-
ing the data cube is n-dimensional. To gain a better understanding of data cubes and
the multidimensional data model, let’s start by looking at a simple 2-D data cube that
is, in fact, a table or spreadsheet for sales data from AllElectronics. In particular, we
will look at the AllElectronics sales data for items sold per quarter in the city of Van-
couver. These data are shown in Table 4.2. In this 2-D representation, the sales for
Vancouver are shown with respect to the time dimension (organized in quarters) and
the item dimension (organized according to the types of items sold). The fact or measure
displayed is dollars sold (in thousands).

Now, suppose that we would like to view the sales data with a third dimension. For
instance, suppose we would like to view the data according to time and item, as well as
location, for the cities Chicago, New York, Toronto, and Vancouver. These 3-D data are
shown in Table 4.3. The 3-D data in the table are represented as a series of 2-D tables.
Conceptually, we may also represent the same data in the form of a 3-D data cube, as in
Figure 4.3.

Suppose that we would now like to view our sales data with an additional fourth
dimension such as supplier. Viewing things in 4-D becomes tricky. However, we can
think of a 4-D cube as being a series of 3-D cubes, as shown in Figure 4.4. If we continue

4.2 Data Warehouse Modeling: Data Cube and OLAP 137

Table 4.2 2-D View of Sales Data for AllElectronics According to time and item

location = “Vancouver”

item (type)

home
time (quarter) entertainment computer phone security

Q1 605 825 14 400

Q2 680 952 31 512

Q3 812 1023 30 501

Q4 927 1038 38 580

Note: The sales are from branches located in the city of Vancouver. The measure displayed is dollars sold
(in thousands).

Table 4.3 3-D View of Sales Data for AllElectronics According to time, item, and location

location = “Chicago” location = “New York” location = “Toronto” location = “Vancouver”

item item item item

home home home home
time ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec. ent. comp. phone sec.

Q1 854 882 89 623 1087 968 38 872 818 746 43 591 605 825 14 400

Q2 943 890 64 698 1130 1024 41 925 894 769 52 682 680 952 31 512

Q3 1032 924 59 789 1034 1048 45 1002 940 795 58 728 812 1023 30 501

Q4 1129 992 63 870 1142 1091 54 984 978 864 59 784 927 1038 38 580

Note: The measure displayed is dollars sold (in thousands).

in this way, we may display any n-dimensional data as a series of (n − 1)-dimensional
“cubes.” The data cube is a metaphor for multidimensional data storage. The actual
physical storage of such data may differ from its logical representation. The important
thing to remember is that data cubes are n-dimensional and do not confine data to 3-D.

Tables 4.2 and 4.3 show the data at different degrees of summarization. In the data
warehousing research literature, a data cube like those shown in Figures 4.3 and 4.4 is
often referred to as a cuboid. Given a set of dimensions, we can generate a cuboid for
each of the possible subsets of the given dimensions. The result would form a lattice of
cuboids, each showing the data at a different level of summarization, or group-by. The
lattice of cuboids is then referred to as a data cube. Figure 4.5 shows a lattice of cuboids
forming a data cube for the dimensions time, item, location, and supplier.

The cuboid that holds the lowest level of summarization is called the base cuboid.
For example, the 4-D cuboid in Figure 4.4 is the base cuboid for the given time, item,
location, and supplier dimensions. Figure 4.3 is a 3-D (nonbase) cuboid for time, item,

138 Chapter 4 Data Warehousing and Online Analytical Processing

818

1087

854

746

968

882

43

38

89

591

872

623

698

925

789
682

8701002

728

984

784

Q1

Q2

Q3

Q4

Chicago

New York

Toronto

Vancouver

tim
e

(q
ua

rt
er

s)

loc
ati

on
 (c

iti
es)

home
entertainment

computer

item (types)

phone

security

605 825 14 400

51231952680

812 1023 30 501

580381038927

Figure 4.3 A 3-D data cube representation of the data in Table 4.3, according to time, item, and location.
The measure displayed is dollars sold (in thousands).

605 825 14 400Q1

Q2

Q3

Q4

Chicago
New York

Toronto
Vancouver

tim
e

(q
ua

rt
er

s)

loc
ati

on
 (c

iti
es)

home
entertainment

computer

item (types)

phone

security

home
entertainment

computer

item (types)

phone

security

home
entertainment

computer

item (types)

phone

security

supplier = “SUP1” supplier = “SUP2” supplier = “SUP3”

Figure 4.4 A 4-D data cube representation of sales data, according to time, item, location, and supplier.
The measure displayed is dollars sold (in thousands). For improved readability, only some of
the cube values are shown.

and location, summarized for all suppliers. The 0-D cuboid, which holds the highest level
of summarization, is called the apex cuboid. In our example, this is the total sales, or
dollars sold, summarized over all four dimensions. The apex cuboid is typically denoted
by all.

4.2 Data Warehouse Modeling: Data Cube and OLAP 139

item, locationtime, location

item, suppliertime, supplier

time, location, supplier

Item location
supplier

time, item, location, supplier

item, locationtime, location

item, suppliertime, supplier

time, location, supplier

item, location,
supplier

location,
supplier

time, item, supplier

time
item location

all

time, item

time, item, location

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D cuboids

4-D (base) cuboid

Figure 4.5 Lattice of cuboids, making up a 4-D data cube for time, item, location, and supplier. Each
cuboid represents a different degree of summarization.

4.2.2 Stars, Snowflakes, and Fact Constellations: Schemas for
Multidimensional Data Models

The entity-relationship data model is commonly used in the design of relational
databases, where a database schema consists of a set of entities and the relationships
between them. Such a data model is appropriate for online transaction processing.
A data warehouse, however, requires a concise, subject-oriented schema that facilitates
online data analysis.

The most popular data model for a data warehouse is a multidimensional model,
which can exist in the form of a star schema, a snowflake schema, or a fact constellation
schema. Let’s look at each of these.

Star schema: The most common modeling paradigm is the star schema, in which the
data warehouse contains (1) a large central table (fact table) containing the bulk of
the data, with no redundancy, and (2) a set of smaller attendant tables (dimension
tables), one for each dimension. The schema graph resembles a starburst, with the
dimension tables displayed in a radial pattern around the central fact table.

Example 4.1 Star schema. A star schema for AllElectronics sales is shown in Figure 4.6. Sales are con-
sidered along four dimensions: time, item, branch, and location. The schema contains
a central fact table for sales that contains keys to each of the four dimensions, along

140 Chapter 4 Data Warehousing and Online Analytical Processing

time
Dimension table

sales
Fact table

item
Dimension table

branch
Dimension table

location
Dimension table

time_key
day
day_of_the_week
month
quarter
year

time_key
item_key
branch_key
location_key
dollars_sold
units_sold

item_key
item_name
brand
type
supplier_type

branch_key
branch_name
branch_type

location_key
street
city
province_or_state
country

Figure 4.6 Star schema of sales data warehouse.

with two measures: dollars sold and units sold. To minimize the size of the fact table,
dimension identifiers (e.g., time key and item key) are system-generated identifiers.

Notice that in the star schema, each dimension is represented by only one table, and
each table contains a set of attributes. For example, the location dimension table contains
the attribute set {location key, street, city, province or state, country}. This constraint may
introduce some redundancy. For example, “Urbana” and “Chicago” are both cities in the
state of Illinois, USA. Entries for such cities in the location dimension table will create
redundancy among the attributes province or state and country; that is, (..., Urbana, IL,
USA) and (..., Chicago, IL, USA). Moreover, the attributes within a dimension table may
form either a hierarchy (total order) or a lattice (partial order).

Snowflake schema: The snowflake schema is a variant of the star schema model,
where some dimension tables are normalized, thereby further splitting the data into
additional tables. The resulting schema graph forms a shape similar to a snowflake.

The major difference between the snowflake and star schema models is that the
dimension tables of the snowflake model may be kept in normalized form to reduce
redundancies. Such a table is easy to maintain and saves storage space. However, this
space savings is negligible in comparison to the typical magnitude of the fact table. Fur-
thermore, the snowflake structure can reduce the effectiveness of browsing, since more
joins will be needed to execute a query. Consequently, the system performance may be
adversely impacted. Hence, although the snowflake schema reduces redundancy, it is not
as popular as the star schema in data warehouse design.

4.2 Data Warehouse Modeling: Data Cube and OLAP 141

time
Dimension table

sales
Fact table

item
Dimension table

branch
Dimension table

location
Dimension table

supplier
Dimension table

city
Dimension table

time_key
day
day_of_week
month
quarter
year

time_key
item_key
branch_key
location_key
dollars_sold
units_sold

item_key
item_name
brand
type
supplier_key

branch_key
branch_name
branch_type

location_key
street
city_key

supplier_key
supplier_type

city_key
city
province_or_state
country

Figure 4.7 Snowflake schema of a sales data warehouse.

Example 4.2 Snowflake schema. A snowflake schema for AllElectronics sales is given in Figure 4.7.
Here, the sales fact table is identical to that of the star schema in Figure 4.6. The
main difference between the two schemas is in the definition of dimension tables.
The single dimension table for item in the star schema is normalized in the snowflake
schema, resulting in new item and supplier tables. For example, the item dimension
table now contains the attributes item key, item name, brand, type, and supplier key,
where supplier key is linked to the supplier dimension table, containing supplier key and
supplier type information. Similarly, the single dimension table for location in the star
schema can be normalized into two new tables: location and city. The city key in the
new location table links to the city dimension. Notice that, when desirable, further nor-
malization can be performed on province or state and country in the snowflake schema
shown in Figure 4.7.

Fact constellation: Sophisticated applications may require multiple fact tables to share
dimension tables. This kind of schema can be viewed as a collection of stars, and
hence is called a galaxy schema or a fact constellation.

Example 4.3 Fact constellation. A fact constellation schema is shown in Figure 4.8. This schema
specifies two fact tables, sales and shipping. The sales table definition is identical to that of
the star schema (Figure 4.6). The shipping table has five dimensions, or keys—item key,
time key, shipper key, from location, and to location—and two measures—dollars cost

142 Chapter 4 Data Warehousing and Online Analytical Processing

time
Dimension table

sales
Fact table

item
Dimension table

branch
Dimension table

location
Dimension table

shipping
Fact table

shipper
Dimension table

time_key
day
day_of_week
month
quarter
year

time_key
item_key
branch_key
location_key
dollars_sold
units_sold

item_key
item_name
brand
type
supplier_type

branch_key
branch_name
branch_type

location_key
street
city
province_or_state
country

item_key
time_key
shipper_key
from_location
to_location
dollars_cost
units_shipped

shipper_key
shipper_name
location_key
shipper_type

Figure 4.8 Fact constellation schema of a sales and shipping data warehouse.

and units shipped. A fact constellation schema allows dimension tables to be shared
between fact tables. For example, the dimensions tables for time, item, and location are
shared between the sales and shipping fact tables.

In data warehousing, there is a distinction between a data warehouse and a data mart.
A data warehouse collects information about subjects that span the entire organization,
such as customers, items, sales, assets, and personnel, and thus its scope is enterprise-wide.
For data warehouses, the fact constellation schema is commonly used, since it can model
multiple, interrelated subjects. A data mart, on the other hand, is a department subset of
the data warehouse that focuses on selected subjects, and thus its scope is department-
wide. For data marts, the star or snowflake schema is commonly used, since both are
geared toward modeling single subjects, although the star schema is more popular and
efficient.

4.2.3 Dimensions: The Role of Concept Hierarchies

A concept hierarchy defines a sequence of mappings from a set of low-level concepts
to higher-level, more general concepts. Consider a concept hierarchy for the dimension
location. City values for location include Vancouver, Toronto, New York, and Chicago.
Each city, however, can be mapped to the province or state to which it belongs. For
example, Vancouver can be mapped to British Columbia, and Chicago to Illinois.
The provinces and states can in turn be mapped to the country (e.g., Canada or the
United States) to which they belong. These mappings form a concept hierarchy for the

4.2 Data Warehouse Modeling: Data Cube and OLAP 143

dimension location, mapping a set of low-level concepts (i.e., cities) to higher-level, more
general concepts (i.e., countries). This concept hierarchy is illustrated in Figure 4.9.

Many concept hierarchies are implicit within the database schema. For example,
suppose that the dimension location is described by the attributes number, street, city,
province or state, zip code, and country. These attributes are related by a total order,
forming a concept hierarchy such as “street < city < province or state < country.” This
hierarchy is shown in Figure 4.10(a). Alternatively, the attributes of a dimension may

Canada

all

British Columbia Ontario

Vancouver Victoria OttawaToronto Chicago UrbanaBuffalo

New York

New York

Illinois

USA

location

country

city

province_
or_state

all

Figure 4.9 A concept hierarchy for location. Due to space limitations, not all of the hierarchy nodes are
shown, indicated by ellipses between nodes.

country

city

province_or_state

street

month week

year

day

quarter

(a) (b)

Figure 4.10 Hierarchical and lattice structures of attributes in warehouse dimensions: (a) a hierarchy for
location and (b) a lattice for time.

144 Chapter 4 Data Warehousing and Online Analytical Processing

($0 $1000]

($800 $1000]

($0 …
$100]

($100…
$200]

($800…
$900]

($900…
$1000]

($600…
$700]

($700…
$800]

($200…
$300]

($300…
$400]

($400…
$500]

($500…
$600]

($600 $800]($400 $600]($200 $400]($0 $200]

Figure 4.11 A concept hierarchy for price.

be organized in a partial order, forming a lattice. An example of a partial order for the
time dimension based on the attributes day, week, month, quarter, and year is “day <

{month < quarter; week} < year.”1 This lattice structure is shown in Figure 4.10(b).
A concept hierarchy that is a total or partial order among attributes in a database schema
is called a schema hierarchy. Concept hierarchies that are common to many applica-
tions (e.g., for time) may be predefined in the data mining system. Data mining systems
should provide users with the flexibility to tailor predefined hierarchies according to
their particular needs. For example, users may want to define a fiscal year starting on
April 1 or an academic year starting on September 1.

Concept hierarchies may also be defined by discretizing or grouping values for a
given dimension or attribute, resulting in a set-grouping hierarchy. A total or partial
order can be defined among groups of values. An example of a set-grouping hierarchy is
shown in Figure 4.11 for the dimension price, where an interval ($X . . .$Y] denotes the
range from $X (exclusive) to $Y (inclusive).

There may be more than one concept hierarchy for a given attribute or dimension,
based on different user viewpoints. For instance, a user may prefer to organize price by
defining ranges for inexpensive, moderately priced, and expensive.

Concept hierarchies may be provided manually by system users, domain experts, or
knowledge engineers, or may be automatically generated based on statistical analysis of
the data distribution. The automatic generation of concept hierarchies is discussed in
Chapter 3 as a preprocessing step in preparation for data mining.

Concept hierarchies allow data to be handled at varying levels of abstraction, as we
will see in Section 4.2.4.

4.2.4 Measures: Their Categorization and Computation
“How are measures computed?” To answer this question, we first study how measures can
be categorized. Note that a multidimensional point in the data cube space can be defined

1Since a week often crosses the boundary of two consecutive months, it is usually not treated as a lower
abstraction of month. Instead, it is often treated as a lower abstraction of year, since a year contains
approximately 52 weeks.

4.2 Data Warehouse Modeling: Data Cube and OLAP 145

by a set of dimension–value pairs; for example, 〈time = “Q1”, location = “Vancouver”,
item = “computer”〉. A data cube measure is a numeric function that can be evaluated
at each point in the data cube space. A measure value is computed for a given point by
aggregating the data corresponding to the respective dimension–value pairs defining the
given point. We will look at concrete examples of this shortly.

Measures can be organized into three categories—distributive, algebraic, and holi-
stic—based on the kind of aggregate functions used.

Distributive: An aggregate function is distributive if it can be computed in a distributed
manner as follows. Suppose the data are partitioned into n sets. We apply the func-
tion to each partition, resulting in n aggregate values. If the result derived by applying
the function to the n aggregate values is the same as that derived by applying the func-
tion to the entire data set (without partitioning), the function can be computed in a
distributed manner. For example, sum() can be computed for a data cube by first par-
titioning the cube into a set of subcubes, computing sum() for each subcube, and then
summing up the counts obtained for each subcube. Hence, sum() is a distributive
aggregate function.

For the same reason, count(), min(), and max() are distributive aggregate functions.
By treating the count value of each nonempty base cell as 1 by default, count() of any
cell in a cube can be viewed as the sum of the count values of all of its corresponding
child cells in its subcube. Thus, count() is distributive. A measure is distributive if it is
obtained by applying a distributive aggregate function. Distributive measures can be
computed efficiently because of the way the computation can be partitioned.

Algebraic: An aggregate function is algebraic if it can be computed by an algebraic func-
tion with M arguments (where M is a bounded positive integer), each of which
is obtained by applying a distributive aggregate function. For example, avg() (aver-
age) can be computed by sum()/count(), where both sum() and count() are distributive
aggregate functions. Similarly, it can be shown that min N() and max N() (which
find the N minimum and N maximum values, respectively, in a given set) and
standard deviation() are algebraic aggregate functions. A measure is algebraic if it is
obtained by applying an algebraic aggregate function.

Holistic: An aggregate function is holistic if there is no constant bound on the stor-
age size needed to describe a subaggregate. That is, there does not exist an algebraic
function with M arguments (where M is a constant) that characterizes the compu-
tation. Common examples of holistic functions include median(), mode(), and rank().
A measure is holistic if it is obtained by applying a holistic aggregate function.

Most large data cube applications require efficient computation of distributive and
algebraic measures. Many efficient techniques for this exist. In contrast, it is difficult to
compute holistic measures efficiently. Efficient techniques to approximate the computa-
tion of some holistic measures, however, do exist. For example, rather than computing
the exact median(), Equation (2.3) of Chapter 2 can be used to estimate the approxi-
mate median value for a large data set. In many cases, such techniques are sufficient to
overcome the difficulties of efficient computation of holistic measures.

146 Chapter 4 Data Warehousing and Online Analytical Processing

Various methods for computing different measures in data cube construction are
discussed in depth in Chapter 5. Notice that most of the current data cube techno-
logy confines the measures of multidimensional databases to numeric data. However,
measures can also be applied to other kinds of data, such as spatial, multimedia, or
text data.

4.2.5 Typical OLAP Operations

“How are concept hierarchies useful in OLAP?” In the multidimensional model, data are
organized into multiple dimensions, and each dimension contains multiple levels of
abstraction defined by concept hierarchies. This organization provides users with the
flexibility to view data from different perspectives. A number of OLAP data cube opera-
tions exist to materialize these different views, allowing interactive querying and analysis
of the data at hand. Hence, OLAP provides a user-friendly environment for interactive
data analysis.

Example 4.4 OLAP operations. Let’s look at some typical OLAP operations for multidimensional
data. Each of the following operations described is illustrated in Figure 4.12. At the cen-
ter of the figure is a data cube for AllElectronics sales. The cube contains the dimensions
location, time, and item, where location is aggregated with respect to city values, time is
aggregated with respect to quarters, and item is aggregated with respect to item types.
To aid in our explanation, we refer to this cube as the central cube. The measure dis-
played is dollars sold (in thousands). (For improved readability, only some of the cubes’
cell values are shown.) The data examined are for the cities Chicago, New York, Toronto,
and Vancouver.

Roll-up: The roll-up operation (also called the drill-up operation by some vendors)
performs aggregation on a data cube, either by climbing up a concept hierarchy for
a dimension or by dimension reduction. Figure 4.12 shows the result of a roll-up
operation performed on the central cube by climbing up the concept hierarchy for
location given in Figure 4.9. This hierarchy was defined as the total order “street <

city < province or state < country.” The roll-up operation shown aggregates the data
by ascending the location hierarchy from the level of city to the level of country. In
other words, rather than grouping the data by city, the resulting cube groups the data
by country.

When roll-up is performed by dimension reduction, one or more dimensions are
removed from the given cube. For example, consider a sales data cube containing
only the location and time dimensions. Roll-up may be performed by removing, say,
the time dimension, resulting in an aggregation of the total sales by location, rather
than by location and by time.

Drill-down: Drill-down is the reverse of roll-up. It navigates from less detailed data
to more detailed data. Drill-down can be realized by either stepping down a concept
hierarchy for a dimension or introducing additional dimensions. Figure 4.12 shows the
result of a drill-down operation performed on the central cube by stepping down a

4.2 Data Warehouse Modeling: Data Cube and OLAP 147

home
entertainment

Q1

Q2

Q3

Q4

1000

Canada
USA 2000

tim
e

(q
ua

rt
er

s)loc
ati

on
 (c

ou
ntri

es)

computer

item (types)

phone
security

Toronto 395

Q1

Q2

605

Vancouver
tim

e
(q

ua
rt

er
s)loc

ati
on

 (c
iti

es)

home
entertainment

computer

item (types)

January
February

March
April
May
June
July

August
September

October
November
December

Chicago
New York
Toronto

Vancouver

tim
e

(m
on

th
s)

loc
ati

on
 (c

iti
es)

home
entertainment

computer

item (types)

phone
security

150
100
150

605 825 14 400Q1

Q2

Q3

Q4

Chicago
New York

Toronto
Vancouver

tim
e

(q
ua

rt
er

s)

loc
ati

on
 (c

iti
es)

home
entertainment

computer

item (types)

phone
security

440

395
1560

dice for
(location = “Toronto” or “Vancouver”)
and (time = “Q1” or “Q2”) and
(item = “home entertainment” or “computer”) roll-up

on location
(from cities
to countries)

slice
for time = “Q1”

Chicago

New York

Toronto

Vancouver

home
entertainment

computer

item (types)

phone
security

lo
ca

tio
n

(c
it

ie
s)

605 825 14 400

home
entertainment

computer

phone

security

605

825

14

400

Chicago
New York

location (cities)

ite
m

 (
ty

pe
s)

Toronto
Vancouver

pivot

drill-down
on time
(from quarters
to months)

Figure 4.12 Examples of typical OLAP operations on multidimensional data.

148 Chapter 4 Data Warehousing and Online Analytical Processing

concept hierarchy for time defined as “day < month < quarter < year.” Drill-down
occurs by descending the time hierarchy from the level of quarter to the more detailed
level of month. The resulting data cube details the total sales per month rather than
summarizing them by quarter.

Because a drill-down adds more detail to the given data, it can also be per-
formed by adding new dimensions to a cube. For example, a drill-down on the
central cube of Figure 4.12 can occur by introducing an additional dimension, such
as customer group.

Slice and dice: The slice operation performs a selection on one dimension of the given
cube, resulting in a subcube. Figure 4.12 shows a slice operation where the sales
data are selected from the central cube for the dimension time using the criterion
time = “Q1.” The dice operation defines a subcube by performing a selection on two
or more dimensions. Figure 4.12 shows a dice operation on the central cube based on
the following selection criteria that involve three dimensions: (location = “Toronto”
or “Vancouver”) and (time = “Q1” or “Q2”) and (item = “home entertainment” or
“computer”).

Pivot (rotate): Pivot (also called rotate) is a visualization operation that rotates the data
axes in view to provide an alternative data presentation. Figure 4.12 shows a pivot
operation where the item and location axes in a 2-D slice are rotated. Other examples
include rotating the axes in a 3-D cube, or transforming a 3-D cube into a series of
2-D planes.

Other OLAP operations: Some OLAP systems offer additional drilling operations. For
example, drill-across executes queries involving (i.e., across) more than one fact
table. The drill-through operation uses relational SQL facilities to drill through the
bottom level of a data cube down to its back-end relational tables.

Other OLAP operations may include ranking the top N or bottom N items in
lists, as well as computing moving averages, growth rates, interests, internal return
rates, depreciation, currency conversions, and statistical functions.

OLAP offers analytical modeling capabilities, including a calculation engine for
deriving ratios, variance, and so on, and for computing measures across multiple dimen-
sions. It can generate summarizations, aggregations, and hierarchies at each granularity
level and at every dimension intersection. OLAP also supports functional models for
forecasting, trend analysis, and statistical analysis. In this context, an OLAP engine is a
powerful data analysis tool.

OLAP Systems versus Statistical Databases
Many OLAP systems’ characteristics (e.g., the use of a multidimensional data model
and concept hierarchies, the association of measures with dimensions, and the notions
of roll-up and drill-down) also exist in earlier work on statistical databases (SDBs).
A statistical database is a database system that is designed to support statistical applica-
tions. Similarities between the two types of systems are rarely discussed, mainly due to
differences in terminology and application domains.

4.2 Data Warehouse Modeling: Data Cube and OLAP 149

OLAP and SDB systems, however, have distinguishing differences. While SDBs tend
to focus on socioeconomic applications, OLAP has been targeted for business appli-
cations. Privacy issues regarding concept hierarchies are a major concern for SDBs. For
example, given summarized socioeconomic data, it is controversial to allow users to view
the corresponding low-level data. Finally, unlike SDBs, OLAP systems are designed for
efficiently handling huge amounts of data.

4.2.6 A Starnet Query Model for Querying
Multidimensional Databases

The querying of multidimensional databases can be based on a starnet model, which
consists of radial lines emanating from a central point, where each line represents a
concept hierarchy for a dimension. Each abstraction level in the hierarchy is called a
footprint. These represent the granularities available for use by OLAP operations such
as drill-down and roll-up.

Example 4.5 Starnet. A starnet query model for the AllElectronics data warehouse is shown in
Figure 4.13. This starnet consists of four radial lines, representing concept hierarchies
for the dimensions location, customer, item, and time, respectively. Each line consists
of footprints representing abstraction levels of the dimension. For example, the time
line has four footprints: “day,” “month,” “quarter,” and “year.” A concept hierarchy may
involve a single attribute (e.g., date for the time hierarchy) or several attributes (e.g., the
concept hierarchy for location involves the attributes street, city, province or state, and
country). In order to examine the item sales at AllElectronics, users can roll up along the

continent

country

province_or_state

city

street

name brand category type

name

category

group

year

quarter

month

day

time

item

location
customer

Figure 4.13 A starnet model of business queries.

150 Chapter 4 Data Warehousing and Online Analytical Processing

time dimension from month to quarter, or, say, drill down along the location dimension
from country to city.

Concept hierarchies can be used to generalize data by replacing low-level values
(such as “day” for the time dimension) by higher-level abstractions (such as “year”),
or to specialize data by replacing higher-level abstractions with lower-level values.

4.3 Data Warehouse Design and Usage

“What goes into a data warehouse design? How are data warehouses used? How do data
warehousing and OLAP relate to data mining?” This section tackles these questions. We
study the design and usage of data warehousing for information processing, analyti-
cal processing, and data mining. We begin by presenting a business analysis framework
for data warehouse design (Section 4.3.1). Section 4.3.2 looks at the design process,
while Section 4.3.3 studies data warehouse usage. Finally, Section 4.3.4 describes multi-
dimensional data mining, a powerful paradigm that integrates OLAP with data mining
technology.

4.3.1 A Business Analysis Framework for Data
Warehouse Design

“What can business analysts gain from having a data warehouse?” First, having a data
warehouse may provide a competitive advantage by presenting relevant information
from which to measure performance and make critical adjustments to help win over
competitors. Second, a data warehouse can enhance business productivity because it is
able to quickly and efficiently gather information that accurately describes the organi-
zation. Third, a data warehouse facilitates customer relationship management because it
provides a consistent view of customers and items across all lines of business, all depart-
ments, and all markets. Finally, a data warehouse may bring about cost reduction by
tracking trends, patterns, and exceptions over long periods in a consistent and reliable
manner.

To design an effective data warehouse we need to understand and analyze busi-
ness needs and construct a business analysis framework. The construction of a large
and complex information system can be viewed as the construction of a large and
complex building, for which the owner, architect, and builder have different views.
These views are combined to form a complex framework that represents the top-down,
business-driven, or owner’s perspective, as well as the bottom-up, builder-driven, or
implementor’s view of the information system.

Four different views regarding a data warehouse design must be considered: the top-
down view, the data source view, the data warehouse view, and the business query view.

4.3 Data Warehouse Design and Usage 151

The top-down view allows the selection of the relevant information necessary for the
data warehouse. This information matches current and future business needs.

The data source view exposes the information being captured, stored, and man-
aged by operational systems. This information may be documented at various levels
of detail and accuracy, from individual data source tables to integrated data source
tables. Data sources are often modeled by traditional data modeling techniques, such
as the entity-relationship model or CASE (computer-aided software engineering)
tools.

The data warehouse view includes fact tables and dimension tables. It represents the
information that is stored inside the data warehouse, including precalculated totals
and counts, as well as information regarding the source, date, and time of origin,
added to provide historical context.

Finally, the business query view is the data perspective in the data warehouse from
the end-user’s viewpoint.

Building and using a data warehouse is a complex task because it requires business
skills, technology skills, and program management skills. Regarding business skills, building
a data warehouse involves understanding how systems store and manage their data, how
to build extractors that transfer data from the operational system to the data warehouse,
and how to build warehouse refresh software that keeps the data warehouse reasonably
up-to-date with the operational system’s data. Using a data warehouse involves under-
standing the significance of the data it contains, as well as understanding and translating
the business requirements into queries that can be satisfied by the data warehouse.

Regarding technology skills, data analysts are required to understand how to make
assessments from quantitative information and derive facts based on conclusions from
historic information in the data warehouse. These skills include the ability to discover
patterns and trends, to extrapolate trends based on history and look for anomalies or
paradigm shifts, and to present coherent managerial recommendations based on such
analysis. Finally, program management skills involve the need to interface with many
technologies, vendors, and end-users in order to deliver results in a timely and cost-
effective manner.

4.3.2 Data Warehouse Design Process

Let’s look at various approaches to the data warehouse design process and the steps
involved.

A data warehouse can be built using a top-down approach, a bottom-up approach,
or a combination of both. The top-down approach starts with overall design and plan-
ning. It is useful in cases where the technology is mature and well known, and where
the business problems that must be solved are clear and well understood. The bottom-
up approach starts with experiments and prototypes. This is useful in the early stage
of business modeling and technology development. It allows an organization to move

152 Chapter 4 Data Warehousing and Online Analytical Processing

forward at considerably less expense and to evaluate the technological benefits before
making significant commitments. In the combined approach, an organization can
exploit the planned and strategic nature of the top-down approach while retaining the
rapid implementation and opportunistic application of the bottom-up approach.

From the software engineering point of view, the design and construction of a data
warehouse may consist of the following steps: planning, requirements study, problem
analysis, warehouse design, data integration and testing, and finally deployment of the
data warehouse. Large software systems can be developed using one of two methodo-
logies: the waterfall method or the spiral method. The waterfall method performs a
structured and systematic analysis at each step before proceeding to the next, which
is like a waterfall, falling from one step to the next. The spiral method involves the rapid
generation of increasingly functional systems, with short intervals between successive
releases. This is considered a good choice for data warehouse development, especially
for data marts, because the turnaround time is short, modifications can be done quickly,
and new designs and technologies can be adapted in a timely manner.

In general, the warehouse design process consists of the following steps:

1. Choose a business process to model (e.g., orders, invoices, shipments, inventory,
account administration, sales, or the general ledger). If the business process is orga-
nizational and involves multiple complex object collections, a data warehouse model
should be followed. However, if the process is departmental and focuses on the
analysis of one kind of business process, a data mart model should be chosen.

2. Choose the business process grain, which is the fundamental, atomic level of data
to be represented in the fact table for this process (e.g., individual transactions,
individual daily snapshots, and so on).

3. Choose the dimensions that will apply to each fact table record. Typical dimensions
are time, item, customer, supplier, warehouse, transaction type, and status.

4. Choose the measures that will populate each fact table record. Typical measures are
numeric additive quantities like dollars sold and units sold.

Because data warehouse construction is a difficult and long-term task, its imple-
mentation scope should be clearly defined. The goals of an initial data warehouse
implementation should be specific, achievable, and measurable. This involves determin-
ing the time and budget allocations, the subset of the organization that is to be modeled,
the number of data sources selected, and the number and types of departments to be
served.

Once a data warehouse is designed and constructed, the initial deployment of
the warehouse includes initial installation, roll-out planning, training, and orienta-
tion. Platform upgrades and maintenance must also be considered. Data warehouse
administration includes data refreshment, data source synchronization, planning for
disaster recovery, managing access control and security, managing data growth, man-
aging database performance, and data warehouse enhancement and extension. Scope

4.3 Data Warehouse Design and Usage 153

management includes controlling the number and range of queries, dimensions, and
reports; limiting the data warehouse’s size; or limiting the schedule, budget, or resources.

Various kinds of data warehouse design tools are available. Data warehouse
development tools provide functions to define and edit metadata repository contents
(e.g., schemas, scripts, or rules), answer queries, output reports, and ship metadata to
and from relational database system catalogs. Planning and analysis tools study the
impact of schema changes and of refresh performance when changing refresh rates or
time windows.

4.3.3 Data Warehouse Usage for Information Processing

Data warehouses and data marts are used in a wide range of applications. Business
executives use the data in data warehouses and data marts to perform data analysis
and make strategic decisions. In many firms, data warehouses are used as an integral
part of a plan-execute-assess “closed-loop” feedback system for enterprise management.
Data warehouses are used extensively in banking and financial services, consumer goods
and retail distribution sectors, and controlled manufacturing such as demand-based
production.

Typically, the longer a data warehouse has been in use, the more it will have evolved.
This evolution takes place throughout a number of phases. Initially, the data warehouse
is mainly used for generating reports and answering predefined queries. Progressively, it
is used to analyze summarized and detailed data, where the results are presented in the
form of reports and charts. Later, the data warehouse is used for strategic purposes, per-
forming multidimensional analysis and sophisticated slice-and-dice operations. Finally,
the data warehouse may be employed for knowledge discovery and strategic decision
making using data mining tools. In this context, the tools for data warehousing can be
categorized into access and retrieval tools, database reporting tools, data analysis tools, and
data mining tools.

Business users need to have the means to know what exists in the data warehouse
(through metadata), how to access the contents of the data warehouse, how to examine
the contents using analysis tools, and how to present the results of such analysis.

There are three kinds of data warehouse applications: information processing, analyti-
cal processing, and data mining.

Information processing supports querying, basic statistical analysis, and reporting
using crosstabs, tables, charts, or graphs. A current trend in data warehouse infor-
mation processing is to construct low-cost web-based accessing tools that are then
integrated with web browsers.

Analytical processing supports basic OLAP operations, including slice-and-dice,
drill-down, roll-up, and pivoting. It generally operates on historic data in both sum-
marized and detailed forms. The major strength of online analytical processing over
information processing is the multidimensional data analysis of data warehouse data.

154 Chapter 4 Data Warehousing and Online Analytical Processing

Data mining supports knowledge discovery by finding hidden patterns and associa-
tions, constructing analytical models, performing classification and prediction, and
presenting the mining results using visualization tools.

“How does data mining relate to information processing and online analytical process-
ing?” Information processing, based on queries, can find useful information. However,
answers to such queries reflect the information directly stored in databases or com-
putable by aggregate functions. They do not reflect sophisticated patterns or regularities
buried in the database. Therefore, information processing is not data mining.

Online analytical processing comes a step closer to data mining because it can derive
information summarized at multiple granularities from user-specified subsets of a data
warehouse. Such descriptions are equivalent to the class/concept descriptions discussed
in Chapter 1. Because data mining systems can also mine generalized class/concept
descriptions, this raises some interesting questions: “Do OLAP systems perform data
mining? Are OLAP systems actually data mining systems?”

The functionalities of OLAP and data mining can be viewed as disjoint: OLAP is a
data summarization/aggregation tool that helps simplify data analysis, while data mining
allows the automated discovery of implicit patterns and interesting knowledge hidden
in large amounts of data. OLAP tools are targeted toward simplifying and supporting
interactive data analysis, whereas the goal of data mining tools is to automate as much
of the process as possible, while still allowing users to guide the process. In this sense,
data mining goes one step beyond traditional online analytical processing.

An alternative and broader view of data mining may be adopted in which data mining
covers both data description and data modeling. Because OLAP systems can present
general descriptions of data from data warehouses, OLAP functions are essentially for
user-directed data summarization and comparison (by drilling, pivoting, slicing, dic-
ing, and other operations). These are, though limited, data mining functionalities. Yet
according to this view, data mining covers a much broader spectrum than simple OLAP
operations, because it performs not only data summarization and comparison but also
association, classification, prediction, clustering, time-series analysis, and other data
analysis tasks.

Data mining is not confined to the analysis of data stored in data warehouses. It may
analyze data existing at more detailed granularities than the summarized data provided
in a data warehouse. It may also analyze transactional, spatial, textual, and multimedia
data that are difficult to model with current multidimensional database technology. In
this context, data mining covers a broader spectrum than OLAP with respect to data
mining functionality and the complexity of the data handled.

Because data mining involves more automated and deeper analysis than OLAP, it
is expected to have broader applications. Data mining can help business managers find
and reach more suitable customers, as well as gain critical business insights that may help
drive market share and raise profits. In addition, data mining can help managers under-
stand customer group characteristics and develop optimal pricing strategies accordingly.
It can correct item bundling based not on intuition but on actual item groups derived
from customer purchase patterns, reduce promotional spending, and at the same time
increase the overall net effectiveness of promotions.

4.3 Data Warehouse Design and Usage 155

4.3.4 From Online Analytical Processing
to Multidimensional Data Mining

The data mining field has conducted substantial research regarding mining on vari-
ous data types, including relational data, data from data warehouses, transaction data,
time-series data, spatial data, text data, and flat files. Multidimensional data mining
(also known as exploratory multidimensional data mining, online analytical mining,
or OLAM) integrates OLAP with data mining to uncover knowledge in multidimen-
sional databases. Among the many different paradigms and architectures of data mining
systems, multidimensional data mining is particularly important for the following
reasons:

High quality of data in data warehouses: Most data mining tools need to work on
integrated, consistent, and cleaned data, which requires costly data cleaning, data
integration, and data transformation as preprocessing steps. A data warehouse con-
structed by such preprocessing serves as a valuable source of high-quality data for
OLAP as well as for data mining. Notice that data mining may serve as a valuable
tool for data cleaning and data integration as well.

Available information processing infrastructure surrounding data warehouses:
Comprehensive information processing and data analysis infrastructures have been
or will be systematically constructed surrounding data warehouses, which include
accessing, integration, consolidation, and transformation of multiple heterogeneous
databases, ODBC/OLEDB connections, Web accessing and service facilities, and
reporting and OLAP analysis tools. It is prudent to make the best use of the available
infrastructures rather than constructing everything from scratch.

OLAP-based exploration of multidimensional data: Effective data mining needs
exploratory data analysis. A user will often want to traverse through a database, select
portions of relevant data, analyze them at different granularities, and present knowl-
edge/results in different forms. Multidimensional data mining provides facilities for
mining on different subsets of data and at varying levels of abstraction—by drilling,
pivoting, filtering, dicing, and slicing on a data cube and/or intermediate data min-
ing results. This, together with data/knowledge visualization tools, greatly enhances
the power and flexibility of data mining.

Online selection of data mining functions: Users may not always know the specific
kinds of knowledge they want to mine. By integrating OLAP with various data min-
ing functions, multidimensional data mining provides users with the flexibility to
select desired data mining functions and swap data mining tasks dynamically.

Chapter 5 describes data warehouses on a finer level by exploring implementation
issues such as data cube computation, OLAP query answering strategies, and multi-
dimensional data mining. The chapters following it are devoted to the study of data
mining techniques. As we have seen, the introduction to data warehousing and OLAP
technology presented in this chapter is essential to our study of data mining. This
is because data warehousing provides users with large amounts of clean, organized,

156 Chapter 4 Data Warehousing and Online Analytical Processing

and summarized data, which greatly facilitates data mining. For example, rather than
storing the details of each sales transaction, a data warehouse may store a summary
of the transactions per item type for each branch or, summarized to a higher level,
for each country. The capability of OLAP to provide multiple and dynamic views
of summarized data in a data warehouse sets a solid foundation for successful data
mining.

Moreover, we also believe that data mining should be a human-centered process.
Rather than asking a data mining system to generate patterns and knowledge automati-
cally, a user will often need to interact with the system to perform exploratory data
analysis. OLAP sets a good example for interactive data analysis and provides the nec-
essary preparations for exploratory data mining. Consider the discovery of association
patterns, for example. Instead of mining associations at a primitive (i.e., low) data level
among transactions, users should be allowed to specify roll-up operations along any
dimension.

For example, a user may want to roll up on the item dimension to go from viewing the
data for particular TV sets that were purchased to viewing the brands of these TVs (e.g.,
SONY or Toshiba). Users may also navigate from the transaction level to the customer or
customer-type level in the search for interesting associations. Such an OLAP data mining
style is characteristic of multidimensional data mining. In our study of the principles
of data mining in this book, we place particular emphasis on multidimensional data
mining, that is, on the integration of data mining and OLAP technology.

4.4 Data Warehouse Implementation

Data warehouses contain huge volumes of data. OLAP servers demand that decision
support queries be answered in the order of seconds. Therefore, it is crucial for data
warehouse systems to support highly efficient cube computation techniques, access
methods, and query processing techniques. In this section, we present an overview
of methods for the efficient implementation of data warehouse systems. Section 4.4.1
explores how to compute data cubes efficiently. Section 4.4.2 shows how OLAP data
can be indexed, using either bitmap or join indices. Next, we study how OLAP queries
are processed (Section 4.4.3). Finally, Section 4.4.4 presents various types of warehouse
servers for OLAP processing.

4.4.1 Efficient Data Cube Computation: An Overview

At the core of multidimensional data analysis is the efficient computation of aggrega-
tions across many sets of dimensions. In SQL terms, these aggregations are referred to
as group-by’s. Each group-by can be represented by a cuboid, where the set of group-by’s
forms a lattice of cuboids defining a data cube. In this subsection, we explore issues
relating to the efficient computation of data cubes.

4.4 Data Warehouse Implementation 157

The compute cube Operator and the Curse
of Dimensionality
One approach to cube computation extends SQL so as to include a compute cube oper-
ator. The compute cube operator computes aggregates over all subsets of the dimensions
specified in the operation. This can require excessive storage space, especially for large
numbers of dimensions. We start with an intuitive look at what is involved in the
efficient computation of data cubes.

Example 4.6 A data cube is a lattice of cuboids. Suppose that you want to create a data cube for
AllElectronics sales that contains the following: city, item, year, and sales in dollars. You
want to be able to analyze the data, with queries such as the following:

“Compute the sum of sales, grouping by city and item.”

“Compute the sum of sales, grouping by city.”

“Compute the sum of sales, grouping by item.”

What is the total number of cuboids, or group-by’s, that can be computed for this
data cube? Taking the three attributes, city, item, and year, as the dimensions for the
data cube, and sales in dollars as the measure, the total number of cuboids, or group-
by’s, that can be computed for this data cube is 23 = 8. The possible group-by’s are
the following: {(city, item, year), (city, item), (city, year), (item, year), (city), (item),
(year), ()}, where () means that the group-by is empty (i.e., the dimensions are not
grouped). These group-by’s form a lattice of cuboids for the data cube, as shown in
Figure 4.14.

(item) (year)(city)

()

(item, year)

(city, item, year)

(city, item) (city, year)

O-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

Figure 4.14 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains city, item, and year dimensions.

158 Chapter 4 Data Warehousing and Online Analytical Processing

The base cuboid contains all three dimensions, city, item, and year. It can return
the total sales for any combination of the three dimensions. The apex cuboid, or 0-D
cuboid, refers to the case where the group-by is empty. It contains the total sum of all
sales. The base cuboid is the least generalized (most specific) of the cuboids. The apex
cuboid is the most generalized (least specific) of the cuboids, and is often denoted as all.
If we start at the apex cuboid and explore downward in the lattice, this is equivalent to
drilling down within the data cube. If we start at the base cuboid and explore upward,
this is akin to rolling up.

An SQL query containing no group-by (e.g., “compute the sum of total sales”) is a zero-
dimensional operation. An SQL query containing one group-by (e.g., “compute the sum
of sales, group-by city”) is a one-dimensional operation. A cube operator on n dimensions
is equivalent to a collection of group-by statements, one for each subset of the n dimen-
sions. Therefore, the cube operator is the n-dimensional generalization of the group-by
operator.

Similar to the SQL syntax, the data cube in Example 4.1 could be defined as

define cube sales cube [city, item, year]: sum(sales in dollars)

For a cube with n dimensions, there are a total of 2n cuboids, including the base cuboid.
A statement such as

compute cube sales cube

would explicitly instruct the system to compute the sales aggregate cuboids for all eight
subsets of the set {city, item, year}, including the empty subset. A cube computation
operator was first proposed and studied by Gray et al. [GCB+97].

Online analytical processing may need to access different cuboids for different
queries. Therefore, it may seem like a good idea to compute in advance all or at least
some of the cuboids in a data cube. Precomputation leads to fast response time and
avoids some redundant computation. Most, if not all, OLAP products resort to some
degree of precomputation of multidimensional aggregates.

A major challenge related to this precomputation, however, is that the required stor-
age space may explode if all the cuboids in a data cube are precomputed, especially when
the cube has many dimensions. The storage requirements are even more excessive when
many of the dimensions have associated concept hierarchies, each with multiple levels.
This problem is referred to as the curse of dimensionality. The extent of the curse of
dimensionality is illustrated here.

“How many cuboids are there in an n-dimensional data cube?” If there were no
hierarchies associated with each dimension, then the total number of cuboids for an
n-dimensional data cube, as we have seen, is 2n. However, in practice, many dimensions
do have hierarchies. For example, time is usually explored not at only one conceptual
level (e.g., year), but rather at multiple conceptual levels such as in the hierarchy “day <

month < quarter < year.” For an n-dimensional data cube, the total number of cuboids

4.4 Data Warehouse Implementation 159

that can be generated (including the cuboids generated by climbing up the hierarchies
along each dimension) is

Total number of cuboids =
n∏

i=1

(Li + 1), (4.1)

where Li is the number of levels associated with dimension i. One is added to Li in
Eq. (4.1) to include the virtual top level, all. (Note that generalizing to all is equivalent to
the removal of the dimension.)

This formula is based on the fact that, at most, one abstraction level in each dimen-
sion will appear in a cuboid. For example, the time dimension as specified before has
four conceptual levels, or five if we include the virtual level all. If the cube has 10 dimen-
sions and each dimension has five levels (including all), the total number of cuboids
that can be generated is 510 ≈ 9.8 × 106. The size of each cuboid also depends on the
cardinality (i.e., number of distinct values) of each dimension. For example, if the All-
Electronics branch in each city sold every item, there would be |city| × |item| tuples in the
city−item group-by alone. As the number of dimensions, number of conceptual hierar-
chies, or cardinality increases, the storage space required for many of the group-by’s will
grossly exceed the (fixed) size of the input relation.

By now, you probably realize that it is unrealistic to precompute and materialize all
of the cuboids that can possibly be generated for a data cube (i.e., from a base cuboid).
If there are many cuboids, and these cuboids are large in size, a more reasonable option
is partial materialization; that is, to materialize only some of the possible cuboids that
can be generated.

Partial Materialization: Selected Computation
of Cuboids
There are three choices for data cube materialization given a base cuboid:

1. No materialization: Do not precompute any of the “nonbase” cuboids. This leads
to computing expensive multidimensional aggregates on-the-fly, which can be extre-
mely slow.

2. Full materialization: Precompute all of the cuboids. The resulting lattice of com-
puted cuboids is referred to as the full cube. This choice typically requires huge
amounts of memory space in order to store all of the precomputed cuboids.

3. Partial materialization: Selectively compute a proper subset of the whole set of pos-
sible cuboids. Alternatively, we may compute a subset of the cube, which contains
only those cells that satisfy some user-specified criterion, such as where the tuple
count of each cell is above some threshold. We will use the term subcube to refer to
the latter case, where only some of the cells may be precomputed for various cuboids.
Partial materialization represents an interesting trade-off between storage space and
response time.

160 Chapter 4 Data Warehousing and Online Analytical Processing

The partial materialization of cuboids or subcubes should consider three factors: (1)
identify the subset of cuboids or subcubes to materialize; (2) exploit the materialized
cuboids or subcubes during query processing; and (3) efficiently update the materialized
cuboids or subcubes during load and refresh.

The selection of the subset of cuboids or subcubes to materialize should take into
account the queries in the workload, their frequencies, and their accessing costs. In addi-
tion, it should consider workload characteristics, the cost for incremental updates, and
the total storage requirements. The selection must also consider the broad context of
physical database design such as the generation and selection of indices. Several OLAP
products have adopted heuristic approaches for cuboid and subcube selection. A pop-
ular approach is to materialize the cuboids set on which other frequently referenced
cuboids are based. Alternatively, we can compute an iceberg cube, which is a data cube
that stores only those cube cells with an aggregate value (e.g., count) that is above some
minimum support threshold.

Another common strategy is to materialize a shell cube. This involves precomput-
ing the cuboids for only a small number of dimensions (e.g., three to five) of a data
cube. Queries on additional combinations of the dimensions can be computed on-the-
fly. Because our aim in this chapter is to provide a solid introduction and overview of
data warehousing for data mining, we defer our detailed discussion of cuboid selection
and computation to Chapter 5, which studies various data cube computation methods
in greater depth.

Once the selected cuboids have been materialized, it is important to take advantage of
them during query processing. This involves several issues, such as how to determine the
relevant cuboid(s) from among the candidate materialized cuboids, how to use available
index structures on the materialized cuboids, and how to transform the OLAP opera-
tions onto the selected cuboid(s). These issues are discussed in Section 4.4.3 as well as in
Chapter 5.

Finally, during load and refresh, the materialized cuboids should be updated effi-
ciently. Parallelism and incremental update techniques for this operation should be
explored.

4.4.2 Indexing OLAP Data: Bitmap Index and Join Index

To facilitate efficient data accessing, most data warehouse systems support index struc-
tures and materialized views (using cuboids). General methods to select cuboids for
materialization were discussed in Section 4.4.1. In this subsection, we examine how to
index OLAP data by bitmap indexing and join indexing.

The bitmap indexing method is popular in OLAP products because it allows quick
searching in data cubes. The bitmap index is an alternative representation of the
record ID (RID) list. In the bitmap index for a given attribute, there is a distinct bit
vector, Bv, for each value v in the attribute’s domain. If a given attribute’s domain con-
sists of n values, then n bits are needed for each entry in the bitmap index (i.e., there are
n bit vectors). If the attribute has the value v for a given row in the data table, then the
bit representing that value is set to 1 in the corresponding row of the bitmap index. All
other bits for that row are set to 0.

4.4 Data Warehouse Implementation 161

Example 4.7 Bitmap indexing. In the AllElectronics data warehouse, suppose the dimension item at
the top level has four values (representing item types): “home entertainment,” “com-
puter,” “phone,” and “security.” Each value (e.g., “computer”) is represented by a bit vector
in the item bitmap index table. Suppose that the cube is stored as a relation table with
100,000 rows. Because the domain of item consists of four values, the bitmap index table
requires four bit vectors (or lists), each with 100,000 bits. Figure 4.15 shows a base (data)
table containing the dimensions item and city, and its mapping to bitmap index tables
for each of the dimensions.

RID item city

R1
R2
R3
R4
R5
R6
R7
R8

H
C
P
S
H
C
P
S

V
V
V
V
T
T
T
T

Base table

Note: H for “home entertainment,” C for “computer,” P for “phone,” S for “security,”
V for “Vancouver,” T for “Toronto.”

RID H C P S

R1
R2
R3
R4
R5
R6
R7
R8

1
0
0
0
1
0
0
0

0
1
0
0
0
1
0
0

0
0
1
0
0
0
1
0

0
0
0
1
0
0
0
1

item bitmap index table

RID V T

R1
R2
R3
R4
R5
R6
R7
R8

1
1
1
1
0
0
0
0

0
0
0
0
1
1
1
1

city bitmap index table

Figure 4.15 Indexing OLAP data using bitmap indices.

Bitmap indexing is advantageous compared to hash and tree indices. It is especially
useful for low-cardinality domains because comparison, join, and aggregation opera-
tions are then reduced to bit arithmetic, which substantially reduces the processing time.
Bitmap indexing leads to significant reductions in space and input/output (I/O) since a
string of characters can be represented by a single bit. For higher-cardinality domains,
the method can be adapted using compression techniques.

The join indexing method gained popularity from its use in relational database query
processing. Traditional indexing maps the value in a given column to a list of rows having
that value. In contrast, join indexing registers the joinable rows of two relations from a
relational database. For example, if two relations R(RID, A) and S(B, SID) join on the
attributes A and B, then the join index record contains the pair (RID, SID), where RID
and SID are record identifiers from the R and S relations, respectively. Hence, the join
index records can identify joinable tuples without performing costly join operations.
Join indexing is especially useful for maintaining the relationship between a foreign key2

and its matching primary keys, from the joinable relation.
The star schema model of data warehouses makes join indexing attractive for cross-

table search, because the linkage between a fact table and its corresponding dimension
tables comprises the fact table’s foreign key and the dimension table’s primary key. Join

2A set of attributes in a relation schema that forms a primary key for another relation schema is called
a foreign key.

162 Chapter 4 Data Warehousing and Online Analytical Processing

indexing maintains relationships between attribute values of a dimension (e.g., within
a dimension table) and the corresponding rows in the fact table. Join indices may span
multiple dimensions to form composite join indices. We can use join indices to identify
subcubes that are of interest.

Example 4.8 Join indexing. In Example 3.4, we defined a star schema for AllElectronics of the form
“sales star [time, item, branch, location]: dollars sold = sum (sales in dollars).” An exam-
ple of a join index relationship between the sales fact table and the location and item
dimension tables is shown in Figure 4.16. For example, the “Main Street” value in the
location dimension table joins with tuples T57, T238, and T884 of the sales fact table.
Similarly, the “Sony-TV” value in the item dimension table joins with tuples T57 and
T459 of the sales fact table. The corresponding join index tables are shown in Figure 4.17.

location

sales

item

Sony-TV

T57

T238

T459

Main Street

T884

Figure 4.16 Linkages between a sales fact table and location and item dimension tables.

Join index table for
location/sales

Join index table linking
location and item to sales

Join index table for
item/sales

Main Street T57
Main Street T238
Main Street

Main Street Sony-TV T57

T884

location sales_key

location item sales_key

Sony-TV T57
Sony-TV T459

item sales_key

Figure 4.17 Join index tables based on the linkages between the sales fact table and the location and item
dimension tables shown in Figure 4.16.

4.4 Data Warehouse Implementation 163

Suppose that there are 360 time values, 100 items, 50 branches, 30 locations, and 10
million sales tuples in the sales star data cube. If the sales fact table has recorded sales
for only 30 items, the remaining 70 items will obviously not participate in joins. If join
indices are not used, additional I/Os have to be performed to bring the joining portions
of the fact table and the dimension tables together.

To further speed up query processing, the join indexing and the bitmap indexing
methods can be integrated to form bitmapped join indices.

4.4.3 Efficient Processing of OLAP Queries

The purpose of materializing cuboids and constructing OLAP index structures is to
speed up query processing in data cubes. Given materialized views, query processing
should proceed as follows:

1. Determine which operations should be performed on the available cuboids: This
involves transforming any selection, projection, roll-up (group-by), and drill-down
operations specified in the query into corresponding SQL and/or OLAP operations.
For example, slicing and dicing a data cube may correspond to selection and/or
projection operations on a materialized cuboid.

2. Determine to which materialized cuboid(s) the relevant operations should be
applied: This involves identifying all of the materialized cuboids that may poten-
tially be used to answer the query, pruning the set using knowledge of “domi-
nance” relationships among the cuboids, estimating the costs of using the remaining
materialized cuboids, and selecting the cuboid with the least cost.

Example 4.9 OLAP query processing. Suppose that we define a data cube for AllElectronics of the
form “sales cube [time, item, location]: sum(sales in dollars).” The dimension hierarchies
used are “day < month < quarter < year” for time; “item name < brand < type” for
item; and “street < city < province or state < country” for location.

Suppose that the query to be processed is on {brand, province or state}, with the
selection constant “year = 2010.” Also, suppose that there are four materialized cuboids
available, as follows:

cuboid 1: {year, item name, city}
cuboid 2: {year, brand, country}
cuboid 3: {year, brand, province or state}
cuboid 4: {item name, province or state}, where year = 2010

“Which of these four cuboids should be selected to process the query?” Finer-granularity
data cannot be generated from coarser-granularity data. Therefore, cuboid 2 cannot be
used because country is a more general concept than province or state. Cuboids 1, 3, and
4 can be used to process the query because (1) they have the same set or a superset of the

164 Chapter 4 Data Warehousing and Online Analytical Processing

dimensions in the query, (2) the selection clause in the query can imply the selection in
the cuboid, and (3) the abstraction levels for the item and location dimensions in these
cuboids are at a finer level than brand and province or state, respectively.

“How would the costs of each cuboid compare if used to process the query?” It is likely
that using cuboid 1 would cost the most because both item name and city are at a lower
level than the brand and province or state concepts specified in the query. If there are
not many year values associated with items in the cube, but there are several item names
for each brand, then cuboid 3 will be smaller than cuboid 4, and thus cuboid 3 should
be chosen to process the query. However, if efficient indices are available for cuboid 4,
then cuboid 4 may be a better choice. Therefore, some cost-based estimation is required
to decide which set of cuboids should be selected for query processing.

4.4.4 OLAP Server Architectures: ROLAP versus MOLAP
versus HOLAP

Logically, OLAP servers present business users with multidimensional data from data
warehouses or data marts, without concerns regarding how or where the data are stored.
However, the physical architecture and implementation of OLAP servers must consider
data storage issues. Implementations of a warehouse server for OLAP processing include
the following:

Relational OLAP (ROLAP) servers: These are the intermediate servers that stand in
between a relational back-end server and client front-end tools. They use a rela-
tional or extended-relational DBMS to store and manage warehouse data, and OLAP
middleware to support missing pieces. ROLAP servers include optimization for
each DBMS back end, implementation of aggregation navigation logic, and addi-
tional tools and services. ROLAP technology tends to have greater scalability than
MOLAP technology. The DSS server of Microstrategy, for example, adopts the
ROLAP approach.

Multidimensional OLAP (MOLAP) servers: These servers support multidimensional
data views through array-based multidimensional storage engines. They map multi-
dimensional views directly to data cube array structures. The advantage of using a
data cube is that it allows fast indexing to precomputed summarized data. Notice
that with multidimensional data stores, the storage utilization may be low if the data
set is sparse. In such cases, sparse matrix compression techniques should be explored
(Chapter 5).

Many MOLAP servers adopt a two-level storage representation to handle dense
and sparse data sets: Denser subcubes are identified and stored as array struc-
tures, whereas sparse subcubes employ compression technology for efficient storage
utilization.

Hybrid OLAP (HOLAP) servers: The hybrid OLAP approach combines ROLAP and
MOLAP technology, benefiting from the greater scalability of ROLAP and the faster
computation of MOLAP. For example, a HOLAP server may allow large volumes

4.5 Data Warehouse Implementation 165

of detailed data to be stored in a relational database, while aggregations are kept in
a separate MOLAP store. The Microsoft SQL Server 2000 supports a hybrid OLAP
server.

Specialized SQL servers: To meet the growing demand of OLAP processing in rela-
tional databases, some database system vendors implement specialized SQL servers
that provide advanced query language and query processing support for SQL queries
over star and snowflake schemas in a read-only environment.

“How are data actually stored in ROLAP and MOLAP architectures?” Let’s first look
at ROLAP. As its name implies, ROLAP uses relational tables to store data for online
analytical processing. Recall that the fact table associated with a base cuboid is referred
to as a base fact table. The base fact table stores data at the abstraction level indicated
by the join keys in the schema for the given data cube. Aggregated data can also be
stored in fact tables, referred to as summary fact tables. Some summary fact tables store
both base fact table data and aggregated data (see Example 3.10). Alternatively, separate
summary fact tables can be used for each abstraction level to store only aggregated data.

Example 4.10 A ROLAP data store. Table 4.4 shows a summary fact table that contains both base fact
data and aggregated data. The schema is “〈record identifier (RID), item, . . . , day, month,
quarter, year, dollars sold〉,” where day, month, quarter, and year define the sales date,
and dollars sold is the sales amount. Consider the tuples with an RID of 1001 and 1002,
respectively. The data of these tuples are at the base fact level, where the sales dates are
October 15, 2010, and October 23, 2010, respectively. Consider the tuple with an RID
of 5001. This tuple is at a more general level of abstraction than the tuples 1001 and
1002. The day value has been generalized to all, so that the corresponding time value is
October 2010. That is, the dollars sold amount shown is an aggregation representing the
entire month of October 2010, rather than just October 15 or 23, 2010. The special value
all is used to represent subtotals in summarized data.

MOLAP uses multidimensional array structures to store data for online analytical
processing. This structure is discussed in greater detail in Chapter 5.

Most data warehouse systems adopt a client-server architecture. A relational data
store always resides at the data warehouse/data mart server site. A multidimensional
data store can reside at either the database server site or the client site.

Table 4.4 Single Table for Base and Summary Facts

RID item . . . day month quarter year dollars sold

1001 TV . . . 15 10 Q4 2010 250.60

1002 TV . . . 23 10 Q4 2010 175.00

. .

5001 TV . . . all 10 Q4 2010 45,786.08

. .

166 Chapter 4 Data Warehousing and Online Analytical Processing

4.5 Data Generalization by Attribute-Oriented
Induction

Conceptually, the data cube can be viewed as a kind of multidimensional data generali-
zation. In general, data generalization summarizes data by replacing relatively low-level
values (e.g., numeric values for an attribute age) with higher-level concepts (e.g., young,
middle-aged, and senior), or by reducing the number of dimensions to summarize data
in concept space involving fewer dimensions (e.g., removing birth date and telephone
number when summarizing the behavior of a group of students). Given the large amount
of data stored in databases, it is useful to be able to describe concepts in concise and suc-
cinct terms at generalized (rather than low) levels of abstraction. Allowing data sets to
be generalized at multiple levels of abstraction facilitates users in examining the gen-
eral behavior of the data. Given the AllElectronics database, for example, instead of
examining individual customer transactions, sales managers may prefer to view the
data generalized to higher levels, such as summarized by customer groups according
to geographic regions, frequency of purchases per group, and customer income.

This leads us to the notion of concept description, which is a form of data gene-
ralization. A concept typically refers to a data collection such as frequent buyers, grad-
uate students, and so on. As a data mining task, concept description is not a simple
enumeration of the data. Instead, concept description generates descriptions for data
characterization and comparison. It is sometimes called class description when the con-
cept to be described refers to a class of objects. Characterization provides a concise and
succinct summarization of the given data collection, while concept or class compari-
son (also known as discrimination) provides descriptions comparing two or more data
collections.

Up to this point, we have studied data cube (or OLAP) approaches to concept
description using multidimensional, multilevel data generalization in data warehouses.
“Is data cube technology sufficient to accomplish all kinds of concept description tasks for
large data sets?” Consider the following cases.

Complex data types and aggregation: Data warehouses and OLAP tools are based
on a multidimensional data model that views data in the form of a data cube, con-
sisting of dimensions (or attributes) and measures (aggregate functions). However,
many current OLAP systems confine dimensions to non-numeric data and measures
to numeric data. In reality, the database can include attributes of various data types,
including numeric, non-numeric, spatial, text, or image, which ideally should be
included in the concept description.

Furthermore, the aggregation of attributes in a database may include sophisticated
data types such as the collection of non-numeric data, the merging of spatial regions,
the composition of images, the integration of texts, and the grouping of object point-
ers. Therefore, OLAP, with its restrictions on the possible dimension and measure
types, represents a simplified model for data analysis. Concept description should
handle complex data types of the attributes and their aggregations, as necessary.

4.5 Data Generalization by Attribute-Oriented Induction 167

User control versus automation: Online analytical processing in data warehouses
is a user-controlled process. The selection of dimensions and the application of
OLAP operations (e.g., drill-down, roll-up, slicing, and dicing) are primarily directed
and controlled by users. Although the control in most OLAP systems is quite user-
friendly, users do require a good understanding of the role of each dimension.
Furthermore, in order to find a satisfactory description of the data, users may need to
specify a long sequence of OLAP operations. It is often desirable to have a more auto-
mated process that helps users determine which dimensions (or attributes) should
be included in the analysis, and the degree to which the given data set should be
generalized in order to produce an interesting summarization of the data.

This section presents an alternative method for concept description, called attribute-
oriented induction, which works for complex data types and relies on a data-driven
generalization process.

4.5.1 Attribute-Oriented Induction for Data Characterization

The attribute-oriented induction (AOI) approach to concept description was first pro-
posed in 1989, a few years before the introduction of the data cube approach. The data
cube approach is essentially based on materialized views of the data, which typically
have been precomputed in a data warehouse. In general, it performs offline aggre-
gation before an OLAP or data mining query is submitted for processing. On the
other hand, the attribute-oriented induction approach is basically a query-oriented,
generalization-based, online data analysis technique. Note that there is no inherent
barrier distinguishing the two approaches based on online aggregation versus offline
precomputation. Some aggregations in the data cube can be computed online, while
offline precomputation of multidimensional space can speed up attribute-oriented
induction as well.

The general idea of attribute-oriented induction is to first collect the task-relevant
data using a database query and then perform generalization based on the examination
of the number of each attribute’s distinct values in the relevant data set. The generali-
zation is performed by either attribute removal or attribute generalization. Aggregation
is performed by merging identical generalized tuples and accumulating their respec-
tive counts. This reduces the size of the generalized data set. The resulting generalized
relation can be mapped into different forms (e.g., charts or rules) for presentation to
the user.

The following illustrates the process of attribute-oriented induction. We first discuss
its use for characterization. The method is extended for the mining of class comparisons
in Section 4.5.3.

Example 4.11 A data mining query for characterization. Suppose that a user wants to describe
the general characteristics of graduate students in the Big University database, given
the attributes name, gender, major, birth place, birth date, residence, phone# (telephone

168 Chapter 4 Data Warehousing and Online Analytical Processing

number), and gpa (grade point average). A data mining query for this characterization
can be expressed in the data mining query language, DMQL, as follows:

use Big University DB
mine characteristics as “Science Students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
from student
where status in “graduate”

We will see how this example of a typical data mining query can apply attribute-oriented
induction to the mining of characteristic descriptions.

First, data focusing should be performed before attribute-oriented induction. This
step corresponds to the specification of the task-relevant data (i.e., data for analysis). The
data are collected based on the information provided in the data mining query. Because
a data mining query is usually relevant to only a portion of the database, selecting the
relevant data set not only makes mining more efficient, but also derives more meaningful
results than mining the entire database.

Specifying the set of relevant attributes (i.e., attributes for mining, as indicated in
DMQL with the in relevance to clause) may be difficult for the user. A user may select
only a few attributes that he or she feels are important, while missing others that could
also play a role in the description. For example, suppose that the dimension birth place
is defined by the attributes city, province or state, and country. Of these attributes, let’s
say that the user has only thought to specify city. In order to allow generalization on
the birth place dimension, the other attributes defining this dimension should also be
included. In other words, having the system automatically include province or state and
country as relevant attributes allows city to be generalized to these higher conceptual
levels during the induction process.

At the other extreme, suppose that the user may have introduced too many attributes
by specifying all of the possible attributes with the clause in relevance to ∗. In this case,
all of the attributes in the relation specified by the from clause would be included in the
analysis. Many of these attributes are unlikely to contribute to an interesting description.
A correlation-based analysis method (Section 3.3.2) can be used to perform attribute
relevance analysis and filter out statistically irrelevant or weakly relevant attributes from
the descriptive mining process. Other approaches such as attribute subset selection, are
also described in Chapter 3.

Table 4.5 Initial Working Relation: A Collection of Task-Relevant Data

name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 12-8-76 3511 Main St., Richmond 687-4598 3.67

Scott Lachance M CS Montreal, Que, Canada 7-28-75 345 1st Ave., Richmond 253-9106 3.70

Laura Lee F Physics Seattle, WA, USA 8-25-70 125 Austin Ave., Burnaby 420-5232 3.83

· ·

4.5 Data Generalization by Attribute-Oriented Induction 169

“What does the ‘where status in “graduate”’ clause mean?” The where clause implies
that a concept hierarchy exists for the attribute status. Such a concept hierarchy organizes
primitive-level data values for status (e.g., “M.Sc.,” “M.A.,” “M.B.A.,” “Ph.D.,” “B.Sc.,”
and “B.A.”) into higher conceptual levels (e.g., “graduate” and “undergraduate”). This
use of concept hierarchies does not appear in traditional relational query languages, yet
is likely to become a common feature in data mining query languages.

The data mining query presented in Example 4.11 is transformed into the following
relational query for the collection of the task-relevant data set:

use Big University DB
select name, gender, major, birth place, birth date, residence, phone#, gpa
from student
where status in {“M.Sc.,” “M.A.,” “M.B.A.,” “Ph.D.”}

The transformed query is executed against the relational database, Big University DB,
and returns the data shown earlier in Table 4.5. This table is called the (task-relevant)
initial working relation. It is the data on which induction will be performed. Note that
each tuple is, in fact, a conjunction of attribute–value pairs. Hence, we can think of a
tuple within a relation as a rule of conjuncts, and of induction on the relation as the
generalization of these rules.

“Now that the data are ready for attribute-oriented induction, how is attribute-oriented
induction performed?” The essential operation of attribute-oriented induction is data
generalization, which can be performed in either of two ways on the initial working
relation: attribute removal and attribute generalization.

Attribute removal is based on the following rule: If there is a large set of distinct values
for an attribute of the initial working relation, but either (case 1) there is no generalization
operator on the attribute (e.g., there is no concept hierarchy defined for the attribute), or
(case 2) its higher-level concepts are expressed in terms of other attributes, then the attribute
should be removed from the working relation.

Let’s examine the reasoning behind this rule. An attribute–value pair represents a
conjunct in a generalized tuple, or rule. The removal of a conjunct eliminates a con-
straint and thus generalizes the rule. If, as in case 1, there is a large set of distinct values
for an attribute but there is no generalization operator for it, the attribute should be
removed because it cannot be generalized. Preserving it would imply keeping a large
number of disjuncts, which contradicts the goal of generating concise rules. On the
other hand, consider case 2, where the attribute’s higher-level concepts are expressed
in terms of other attributes. For example, suppose that the attribute in question is street,
with higher-level concepts that are represented by the attributes 〈city, province or state,
country〉. The removal of street is equivalent to the application of a generalization oper-
ator. This rule corresponds to the generalization rule known as dropping condition in the
machine learning literature on learning from examples.

Attribute generalization is based on the following rule: If there is a large set of distinct
values for an attribute in the initial working relation, and there exists a set of generalization
operators on the attribute, then a generalization operator should be selected and applied

170 Chapter 4 Data Warehousing and Online Analytical Processing

to the attribute. This rule is based on the following reasoning. Use of a generalization
operator to generalize an attribute value within a tuple, or rule, in the working relation
will make the rule cover more of the original data tuples, thus generalizing the concept it
represents. This corresponds to the generalization rule known as climbing generalization
trees in learning from examples, or concept tree ascension.

Both rules–attribute removal and attribute generalization–claim that if there is a large
set of distinct values for an attribute, further generalization should be applied. This
raises the question: How large is “a large set of distinct values for an attribute” considered
to be?

Depending on the attributes or application involved, a user may prefer some
attributes to remain at a rather low abstraction level while others are generalized to
higher levels. The control of how high an attribute should be generalized is typically
quite subjective. The control of this process is called attribute generalization control.
If the attribute is generalized “too high,” it may lead to overgeneralization, and the
resulting rules may not be very informative.

On the other hand, if the attribute is not generalized to a “sufficiently high level,”
then undergeneralization may result, where the rules obtained may not be informative
either. Thus, a balance should be attained in attribute-oriented generalization. There are
many possible ways to control a generalization process. We will describe two common
approaches and illustrate how they work.

The first technique, called attribute generalization threshold control, either sets one
generalization threshold for all of the attributes, or sets one threshold for each attribute.
If the number of distinct values in an attribute is greater than the attribute threshold,
further attribute removal or attribute generalization should be performed. Data mining
systems typically have a default attribute threshold value generally ranging from 2 to 8
and should allow experts and users to modify the threshold values as well. If a user feels
that the generalization reaches too high a level for a particular attribute, the threshold
can be increased. This corresponds to drilling down along the attribute. Also, to further
generalize a relation, the user can reduce an attribute’s threshold, which corresponds to
rolling up along the attribute.

The second technique, called generalized relation threshold control, sets a threshold
for the generalized relation. If the number of (distinct) tuples in the generalized relation
is greater than the threshold, further generalization should be performed. Otherwise,
no further generalization should be performed. Such a threshold may also be preset in
the data mining system (usually within a range of 10 to 30), or set by an expert or user,
and should be adjustable. For example, if a user feels that the generalized relation is too
small, he or she can increase the threshold, which implies drilling down. Otherwise, to
further generalize a relation, the threshold can be reduced, which implies rolling up.

These two techniques can be applied in sequence: First apply the attribute threshold
control technique to generalize each attribute, and then apply relation threshold control
to further reduce the size of the generalized relation. No matter which generalization
control technique is applied, the user should be allowed to adjust the generalization
thresholds in order to obtain interesting concept descriptions.

In many database-oriented induction processes, users are interested in obtaining
quantitative or statistical information about the data at different abstraction levels.

4.5 Data Generalization by Attribute-Oriented Induction 171

Thus, it is important to accumulate count and other aggregate values in the induction
process. Conceptually, this is performed as follows. The aggregate function, count(), is
associated with each database tuple. Its value for each tuple in the initial working relation
is initialized to 1. Through attribute removal and attribute generalization, tuples within
the initial working relation may be generalized, resulting in groups of identical tuples. In
this case, all of the identical tuples forming a group should be merged into one tuple.

The count of this new, generalized tuple is set to the total number of tuples from the
initial working relation that are represented by (i.e., merged into) the new generalized
tuple. For example, suppose that by attribute-oriented induction, 52 data tuples from
the initial working relation are all generalized to the same tuple, T . That is, the generali-
zation of these 52 tuples resulted in 52 identical instances of tuple T . These 52 identical
tuples are merged to form one instance of T , with a count that is set to 52. Other popular
aggregate functions that could also be associated with each tuple include sum() and avg().
For a given generalized tuple, sum() contains the sum of the values of a given numeric
attribute for the initial working relation tuples making up the generalized tuple. Suppose
that tuple T contained sum(units sold) as an aggregate function. The sum value for tuple
T would then be set to the total number of units sold for each of the 52 tuples. The
aggregate avg() (average) is computed according to the formula avg() = sum()/count().

Example 4.12 Attribute-oriented induction. Here we show how attribute-oriented induction is per-
formed on the initial working relation of Table 4.5. For each attribute of the relation,
the generalization proceeds as follows:

1. name: Since there are a large number of distinct values for name and there is no
generalization operation defined on it, this attribute is removed.

2. gender: Since there are only two distinct values for gender, this attribute is retained
and no generalization is performed on it.

3. major: Suppose that a concept hierarchy has been defined that allows the attribute
major to be generalized to the values {arts&sciences, engineering, business}. Suppose
also that the attribute generalization threshold is set to 5, and that there are more than
20 distinct values for major in the initial working relation. By attribute generalization
and attribute generalization control, major is therefore generalized by climbing the
given concept hierarchy.

4. birth place: This attribute has a large number of distinct values; therefore, we would
like to generalize it. Suppose that a concept hierarchy exists for birth place, defined as
“city < province or state < country.” If the number of distinct values for country in
the initial working relation is greater than the attribute generalization threshold, then
birth place should be removed, because even though a generalization operator exists
for it, the generalization threshold would not be satisfied. If, instead, the number
of distinct values for country is less than the attribute generalization threshold, then
birth place should be generalized to birth country.

5. birth date: Suppose that a hierarchy exists that can generalize birth date to age and
age to age range, and that the number of age ranges (or intervals) is small with

172 Chapter 4 Data Warehousing and Online Analytical Processing

Table 4.6 Generalized Relation Obtained by Attribute-Oriented Induction on Table 4.5’s Data

gender major birth country age range residence city gpa count

M Science Canada 20 – 25 Richmond very good 16

F Science Foreign 25 – 30 Burnaby excellent 22

· ·

respect to the attribute generalization threshold. Generalization of birth date should
therefore take place.

6. residence: Suppose that residence is defined by the attributes number, street, resi-
dence city, residence province or state, and residence country. The number of distinct
values for number and street will likely be very high, since these concepts are quite low
level. The attributes number and street should therefore be removed so that residence
is then generalized to residence city, which contains fewer distinct values.

7. phone#: As with the name attribute, phone# contains too many distinct values and
should therefore be removed in generalization.

8. gpa: Suppose that a concept hierarchy exists for gpa that groups values for grade
point average into numeric intervals like {3.75–4.0, 3.5–3.75, . . . }, which in turn are
grouped into descriptive values such as {“excellent”, “very good”, . . . }. The attribute
can therefore be generalized.

The generalization process will result in groups of identical tuples. For example, the
first two tuples of Table 4.5 both generalize to the same identical tuple (namely, the first
tuple shown in Table 4.6). Such identical tuples are then merged into one, with their
counts accumulated. This process leads to the generalized relation shown in Table 4.6.

Based on the vocabulary used in OLAP, we may view count() as a measure, and the
remaining attributes as dimensions. Note that aggregate functions, such as sum(), may be
applied to numeric attributes (e.g., salary and sales). These attributes are referred to as
measure attributes.

4.5.2 Efficient Implementation of Attribute-Oriented Induction

“How is attribute-oriented induction actually implemented?” Section 4.5.1 provided an
introduction to attribute-oriented induction. The general procedure is summarized in
Figure 4.18. The efficiency of this algorithm is analyzed as follows:

Step 1 of the algorithm is essentially a relational query to collect the task-relevant data
into the working relation, W . Its processing efficiency depends on the query pro-
cessing methods used. Given the successful implementation and commercialization
of database systems, this step is expected to have good performance.

Step 2 collects statistics on the working relation. This requires scanning the relation
at most once. The cost for computing the minimum desired level and determining
the mapping pairs, (v, v′), for each attribute is dependent on the number of distinct

4.5 Data Generalization by Attribute-Oriented Induction 173

Algorithm: Attribute-oriented induction. Mining generalized characteristics in a relational
database given a user’s data mining request.

Input:

DB, a relational database;

DMQuery, a data mining query;

a list, a list of attributes (containing attributes, ai);

Gen(ai), a set of concept hierarchies or generalization operators on attributes, ai ;

a gen thresh(ai), attribute generalization thresholds for each ai .

Output: P, a Prime generalized relation.

Method:

1. W ← get task relevant data (DMQuery, DB); // Let W , the working relation, hold the
task-relevant data.

2. prepare for generalization (W); // This is implemented as follows.

(a) Scan W and collect the distinct values for each attribute, ai . (Note: If W is very large,
this may be done by examining a sample of W .)

(b) For each attribute ai , determine whether ai should be removed. If not, compute its
minimum desired level Li based on its given or default attribute threshold, and
determine the mapping pairs (v, v′), where v is a distinct value of ai in W , and v′ is its
corresponding generalized value at level Li .

3. P ← generalization (W),

The Prime generalized relation, P, is derived by replacing each value v in W by its
corresponding v′ in the mapping while accumulating count and computing any other
aggregate values.

This step can be implemented efficiently using either of the two following variations:

(a) For each generalized tuple, insert the tuple into a sorted prime relation P by a binary
search: if the tuple is already in P, simply increase its count and other aggregate
values accordingly; otherwise, insert it into P.

(b) Since in most cases the number of distinct values at the prime relation level is small,
the prime relation can be coded as an m-dimensional array, where m is the number of
attributes in P, and each dimension contains the corresponding generalized attribute
values. Each array element holds the corresponding count and other aggregation
values, if any. The insertion of a generalized tuple is performed by measure
aggregation in the corresponding array element.

Figure 4.18 Basic algorithm for attribute-oriented induction.

174 Chapter 4 Data Warehousing and Online Analytical Processing

values for each attribute and is smaller than |W |, the number of tuples in the work-
ing relation. Notice that it may not be necessary to scan the working relation once,
since if the working relation is large, a sample of such a relation will be sufficient to
get statistics and determine which attributes should be generalized to a certain high
level and which attributes should be removed. Moreover, such statistics may also be
obtained in the process of extracting and generating a working relation in Step 1.

Step 3 derives the prime relation, P. This is performed by scanning each tuple in
the working relation and inserting generalized tuples into P. There are a total of |W |
tuples in W and p tuples in P. For each tuple, t, in W , we substitute its attribute values
based on the derived mapping pairs. This results in a generalized tuple, t′. If variation
(a) in Figure 4.18 is adopted, each t′ takes O(logp) to find the location for the count
increment or tuple insertion. Thus, the total time complexity is O(|W | × logp) for
all of the generalized tuples. If variation (b) is adopted, each t′ takes O(1) to find the
tuple for the count increment. Thus, the overall time complexity is O(N) for all of
the generalized tuples.

Many data analysis tasks need to examine a good number of dimensions or attributes.
This may involve dynamically introducing and testing additional attributes rather than
just those specified in the mining query. Moreover, a user with little knowledge of the
truly relevant data set may simply specify “in relevance to ∗” in the mining query, which
includes all of the attributes in the analysis. Therefore, an advanced–concept description
mining process needs to perform attribute relevance analysis on large sets of attributes
to select the most relevant ones. This analysis may employ correlation measures or tests
of statistical significance, as described in Chapter 3 on data preprocessing.

Example 4.13 Presentation of generalization results. Suppose that attribute-oriented induction was
performed on a sales relation of the AllElectronics database, resulting in the generalized
description of Table 4.7 for sales last year. The description is shown in the form of a
generalized relation. Table 4.6 is another generalized relation example.

Such generalized relations can also be presented in the form of cross-tabulation
forms, various kinds of graphic presentation (e.g., pie charts and bar charts), and
quantitative characteristics rules (i.e., showing how different value combinations are
distributed in the generalized relation).

Table 4.7 Generalized Relation for Last Year’s Sales

location item sales (in million dollars) count (in thousands)

Asia TV 15 300

Europe TV 12 250

North America TV 28 450

Asia computer 120 1000

Europe computer 150 1200

North America computer 200 1800

4.5 Data Generalization by Attribute-Oriented Induction 175

4.5.3 Attribute-Oriented Induction for Class Comparisons

In many applications, users may not be interested in having a single class (or con-
cept) described or characterized, but prefer to mine a description that compares or
distinguishes one class (or concept) from other comparable classes (or concepts).
Class discrimination or comparison (hereafter referred to as class comparison) mines
descriptions that distinguish a target class from its contrasting classes. Notice that the
target and contrasting classes must be comparable in the sense that they share similar
dimensions and attributes. For example, the three classes person, address, and item are
not comparable. However, sales in the last three years are comparable classes, and so are,
for example, computer science students versus physics students.

Our discussions on class characterization in the previous sections handle multilevel
data summarization and characterization in a single class. The techniques developed can
be extended to handle class comparison across several comparable classes. For example,
the attribute generalization process described for class characterization can be modified
so that the generalization is performed synchronously among all the classes compared.
This allows the attributes in all of the classes to be generalized to the same abstraction
levels.

Suppose, for instance, that we are given the AllElectronics data for sales in 2009 and
in 2010 and want to compare these two classes. Consider the dimension location with
abstractions at the city, province or state, and country levels. Data in each class should be
generalized to the same location level. That is, they are all synchronously generalized to
either the city level, the province or state level, or the country level. Ideally, this is more
useful than comparing, say, the sales in Vancouver in 2009 with the sales in the United
States in 2010 (i.e., where each set of sales data is generalized to a different level). The
users, however, should have the option to overwrite such an automated, synchronous
comparison with their own choices, when preferred.

“How is class comparison performed?” In general, the procedure is as follows:

1. Data collection: The set of relevant data in the database is collected by query process-
ing and is partitioned respectively into a target class and one or a set of contrasting
classes.

2. Dimension relevance analysis: If there are many dimensions, then dimension rele-
vance analysis should be performed on these classes to select only the highly relevant
dimensions for further analysis. Correlation or entropy-based measures can be used
for this step (Chapter 3).

3. Synchronous generalization: Generalization is performed on the target class to the
level controlled by a user- or expert-specified dimension threshold, which results in
a prime target class relation. The concepts in the contrasting class(es) are generali-
zed to the same level as those in the prime target class relation, forming the prime
contrasting class(es) relation.

4. Presentation of the derived comparison: The resulting class comparison description
can be visualized in the form of tables, graphs, and rules. This presentation usually
includes a “contrasting” measure such as count% (percentage count) that reflects the

176 Chapter 4 Data Warehousing and Online Analytical Processing

comparison between the target and contrasting classes. The user can adjust the com-
parison description by applying drill-down, roll-up, and other OLAP operations to
the target and contrasting classes, as desired.

The preceding discussion outlines a general algorithm for mining comparisons
in databases. In comparison with characterization, the previous algorithm involves
synchronous generalization of the target class with the contrasting classes, so that classes
are simultaneously compared at the same abstraction levels.

Example 4.14 mines a class comparison describing the graduate and undergraduate
students at Big University.

Example 4.14 Mining a class comparison. Suppose that you would like to compare the general pro-
perties of the graduate and undergraduate students at Big University, given the attributes
name, gender, major, birth place, birth date, residence, phone#, and gpa.

This data mining task can be expressed in DMQL as follows:

use Big University DB
mine comparison as “grad vs undergrad students”
in relevance to name, gender, major, birth place, birth date, residence,

phone#, gpa
for “graduate students”
where status in “graduate”
versus “undergraduate students”
where status in “undergraduate”
analyze count%
from student

Let’s see how this typical example of a data mining query for mining comparison
descriptions can be processed.

First, the query is transformed into two relational queries that collect two sets of task-
relevant data: one for the initial target-class working relation and the other for the initial
contrasting-class working relation, as shown in Tables 4.8 and 4.9. This can also be viewed
as the construction of a data cube, where the status {graduate, undergraduate} serves as
one dimension, and the other attributes form the remaining dimensions.

Second, dimension relevance analysis can be performed, when necessary, on the two
classes of data. After this analysis, irrelevant or weakly relevant dimensions (e.g., name,
gender, birth place, residence, and phone#) are removed from the resulting classes. Only
the highly relevant attributes are included in the subsequent analysis.

Third, synchronous generalization is performed on the target class to the levels con-
trolled by user- or expert-specified dimension thresholds, forming the prime target class
relation. The contrasting class is generalized to the same levels as those in the prime
target class relation, forming the prime contrasting class(es) relation, as presented in
Tables 4.10 and 4.11. In comparison with undergraduate students, graduate students
tend to be older and have a higher GPA in general.

4.5 Data Generalization by Attribute-Oriented Induction 177

Table 4.8 Initial Working Relations: The Target Class (Graduate Students)

name gender major birth place birth date residence phone# gpa

Jim Woodman M CS Vancouver, BC, Canada 12-8-76 3511 Main St., Richmond 687-4598 3.67

Scott Lachance M CS Montreal, Que, Canada 7-28-75 345 1st Ave., Vancouver 253-9106 3.70

Laura Lee F Physics Seattle, WA, USA 8-25-70 125 Austin Ave., Burnaby 420-5232 3.83

· ·

Table 4.9 Initial Working Relations: The Contrasting Class (Undergraduate Students)

name gender major birth place birth date residence phone# gpa

Bob Schumann M Chemistry Calgary, Alt, Canada 1-10-78 2642 Halifax St., Burnaby 294-4291 2.96

Amy Eau F Biology Golden, BC, Canada 3-30-76 463 Sunset Cres., Vancouver 681-5417 3.52

· ·

Table 4.10 Prime Generalized Relation for the Target Class (Graduate Students)

major age range gpa count%

Science 21...25 good 5.53

Science 26...30 good 5.02

Science over 30 very good 5.86

· · · · · · · · · · · ·
Business over 30 excellent 4.68

Table 4.11 Prime Generalized Relation for the Contrasting Class (Undergraduate Students)

major age range gpa count%

Science 16...20 fair 5.53

Science 16...20 good 4.53

· · · · · · · · · · · ·
Science 26...30 good 2.32

· · · · · · · · · · · ·
Business over 30 excellent 0.68

Finally, the resulting class comparison is presented in the form of tables, graphs,
and/or rules. This visualization includes a contrasting measure (e.g., count%) that com-
pares the target class and the contrasting class. For example, 5.02% of the graduate
students majoring in science are between 26 and 30 years old and have a “good” GPA,
while only 2.32% of undergraduates have these same characteristics. Drilling and other

178 Chapter 4 Data Warehousing and Online Analytical Processing

OLAP operations may be performed on the target and contrasting classes as deemed
necessary by the user in order to adjust the abstraction levels of the final description.

In summary, attribute-oriented induction for data characterization and generaliza-
tion provides an alternative data generalization method in comparison to the data cube
approach. It is not confined to relational data because such an induction can be per-
formed on spatial, multimedia, sequence, and other kinds of data sets. In addition, there
is no need to precompute a data cube because generalization can be performed online
upon receiving a user’s query.

Moreover, automated analysis can be added to such an induction process to auto-
matically filter out irrelevant or unimportant attributes. However, because attribute-
oriented induction automatically generalizes data to a higher level, it cannot efficiently
support the process of drilling down to levels deeper than those provided in the general-
ized relation. The integration of data cube technology with attribute-oriented induction
may provide a balance between precomputation and online computation. This would
also support fast online computation when it is necessary to drill down to a level deeper
than that provided in the generalized relation.

4.6 Summary

A data warehouse is a subject-oriented, integrated, time-variant, and nonvolatile data
collection organized in support of management decision making. Several factors
distinguish data warehouses from operational databases. Because the two systems
provide quite different functionalities and require different kinds of data, it is
necessary to maintain data warehouses separately from operational databases.

Data warehouses often adopt a three-tier architecture. The bottom tier is a ware-
house database server, which is typically a relational database system. The middle tier
is an OLAP server, and the top tier is a client that contains query and reporting tools.

A data warehouse contains back-end tools and utilities for populating and refresh-
ing the warehouse. These cover data extraction, data cleaning, data transformation,
loading, refreshing, and warehouse management.

Data warehouse metadata are data defining the warehouse objects. A metadata
repository provides details regarding the warehouse structure, data history, the algo-
rithms used for summarization, mappings from the source data to the warehouse
form, system performance, and business terms and issues.

A multidimensional data model is typically used for the design of corporate data
warehouses and departmental data marts. Such a model can adopt a star schema,
snowflake schema, or fact constellation schema. The core of the multidimensional
model is the data cube, which consists of a large set of facts (or measures) and a
number of dimensions. Dimensions are the entities or perspectives with respect to
which an organization wants to keep records and are hierarchical in nature.

4.6 Summary 179

A data cube consists of a lattice of cuboids, each corresponding to a different degree
of summarization of the given multidimensional data.

Concept hierarchies organize the values of attributes or dimensions into gradual
abstraction levels. They are useful in mining at multiple abstraction levels.

Online analytical processing can be performed in data warehouses/marts using
the multidimensional data model. Typical OLAP operations include roll-up, and
drill-(down, across, through), slice-and-dice, and pivot (rotate), as well as statistical
operations such as ranking and computing moving averages and growth rates. OLAP
operations can be implemented efficiently using the data cube structure.

Data warehouses are used for information processing (querying and reporting),
analytical processing (which allows users to navigate through summarized and
detailed data by OLAP operations), and data mining (which supports knowledge
discovery). OLAP-based data mining is referred to as multidimensional data min-
ing (also known as exploratory multidimensional data mining, online analytical
mining, or OLAM). It emphasizes the interactive and exploratory nature of data
mining.

OLAP servers may adopt a relational OLAP (ROLAP), a multidimensional OLAP
(MOLAP), or a hybrid OLAP (HOLAP) implementation. A ROLAP server uses an
extended relational DBMS that maps OLAP operations on multidimensional data to
standard relational operations. A MOLAP server maps multidimensional data views
directly to array structures. A HOLAP server combines ROLAP and MOLAP. For
example, it may use ROLAP for historic data while maintaining frequently accessed
data in a separate MOLAP store.

Full materialization refers to the computation of all of the cuboids in the lattice
defining a data cube. It typically requires an excessive amount of storage space,
particularly as the number of dimensions and size of associated concept hierarchies
grow. This problem is known as the curse of dimensionality. Alternatively, partial
materialization is the selective computation of a subset of the cuboids or subcubes
in the lattice. For example, an iceberg cube is a data cube that stores only those
cube cells that have an aggregate value (e.g., count) above some minimum support
threshold.

OLAP query processing can be made more efficient with the use of indexing tech-
niques. In bitmap indexing, each attribute has its own bitmap index table. Bitmap
indexing reduces join, aggregation, and comparison operations to bit arithmetic.
Join indexing registers the joinable rows of two or more relations from a relational
database, reducing the overall cost of OLAP join operations. Bitmapped join index-
ing, which combines the bitmap and join index methods, can be used to further
speed up OLAP query processing.

Data generalization is a process that abstracts a large set of task-relevant data
in a database from a relatively low conceptual level to higher conceptual lev-
els. Data generalization approaches include data cube-based data aggregation and

180 Chapter 4 Data Warehousing and Online Analytical Processing

attribute-oriented induction. Concept description is the most basic form of descrip-
tive data mining. It describes a given set of task-relevant data in a concise and
summarative manner, presenting interesting general properties of the data. Concept
(or class) description consists of characterization and comparison (or discrimi-
nation). The former summarizes and describes a data collection, called the target
class, whereas the latter summarizes and distinguishes one data collection, called
the target class, from other data collection(s), collectively called the contrasting
class(es).

Concept characterization can be implemented using data cube (OLAP-based)
approaches and the attribute-oriented induction approach. These are attribute-
or dimension-based generalization approaches. The attribute-oriented induction
approach consists of the following techniques: data focusing, data generalization by
attribute removal or attribute generalization, count and aggregate value accumulation,
attribute generalization control, and generalization data visualization.

Concept comparison can be performed using the attribute-oriented induction or
data cube approaches in a manner similar to concept characterization. Generalized
tuples from the target and contrasting classes can be quantitatively compared and
contrasted.

4.7 Exercises

4.1 State why, for the integration of multiple heterogeneous information sources, many
companies in industry prefer the update-driven approach (which constructs and uses
data warehouses), rather than the query-driven approach (which applies wrappers and
integrators). Describe situations where the query-driven approach is preferable to the
update-driven approach.

4.2 Briefly compare the following concepts. You may use an example to explain your
point(s).

(a) Snowflake schema, fact constellation, starnet query model

(b) Data cleaning, data transformation, refresh

(c) Discovery-driven cube, multifeature cube, virtual warehouse

4.3 Suppose that a data warehouse consists of the three dimensions time, doctor, and patient,
and the two measures count and charge, where charge is the fee that a doctor charges a
patient for a visit.

(a) Enumerate three classes of schemas that are popularly used for modeling data
warehouses.

(b) Draw a schema diagram for the above data warehouse using one of the schema
classes listed in (a).

4.7 Exercises 181

(c) Starting with the base cuboid [day,doctor,patient], what specific OLAP operations
should be performed in order to list the total fee collected by each doctor in 2010?

(d) To obtain the same list, write an SQL query assuming the data are stored in a rela-
tional database with the schema fee (day, month, year, doctor, hospital, patient, count,
charge).

4.4 Suppose that a data warehouse for Big University consists of the four dimensions stu-
dent, course, semester, and instructor, and two measures count and avg grade. At the
lowest conceptual level (e.g., for a given student, course, semester, and instructor com-
bination), the avg grade measure stores the actual course grade of the student. At higher
conceptual levels, avg grade stores the average grade for the given combination.

(a) Draw a snowflake schema diagram for the data warehouse.

(b) Starting with the base cuboid [student , course, semester, instructor], what specific
OLAP operations (e.g., roll-up from semester to year) should you perform in order
to list the average grade of CS courses for each Big University student.

(c) If each dimension has five levels (including all), such as “student < major < status <

university < all”, how many cuboids will this cube contain (including the base and
apex cuboids)?

4.5 Suppose that a data warehouse consists of the four dimensions date, spectator, location,
and game, and the two measures count and charge, where charge is the fare that a spec-
tator pays when watching a game on a given date. Spectators may be students, adults, or
seniors, with each category having its own charge rate.

(a) Draw a star schema diagram for the data warehouse.

(b) Starting with the base cuboid [date, spectator, location,game], what specific OLAP
operations should you perform in order to list the total charge paid by student
spectators at GM Place in 2010?

(c) Bitmap indexing is useful in data warehousing. Taking this cube as an example,
briefly discuss advantages and problems of using a bitmap index structure.

4.6 A data warehouse can be modeled by either a star schema or a snowflake schema. Briefly
describe the similarities and the differences of the two models, and then analyze their
advantages and disadvantages with regard to one another. Give your opinion of which
might be more empirically useful and state the reasons behind your answer.

4.7 Design a data warehouse for a regional weather bureau. The weather bureau has about
1000 probes, which are scattered throughout various land and ocean locations in the
region to collect basic weather data, including air pressure, temperature, and precipi-
tation at each hour. All data are sent to the central station, which has collected such
data for more than 10 years. Your design should facilitate efficient querying and online
analytical processing, and derive general weather patterns in multidimensional space.

4.8 A popular data warehouse implementation is to construct a multidimensional database,
known as a data cube. Unfortunately, this may often generate a huge, yet very sparse,
multidimensional matrix.

182 Chapter 4 Data Warehousing and Online Analytical Processing

(a) Present an example illustrating such a huge and sparse data cube.

(b) Design an implementation method that can elegantly overcome this sparse matrix
problem. Note that you need to explain your data structures in detail and discuss
the space needed, as well as how to retrieve data from your structures.

(c) Modify your design in (b) to handle incremental data updates. Give the reasoning
behind your new design.

4.9 Regarding the computation of measures in a data cube:

(a) Enumerate three categories of measures, based on the kind of aggregate functions
used in computing a data cube.

(b) For a data cube with the three dimensions time, location, and item, which category
does the function variance belong to? Describe how to compute it if the cube is
partitioned into many chunks.
Hint: The formula for computing variance is 1

N

∑N
i=1(xi − x̄i)

2, where x̄i is the
average of xis.

(c) Suppose the function is “top 10 sales.” Discuss how to efficiently compute this
measure in a data cube.

4.10 Suppose a company wants to design a data warehouse to facilitate the analysis of moving
vehicles in an online analytical processing manner. The company registers huge amounts
of auto movement data in the format of (Auto ID, location, speed, time). Each Auto ID
represents a vehicle associated with information (e.g., vehicle category, driver category),
and each location may be associated with a street in a city. Assume that a street map is
available for the city.

(a) Design such a data warehouse to facilitate effective online analytical processing in
multidimensional space.

(b) The movement data may contain noise. Discuss how you would develop a method
to automatically discover data records that were likely erroneously registered in the
data repository.

(c) The movement data may be sparse. Discuss how you would develop a method that
constructs a reliable data warehouse despite the sparsity of data.

(d) If you want to drive from A to B starting at a particular time, discuss how a system
may use the data in this warehouse to work out a fast route.

4.11 Radio-frequency identification is commonly used to trace object movement and per-
form inventory control. An RFID reader can successfully read an RFID tag from
a limited distance at any scheduled time. Suppose a company wants to design a data
warehouse to facilitate the analysis of objects with RFID tags in an online analytical pro-
cessing manner. The company registers huge amounts of RFID data in the format of
(RFID, at location, time), and also has some information about the objects carrying the
RFID tag, for example, (RFID, product name, product category, producer, date produced,
price).

(a) Design a data warehouse to facilitate effective registration and online analytical
processing of such data.

4.7 Exercises 183

(b) The RFID data may contain lots of redundant information. Discuss a method
that maximally reduces redundancy during data registration in the RFID data
warehouse.

(c) The RFID data may contain lots of noise such as missing registration and misread
IDs. Discuss a method that effectively cleans up the noisy data in the RFID data
warehouse.

(d) You may want to perform online analytical processing to determine how many TV
sets were shipped from the LA seaport to BestBuy in Champaign, IL, by month,
brand, and price range. Outline how this could be done efficiently if you were to
store such RFID data in the warehouse.

(e) If a customer returns a jug of milk and complains that is has spoiled before its expi-
ration date, discuss how you can investigate such a case in the warehouse to find out
what the problem is, either in shipping or in storage.

4.12 In many applications, new data sets are incrementally added to the existing large
data sets. Thus, an important consideration is whether a measure can be computed
efficiently in an incremental manner. Use count, standard deviation, and median as
examples to show that a distributive or algebraic measure facilitates efficient incremental
computation, whereas a holistic measure does not.

4.13 Suppose that we need to record three measures in a data cube: min(), average(), and
median(). Design an efficient computation and storage method for each measure given
that the cube allows data to be deleted incrementally (i.e., in small portions at a time)
from the cube.

4.14 In data warehouse technology, a multiple dimensional view can be implemented by
a relational database technique (ROLAP), by a multidimensional database technique
(MOLAP), or by a hybrid database technique (HOLAP).

(a) Briefly describe each implementation technique.

(b) For each technique, explain how each of the following functions may be
implemented:

i. The generation of a data warehouse (including aggregation)

ii. Roll-up

iii. Drill-down

iv. Incremental updating

(c) Which implementation techniques do you prefer, and why?

4.15 Suppose that a data warehouse contains 20 dimensions, each with about five levels of
granularity.

(a) Users are mainly interested in four particular dimensions, each having three fre-
quently accessed levels for rolling up and drilling down. How would you design a
data cube structure to support this preference efficiently?

(b) At times, a user may want to drill through the cube to the raw data for one or two
particular dimensions. How would you support this feature?

184 Chapter 4 Data Warehousing and Online Analytical Processing

4.16 A data cube, C, has n dimensions, and each dimension has exactly p distinct values
in the base cuboid. Assume that there are no concept hierarchies associated with the
dimensions.

(a) What is the maximum number of cells possible in the base cuboid?

(b) What is the minimum number of cells possible in the base cuboid?

(c) What is the maximum number of cells possible (including both base cells and
aggregate cells) in the C data cube?

(d) What is the minimum number of cells possible in C?

4.17 What are the differences between the three main types of data warehouse usage: infor-
mation processing, analytical processing, and data mining? Discuss the motivation behind
OLAP mining (OLAM).

4.8 Bibliographic Notes

There are a good number of introductory-level textbooks on data warehousing and
OLAP technology—for example, Kimball, Ross, Thornthwaite, et al. [KRTM08];
Imhoff, Galemmo, and Geiger [IGG03]; and Inmon [Inm96]. Chaudhuri and Dayal
[CD97] provide an early overview of data warehousing and OLAP technology. A set of
research papers on materialized views and data warehouse implementations were col-
lected in Materialized Views: Techniques, Implementations, and Applications by Gupta
and Mumick [GM99].

The history of decision support systems can be traced back to the 1960s. However,
the proposal to construct large data warehouses for multidimensional data analysis is
credited to Codd [CCS93] who coined the term OLAP for online analytical processing.
The OLAP Council was established in 1995. Widom [Wid95] identified several research
problems in data warehousing. Kimball and Ross [KR02] provide an overview of the
deficiencies of SQL regarding the ability to support comparisons that are common in the
business world, and present a good set of application cases that require data warehousing
and OLAP technology. For an overview of OLAP systems versus statistical databases, see
Shoshani [Sho97].

Gray et al. [GCB+97] proposed the data cube as a relational aggregation operator
generalizing group-by, crosstabs, and subtotals. Harinarayan, Rajaraman, and Ullman
[HRU96] proposed a greedy algorithm for the partial materialization of cuboids in the
computation of a data cube. Data cube computation methods have been investigated by
numerous studies such as Sarawagi and Stonebraker [SS94]; Agarwal et al. [AAD+96];
Zhao, Deshpande, and Naughton [ZDN97]; Ross and Srivastava [RS97]; Beyer and
Ramakrishnan [BR99]; Han, Pei, Dong, and Wang [HPDW01]; and Xin, Han, Li, and
Wah [XHLW03]. These methods are discussed in depth in Chapter 5.

The concept of iceberg queries was first introduced in Fang, Shivakumar, Garcia-
Molina et al. [FSGM+98]. The use of join indices to speed up relational query processing
was proposed by Valduriez [Val87]. O’Neil and Graefe [OG95] proposed a bitmapped

4.8 Bibliographic Notes 185

join index method to speed up OLAP-based query processing. A discussion of the per-
formance of bitmapping and other nontraditional index techniques is given in O’Neil
and Quass [OQ97].

For work regarding the selection of materialized cuboids for efficient OLAP query
processing, see, for example, Chaudhuri and Dayal [CD97]; Harinarayan, Rajaraman,
and Ullman [HRU96]; and Sristava et al. [SDJL96]. Methods for cube size estimation
can be found in Deshpande et al. [DNR+97], Ross and Srivastava [RS97], and Beyer and
Ramakrishnan [BR99]. Agrawal, Gupta, and Sarawagi [AGS97] proposed operations for
modeling multidimensional databases. Methods for answering queries quickly by online
aggregation are described in Hellerstein, Haas, and Wang [HHW97] and Hellerstein
et al. [HAC+99]. Techniques for estimating the top N queries are proposed in Carey
and Kossman [CK98] and Donjerkovic and Ramakrishnan [DR99]. Further studies on
intelligent OLAP and discovery-driven exploration of data cubes are presented in the
bibliographic notes in Chapter 5.

This page intentionally left blank

5Data Cube Technology

Data warehouse systems provide online analytical processing (OLAP) tools for interactive
analysis of multidimensional data at varied granularity levels. OLAP tools typically use
the data cube and a multidimensional data model to provide flexible access to summa-
rized data. For example, a data cube can store precomputed measures (like count() and
total sales()) for multiple combinations of data dimensions (like item, region, and customer).
Users can pose OLAP queries on the data. They can also interactively explore the data
in a multidimensional way through OLAP operations like drill-down (to see more spe-
cialized data such as total sales per city) or roll-up (to see the data at a more generalized
level such as total sales per country).

Although the data cube concept was originally intended for OLAP, it is also use-
ful for data mining. Multidimensional data mining is an approach to data mining
that integrates OLAP-based data analysis with knowledge discovery techniques. It is
also known as exploratory multidimensional data mining and online analytical mining
(OLAM). It searches for interesting patterns by exploring the data in multidimensional
space. This gives users the freedom to dynamically focus on any subset of interesting
dimensions. Users can interactively drill down or roll up to varying abstraction levels to
find classification models, clusters, predictive rules, and outliers.

This chapter focuses on data cube technology. In particular, we study methods for
data cube computation and methods for multidimensional data analysis. Precomput-
ing a data cube (or parts of a data cube) allows for fast accessing of summarized data.
Given the high dimensionality of most data, multidimensional analysis can run into
performance bottlenecks. Therefore, it is important to study data cube computation
techniques. Luckily, data cube technology provides many effective and scalable meth-
ods for cube computation. Studying these methods will also help in our understanding
and further development of scalable methods for other data mining tasks such as the
discovery of frequent patterns (Chapters 6 and 7).

We begin in Section 5.1 with preliminary concepts for cube computation. These sum-
marize the data cube notion as a lattice of cuboids, and describe basic forms of cube
materialization. General strategies for cube computation are given. Section 5.2 follows
with an in-depth look at specific methods for data cube computation. We study both
full materialization (i.e., where all the cuboids representing a data cube are precomputed

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques 187

188 Chapter 5 Data Cube Technology

and thereby ready for use) and partial cuboid materialization (where, say, only the more
“useful” parts of the data cube are precomputed). The multiway array aggregation
method is detailed for full cube computation. Methods for partial cube computation,
including BUC, Star-Cubing, and the use of cube shell fragments, are discussed.

In Section 5.3, we study cube-based query processing. The techniques described build
on the standard methods of cube computation presented in Section 5.2. You will learn
about sampling cubes for OLAP query answering on sampling data (e.g., survey data,
which represent a sample or subset of a target data population of interest). In addi-
tion, you will learn how to compute ranking cubes for efficient top-k (ranking) query
processing in large relational data sets.

In Section 5.4, we describe various ways to perform multidimensional data analysis
using data cubes. Prediction cubes are introduced, which facilitate predictive modeling in
multidimensional space. We discuss multifeature cubes, which compute complex queries
involving multiple dependent aggregates at multiple granularities. You will also learn
about the exception-based discovery-driven exploration of cube space, where visual cues
are displayed to indicate discovered data exceptions at all aggregation levels, thereby
guiding the user in the data analysis process.

5.1 Data Cube Computation: Preliminary Concepts

Data cubes facilitate the online analytical processing of multidimensional data. “But how
can we compute data cubes in advance, so that they are handy and readily available for
query processing?” This section contrasts full cube materialization (i.e., precomputation)
versus various strategies for partial cube materialization. For completeness, we begin
with a review of the basic terminology involving data cubes. We also introduce a cube
cell notation that is useful for describing data cube computation methods.

5.1.1 Cube Materialization: Full Cube, Iceberg Cube,
Closed Cube, and Cube Shell

Figure 5.1 shows a 3-D data cube for the dimensions A, B, and C, and an aggregate mea-
sure, M . Commonly used measures include count(), sum(), min(), max(), and total sales().
A data cube is a lattice of cuboids. Each cuboid represents a group-by. ABC is the base
cuboid, containing all three of the dimensions. Here, the aggregate measure, M , is com-
puted for each possible combination of the three dimensions. The base cuboid is the
least generalized of all the cuboids in the data cube. The most generalized cuboid is the
apex cuboid, commonly represented as all. It contains one value—it aggregates measure
M for all the tuples stored in the base cuboid. To drill down in the data cube, we move
from the apex cuboid downward in the lattice. To roll up, we move from the base cuboid
upward. For the purposes of our discussion in this chapter, we will always use the term
data cube to refer to a lattice of cuboids rather than an individual cuboid.

5.1 Data Cube Computation: Preliminary Concepts 189

A

AB AC BC

ABC (base cuboid)

all (apex cuboid)

B C

Figure 5.1 Lattice of cuboids making up a 3-D data cube with the dimensions A, B, and C for some
aggregate measure, M .

A cell in the base cuboid is a base cell. A cell from a nonbase cuboid is an aggregate
cell. An aggregate cell aggregates over one or more dimensions, where each aggregated
dimension is indicated by a ∗ in the cell notation. Suppose we have an n-dimensional
data cube. Let a = (a1, a2, . . . , an, measures) be a cell from one of the cuboids making
up the data cube. We say that a is an m-dimensional cell (i.e., from an m-dimensional
cuboid) if exactly m (m ≤ n) values among {a1, a2, . . . , an} are not ∗. If m = n, then a is
a base cell; otherwise, it is an aggregate cell (i.e., where m < n).

Example 5.1 Base and aggregate cells. Consider a data cube with the dimensions month, city, and
customer group, and the measure sales. (Jan, ∗ , ∗ , 2800) and (∗, Chicago, ∗ , 1200) are
1-D cells; (Jan, ∗ , Business, 150) is a 2-D cell; and (Jan, Chicago, Business, 45) is a 3-D
cell. Here, all base cells are 3-D, whereas 1-D and 2-D cells are aggregate cells.

An ancestor–descendant relationship may exist between cells. In an n-dimensional
data cube, an i-D cell a = (a1, a2, . . . , an, measuresa) is an ancestor of a j-D cell b =
(b1, b2, . . . , bn, measuresb), and b is a descendant of a, if and only if (1) i < j, and (2) for
1 ≤ k ≤ n, ak = bk whenever ak �= ∗. In particular, cell a is called a parent of cell b, and
b is a child of a, if and only if j = i + 1.

Example 5.2 Ancestor and descendant cells. Referring to Example 5.1, 1-D cell a = (Jan, ∗ , ∗ ,
2800) and 2-D cell b = (Jan, ∗ , Business, 150) are ancestors of 3-D cell c = (Jan,
Chicago, Business, 45); c is a descendant of both a and b; b is a parent of c; and c is a
child of b.

To ensure fast OLAP, it is sometimes desirable to precompute the full cube (i.e., all
the cells of all the cuboids for a given data cube). A method of full cube computation
is given in Section 5.2.1. Full cube computation, however, is exponential to the number
of dimensions. That is, a data cube of n dimensions contains 2n cuboids. There are even

190 Chapter 5 Data Cube Technology

more cuboids if we consider concept hierarchies for each dimension.1 In addition, the
size of each cuboid depends on the cardinality of its dimensions. Thus, precomputation
of the full cube can require huge and often excessive amounts of memory.

Nonetheless, full cube computation algorithms are important. Individual cuboids
may be stored on secondary storage and accessed when necessary. Alternatively, we can
use such algorithms to compute smaller cubes, consisting of a subset of the given set
of dimensions, or a smaller range of possible values for some of the dimensions. In
these cases, the smaller cube is a full cube for the given subset of dimensions and/or
dimension values. A thorough understanding of full cube computation methods will
help us develop efficient methods for computing partial cubes. Hence, it is important to
explore scalable methods for computing all the cuboids making up a data cube, that is,
for full materialization. These methods must take into consideration the limited amount
of main memory available for cuboid computation, the total size of the computed data
cube, as well as the time required for such computation.

Partial materialization of data cubes offers an interesting trade-off between storage
space and response time for OLAP. Instead of computing the full cube, we can compute
only a subset of the data cube’s cuboids, or subcubes consisting of subsets of cells from
the various cuboids.

Many cells in a cuboid may actually be of little or no interest to the data analyst. Recall
that each cell in a full cube records an aggregate value such as count or sum. For many
cells in a cuboid, the measure value will be zero. When the product of the cardinalities
for the dimensions in a cuboid is large relative to the number of nonzero-valued tuples
that are stored in the cuboid, then we say that the cuboid is sparse. If a cube contains
many sparse cuboids, we say that the cube is sparse.

In many cases, a substantial amount of the cube’s space could be taken up by a large
number of cells with very low measure values. This is because the cube cells are often
quite sparsely distributed within a multidimensional space. For example, a customer
may only buy a few items in a store at a time. Such an event will generate only a few
nonempty cells, leaving most other cube cells empty. In such situations, it is useful to
materialize only those cells in a cuboid (group-by) with a measure value above some
minimum threshold. In a data cube for sales, say, we may wish to materialize only
those cells for which count ≥ 10 (i.e., where at least 10 tuples exist for the cell’s given
combination of dimensions), or only those cells representing sales ≥ $100. This not
only saves processing time and disk space, but also leads to a more focused analysis.
The cells that cannot pass the threshold are likely to be too trivial to warrant further
analysis.

Such partially materialized cubes are known as iceberg cubes. The minimum thresh-
old is called the minimum support threshold, or minimum support (min sup), for short.
By materializing only a fraction of the cells in a data cube, the result is seen as the “tip of
the iceberg,” where the “iceberg” is the potential full cube including all cells. An iceberg
cube can be specified with an SQL query, as shown in Example 5.3.

1Eq. (4.1) of Section 4.4.1 gives the total number of cuboids in a data cube where each dimension has
an associated concept hierarchy.

5.1 Data Cube Computation: Preliminary Concepts 191

Example 5.3 Iceberg cube.

compute cube sales iceberg as
select month, city, customer group, count(*)
from salesInfo
cube by month, city, customer group
having count(*) >= min sup

The compute cube statement specifies the precomputation of the iceberg cube,
sales iceberg, with the dimensions month, city, and customer group, and the aggregate
measure count(). The input tuples are in the salesInfo relation. The cube by clause
specifies that aggregates (group-by’s) are to be formed for each of the possible subsets of
the given dimensions. If we were computing the full cube, each group-by would corre-
spond to a cuboid in the data cube lattice. The constraint specified in the having clause
is known as the iceberg condition. Here, the iceberg measure is count(). Note that the
iceberg cube computed here could be used to answer group-by queries on any combina-
tion of the specified dimensions of the form having count(*) >= v, where v ≥ min sup.
Instead of count(), the iceberg condition could specify more complex measures such as
average().

If we were to omit the having clause, we would end up with the full cube. Let’s call this
cube sales cube. The iceberg cube, sales iceberg, excludes all the cells of sales cube with a
count that is less than min sup. Obviously, if we were to set the minimum support to 1
in sales iceberg, the resulting cube would be the full cube, sales cube.

A naïve approach to computing an iceberg cube would be to first compute the full
cube and then prune the cells that do not satisfy the iceberg condition. However, this is
still prohibitively expensive. An efficient approach is to compute only the iceberg cube
directly without computing the full cube. Sections 5.2.2 and 5.2.3 discuss methods for
efficient iceberg cube computation.

Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells
in a data cube. However, we could still end up with a large number of uninteresting cells
to compute. For example, suppose that there are 2 base cells for a database of 100 dimen-
sions, denoted as {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}, where each has a
cell count of 10. If the minimum support is set to 10, there will still be an impermis-
sible number of cells to compute and store, although most of them are not interesting.
For example, there are 2101 − 6 distinct aggregate cells,2 like {(a1, a2, a3, a4, . . . , a99, ∗) :
10, . . . , (a1, a2, ∗ , a4, . . . , a99, a100) : 10, . . . , (a1, a2, a3, ∗ , . . . , ∗ , ∗) : 10}, but most of
them do not contain much new information. If we ignore all the aggregate cells that can
be obtained by replacing some constants by ∗’s while keeping the same measure value,
there are only three distinct cells left: {(a1, a2, a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) :
10, (a1, a2, ∗ , . . . , ∗) : 20}. That is, out of 2101 − 4 distinct base and aggregate cells, only
three really offer valuable information.

2The proof is left as an exercise for the reader.

192 Chapter 5 Data Cube Technology

(a1, a2, a3, . . . , a100) : 10

(a1, a2, *, . . . , *) : 20

(a1, a2, b3, . . . , b100) : 10

Figure 5.2 Three closed cells forming the lattice of a closed cube.

To systematically compress a data cube, we need to introduce the concept of closed
coverage. A cell, c, is a closed cell if there exists no cell, d, such that d is a special-
ization (descendant) of cell c (i.e., where d is obtained by replacing ∗ in c with a
non-∗ value), and d has the same measure value as c. A closed cube is a data cube
consisting of only closed cells. For example, the three cells derived in the preced-
ing paragraph are the three closed cells of the data cube for the data set {(a1, a2,
a3, . . . , a100) : 10, (a1, a2, b3, . . . , b100) : 10}. They form the lattice of a closed cube as
shown in Figure 5.2. Other nonclosed cells can be derived from their corresponding
closed cells in this lattice. For example, “(a1, ∗ , ∗ , . . . , ∗) : 20” can be derived from
“(a1, a2, ∗ , . . . , ∗) : 20” because the former is a generalized nonclosed cell of the latter.
Similarly, we have “(a1, a2, b3, ∗ , . . . , ∗) : 10.”

Another strategy for partial materialization is to precompute only the cuboids involv-
ing a small number of dimensions such as three to five. These cuboids form a cube shell
for the corresponding data cube. Queries on additional combinations of the dimensions
will have to be computed on-the-fly. For example, we could compute all cuboids with
three dimensions or less in an n-dimensional data cube, resulting in a cube shell of size 3.
This, however, can still result in a large number of cuboids to compute, particularly when
n is large. Alternatively, we can choose to precompute only portions or fragments of the
cube shell based on cuboids of interest. Section 5.2.4 discusses a method for computing
shell fragments and explores how they can be used for efficient OLAP query processing.

5.1.2 General Strategies for Data Cube Computation

There are several methods for efficient data cube computation, based on the vari-
ous kinds of cubes described in Section 5.1.1. In general, there are two basic data
structures used for storing cuboids. The implementation of relational OLAP (ROLAP)
uses relational tables, whereas multidimensional arrays are used in multidimensional
OLAP (MOLAP). Although ROLAP and MOLAP may each explore different cube
computation techniques, some optimization “tricks” can be shared among the different

5.1 Data Cube Computation: Preliminary Concepts 193

data representations. The following are general optimization techniques for efficient
computation of data cubes.

Optimization Technique 1: Sorting, hashing, and grouping. Sorting, hashing, and
grouping operations should be applied to the dimension attributes to reorder and
cluster related tuples.

In cube computation, aggregation is performed on the tuples (or cells) that share
the same set of dimension values. Thus, it is important to explore sorting, hashing,
and grouping operations to access and group such data together to facilitate compu-
tation of such aggregates.

To compute total sales by branch, day, and item, for example, it can be more
efficient to sort tuples or cells by branch, and then by day, and then group them
according to the item name. Efficient implementations of such operations in large
data sets have been extensively studied in the database research community. Such
implementations can be extended to data cube computation.

This technique can also be further extended to perform shared-sorts (i.e., sharing
sorting costs across multiple cuboids when sort-based methods are used), or to per-
form shared-partitions (i.e., sharing the partitioning cost across multiple cuboids
when hash-based algorithms are used).

Optimization Technique 2: Simultaneous aggregation and caching of intermediate
results. In cube computation, it is efficient to compute higher-level aggregates from
previously computed lower-level aggregates, rather than from the base fact table.
Moreover, simultaneous aggregation from cached intermediate computation results
may lead to the reduction of expensive disk input/output (I/O) operations.

To compute sales by branch, for example, we can use the intermediate results
derived from the computation of a lower-level cuboid such as sales by branch and day.
This technique can be further extended to perform amortized scans (i.e., computing
as many cuboids as possible at the same time to amortize disk reads).

Optimization Technique 3: Aggregation from the smallest child when there exist mul-
tiple child cuboids. When there exist multiple child cuboids, it is usually more
efficient to compute the desired parent (i.e., more generalized) cuboid from the
smallest, previously computed child cuboid.

To compute a sales cuboid, Cbranch, when there exist two previously computed
cuboids, C{branch,year} and C{branch,item}, for example, it is obviously more efficient to
compute Cbranch from the former than from the latter if there are many more distinct
items than distinct years.

Many other optimization techniques may further improve computational efficiency. For
example, string dimension attributes can be mapped to integers with values ranging
from zero to the cardinality of the attribute.

In iceberg cube computation the following optimization technique plays a particu-
larly important role.

194 Chapter 5 Data Cube Technology

Optimization Technique 4: The Apriori pruning method can be explored to
compute iceberg cubes efficiently. The Apriori property,3 in the context of data
cubes, states as follows: If a given cell does not satisfy minimum support, then no descen-
dant of the cell (i.e., more specialized cell) will satisfy minimum support either. This
property can be used to substantially reduce the computation of iceberg cubes.

Recall that the specification of iceberg cubes contains an iceberg condition, which
is a constraint on the cells to be materialized. A common iceberg condition is that the
cells must satisfy a minimum support threshold such as a minimum count or sum. In
this situation, the Apriori property can be used to prune away the exploration of the
cell’s descendants. For example, if the count of a cell, c, in a cuboid is less than a
minimum support threshold, v, then the count of any of c’s descendant cells in the
lower-level cuboids can never be greater than or equal to v, and thus can be pruned.

In other words, if a condition (e.g., the iceberg condition specified in the having
clause) is violated for some cell c, then every descendant of c will also violate that con-
dition. Measures that obey this property are known as antimonotonic.4 This form
of pruning was made popular in frequent pattern mining, yet also aids in data cube
computation by cutting processing time and disk space requirements. It can lead to a
more focused analysis because cells that cannot pass the threshold are unlikely to be
of interest.

In the following sections, we introduce several popular methods for efficient cube
computation that explore these optimization strategies.

5.2 Data Cube Computation Methods

Data cube computation is an essential task in data warehouse implementation. The pre-
computation of all or part of a data cube can greatly reduce the response time and
enhance the performance of online analytical processing. However, such computation
is challenging because it may require substantial computational time and storage
space. This section explores efficient methods for data cube computation. Section 5.2.1
describes the multiway array aggregation (MultiWay) method for computing full cubes.
Section 5.2.2 describes a method known as BUC, which computes iceberg cubes from
the apex cuboid downward. Section 5.2.3 describes the Star-Cubing method, which
integrates top-down and bottom-up computation.

Finally, Section 5.2.4 describes a shell-fragment cubing approach that computes shell
fragments for efficient high-dimensional OLAP. To simplify our discussion, we exclude

3The Apriori property was proposed in the Apriori algorithm for association rule mining by Agrawal
and Srikant [AS94b]. Many algorithms in association rule mining have adopted this property (see
Chapter 6).
4Antimonotone is based on condition violation. This differs from monotone, which is based on
condition satisfaction.

5.2 Data Cube Computation Methods 195

the cuboids that would be generated by climbing up any existing hierarchies for the
dimensions. Those cube types can be computed by extension of the discussed methods.
Methods for the efficient computation of closed cubes are left as an exercise for interested
readers.

5.2.1 Multiway Array Aggregation for Full
Cube Computation

The multiway array aggregation (or simply MultiWay) method computes a full data
cube by using a multidimensional array as its basic data structure. It is a typical MOLAP
approach that uses direct array addressing, where dimension values are accessed via the
position or index of their corresponding array locations. Hence, MultiWay cannot per-
form any value-based reordering as an optimization technique. A different approach is
developed for the array-based cube construction, as follows:

1. Partition the array into chunks. A chunk is a subcube that is small enough to fit into
the memory available for cube computation. Chunking is a method for dividing an
n-dimensional array into small n-dimensional chunks, where each chunk is stored as
an object on disk. The chunks are compressed so as to remove wasted space resulting
from empty array cells. A cell is empty if it does not contain any valid data (i.e., its
cell count is 0). For instance, “chunkID + offset” can be used as a cell-addressing
mechanism to compress a sparse array structure and when searching for cells within
a chunk. Such a compression technique is powerful at handling sparse cubes, both on
disk and in memory.

2. Compute aggregates by visiting (i.e., accessing the values at) cube cells. The order in
which cells are visited can be optimized so as to minimize the number of times that
each cell must be revisited, thereby reducing memory access and storage costs. The
trick is to exploit this ordering so that portions of the aggregate cells in multiple
cuboids can be computed simultaneously, and any unnecessary revisiting of cells is
avoided.

This chunking technique involves “overlapping” some of the aggregation computations;
therefore, it is referred to as multiway array aggregation. It performs simultaneous
aggregation, that is, it computes aggregations simultaneously on multiple dimensions.

We explain this approach to array-based cube construction by looking at a concrete
example.

Example 5.4 Multiway array cube computation. Consider a 3-D data array containing the three
dimensions A, B, and C. The 3-D array is partitioned into small, memory-based chunks.
In this example, the array is partitioned into 64 chunks as shown in Figure 5.3. Dimen-
sion A is organized into four equal-sized partitions: a0, a1, a2, and a3. Dimensions B
and C are similarly organized into four partitions each. Chunks 1, 2, . . . , 64 correspond
to the subcubes a0b0c0, a1b0c0, . . . , a3b3c3, respectively. Suppose that the cardinality of

196 Chapter 5 Data Cube Technology

c0

c3

c2

c1

b3

b2

b1

b0

A

B

*

a0 a1 a2 a3

C

21 3

32

28

24

20

9

15 161413

5 4

29 30 31

45 46

63

64

60

56

52

36

40

44

48
47

61 62

*

*
*

*

*
*

*

*
*

*

**
*

*

*

*

*

*

*

*

*

*

*

*

*

*

12

1110 8

76

A-B Plane

B-C
 Plan

e

A-C
 P

la
ne

Figure 5.3 A 3-D array for the dimensions A, B, and C, organized into 64 chunks. Each chunk is small
enough to fit into the memory available for cube computation. The ∗’s indicate the chunks
from 1 to 13 that have been aggregated so far in the process.

the dimensions A, B, and C is 40, 400, and 4000, respectively. Thus, the size of the array
for each dimension, A, B, and C, is also 40, 400, and 4000, respectively. The size of each
partition in A, B, and C is therefore 10, 100, and 1000, respectively. Full materialization
of the corresponding data cube involves the computation of all the cuboids defining this
cube. The resulting full cube consists of the following cuboids:

5.2 Data Cube Computation Methods 197

The base cuboid, denoted by ABC (from which all the other cuboids are directly or
indirectly computed). This cube is already computed and corresponds to the given
3-D array.

The 2-D cuboids, AB, AC, and BC, which respectively correspond to the group-by’s
AB, AC, and BC. These cuboids must be computed.

The 1-D cuboids, A, B, and C, which respectively correspond to the group-by’s A, B,
and C. These cuboids must be computed.

The 0-D (apex) cuboid, denoted by all, which corresponds to the group-by (); that
is, there is no group-by here. This cuboid must be computed. It consists of only one
value. If, say, the data cube measure is count, then the value to be computed is simply
the total count of all the tuples in ABC.

Let’s look at how the multiway array aggregation technique is used in this computa-
tion. There are many possible orderings with which chunks can be read into memory
for use in cube computation. Consider the ordering labeled from 1 to 64, shown in
Figure 5.3. Suppose we want to compute the b0c0 chunk of the BC cuboid. We allocate
space for this chunk in chunk memory. By scanning ABC chunks 1 through 4, the b0c0

chunk is computed. That is, the cells for b0c0 are aggregated over a0 to a3. The chunk
memory can then be assigned to the next chunk, b1c0, which completes its aggregation
after the scanning of the next four ABC chunks: 5 through 8. Continuing in this way,
the entire BC cuboid can be computed. Therefore, only one BC chunk needs to be in
memory at a time, for the computation of all the BC chunks.

In computing the BC cuboid, we will have scanned each of the 64 chunks. “Is there a
way to avoid having to rescan all of these chunks for the computation of other cuboids such
as AC and AB?” The answer is, most definitely, yes. This is where the “multiway com-
putation” or “simultaneous aggregation” idea comes in. For example, when chunk 1
(i.e., a0b0c0) is being scanned (say, for the computation of the 2-D chunk b0c0 of BC, as
described previously), all of the other 2-D chunks relating to a0b0c0 can be simultane-
ously computed. That is, when a0b0c0 is being scanned, each of the three chunks (b0c0,
a0c0, and a0b0) on the three 2-D aggregation planes (BC, AC, and AB) should be com-
puted then as well. In other words, multiway computation simultaneously aggregates to
each of the 2-D planes while a 3-D chunk is in memory.

Now let’s look at how different orderings of chunk scanning and of cuboid compu-
tation can affect the overall data cube computation efficiency. Recall that the size of the
dimensions A, B, and C is 40, 400, and 4000, respectively. Therefore, the largest 2-D
plane is BC (of size 400 × 4000 = 1,600,000). The second largest 2-D plane is AC (of
size 40 × 4000 = 160,000). AB is the smallest 2-D plane (of size 40 × 400 = 16,000).

Suppose that the chunks are scanned in the order shown, from chunks 1 to 64. As
previously mentioned, b0c0 is fully aggregated after scanning the row containing chunks
1 through 4; b1c0 is fully aggregated after scanning chunks 5 through 8, and so on. Thus,
we need to scan four chunks of the 3-D array to fully compute one chunk of the BC
cuboid (where BC is the largest of the 2-D planes). In other words, by scanning in this

198 Chapter 5 Data Cube Technology

order, one BC chunk is fully computed for each row scanned. In comparison, the com-
plete computation of one chunk of the second largest 2-D plane, AC, requires scanning
13 chunks, given the ordering from 1 to 64. That is, a0c0 is fully aggregated only after
the scanning of chunks 1, 5, 9, and 13.

Finally, the complete computation of one chunk of the smallest 2-D plane, AB,
requires scanning 49 chunks. For example, a0b0 is fully aggregated after scanning chunks
1, 17, 33, and 49. Hence, AB requires the longest scan of chunks to complete its com-
putation. To avoid bringing a 3-D chunk into memory more than once, the minimum
memory requirement for holding all relevant 2-D planes in chunk memory, according
to the chunk ordering of 1 to 64, is as follows: 40 × 400 (for the whole AB plane) +
40 × 1000 (for one column of the AC plane) + 100 × 1000 (for one BC plane chunk) =
16,000 + 40,000 + 100,000 = 156,000 memory units.

Suppose, instead, that the chunks are scanned in the order 1, 17, 33, 49, 5, 21, 37, 53,
and so on. That is, suppose the scan is in the order of first aggregating toward the AB
plane, and then toward the AC plane, and lastly toward the BC plane. The minimum
memory requirement for holding 2-D planes in chunk memory would be as follows:
400 × 4000 (for the whole BC plane) + 40 × 1000 (for one AC plane row) + 10 × 100
(for one AB plane chunk) = 1,600,000 + 40,000 + 1000 = 1,641,000 memory units.
Notice that this is more than 10 times the memory requirement of the scan ordering of
1 to 64.

Similarly, we can work out the minimum memory requirements for the multiway
computation of the 1-D and 0-D cuboids. Figure 5.4 shows the most efficient way to
compute 1-D cuboids. Chunks for 1-D cuboids A and B are computed during the com-
putation of the smallest 2-D cuboid, AB. The smallest 1-D cuboid, A, will have all of
its chunks allocated in memory, whereas the larger 1-D cuboid, B, will have only one
chunk allocated in memory at a time. Similarly, chunk C is computed during the com-
putation of the second smallest 2-D cuboid, AC, requiring only one chunk in memory
at a time. Based on this analysis, we see that the most efficient ordering in this array
cube computation is the chunk ordering of 1 to 64, with the stated memory allocation
strategy.

Example 5.4 assumes that there is enough memory space for one-pass cube compu-
tation (i.e., to compute all of the cuboids from one scan of all the chunks). If there is
insufficient memory space, the computation will require more than one pass through
the 3-D array. In such cases, however, the basic principle of ordered chunk computation
remains the same. MultiWay is most effective when the product of the cardinalities of
dimensions is moderate and the data are not too sparse. When the dimensionality is high
or the data are very sparse, the in-memory arrays become too large to fit in memory, and
this method becomes infeasible.

With the use of appropriate sparse array compression techniques and careful order-
ing of the computation of cuboids, it has been shown by experiments that MultiWay
array cube computation is significantly faster than traditional ROLAP (relational record-
based) computation. Unlike ROLAP, the array structure of MultiWay does not require
saving space to store search keys. Furthermore, MultiWay uses direct array addressing,

5.2 Data Cube Computation Methods 199

b3

b2

b1

b0

AB

AB

*
*
*

*

*
**

*

a0 a1 a2 a3

AC

C

*

*
*

* *

(a) (b)

b3

b1

b0

b2

a0 a2a1 a3

a0 a2a1 a3

c0

c1

c2

c3

c0

c1

c2

c3

Figure 5.4 Memory allocation and computation order for computing Example 5.4’s 1-D cuboids.
(a) The 1-D cuboids, A and B, are aggregated during the computation of the smallest 2-D
cuboid, AB. (b) The 1-D cuboid, C, is aggregated during the computation of the second
smallest 2-D cuboid, AC. The ∗’s represent chunks that, so far, have been aggregated to.

which is faster than ROLAP’s key-based addressing search strategy. For ROLAP cube
computation, instead of cubing a table directly, it can be faster to convert the table
to an array, cube the array, and then convert the result back to a table. However,
this observation works only for cubes with a relatively small number of dimensions,
because the number of cuboids to be computed is exponential to the number of
dimensions.

“What would happen if we tried to use MultiWay to compute iceberg cubes?” Remember
that the Apriori property states that if a given cell does not satisfy minimum support,
then neither will any of its descendants. Unfortunately, MultiWay’s computation starts
from the base cuboid and progresses upward toward more generalized, ancestor cuboids.
It cannot take advantage of Apriori pruning, which requires a parent node to be com-
puted before its child (i.e., more specific) nodes. For example, if the count of a cell c in,
say, AB, does not satisfy the minimum support specified in the iceberg condition, we
cannot prune away cell c, because the count of c’s ancestors in the A or B cuboids may
be greater than the minimum support, and their computation will need aggregation
involving the count of c.

200 Chapter 5 Data Cube Technology

5.2.2 BUC: Computing Iceberg Cubes from the Apex
Cuboid Downward

BUC is an algorithm for the computation of sparse and iceberg cubes. Unlike MultiWay,
BUC constructs the cube from the apex cuboid toward the base cuboid. This allows BUC
to share data partitioning costs. This processing order also allows BUC to prune during
construction, using the Apriori property.

Figure 5.5 shows a lattice of cuboids, making up a 3-D data cube with the dimensions
A, B, and C. The apex (0-D) cuboid, representing the concept all (i.e., (∗, ∗ , ∗)), is at
the top of the lattice. This is the most aggregated or generalized level. The 3-D base
cuboid, ABC, is at the bottom of the lattice. It is the least aggregated (most detailed or
specialized) level. This representation of a lattice of cuboids, with the apex at the top
and the base at the bottom, is commonly accepted in data warehousing. It consolidates
the notions of drill-down (where we can move from a highly aggregated cell to lower,
more detailed cells) and roll-up (where we can move from detailed, low-level cells to
higher-level, more aggregated cells).

BUC stands for “Bottom-Up Construction.” However, according to the lattice con-
vention described before and used throughout this book, the BUC processing order
is actually top-down! The BUC authors view a lattice of cuboids in the reverse order,

ABC

AB AC BC

B

all

A C

Figure 5.5 BUC’s exploration for a 3-D data cube computation. Note that the computation starts from
the apex cuboid.

5.2 Data Cube Computation Methods 201

with the apex cuboid at the bottom and the base cuboid at the top. In that view, BUC
does bottom-up construction. However, because we adopt the application worldview
where drill-down refers to drilling from the apex cuboid down toward the base cuboid,
the exploration process of BUC is regarded as top-down. BUC’s exploration for the
computation of a 3-D data cube is shown in Figure 5.5.

The BUC algorithm is shown on the next page in Figure 5.6. We first give an expla-
nation of the algorithm and then follow up with an example. Initially, the algorithm is
called with the input relation (set of tuples). BUC aggregates the entire input (line 1)
and writes the resulting total (line 3). (Line 2 is an optimization feature that is discussed
later in our example.) For each dimension d (line 4), the input is partitioned on d (line
6). On return from Partition(), dataCount contains the total number of tuples for each
distinct value of dimension d. Each distinct value of d forms its own partition. Line 8
iterates through each partition. Line 10 tests the partition for minimum support. That
is, if the number of tuples in the partition satisfies (i.e., is ≥) the minimum support,
then the partition becomes the input relation for a recursive call made to BUC, which
computes the iceberg cube on the partitions for dimensions d + 1 to numDims (line 12).

Note that for a full cube (i.e., where minimum support in the having clause is 1), the
minimum support condition is always satisfied. Thus, the recursive call descends one
level deeper into the lattice. On return from the recursive call, we continue with the next
partition for d. After all the partitions have been processed, the entire process is repeated
for each of the remaining dimensions.

Example 5.5 BUC construction of an iceberg cube. Consider the iceberg cube expressed in SQL as
follows:

compute cube iceberg cube as
select A, B, C, D, count(*)
from R
cube by A, B, C, D
having count(*) >= 3

Let’s see how BUC constructs the iceberg cube for the dimensions A, B, C, and D, where
3 is the minimum support count. Suppose that dimension A has four distinct values,
a1, a2, a3, a4; B has four distinct values, b1, b2, b3, b4; C has two distinct values, c1, c2;
and D has two distinct values, d1, d2. If we consider each group-by to be a partition,
then we must compute every combination of the grouping attributes that satisfy the
minimum support (i.e., that have three tuples).

Figure 5.7 illustrates how the input is partitioned first according to the different attri-
bute values of dimension A, and then B, C, and D. To do so, BUC scans the input,
aggregating the tuples to obtain a count for all, corresponding to the cell (∗, ∗ , ∗ , ∗).
Dimension A is used to split the input into four partitions, one for each distinct value of
A. The number of tuples (counts) for each distinct value of A is recorded in dataCount.

BUC uses the Apriori property to save time while searching for tuples that satisfy
the iceberg condition. Starting with A dimension value, a1, the a1 partition is aggre-
gated, creating one tuple for the A group-by, corresponding to the cell (a1, ∗ , ∗ , ∗).

202 Chapter 5 Data Cube Technology

Algorithm: BUC. Algorithm for the computation of sparse and iceberg cubes.

Input:

input : the relation to aggregate;

dim: the starting dimension for this iteration.

Globals:

constant numDims: the total number of dimensions;

constant cardinality[numDims]: the cardinality of each dimension;

constant min sup: the minimum number of tuples in a partition for it to be output;

outputRec: the current output record;

dataCount[numDims]: stores the size of each partition. dataCount[i] is a list of integers
of size cardinality[i].

Output: Recursively output the iceberg cube cells satisfying the minimum support.

Method:

(1) Aggregate(input); // Scan input to compute measure, e.g., count. Place result in outputRec.
(2) if input.count() == 1 then // Optimization

WriteDescendants(input[0], dim); return;
endif

(3) write outputRec;
(4) for (d = dim; d < numDims; d + +) do //Partition each dimension
(5) C = cardinality[d];
(6) Partition(input, d, C, dataCount[d]); //create C partitions of data for dimension d
(7) k = 0;
(8) for (i = 0; i < C; i + +) do // for each partition (each value of dimension d)
(9) c = dataCount[d][i];
(10) if c >= min sup then // test the iceberg condition
(11) outputRec.dim[d] = input[k].dim[d];
(12) BUC(input[k..k + c − 1], d + 1); // aggregate on next dimension
(13) endif
(14) k +=c;
(15) endfor
(16) outputRec.dim[d] = all;
(17) endfor

Figure 5.6 BUC algorithm for sparse or iceberg cube computation. Source: Beyer and Ramakrishnan
[BR99].

Suppose (a1, ∗ , ∗ , ∗) satisfies the minimum support, in which case a recursive call is
made on the partition for a1. BUC partitions a1 on the dimension B. It checks the count
of (a1, b1, ∗ , ∗) to see if it satisfies the minimum support. If it does, it outputs the aggre-
gated tuple to the AB group-by and recurses on (a1, b1, ∗ , ∗) to partition on C, starting

5.2 Data Cube Computation Methods 203

c2

c1

d1 d2

b1a1

a2

a3

a4

b2

b3

b4

Figure 5.7 BUC partitioning snapshot given an example 4-D data set.

with c1. Suppose the cell count for (a1, b1, c1, ∗) is 2, which does not satisfy the mini-
mum support. According to the Apriori property, if a cell does not satisfy the minimum
support, then neither can any of its descendants. Therefore, BUC prunes any further
exploration of (a1, b1, c1, ∗). That is, it avoids partitioning this cell on dimension D. It
backtracks to the a1, b1 partition and recurses on (a1, b1, c2, ∗), and so on. By checking
the iceberg condition each time before performing a recursive call, BUC saves a great
deal of processing time whenever a cell’s count does not satisfy the minimum support.

The partition process is facilitated by a linear sorting method, CountingSort. Count-
ingSort is fast because it does not perform any key comparisons to find partition
boundaries. In addition, the counts computed during the sort can be reused to com-
pute the group-by’s in BUC. Line 2 is an optimization for partitions having a count of 1
such as (a1, b2, ∗ , ∗) in our example. To save on partitioning costs, the count is written

204 Chapter 5 Data Cube Technology

to each of the tuple’s descendant group-by’s. This is particularly useful since, in practice,
many partitions have a single tuple.

The BUC performance is sensitive to the order of the dimensions and to skew in the
data. Ideally, the most discriminating dimensions should be processed first. Dimensions
should be processed in the order of decreasing cardinality. The higher the cardinality,
the smaller the partitions, and thus the more partitions there will be, thereby providing
BUC with a greater opportunity for pruning. Similarly, the more uniform a dimension
(i.e., having less skew), the better it is for pruning.

BUC’s major contribution is the idea of sharing partitioning costs. However, unlike
MultiWay, it does not share the computation of aggregates between parent and child
group-by’s. For example, the computation of cuboid AB does not help that of ABC. The
latter needs to be computed essentially from scratch.

5.2.3 Star-Cubing: Computing Iceberg Cubes Using
a Dynamic Star-Tree Structure

In this section, we describe the Star-Cubing algorithm for computing iceberg cubes.
Star-Cubing combines the strengths of the other methods we have studied up to this
point. It integrates top-down and bottom-up cube computation and explores both
multidimensional aggregation (similar to MultiWay) and Apriori-like pruning (simi-
lar to BUC). It operates from a data structure called a star-tree, which performs lossless
data compression, thereby reducing the computation time and memory requirements.

The Star-Cubing algorithm explores both the bottom-up and top-down computa-
tion models as follows: On the global computation order, it uses the bottom-up model.
However, it has a sublayer underneath based on the top-down model, which explores the
notion of shared dimensions, as we shall see in the following. This integration allows the
algorithm to aggregate on multiple dimensions while still partitioning parent group-by’s
and pruning child group-by’s that do not satisfy the iceberg condition.

Star-Cubing’s approach is illustrated in Figure 5.8 for a 4-D data cube computation.
If we were to follow only the bottom-up model (similar to MultiWay), then the cuboids
marked as pruned by Star-Cubing would still be explored. Star-Cubing is able to prune
the indicated cuboids because it considers shared dimensions. ACD/A means cuboid
ACD has shared dimension A, ABD/AB means cuboid ABD has shared dimension AB,
ABC/ABC means cuboid ABC has shared dimension ABC, and so on. This comes from
the generalization that all the cuboids in the subtree rooted at ACD include dimension
A, all those rooted at ABD include dimensions AB, and all those rooted at ABC include
dimensions ABC (even though there is only one such cuboid). We call these common
dimensions the shared dimensions of those particular subtrees.

The introduction of shared dimensions facilitates shared computation. Because the
shared dimensions are identified early on in the tree expansion, we can avoid recom-
puting them later. For example, cuboid AB extending from ABD in Figure 5.8 would
actually be pruned because AB was already computed in ABD/AB. Similarly, cuboid

5.2 Data Cube Computation Methods 205

all

Figure 5.8 Star-Cubing: bottom-up computation with top-down expansion of shared dimensions.

A extending from AD would also be pruned because it was already computed in
ACD/A.

Shared dimensions allow us to do Apriori-like pruning if the measure of an iceberg
cube, such as count, is antimonotonic. That is, if the aggregate value on a shared dimen-
sion does not satisfy the iceberg condition, then all the cells descending from this shared
dimension cannot satisfy the iceberg condition either. These cells and their descendants
can be pruned because these descendant cells are, by definition, more specialized (i.e.,
contain more dimensions) than those in the shared dimension(s). The number of tuples
covered by the descendant cells will be less than or equal to the number of tuples covered
by the shared dimensions. Therefore, if the aggregate value on a shared dimension fails
the iceberg condition, the descendant cells cannot satisfy it either.

Example 5.6 Pruning shared dimensions. If the value in the shared dimension A is a1 and it fails
to satisfy the iceberg condition, then the whole subtree rooted at a1CD/a1 (including
a1C/a1C, a1D/a1, a1/a1) can be pruned because they are all more specialized versions
of a1.

To explain how the Star-Cubing algorithm works, we need to explain a few more
concepts, namely, cuboid trees, star-nodes, and star-trees.

We use trees to represent individual cuboids. Figure 5.9 shows a fragment of the
cuboid tree of the base cuboid, ABCD. Each level in the tree represents a dimension, and
each node represents an attribute value. Each node has four fields: the attribute value,
aggregate value, pointer to possible first child, and pointer to possible first sibling. Tuples
in the cuboid are inserted one by one into the tree. A path from the root to a leaf node
represents a tuple. For example, node c2 in the tree has an aggregate (count) value of 5,

206 Chapter 5 Data Cube Technology

a1:30 a2:20 a3:20 a4:20

b1:10 b2:10 b3:10

c1:5 c2:5

d2:3d1:2

Figure 5.9 Base cuboid tree fragment.

which indicates that there are five cells of value (a1, b1, c2, ∗). This representation col-
lapses the common prefixes to save memory usage and allows us to aggregate the values
at internal nodes. With aggregate values at internal nodes, we can prune based on shared
dimensions. For example, the AB cuboid tree can be used to prune possible cells in ABD.

If the single-dimensional aggregate on an attribute value p does not satisfy the iceberg
condition, it is useless to distinguish such nodes in the iceberg cube computation. Thus,
the node p can be replaced by ∗ so that the cuboid tree can be further compressed. We
say that the node p in an attribute A is a star-node if the single-dimensional aggregate
on p does not satisfy the iceberg condition; otherwise, p is a non-star-node. A cuboid tree
that is compressed using star-nodes is called a star-tree.

Example 5.7 Star-tree construction. A base cuboid table is shown in Table 5.1. There are five tuples
and four dimensions. The cardinalities for dimensions A, B, C, D are 2, 4, 4, 4, respec-
tively. The one-dimensional aggregates for all attributes are shown in Table 5.2. Suppose
min sup = 2 in the iceberg condition. Clearly, only attribute values a1, a2, b1, c3, d4 satisfy
the condition. All other values are below the threshold and thus become star-nodes. By
collapsing star-nodes, the reduced base table is Table 5.3. Notice that the table contains
two fewer rows and also fewer distinct values than Table 5.1.

Table 5.1 Base (Cuboid) Table: Before Star
Reduction

A B C D count

a1 b1 c1 d1 1

a1 b1 c4 d3 1

a1 b2 c2 d2 1

a2 b3 c3 d4 1

a2 b4 c3 d4 1

5.2 Data Cube Computation Methods 207

Table 5.2 One-Dimensional Aggregates

Dimension count = 1 count ≥ 2

A — a1(3), a2(2)

B b2, b3, b4 b1(2)

C c1, c2, c4 c3(2)

D d1, d2, d3 d4(2)

Table 5.3 Compressed Base Table: After Star Reduction

A B C D count

a1 b1 ∗ ∗ 2

a1 ∗ ∗ ∗ 1

a2 ∗ c3 d4 2

root:5

b*:1 b1:2 b*:2

a1:3 a2:2

c*:1 c*:2 c3:2

d*:1 d*:2 d4:2

Figure 5.10 Compressed base table star-tree.

We use the reduced base table to construct the cuboid tree because it is smaller. The
resultant star-tree is shown in Figure 5.10.

Now, let’s see how the Star-Cubing algorithm uses star-trees to compute an iceberg
cube. The algorithm is given later in Figure 5.13.

Example 5.8 Star-Cubing. Using the star-tree generated in Example 5.7 (Figure 5.10), we start the
aggregation process by traversing in a bottom-up fashion. Traversal is depth-first. The
first stage (i.e., the processing of the first branch of the tree) is shown in Figure 5.11.
The leftmost tree in the figure is the base star-tree. Each attribute value is shown with its
corresponding aggregate value. In addition, subscripts by the nodes in the tree show the

208 Chapter 5 Data Cube Technology

traversal order. The remaining four trees are BCD, ACD/A, ABD/AB, and ABC/ABC.
They are the child trees of the base star-tree, and correspond to the level of 3-D cuboids
above the base cuboid in Figure 5.8. The subscripts in them correspond to the same
subscripts in the base tree—they denote the step or order in which they are created
during the tree traversal. For example, when the algorithm is at step 1, the BCD child
tree root is created. At step 2, the ACD/A child tree root is created. At step 3, the ABD/AB
tree root and the b∗ node in BCD are created.

When the algorithm has reached step 5, the trees in memory are exactly as shown
in Figure 5.11. Because depth-first traversal has reached a leaf at this point, it starts
backtracking. Before traversing back, the algorithm notices that all possible nodes in the
base dimension (ABC) have been visited. This means the ABC/ABC tree is complete, so
the count is output and the tree is destroyed. Similarly, upon moving back from d∗ to
c∗ and seeing that c∗ has no siblings, the count in ABD/AB is also output and the tree
is destroyed.

When the algorithm is at b∗ during the backtraversal, it notices that there exists a
sibling in b1. Therefore, it will keep ACD/A in memory and perform a depth-first search

b*:13

b*:13

c*:14

c*:14

c*:14

d*:2

c*:2

b*:2

d4:2

c3:2

b1:2

a1:32 a2:2

root:51

d*:15

d*:15

BCD–Tree

BCD:51 a1CD/a1:32 a1b*D/a1b*:13 a1b*c*/a1b*c*:14

Base Tree ACD/A–Tree ABD/AB–Tree ABC/ABC–Tree

d*:15

d*:15

Figure 5.11 Aggregation stage one: processing the leftmost branch of the base tree.

x b*:2

d4:2

c3:2

a1:32

b1:26

c*:27

d*:28

a2:2

root:51 a1b1c*/a1b1c*:27

Base Tree

c*:37

d*:38

a1CD/a1:32

ACD/A–Tree

d*:28

a1b1D/a1b1:26

ABD/AB–Tree ABC/ABC–Tree

b*:13

c*:14 c*:27

b1:26

d*:15

BCD–Tree

BCD:51

d*:28

Figure 5.12 Aggregation stage two: processing the second branch of the base tree.

5.2 Data Cube Computation Methods 209

Algorithm: Star-Cubing. Compute iceberg cubes by Star-Cubing.

Input:

R: a relational table

min support : minimum support threshold for the iceberg condition (taking count
as the measure).

Output: The computed iceberg cube.

Method: Each star-tree corresponds to one cuboid tree node, and vice versa.

BEGIN
scan R twice, create star-table S and star-tree T ;

output count of T.root ;

call starcubing(T, T.root);

END

procedure starcubing(T, cnode)// cnode: current node

{
(1) for each non-null child C of T ’s cuboid tree

(2) insert or aggregate cnode to the corresponding

position or node in C’s star-tree;

(3) if (cnode.count ≥ min support) then {
(4) if (cnode �= root) then
(5) output cnode.count;

(6) if (cnode is a leaf) then
(7) output cnode.count;

(8) else { // initiate a new cuboid tree

(9) create CC as a child of T ’s cuboid tree;

(10) let TC be CC ’s star-tree;

(11) TC .root ’s count = cnode.count ;

(12) }
(13) }
(14) if (cnode is not a leaf) then
(15) starcubing(T, cnode.first child);

(16) if (CC is not null) then {
(17) starcubing(TC ,TC .root);

(18) remove CC from T ’s cuboid tree; }
(19) if (cnode has sibling) then
(20) starcubing(T, cnode.sibling);

(21) remove T ;

}

Figure 5.13 Star-Cubing algorithm.

210 Chapter 5 Data Cube Technology

on b1 just as it did on b∗. This traversal and the resultant trees are shown in Figure 5.12.
The child trees ACD/A and ABD/AB are created again but now with the new values
from the b1 subtree. For example, notice that the aggregate count of c∗ in the ACD/A
tree has increased from 1 to 3. The trees that remained intact during the last traversal
are reused and the new aggregate values are added on. For instance, another branch is
added to the BCD tree.

Just like before, the algorithm will reach a leaf node at d∗ and traverse back. This
time, it will reach a1 and notice that there exists a sibling in a2. In this case, all child
trees except BCD in Figure 5.12 are destroyed. Afterward, the algorithm will perform
the same traversal on a2. BCD continues to grow while the other subtrees start fresh
with a2 instead of a1.

A node must satisfy two conditions in order to generate child trees: (1) the measure
of the node must satisfy the iceberg condition; and (2) the tree to be generated must
include at least one non-star-node (i.e., nontrivial). This is because if all the nodes were
star-nodes, then none of them would satisfy min sup. Therefore, it would be a complete
waste to compute them. This pruning is observed in Figures 5.11 and 5.12. For example,
the left subtree extending from node a1 in the base tree in Figure 5.11 does not include
any nonstar-nodes. Therefore, the a1CD/a1 subtree should not have been generated. It
is shown, however, for illustration of the child tree generation process.

Star-Cubing is sensitive to the ordering of dimensions, as with other iceberg cube
construction algorithms. For best performance, the dimensions are processed in order
of decreasing cardinality. This leads to a better chance of early pruning, because the
higher the cardinality, the smaller the partitions, and therefore the higher possibility
that the partition will be pruned.

Star-Cubing can also be used for full cube computation. When computing the full
cube for a dense data set, Star-Cubing’s performance is comparable with MultiWay and
is much faster than BUC. If the data set is sparse, Star-Cubing is significantly faster
than MultiWay and faster than BUC, in most cases. For iceberg cube computation, Star-
Cubing is faster than BUC, where the data are skewed and the speed-up factor increases
as min sup decreases.

5.2.4 Precomputing Shell Fragments for Fast
High-Dimensional OLAP

Recall the reason that we are interested in precomputing data cubes: Data cubes facil-
itate fast OLAP in a multidimensional data space. However, a full data cube of high
dimensionality needs massive storage space and unrealistic computation time. Iceberg
cubes provide a more feasible alternative, as we have seen, wherein the iceberg con-
dition is used to specify the computation of only a subset of the full cube’s cells.
However, although an iceberg cube is smaller and requires less computation time than
its corresponding full cube, it is not an ultimate solution.

For one, the computation and storage of the iceberg cube can still be costly. For exam-
ple, if the base cuboid cell, (a1, a2, . . . , a60), passes minimum support (or the iceberg

5.2 Data Cube Computation Methods 211

threshold), it will generate 260 iceberg cube cells. Second, it is difficult to determine an
appropriate iceberg threshold. Setting the threshold too low will result in a huge cube,
whereas setting the threshold too high may invalidate many useful applications. Third,
an iceberg cube cannot be incrementally updated. Once an aggregate cell falls below
the iceberg threshold and is pruned, its measure value is lost. Any incremental update
would require recomputing the cells from scratch. This is extremely undesirable for large
real-life applications where incremental appending of new data is the norm.

One possible solution, which has been implemented in some commercial data ware-
house systems, is to compute a thin cube shell. For example, we could compute all
cuboids with three dimensions or less in a 60-dimensional data cube, resulting in a cube
shell of size 3. The resulting cuboids set would require much less computation and stor-
age than the full 60-dimensional data cube. However, there are two disadvantages to
this approach. First, we would still need to compute

(60
3

)+ (60
2

)+ 60 = 36,050 cuboids,
each with many cells. Second, such a cube shell does not support high-dimensional
OLAP because (1) it does not support OLAP on four or more dimensions, and (2) it
cannot even support drilling along three dimensions, such as, say, (A4, A5, A6), on a sub-
set of data selected based on the constants provided in three other dimensions, such as
(A1, A2, A3), because this essentially requires the computation of the corresponding 6-D
cuboid. (Notice that there is no cell in cuboid (A4, A5, A6) computed for any particular
constant set, such as (a1, a2, a3), associated with dimensions (A1, A2, A3).)

Instead of computing a cube shell, we can compute only portions or fragments of it.
This section discusses the shell fragment approach for OLAP query processing. It is based
on the following key observation about OLAP in high-dimensional space. Although a
data cube may contain many dimensions, most OLAP operations are performed on only a
small number of dimensions at a time. In other words, an OLAP query is likely to ignore
many dimensions (i.e., treating them as irrelevant), fix some dimensions (e.g., using
query constants as instantiations), and leave only a few to be manipulated (for drilling,
pivoting, etc.). This is because it is neither realistic nor fruitful for anyone to compre-
hend the changes of thousands of cells involving tens of dimensions simultaneously in a
high-dimensional space at the same time.

Instead, it is more natural to first locate some cuboids of interest and then drill
along one or two dimensions to examine the changes of a few related dimensions.
Most analysts will only need to examine, at any one moment, the combinations of a
small number of dimensions. This implies that if multidimensional aggregates can be
computed quickly on a small number of dimensions inside a high-dimensional space, we
may still achieve fast OLAP without materializing the original high-dimensional data
cube. Computing the full cube (or, often, even an iceberg cube or cube shell) can be
excessive. Instead, a semi-online computation model with certain preprocessing may offer
a more feasible solution. Given a base cuboid, some quick preparation computation can
be done first (i.e., offline). After that, a query can then be computed online using the
preprocessed data.

The shell fragment approach follows such a semi-online computation strategy. It
involves two algorithms: one for computing cube shell fragments and the other for query
processing with the cube fragments. The shell fragment approach can handle databases

212 Chapter 5 Data Cube Technology

Table 5.4 Original Database

TID A B C D E

1 a1 b1 c1 d1 e1

2 a1 b2 c1 d2 e1

3 a1 b2 c1 d1 e2

4 a2 b1 c1 d1 e2

5 a2 b1 c1 d1 e3

of high dimensionality and can quickly compute small local cubes online. It explores the
inverted index data structure, which is popular in information retrieval and Web-based
information systems.

The basic idea is as follows. Given a high-dimensional data set, we partition the
dimensions into a set of disjoint dimension fragments, convert each fragment into its
corresponding inverted index representation, and then construct cube shell fragments
while keeping the inverted indices associated with the cube cells. Using the precom-
puted cubes’ shell fragments, we can dynamically assemble and compute cuboid cells of
the required data cube online. This is made efficient by set intersection operations on
the inverted indices.

To illustrate the shell fragment approach, we use the tiny database of Table 5.4 as a
running example. Let the cube measure be count(). Other measures will be discussed
later. We first look at how to construct the inverted index for the given database.

Example 5.9 Construct the inverted index. For each attribute value in each dimension, list the tuple
identifiers (TIDs) of all the tuples that have that value. For example, attribute value a2

appears in tuples 4 and 5. The TID list for a2 then contains exactly two items, namely 4
and 5. The resulting inverted index table is shown in Table 5.5. It retains all the original
database’s information. If each table entry takes one unit of memory, Tables 5.4 and 5.5
each takes 25 units, that is, the inverted index table uses the same amount of memory as
the original database.

“How do we compute shell fragments of a data cube?” The shell fragment com-
putation algorithm, Frag-Shells, is summarized in Figure 5.14. We first partition all
the dimensions of the given data set into independent groups of dimensions, called
fragments (line 1). We scan the base cuboid and construct an inverted index for
each attribute (lines 2 to 6). Line 3 is for when the measure is other than the tuple
count(), which will be described later. For each fragment, we compute the full local
(i.e., fragment-based) data cube while retaining the inverted indices (lines 7 to 8).
Consider a database of 60 dimensions, namely, A1, A2, . . . , A60. We can first parti-
tion the 60 dimensions into 20 fragments of size 3: (A1, A2, A3), (A4, A5, A6), . . .,
(A58, A59, A60). For each fragment, we compute its full data cube while record-
ing the inverted indices. For example, in fragment (A1, A2, A3), we would compute
seven cuboids: A1, A2, A3, A1A2, A2A3, A1A3, A1A2A3. Furthermore, an inverted index

5.2 Data Cube Computation Methods 213

Table 5.5 Inverted Index

Attribute Value TID List List Size

a1 {1, 2, 3} 3

a2 {4, 5} 2

b1 {1, 4, 5} 3

b2 {2, 3} 2

c1 {1, 2, 3, 4, 5} 5

d1 {1, 3, 4, 5} 4

d2 {2} 1

e1 {1, 2} 2

e2 {3, 4} 2

e3 {5} 1

Algorithm: Frag-Shells. Compute shell fragments on a given high-dimensional base table
(i.e., base cuboid).

Input: A base cuboid, B, of n dimensions, namely, (A1, . . . ,An).

Output:

a set of fragment partitions, {P1, . . . ,Pk}, and their corresponding (local) fragment
cubes, {S1, . . . , Sk}, where Pi represents some set of dimension(s) and P1 ∪ . . . ∪ Pk

make up all the n dimensions

an ID measure array if the measure is not the tuple count, count()

Method:

(1) partition the set of dimensions (A1, . . . , An) into
a set of k fragments P1, . . . , Pk (based on data & query distribution)

(2) scan base cuboid, B, once and do the following {
(3) insert each 〈TID, measure〉 into ID measure array
(4) for each attribute value aj of each dimension Ai

(5) build an inverted index entry: 〈aj , TIDlist〉
(6) }
(7) for each fragment partition Pi

(8) build a local fragment cube, Si , by intersecting their
corresponding TIDlists and computing their measures

Figure 5.14 Shell fragment computation algorithm.

is retained for each cell in the cuboids. That is, for each cell, its associated TID list is
recorded.

The benefit of computing local cubes of each shell fragment instead of comput-
ing the complete cube shell can be seen by a simple calculation. For a base cuboid of

214 Chapter 5 Data Cube Technology

60 dimensions, there are only 7 × 20 = 140 cuboids to be computed according to the
preceding shell fragment partitioning. This is in contrast to the 36,050 cuboids com-
puted for the cube shell of size 3 described earlier! Notice that the above fragment
partitioning is based simply on the grouping of consecutive dimensions. A more desir-
able approach would be to partition based on popular dimension groupings. This
information can be obtained from domain experts or the past history of OLAP queries.

Let’s return to our running example to see how shell fragments are computed.

Example 5.10 Compute shell fragments. Suppose we are to compute the shell fragments of size 3.
We first divide the five dimensions into two fragments, namely (A, B, C) and (D, E).
For each fragment, we compute the full local data cube by intersecting the TID lists in
Table 5.5 in a top-down depth-first order in the cuboid lattice. For example, to compute
the cell (a1, b2,∗), we intersect the TID lists of a1 and b2 to obtain a new list of {2, 3}.
Cuboid AB is shown in Table 5.6.

After computing cuboid AB, we can then compute cuboid ABC by intersecting all
pairwise combinations between Table 5.6 and the row c1 in Table 5.5. Notice that because
cell (a2, b2) is empty, it can be effectively discarded in subsequent computations, based
on the Apriori property. The same process can be applied to compute fragment (D, E),
which is completely independent from computing (A, B, C). Cuboid DE is shown in
Table 5.7.

If the measure in the iceberg condition is count() (as in tuple counting), there is
no need to reference the original database for this because the length of the TID list is
equivalent to the tuple count. “Do we need to reference the original database if computing
other measures such as average()?” Actually, we can build and reference an ID measure

Table 5.6 Cuboid AB

Cell Intersection TID List List Size

(a1, b1) {1, 2, 3} ∩ {1, 4, 5} {1} 1

(a1, b2) {1, 2, 3} ∩ {2, 3} {2, 3} 2

(a2, b1) {4, 5} ∩ {1, 4, 5} {4, 5} 2

(a2, b2) {4, 5} ∩ {2, 3} {} 0

Table 5.7 Cuboid DE

Cell Intersection TID List List Size

(d1, e1) {1, 3, 4, 5} ∩ {1, 2} {1} 1

(d1, e2) {1, 3, 4, 5} ∩ {3, 4} {3, 4} 2

(d1, e3) {1, 3, 4, 5} ∩ {5} {5} 1

(d2, e1) {2} ∩ {1, 2} {2} 1

5.2 Data Cube Computation Methods 215

array instead, which stores what we need to compute other measures. For example,
to compute average(), we let the ID measure array hold three elements, namely, (TID,
item count, sum), for each cell (line 3 of the shell fragment computation algorithm in
Figure 5.14). The average() measure for each aggregate cell can then be computed by
accessing only this ID measure array, using sum()/item count(). Considering a database
with 106 tuples, each taking 4 bytes each for TID, item count, and sum, the ID measure
array requires 12 MB, whereas the corresponding database of 60 dimensions will require
(60 + 3) × 4 × 106 = 252 MB (assuming each attribute value takes 4 bytes). Obviously,
ID measure array is a more compact data structure and is more likely to fit in memory
than the corresponding high-dimensional database.

To illustrate the design of the ID measure array, let’s look at Example 5.11.

Example 5.11 Computing cubes with the average() measure. Table 5.8 shows an example sales
database where each tuple has two associated values, such as item count and sum, where
item count is the count of items sold.

To compute a data cube for this database with the measure average(), we need to have
a TID list for each cell: {TID1, . . . ,TIDn}. Because each TID is uniquely associated with a
particular set of measure values, all future computation just needs to fetch the measure
values associated with the tuples in the list. In other words, by keeping an ID measure
array in memory for online processing, we can handle complex algebraic measures, such
as average, variance, and standard deviation. Table 5.9 shows what exactly should be kept
for our example, which is substantially smaller than the database itself.

Table 5.8 Database with Two Measure Values

TID A B C D E item count sum

1 a1 b1 c1 d1 e1 5 70

2 a1 b2 c1 d2 e1 3 10

3 a1 b2 c1 d1 e2 8 20

4 a2 b1 c1 d1 e2 5 40

5 a2 b1 c1 d1 e3 2 30

Table 5.9 Table 5.8 ID measure Array

TID item count sum

1 5 70

2 3 10

3 8 20

4 5 40

5 2 30

216 Chapter 5 Data Cube Technology

The shell fragments are negligible in both storage space and computation time in
comparison with the full data cube. Note that we can also use the Frag-Shells algorithm
to compute the full data cube by including all the dimensions as a single fragment.
Because the order of computation with respect to the cuboid lattice is top-down and
depth-first (similar to that of BUC), the algorithm can perform Apriori pruning if
applied to the construction of iceberg cubes.

“Once we have computed the shell fragments, how can they be used to answer OLAP
queries?” Given the precomputed shell fragments, we can view the cube space as a virtual
cube and perform OLAP queries related to the cube online. In general, two types of
queries are possible: (1) point query and (2) subcube query.

In a point query, all of the relevant dimensions in the cube have been instantiated
(i.e., there are no inquired dimensions in the relevant dimensions set). For example,
in an n-dimensional data cube, A1A2 . . .An, a point query could be in the form of
〈A1, A5, A9 : M?〉, where A1 = {a11, a18}, A5 = {a52, a55, a59}, A9 = a94, and M is the
inquired measure for each corresponding cube cell. For a cube with a small number
of dimensions, we can use ∗ to represent a “don’t care” position where the correspond-
ing dimension is irrelevant, that is, neither inquired nor instantiated. For example, in the
query 〈a2, b1, c1, d1, ∗ :count()?〉 for the database in Table 5.4, the first four dimension
values are instantiated to a2, b1, c1, and d1, respectively, while the last dimension is
irrelevant, and count() (which is the tuple count by context) is the inquired measure.

In a subcube query, at least one of the relevant dimensions in the cube is inquired.
For example, in an n-dimensional data cube A1A2 . . .An, a subcube query could be in the
form 〈A1, A5?, A9, A21? : M?〉, where A1 = {a11, a18} and A9 = a94, A5 and A21 are the
inquired dimensions, and M is the inquired measure. For a cube with a small number
of dimensions, we can use ∗ for an irrelevant dimension and ? for an inquired one. For
example, in the query 〈a2, ?, c1, ∗ , ? : count() ?〉 we see that the first and third dimension
values are instantiated to a2 and c1, respectively, while the fourth is irrelevant, and the
second and the fifth are inquired. A subcube query computes all possible value combina-
tions of the inquired dimensions. It essentially returns a local data cube consisting of the
inquired dimensions.

“How can we use shell fragments to answer a point query?” Because a point query
explicitly provides the instantiated variables set on the relevant dimensions set, we can
make maximal use of the precomputed shell fragments by finding the best fitting (i.e.,
dimension-wise completely matching) fragments to fetch and intersect the associated
TID lists.

Let the point query be of the form 〈αi , αj , αk , αp : M?〉, where αi represents a set of
instantiated values of dimension Ai , and so on for αj , αk , and αp. First, we check the
shell fragment schema to determine which dimensions among Ai , Aj , Ak , and Ap are in
the same fragment(s). Suppose Ai and Aj are in the same fragment, while Ak and Ap are
in two other fragments. We fetch the corresponding TID lists on the precomputed 2-D
fragment for dimensions Ai and Aj using the instantiations αi and αj , and fetch the TID
lists on the 1-D fragments for dimensions Ak and Ap using the instantiations αk and αp,
respectively. The obtained TID lists are intersected to derive the TID list table. This table
is then used to derive the specified measure (e.g., by taking the length of the TID lists

5.2 Data Cube Computation Methods 217

for tuple count(), or by fetching item count() and sum() from the ID measure array to
compute average()) for the final set of cells.

Example 5.12 Point query. Suppose a user wants to compute the point query 〈a2, b1, c1, d1, ∗: count()?〉
for our database in Table 5.4 and that the shell fragments for the partitions (A, B, C)
and (D, E) are precomputed as described in Example 5.10. The query is broken down
into two subqueries based on the precomputed fragments: 〈a2, b1, c1, ∗ , ∗〉 and 〈∗, ∗ ,
∗ , d1, ∗〉. The best-fit precomputed shell fragments for the two subqueries are ABC and
D. The fetch of the TID lists for the two subqueries returns two lists: {4, 5} and {1, 3,
4, 5}. Their intersection is the list {4, 5}, which is of size 2. Thus, the final answer is
count() = 2.

“How can we use shell fragments to answer a subcube query?” A subcube query returns
a local data cube based on the instantiated and inquired dimensions. Such a data cube
needs to be aggregated in a multidimensional way so that online analytical processing
(drilling, dicing, pivoting, etc.) can be made available to users for flexible manipulation
and analysis. Because instantiated dimensions usually provide highly selective constants
that dramatically reduce the size of the valid TID lists, we should make maximal use of
the precomputed shell fragments by finding the fragments that best fit the set of instan-
tiated dimensions, and fetching and intersecting the associated TID lists to derive the
reduced TID list. This list can then be used to intersect the best-fitting shell fragments
consisting of the inquired dimensions. This will generate the relevant and inquired base
cuboid, which can then be used to compute the relevant subcube on-the-fly using an
efficient online cubing algorithm.

Let the subcube query be of the form 〈αi , αj , Ak?, αp, Aq? : M?〉, where αi , αj , and
αp represent a set of instantiated values of dimension Ai , Aj , and Ap, respectively, and Ak

and Aq represent two inquired dimensions. First, we check the shell fragment schema
to determine which dimensions among (1) Ai , Aj , and Ap, and (2) Ak and Aq are in
the same fragment partition. Suppose Ai and Aj belong to the same fragment, as do Ak

and Aq, but that Ap is in a different fragment. We fetch the corresponding TID lists in
the precomputed 2-D fragment for Ai and Aj using the instantiations αi and αj , then
fetch the TID list on the precomputed 1-D fragment for Ap using instantiation αp, and
then fetch the TID lists on the precomputed 2-D fragments for Ak and Aq, respectively,
using no instantiations (i.e., all possible values). The obtained TID lists are intersected
to derive the final TID lists, which are used to fetch the corresponding measures from
the ID measure array to derive the “base cuboid” of a 2-D subcube for two dimensions
(Ak , Aq). A fast cube computation algorithm can be applied to compute this 2-D cube
based on the derived base cuboid. The computed 2-D cube is then ready for OLAP
operations.

Example 5.13 Subcube query. Suppose that a user wants to compute the subcube query, 〈a2, b1, ?, ∗
, ? : count()?〉, for our database shown earlier in Table 5.4, and that the shell fragments
have been precomputed as described in Example 5.10. The query can be broken into
three best-fit fragments according to the instantiated and inquired dimensions: AB, C,

218 Chapter 5 Data Cube Technology

and E, where AB has the instantiation (a2, b1). The fetch of the TID lists for these parti-
tions returns (a2, b1) : {4, 5}, (c1) : {1, 2, 3, 4, 5} and {(e1 : {1, 2}), (e2 : {3, 4}), (e3 : {5})},
respectively. The intersection of these corresponding TID lists contains a cuboid with
two tuples: {(c1, e2) : {4},5 (c1, e3) : {5}}. This base cuboid can be used to compute the
2-D data cube, which is trivial.

For large data sets, a fragment size of 2 or 3 typically results in reasonable storage
requirements for the shell fragments and for fast query response time. Querying with
shell fragments is substantially faster than answering queries using precomputed data
cubes that are stored on disk. In comparison to full cube computation, Frag-Shells is
recommended if there are less than four inquired dimensions. Otherwise, more efficient
algorithms, such as Star-Cubing, can be used for fast online cube computation. Frag-
Shells can be easily extended to allow incremental updates, the details of which are left
as an exercise.

5.3 Processing Advanced Kinds of Queries
by Exploring Cube Technology

Data cubes are not confined to the simple multidimensional structure illustrated in the
last section for typical business data warehouse applications. The methods described in
this section further develop data cube technology for effective processing of advanced
kinds of queries. Section 5.3.1 explores sampling cubes. This extension of data cube
technology can be used to answer queries on sample data, such as survey data, which rep-
resent a sample or subset of a target data population of interest. Section 5.3.2 explains
how ranking cubes can be computed to answer top-k queries, such as “find the top 5
cars,” according to some user-specified criteria.

The basic data cube structure has been further extended for various sophisticated
data types and new applications. Here we list some examples, such as spatial data cubes
for the design and implementation of geospatial data warehouses, and multimedia data
cubes for the multidimensional analysis of multimedia data (those containing images
and videos). RFID data cubes handle the compression and multidimensional analy-
sis of RFID (i.e., radio-frequency identification) data. Text cubes and topic cubes were
developed for the application of vector-space models and generative language models,
respectively, in the analysis of multidimensional text databases (which contain both
structure attributes and narrative text attributes).

5.3.1 Sampling Cubes: OLAP-Based Mining
on Sampling Data

When collecting data, we often collect only a subset of the data we would ideally like
to gather. In statistics, this is known as collecting a sample of the data population.

5That is, the intersection of the TID lists for (a2, b1), (c1), and (e2) is {4}.

5.3 Processing Advanced Kinds of Queries by Exploring Cube Technology 219

The resulting data are called sample data. Data are often sampled to save on costs,
manpower, time, and materials. In many applications, the collection of the entire data
population of interest is unrealistic. In the study of TV ratings or pre-election polls, for
example, it is impossible to gather the opinion of everyone in the population. Most pub-
lished ratings or polls rely on a data sample for analysis. The results are extrapolated for
the entire population, and associated with certain statistical measures such as a confi-
dence interval. The confidence interval tells us how reliable a result is. Statistical surveys
based on sampling are a common tool in many fields like politics, healthcare, market
research, and social and natural sciences.

“How effective is OLAP on sample data?” OLAP traditionally has the full data pop-
ulation on hand, yet with sample data, we have only a small subset. If we try to apply
traditional OLAP tools to sample data, we encounter three challenges. First, sample data
are often sparse in the multidimensional sense. When a user drills down on the data, it
is easy to reach a point with very few or no samples even when the overall sample size
is large. Traditional OLAP simply uses whatever data are available to compute a query
answer. To extrapolate such an answer for a population based on a small sample could
be misleading: A single outlier or a slight bias in the sampling can distort the answer sig-
nificantly. Second, with sample data, statistical methods are used to provide a measure
of reliability (e.g., a confidence interval) to indicate the quality of the query answer as it
pertains to the population. Traditional OLAP is not equipped with such tools.

A sampling cube framework was introduced to tackle each of the preceding
challenges.

Sampling Cube Framework
The sampling cube is a data cube structure that stores the sample data and their multi-
dimensional aggregates. It supports OLAP on sample data. It calculates confidence inter-
vals as a quality measure for any multidimensional query. Given a sample data relation
(i.e., base cuboid) R, the sampling cube CR typically computes the sample mean, sample
standard deviation, and other task-specific measures.

In statistics, a confidence interval is used to indicate the reliability of an estimate.
Suppose we want to estimate the mean age of all viewers of a given TV show. We have
sample data (a subset) of this data population. Let’s say our sample mean is 35 years. This
becomes our estimate for the entire population of viewers as well, but how confident can
we be that 35 is also the mean of the true population? It is unlikely that the sample mean
will be exactly equal to the true population mean because of sampling error. Therefore,
we need to qualify our estimate in some way to indicate the general magnitude of this
error. This is typically done by computing a confidence interval, which is an estimated
value range with a given high probability of covering the true population value. A con-
fidence interval for our example could be “the actual mean will not vary by +/− two
standard deviations 95% of the time.” (Recall that the standard deviation is just a num-
ber, which can be computed as shown in Section 2.2.2.) A confidence interval is always
qualified by a particular confidence level. In our example, it is 95%.

The confidence interval is calculated as follows. Let x be a set of samples. The mean of
the samples is denoted by x̄, and the number of samples in x is denoted by l. Assuming

220 Chapter 5 Data Cube Technology

that the standard deviation of the population is unknown, the sample standard deviation
of x is denoted by s. Given a desired confidence level, the confidence interval for x̄ is

x̄ ± tc σ̂x̄ , (5.1)

where tc is the critical t-value associated with the confidence level and σ̂x̄ = s√
l

is the

estimated standard error of the mean. To find the appropriate tc , specify the desired
confidence level (e.g., 95%) and also the degree of freedom, which is just l − 1.

The important thing to note is that the computation involved in computing a confi-
dence interval is algebraic. Let’s look at the three terms involved in Eq. (5.1). The first is
the mean of the sample set, x̄, which is algebraic; the second is the critical t-value, which
is calculated by a lookup, and with respect to x, it depends on l, a distributive measure;
and the third is σ̂x̄ = s√

l
, which also turns out to be algebraic if one records the linear

sum (
∑l

i=1 xi) and squared sum (
∑l

i=1 x2
i). Because the terms involved are either alge-

braic or distributive, the confidence interval computation is algebraic. Actually, since
both the mean and confidence interval are algebraic, at every cell, exactly three values
are sufficient to calculate them—all of which are either distributive or algebraic:

1. l

2. sum =∑l
i=1 xi

3. squared sum =∑l
i=1 x2

i

There are many efficient techniques for computing algebraic and distributive mea-
sures (Section 4.2.4). Therefore, any of the previously developed cubing algorithms can
be used to efficiently construct a sampling cube.

Now that we have established that sampling cubes can be computed efficiently, our
next step is to find a way of boosting the confidence of results obtained for queries on
sample data.

Query Processing: Boosting Confidences
for Small Samples
A query posed against a data cube can be either a point query or a range query. With-
out loss of generality, consider the case of a point query. Here, it corresponds to a cell
in sampling cube CR. The goal is to provide an accurate point estimate for the samples
in that cell. Because the cube also reports the confidence interval associated with the
sample mean, there is some measure of “reliability” to the returned answer. If the con-
fidence interval is small, the reliability is deemed good; however, if the interval is large,
the reliability is questionable.

“What can we do to boost the reliability of query answers?” Consider what affects the
confidence interval size. There are two main factors: the variance of the sample data and
the sample size. First, a rather large variance in the cell may indicate that the chosen cube

5.3 Processing Advanced Kinds of Queries by Exploring Cube Technology 221

cell is poor for prediction. A better solution is probably to drill down on the query cell
to a more specific one (i.e., asking more specific queries). Second, a small sample size
can cause a large confidence interval. When there are very few samples, the correspond-
ing tc is large because of the small degree of freedom. This in turn could cause a large
confidence interval. Intuitively, this makes sense. Suppose one is trying to figure out the
average income of people in the United States. Just asking two or three people does not
give much confidence to the returned response.

The best way to solve this small sample size problem is to get more data. Fortunately,
there is usually an abundance of additional data available in the cube. The data do not
match the query cell exactly; however, we can consider data from cells that are “close
by.” There are two ways to incorporate such data to enhance the reliability of the query
answer: (1) intracuboid query expansion, where we consider nearby cells within the same
cuboid, and (2) intercuboid query expansion, where we consider more general versions
(from parent cuboids) of the query cell. Let’s see how this works, starting with intra-
cuboid query expansion.

Method 1. Intracuboid query expansion. Here, we expand the sample size by including
nearby cells in the same cuboid as the queried cell, as shown in Figure 5.15(a). We just
have to be careful that the new samples serve to increase the confidence in the answer
without changing the query’s semantics.

So, the first question is “Which dimensions should be expanded?” The best candidates
should be the dimensions that are uncorrelated or weakly correlated with the measure

age-occupation cuboid

(a)

age cuboid

age-occupation cuboid

(b)

occupation cuboid

Figure 5.15 Query expansion within sampling cube: Given small data samples, both methods use strate-
gies to boost the reliability of query answers by considering additional data cell values.
(a) Intracuboid expansion considers nearby cells in the same cuboid as the queried cell.
(b) Intercuboid expansion considers more general cells from parent cuboids.

222 Chapter 5 Data Cube Technology

value (i.e., the value to be predicted). Expanding within these dimensions will likely
increase the sample size and not shift the query’s answer. Consider an example of a 2-D
query specifying education = “college” and birth month = “July.” Let the cube measure
be average income. Intuitively, education has a high correlation to income while birth
month does not. It would be harmful to expand the education dimension to include val-
ues such as “graduate” or “high school.” They are likely to alter the final result. However,
expansion in the birth month dimension to include other month values could be helpful,
because it is unlikely to change the result but will increase sampling size.

To mathematically measure the correlation of a dimension to the cube value, the
correlation between the dimension’s values and their aggregated cube measures is com-
puted. Pearson’s correlation coefficient for numeric data and the χ2 correlation test for
nominal data are popularly used correlation measures, although many other measures,
such as covariance, can be used. (These measures were presented in Section 3.3.2.) A
dimension that is strongly correlated with the value to be predicted should not be a
candidate for expansion. Notice that since the correlation of a dimension with the cube
measure is independent of a particular query, it should be precomputed and stored with
the cube measure to facilitate efficient online analysis.

After selecting dimensions for expansion, the next question is “Which values within
these dimensions should the expansion use?” This relies on the semantic knowledge of
the dimensions in question. The goal should be to select semantically similar values to
minimize the risk of altering the final result. Consider the age dimension—similarity
of values in this dimension is clear. There is a definite (numeric) order to the val-
ues. Dimensions with numeric or ordinal (ranked) data (like education) have a definite
ordering among data values. Therefore, we can select values that are close to the instan-
tiated query value. For nominal data of a dimension that is organized in a multilevel
hierarchy in a data cube (e.g., location), we should select those values located in the
same branch of the tree (e.g., the same district or city).

By considering additional data during query expansion, we are aiming for a more
accurate and reliable answer. As mentioned before, strongly correlated dimensions are
precluded from expansion for this purpose. An additional strategy is to ensure that
new samples share the “same” cube measure value (e.g., mean income) as the exist-
ing samples in the query cell. The two-sample t-test is a relatively simple statistical
method that can be used to determine whether two samples have the same mean (or
any other point estimate), where “same” means that they do not differ significantly. (It
is described in greater detail in Section 8.5.5 on model selection using statistical tests of
significance.)

The test determines whether two samples have the same mean (the null hypothesis)
with the only assumption being that they are both normally distributed. The test fails
if there is evidence that the two samples do not share the same mean. Furthermore, the
test can be performed with a confidence level as an input. This allows the user to control
how strict or loose the query expansion will be.

Example 5.14 shows how the intracuboid expansion strategies just described can be
used to answer a query on sample data.

5.3 Processing Advanced Kinds of Queries by Exploring Cube Technology 223

Table 5.10 Sample Customer Survey Data

gender age education occupation income

female 23 college teacher $85,000

female 40 college programmer $50,000

female 31 college programmer $52,000

female 50 graduate teacher $90,000

female 62 graduate CEO $500,000

male 25 high school programmer $50,000

male 28 high school CEO $250,000

male 40 college teacher $80,000

male 50 college programmer $45,000

male 57 graduate programmer $80,000

Example 5.14 Intracuboid query expansion to answer a query on sample data. Consider a book
retailer trying to learn more about its customers’ annual income levels. In Table 5.10,
a sample of the survey data collected is shown.6 In the survey, customers are segmented
by four attributes, namely gender, age, education, and occupation.

Let a query on customer income be “age = 25,” where the user specifies a 95%
confidence level. Suppose this returns an income value of $50,000 with a rather large
confidence interval.7 Suppose also, that this confidence interval is larger than a preset
threshold and that the age dimension was found to have little correlation with income
in this data set. Therefore, intracuboid expansion starts within the age dimension. The
nearest cell is “age = 23,” which returns an income of $85,000. The two-sample t-test at
the 95% confidence level passes so the query expands; it is now “age = {23,25}” with a
smaller confidence interval than initially. However, it is still larger than the threshold,
so expansion continues to the next nearest cell: “age = 28,” which returns an income of
$250,000. The two sample t-test between this cell and the original query cell fails; as a
result, it is ignored. Next, “age = 31” is checked and it passes the test.

The confidence interval of the three cells combined is now below the threshold and
the expansion finishes at “age = {23,25,31}.” The mean of the income values at these
three cells is 85,000+50,000+52,000

3 = $62,333, which is returned as the query answer. It has
a smaller confidence interval, and thus is more reliable than the response of $50,000,
which would have been returned if intracuboid expansion had not been considered.

Method 2. Intercuboid query expansion. In this case, the expansion occurs by looking
to a more general cell, as shown in Figure 5.15(b). For example, the cell in the 2-D cuboid

6For the sake of illustration, ignore the fact that the sample size is too small to be statistically significant.
7For the sake of the example, suppose this is true even though there is only one sample. In practice,
more points are needed to calculate a legitimate value.

224 Chapter 5 Data Cube Technology

age-occupation can use its parent in either of the 1-D cuboids, age or occupation. Think
of intercuboid expansion as just an extreme case of intracuboid expansion, where all the
cells within a dimension are used in the expansion. This essentially sets the dimension
to ∗ and thus generalizes to a higher-level cuboid.

A k-dimensional cell has k direct parents in the cuboid lattice, where each parent is
(k − 1)-dimensional. There are many more ancestor cells in the data cube (e.g., if mul-
tiple dimensions are rolled up simultaneously). However, we choose only one parent
here to make the search space tractable and to limit the change in the query’s semantics.
As with intracuboid query expansion, correlated dimensions are not allowed in inter-
cuboid expansions. Within the uncorrelated dimensions, the two-sample t-test can be
performed to confirm that the parent and the query cell share the same sample mean. If
multiple parent cells pass the test, the test’s confidence level can be adjusted progressively
higher until only one passes. Alternatively, multiple parent cells can be used to boost the
confidence simultaneously. The choice is application dependent.

Example 5.15 Intercuboid expansion to answer a query on sample data. Given the input relation in
Table 5.10, let the query on income be “occupation = teacher ∧ gender = male.” There is
only one sample in Table 5.10 that matches the query, and it has an income of $80,000.
Suppose the corresponding confidence interval is larger than a preset threshold. We use
intercuboid expansion to find a more reliable answer. There are two parent cells in the
data cube: “gender = male” and “occupation = teacher.” By moving up to “gender =
male” (and thus setting occupation to ∗), the mean income is $101,000. A two sample
t-test reveals that this parent’s sample mean differs significantly from that of the original
query cell, so it is ignored. Next, “occupation = teacher” is considered. It has a mean
income of $85,000 and passes the two-sample t-test. As a result, the query is expanded
to “occupation = teacher” and an income value of $85,000 is returned with acceptable
reliability.

“How can we determine which method to choose—intracuboid expansion or intercuboid
expansion?” This is difficult to answer without knowing the data and the application. A
strategy for choosing between the two is to consider what the tolerance is for change
in the query’s semantics. This depends on the specific dimensions chosen in the query.
For instance, the user might tolerate a bigger change in semantics for the age dimension
than education. The difference in tolerance could be so large that the user is willing to set
age to ∗ (i.e., intercuboid expansion) rather than letting education change at all. Domain
knowledge is helpful here.

So far, our discussion has only focused on full materialization of the sampling cube.
In many real-world problems, this is often impossible, especially for high-dimensional
cases. Real-world survey data, for example, can easily contain over 50 variables (i.e.,
dimensions). The sampling cube size would grow exponentially with the number of
dimensions. To handle high-dimensional data, a sampling cube method called Sampling
Cube Shell was developed. It integrates the Frag-Shell method of Section 5.2.4 with the
query expansion approach. The shell computes only a subset of the full sampling cube.

5.3 Processing Advanced Kinds of Queries by Exploring Cube Technology 225

The subset should consist of relatively low-dimensional cuboids (that are commonly
queried) and cuboids that offer the most benefit to the user. The details are left to inter-
ested readers as an exercise. The method was tested on both real and synthetic data and
found to be efficient and effective in answering queries.

5.3.2 Ranking Cubes: Efficient Computation of Top-k Queries

The data cube helps not only online analytical processing of multidimensional queries
but also search and data mining. In this section, we introduce a new cube structure
called Ranking Cube and examine how it contributes to the efficient processing of top-k
queries. Instead of returning a large set of indiscriminative answers to a query, a top-k
query (or ranking query) returns only the best k results according to a user-specified
preference.

The results are returned in ranked order so that the best is at the top. The user-
specified preference generally consists of two components: a selection condition and
a ranking function. Top-k queries are common in many applications like searching
web databases, k-nearest-neighbor searches with approximate matches, and similarity
queries in multimedia databases.

Example 5.16 A top-k query. Consider an online used-car database, R, that maintains the following
information for each car: producer (e.g., Ford, Honda), model (e.g., Taurus, Accord),
type (e.g., sedan, convertible), color (e.g., red, silver), transmission (e.g., auto, manual),
price, mileage, and so on. A typical top-k query over this database is

Q1: select top 5 * from R

where producer = “Ford” and type = “sedan”

order by (price − 10K)2 + (mileage − 30K)2 asc

Within the dimensions (or attributes) for R, producer and type are used here as selection
dimensions. The ranking function is given in the order-by clause. It specifies the rank-
ing dimensions, price and mileage. Q1 searches for the top-5 sedans made by Ford. The
entries found are ranked or sorted in ascending (asc) order, according to the ranking
function. The ranking function is formulated so that entries that have price and mileage
closest to the user’s specified values of $10K and 30K, respectively, appear toward the
top of the list.

The database may have many dimensions that could be used for selection, describ-
ing, for example, whether a car has power windows, air conditioning, or a sunroof. Users
may pick any subset of dimensions and issue a top-k query using their preferred rank-
ing function. There are many other similar application scenarios. For example, when
searching for hotels, ranking functions are often constructed based on price and distance
to an area of interest. Selection conditions can be imposed on, say, the hotel location

226 Chapter 5 Data Cube Technology

district, the star rating, and whether the hotel offers complimentary treats or Internet
access. The ranking functions may be linear, quadratic, or any other form.

As shown in the preceding examples, individual users may not only propose ad hoc
ranking functions, but also have different data subsets of interest. Users often want to
thoroughly study the data via multidimensional analysis of the top-k query results. For
example, if unsatisfied by the top-5 results returned by Q1, the user may roll up on
the producer dimension to check the top-5 results on all sedans. The dynamic nature
of the problem imposes a great challenge to researchers. OLAP requires offline pre-
computation so that multidimensional analysis can be performed on-the-fly, yet the ad
hoc ranking functions prohibit full materialization. A natural compromise is to adopt a
semi-offline materialization and semi-online computation model.

Suppose a relation R has selection dimensions (A1,A2, . . . ,AS) and ranking dimen-
sions (N1,N2, . . . ,NR). Values in each ranking dimension can be partitioned into multi-
ple intervals according to the data and expected query distributions. Regarding the price
of used cars, for example, we may have, say, these four partitions (or value ranges): ≤ 5K ,
[5 − 10K), [10 − 15K), and ≥ 15K . A ranking cube can be constructed by performing
multidimensional aggregations on selection dimensions. We can store the count for each
partition of each ranking dimension, thereby making the cube “rank-aware.” The top-k
queries can be answered by first accessing the cells in the more preferred value ranges
before consulting the cells in the less preferred value ranges.

Example 5.17 Using a ranking cube to answer a top-k query. Suppose Table 5.11 shows CMT , a mate-
rialized (i.e., precomputed) cuboid of a ranking cube for used-car sales. The cuboid,
CMT , is for the selection dimensions producer and type. It shows the count and corre-
sponding tuple IDs (TIDs) for various partitions of the ranking dimensions, price and
mileage.

Query Q1 can be answered by using a selection condition to select the appropriate
selection dimension values (i.e., producer = “Ford” and type = “sedan”) in cuboid CMT .
In addition, the ranking function “(price − 10K)2 + (mileage − 30K)2” is used to find
the tuples that most closely match the user’s criteria. If there are not enough matching
tuples found in the closest matching cells, the next closest matching cells will need to be
accessed. We may even drill down to the corresponding lower-level cells to see the count
distributions of cells that match the ranking function and additional criteria regarding,
say, model, maintenance situation, or other loaded features. Only users who really want
to see more detailed information, such as interior photos, will need to access the physical
records stored in the database.

Table 5.11 Cuboid of a Ranking Cube for Used-Car Sales

producer type price mileage count TIDs
Ford sedan <5K 30–40K 7 t6, . . . , t68

Ford sedan 5–10K 30–40K 50 t15, . . . , t152

Honda sedan 10–15K 30–40K 20 t8, . . . , t32

.

5.4 Multidimensional Data Analysis in Cube Space 227

Most real-life top-k queries are likely to involve only a small subset of selection
attributes. To support high-dimensional ranking cubes, we can carefully select the
cuboids that need to be materialized. For example, we could choose to materialize only
the 1-D cuboids that contain single-selection dimensions. This will achieve low space
overhead and still have high performance when the number of selection dimensions
is large. In some cases, there may exist many ranking dimensions to support multiple
users with rather different preferences. For example, buyers may search for houses by
considering various factors like price, distance to school or shopping, number of years
old, floor space, and tax. In this case, a possible solution is to create multiple data parti-
tions, each of which consists of a subset of the ranking dimensions. The query processing
may need to search over a joint space involving multiple data partitions.

In summary, the general philosophy of ranking cubes is to materialize such cubes
on the set of selection dimensions. Use of the interval-based partitioning in ranking
dimensions makes the ranking cube efficient and flexible at supporting ad hoc user
queries. Various implementation techniques and query optimization methods have been
developed for efficient computation and query processing based on this framework.

5.4 Multidimensional Data Analysis in Cube Space

Data cubes create a flexible and powerful means to group and aggregate data subsets.
They allow data to be explored in multiple dimensional combinations and at vary-
ing aggregate granularities. This capability greatly increases the analysis bandwidth and
helps effective discovery of interesting patterns and knowledge from data. The use of
cube space makes the data space both meaningful and tractable.

This section presents methods of multidimensional data analysis that make use of
data cubes to organize data into intuitive regions of interest at varying granularities.
Section 5.4.1 presents prediction cubes, a technique for multidimensional data mining
that facilitates predictive modeling in multidimensional space. Section 5.4.2 describes
how to construct multifeature cubes. These support complex analytical queries involving
multiple dependent aggregates at multiple granularities. Finally, Section 5.4.3 describes
an interactive method for users to systematically explore cube space. In such exception-
based, discovery-driven exploration, interesting exceptions or anomalies in the data are
automatically detected and marked for users with visual cues.

5.4.1 Prediction Cubes: Prediction Mining in Cube Space

Recently, researchers have turned their attention toward multidimensional data min-
ing to uncover knowledge at varying dimensional combinations and granularities. Such
mining is also known as exploratory multidimensional data mining and online analytical
data mining (OLAM). Multidimensional data space is huge. In preparing the data, how
can we identify the interesting subspaces for exploration? To what granularities should
we aggregate the data? Multidimensional data mining in cube space organizes data of

228 Chapter 5 Data Cube Technology

interest into intuitive regions at various granularities. It analyzes and mines the data by
applying various data mining techniques systematically over these regions.

There are at least four ways in which OLAP-style analysis can be fused with data
mining techniques:

1. Use cube space to define the data space for mining. Each region in cube space repre-
sents a subset of data over which we wish to find interesting patterns. Cube space
is defined by a set of expert-designed, informative dimension hierarchies, not just
arbitrary subsets of data. Therefore, the use of cube space makes the data space both
meaningful and tractable.

2. Use OLAP queries to generate features and targets for mining. The features and even
the targets (that we wish to learn to predict) can sometimes be naturally defined as
OLAP aggregate queries over regions in cube space.

3. Use data mining models as building blocks in a multistep mining process. Multidimen-
sional data mining in cube space may consist of multiple steps, where data mining
models can be viewed as building blocks that are used to describe the behavior of
interesting data sets, rather than the end results.

4. Use data cube computation techniques to speed up repeated model construction. Multi-
dimensional data mining in cube space may require building a model for each
candidate data space, which is usually too expensive to be feasible. However, by care-
fully sharing computation across model construction for different candidates based
on data cube computation techniques, efficient mining is achievable.

In this subsection we study prediction cubes, an example of multidimensional data
mining where the cube space is explored for prediction tasks. A prediction cube is a cube
structure that stores prediction models in multidimensional data space and supports
prediction in an OLAP manner. Recall that in a data cube, each cell value is an aggregate
number (e.g., count) computed over the data subset in that cell. However, each cell value
in a prediction cube is computed by evaluating a predictive model built on the data
subset in that cell, thereby representing that subset’s predictive behavior.

Instead of seeing prediction models as the end result, prediction cubes use prediction
models as building blocks to define the interestingness of data subsets, that is, they iden-
tify data subsets that indicate more accurate prediction. This is best explained with an
example.

Example 5.18 Prediction cube for identification of interesting cube subspaces. Suppose a company
has a customer table with the attributes time (with two granularity levels: month and
year), location (with two granularity levels: state and country), gender, salary, and one
class-label attribute: valued customer. A manager wants to analyze the decision process
of whether a customer is highly valued with respect to time and location. In particular,
he is interested in the question “Are there times at and locations in which the value of a

5.4 Multidimensional Data Analysis in Cube Space 229

customer depended greatly on the customer’s gender?” Notice that he believes time and
location play a role in predicting valued customers, but at what granularity levels do
they depend on gender for this task? For example, is performing analysis using {month,
country} better than {year, state}?

Consider a data table D (e.g., the customer table). Let X be the attributes set for
which no concept hierarchy has been defined (e.g., gender, salary). Let Y be the class-
label attribute (e.g., valued customer), and Z be the set of multilevel attributes, that is,
attributes for which concept hierarchies have been defined (e.g., time, location). Let V
be the set of attributes for which we would like to define their predictiveness. In our
example, this set is {gender}. The predictiveness of V on a data subset can be quantified
by the difference in accuracy between the model built on that subset using X to predict Y
and the model built on that subset using X − V (e.g., {salary}) to predict Y. The intuition
is that, if the difference is large, V must play an important role in the prediction of class
label Y.

Given a set of attributes, V, and a learning algorithm, the prediction cube at granular-
ity 〈l1, . . . , ld〉 (e.g., 〈year, state〉) is a d-dimensional array, in which the value in each cell
(e.g., [2010, Illinois]) is the predictiveness of V evaluated on the subset defined by the
cell (e.g., the records in the customer table with time in 2010 and location in Illinois).

Supporting OLAP roll-up and drill-down operations on a prediction cube is a
computational challenge requiring the materialization of cell values at many different
granularities. For simplicity, we can consider only full materialization. A naïve way to
fully materialize a prediction cube is to exhaustively build models and evaluate them for
each cell and granularity. This method is very expensive if the base data set is large.
An ensemble method called Probability-Based Ensemble (PBE) was developed as a
more feasible alternative. It requires model construction for only the finest-grained
cells. OLAP-style bottom-up aggregation is then used to generate the values of the
coarser-grained cells.

The prediction of a predictive model can be seen as finding a class label that maxi-
mizes a scoring function. The PBE method was developed to approximately make the
scoring function of any predictive model distributively decomposable. In our discus-
sion of data cube measures in Section 4.2.4, we showed that distributive and algebraic
measures can be computed efficiently. Therefore, if the scoring function used is dis-
tributively or algebraically decomposable, prediction cubes can also be computed with
efficiency. In this way, the PBE method reduces prediction cube computation to data
cube computation.

For example, previous studies have shown that the naı̈ve Bayes classifier has an alge-
braically decomposable scoring function, and the kernel density–based classifier has a
distributively decomposable scoring function.8 Therefore, either of these could be used

8Naı̈ve Bayes classifiers are detailed in Chapter 8. Kernel density–based classifiers, such as support vector
machines, are described in Chapter 9.

230 Chapter 5 Data Cube Technology

to implement prediction cubes efficiently. The PBE method presents a novel approach
to multidimensional data mining in cube space.

5.4.2 Multifeature Cubes: Complex Aggregation
at Multiple Granularities

Data cubes facilitate the answering of analytical or mining-oriented queries as they allow
the computation of aggregate data at multiple granularity levels. Traditional data cubes
are typically constructed on commonly used dimensions (e.g., time, location, and prod-
uct) using simple measures (e.g., count(), average(), and sum()). In this section, you will
learn a newer way to define data cubes called multifeature cubes. Multifeature cubes
enable more in-depth analysis. They can compute more complex queries of which the
measures depend on groupings of multiple aggregates at varying granularity levels. The
queries posed can be much more elaborate and task-specific than traditional queries,
as we shall illustrate in the next examples. Many complex data mining queries can be
answered by multifeature cubes without significant increase in computational cost, in
comparison to cube computation for simple queries with traditional data cubes.

To illustrate the idea of multifeature cubes, let’s first look at an example of a query on
a simple data cube.

Example 5.19 A simple data cube query. Let the query be “Find the total sales in 2010, broken down
by item, region, and month, with subtotals for each dimension.” To answer this query, a
traditional data cube is constructed that aggregates the total sales at the following eight
different granularity levels: {(item, region, month), (item, region), (item, month), (month,
region), (item), (month), (region), ()}, where () represents all. This data cube is simple in
that it does not involve any dependent aggregates.

To illustrate what is meant by “dependent aggregates,” let’s examine a more complex
query, which can be computed with a multifeature cube.

Example 5.20 A complex query involving dependent aggregates. Suppose the query is “Grouping by
all subsets of {item, region, month}, find the maximum price in 2010 for each group and the
total sales among all maximum price tuples.”

The specification of such a query using standard SQL can be long, repetitive, and
difficult to optimize and maintain. Alternatively, it can be specified concisely using an
extended SQL syntax as follows:

select item, region, month, max(price), sum(R.sales)
from Purchases
where year = 2010
cube by item, region, month: R
such that R.price = max(price)

The tuples representing purchases in 2010 are first selected. The cube by clause com-
putes aggregates (or group-by’s) for all possible combinations of the attributes item,

5.4 Multidimensional Data Analysis in Cube Space 231

region, and month. It is an n-dimensional generalization of the group-by clause. The
attributes specified in the cube by clause are the grouping attributes. Tuples with the
same value on all grouping attributes form one group. Let the groups be g1, . . . , gr . For
each group of tuples gi , the maximum price maxgi among the tuples forming the group
is computed. The variable R is a grouping variable, ranging over all tuples in group gi

that have a price equal to maxgi (as specified in the such that clause). The sum of sales
of the tuples in gi that R ranges over is computed and returned with the values of the
grouping attributes of gi .

The resulting cube is a multifeature cube in that it supports complex data mining
queries for which multiple dependent aggregates are computed at a variety of gran-
ularities. For example, the sum of sales returned in this query is dependent on the
set of maximum price tuples for each group. In general, multifeature cubes give users
the flexibility to define sophisticated, task-specific cubes on which multidimensional
aggregation and OLAP-based mining can be performed.

“How can multifeature cubes be computed efficiently?” The computation of a multifea-
ture cube depends on the types of aggregate functions used in the cube. In Chapter 4,
we saw that aggregate functions can be categorized as either distributive, algebraic, or
holistic. Multifeature cubes can be organized into the same categories and computed
efficiently by minor extension of the cube computation methods in Section 5.2.

5.4.3 Exception-Based, Discovery-Driven Cube Space Exploration

As studied in previous sections, a data cube may have a large number of cuboids, and
each cuboid may contain a large number of (aggregate) cells. With such an overwhelm-
ingly large space, it becomes a burden for users to even just browse a cube, let alone think
of exploring it thoroughly. Tools need to be developed to assist users in intelligently
exploring the huge aggregated space of a data cube.

In this section, we describe a discovery-driven approach to exploring cube space.
Precomputed measures indicating data exceptions are used to guide the user in the data
analysis process, at all aggregation levels. We hereafter refer to these measures as excep-
tion indicators. Intuitively, an exception is a data cube cell value that is significantly
different from the value anticipated, based on a statistical model. The model considers
variations and patterns in the measure value across all the dimensions to which a cell
belongs. For example, if the analysis of item-sales data reveals an increase in sales in
December in comparison to all other months, this may seem like an exception in the
time dimension. However, it is not an exception if the item dimension is considered,
since there is a similar increase in sales for other items during December.

The model considers exceptions hidden at all aggregated group-by’s of a data cube.
Visual cues, such as background color, are used to reflect each cell’s degree of exception,
based on the precomputed exception indicators. Efficient algorithms have been pro-
posed for cube construction, as discussed in Section 5.2. The computation of exception
indicators can be overlapped with cube construction, so that the overall construction of
data cubes for discovery-driven exploration is efficient.

232 Chapter 5 Data Cube Technology

Three measures are used as exception indicators to help identify data anomalies.
These measures indicate the degree of surprise that the quantity in a cell holds, with
respect to its expected value. The measures are computed and associated with every cell,
for all aggregation levels. They are as follows:

SelfExp: This indicates the degree of surprise of the cell value, relative to other cells
at the same aggregation level.

InExp: This indicates the degree of surprise somewhere beneath the cell, if we were
to drill down from it.

PathExp: This indicates the degree of surprise for each drill-down path from the cell.

The use of these measures for discovery-driven exploration of data cubes is illustrated
in Example 5.21.

Example 5.21 Discovery-driven exploration of a data cube. Suppose that you want to analyze the
monthly sales at AllElectronics as a percentage difference from the previous month.
The dimensions involved are item, time, and region. You begin by studying the data
aggregated over all items and sales regions for each month, as shown in Figure 5.16.

To view the exception indicators, you click on a button marked highlight exceptions
on the screen. This translates the SelfExp and InExp values into visual cues, displayed
with each cell. Each cell’s background color is based on its SelfExp value. In addition,
a box is drawn around each cell, where the thickness and color of the box are func-
tions of its InExp value. Thick boxes indicate high InExp values. In both cases, the
darker the color, the greater the degree of exception. For example, the dark, thick boxes
for sales during July, August, and September signal the user to explore the lower-level
aggregations of these cells by drilling down.

Drill-downs can be executed along the aggregated item or region dimensions. “Which
path has more exceptions?” you wonder. To find this out, you select a cell of interest and
trigger a path exception module that colors each dimension based on the PathExp value
of the cell. This value reflects that path’s degree of surprise. Suppose that the path along
item contains more exceptions.

A drill-down along item results in the cube slice of Figure 5.17, showing the sales
over time for each item. At this point, you are presented with many different sales
values to analyze. By clicking on the highlight exceptions button, the visual cues are dis-
played, bringing focus to the exceptions. Consider the sales difference of 41% for “Sony

Sum of sales Month

Total

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1% −1% 0% 1% 3% −1% −9% −1% 2% −4% 3%

Figure 5.16 Change in sales over time.

5.4 Multidimensional Data Analysis in Cube Space 233

Avg. sales

Sony color printer

HP color printer

HP b/w printer

Sony b/w printer

Item Jan Feb Mar Apr May Jun

Month

Jul Aug Sep Oct Nov Dec

IBM desktop computer

IBM laptop computer

Toshiba desktop computer

Toshiba laptop computer

Logitech mouse

Ergo-way mouse

9%

0%

−2%

0%

1%

0%

−2%

1%

3%

0%

0%

1%

0%

0%

0%

0%

−8%

−2%

−5%

−2%

14%

4%

8%

0%

3%

4%

4%

1%

−1%

−2%

2%

3%

2%

1%

3%

2%

−2%

−1%

−1%

−1%

2%

3%

3%

1%

1%

0%

0%

3%

−1%

−5%

0%

0%

−11%

4%

6%

1%

3%

8%

−1%

−1%

−15%

−6%

−3%

−4%

−4%

−9%

−1%

−1%

−4%

−5%

−13%

4%

3%

1%

1%

0%

2%

1%

0%

−5%

41%

0%

4%

3%

2%

−9%

−2%

−2%

−3%

−5%

5%

0%

−13%

−12%

−7%

−10%

−10%

−5%

−11%

−2%

3%

−2%

0%

−10%

2%

1%

6%

−4%

−1%

−2%

Figure 5.17 Change in sales for each item-time combination.

Avg. sales Month

North

South

East

West

JanRegion Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

−1%

−1%

−1%

4%

−3%

1%

−2%

0%

−1%

−9%

2%

−1%

0%

6%

−3%

−3%

3%

−1%

1%

5%

4%

−39%

18%

1%

−7%

9%

−2%

−18%

1%

−34%

11%

8%

0%

4%

−3%

5%

−3%

1%

−2%

−8%

−3%

7%

−1%

1%

Figure 5.18 Change in sales for the item IBM desktop computer per region.

b/w printers” in September. This cell has a dark background, indicating a high SelfExp
value, meaning that the cell is an exception. Consider now the sales difference of −15%
for “Sony b/w printers” in November and of −11% in December. The −11% value for
December is marked as an exception, while the −15% value is not, even though −15% is
a bigger deviation than −11%. This is because the exception indicators consider all the
dimensions that a cell is in. Notice that the December sales of most of the other items
have a large positive value, while the November sales do not. Therefore, by considering
the cell’s position in the cube, the sales difference for “Sony b/w printers” in December is
exceptional, while the November sales difference of this item is not.

The InExp values can be used to indicate exceptions at lower levels that are not vis-
ible at the current level. Consider the cells for “IBM desktop computers” in July and
September. These both have a dark, thick box around them, indicating high InExp val-
ues. You may decide to further explore the sales of “IBM desktop computers” by drilling
down along region. The resulting sales difference by region is shown in Figure 5.18, where
the highlight exceptions option has been invoked. The visual cues displayed make it easy
to instantly notice an exception for the sales of “IBM desktop computers” in the southern
region, where such sales have decreased by −39% and −34% in July and September,

234 Chapter 5 Data Cube Technology

respectively. These detailed exceptions were far from obvious when we were viewing the
data as an item-time group-by, aggregated over region in Figure 5.17. Thus, the InExp
value is useful for searching for exceptions at lower-level cells of the cube.

“How are the exception values computed?” The SelfExp, InExp, and PathExp measures
are based on a statistical method for table analysis. They take into account all of the
group-by’s (aggregations) in which a given cell value participates. A cell value is con-
sidered an exception based on how much it differs from its expected value, where its
expected value is determined with a statistical model. The difference between a given
cell value and its expected value is called a residual. Intuitively, the larger the residual,
the more the given cell value is an exception. The comparison of residual values requires
us to scale the values based on the expected standard deviation associated with the resid-
uals. A cell value is therefore considered an exception if its scaled residual value exceeds
a prespecified threshold. The SelfExp, InExp, and PathExp measures are based on this
scaled residual.

The expected value of a given cell is a function of the higher-level group-by’s of the
given cell. For example, given a cube with the three dimensions A, B, and C, the expected
value for a cell at the ith position in A, the jth position in B, and the kth position in C is a
function of γ , γ A

i , γ B
j , γ C

k , γ AB
ij , γ AC

ik , and γ BC
jk , which are coefficients of the statistical

model used. The coefficients reflect how different the values at more detailed levels are,
based on generalized impressions formed by looking at higher-level aggregations. In this
way, the exception quality of a cell value is based on the exceptions of the values below it.
Thus, when seeing an exception, it is natural for the user to further explore the exception
by drilling down.

“How can the data cube be efficiently constructed for discovery-driven exploration?”
This computation consists of three phases. The first step involves the computation of the
aggregate values defining the cube, such as sum or count, over which exceptions will be
found. The second phase consists of model fitting, in which the coefficients mentioned
before are determined and used to compute the standardized residuals. This phase can
be overlapped with the first phase because the computations involved are similar. The
third phase computes the SelfExp, InExp, and PathExp values, based on the standardized
residuals. This phase is computationally similar to phase 1. Therefore, the computation
of data cubes for discovery-driven exploration can be done efficiently.

5.5 Summary

Data cube computation and exploration play an essential role in data warehousing
and are important for flexible data mining in multidimensional space.

A data cube consists of a lattice of cuboids. Each cuboid corresponds to a different
degree of summarization of the given multidimensional data. Full materialization
refers to the computation of all the cuboids in a data cube lattice. Partial materi-
alization refers to the selective computation of a subset of the cuboid cells in the

5.6 Exercises 235

lattice. Iceberg cubes and shell fragments are examples of partial materialization. An
iceberg cube is a data cube that stores only those cube cells that have an aggregate
value (e.g., count) above some minimum support threshold. For shell fragments of
a data cube, only some cuboids involving a small number of dimensions are com-
puted, and queries on additional combinations of the dimensions can be computed
on-the-fly.

There are several efficient data cube computation methods. In this chapter, we dis-
cussed four cube computation methods in detail: (1) MultiWay array aggregation for
materializing full data cubes in sparse-array-based, bottom-up, shared computation;
(2) BUC for computing iceberg cubes by exploring ordering and sorting for efficient
top-down computation; (3) Star-Cubing for computing iceberg cubes by integrating
top-down and bottom-up computation using a star-tree structure; and (4) shell-
fragment cubing, which supports high-dimensional OLAP by precomputing only
the partitioned cube shell fragments.

Multidimensional data mining in cube space is the integration of knowledge discov-
ery with multidimensional data cubes. It facilitates systematic and focused knowledge
discovery in large structured and semi-structured data sets. It will continue to endow
analysts with tremendous flexibility and power at multidimensional and multigran-
ularity exploratory analysis. This is a vast open area for researchers to build powerful
and sophisticated data mining mechanisms.

Techniques for processing advanced queries have been proposed that take advantage
of cube technology. These include sampling cubes for multidimensional analysis on
sampling data, and ranking cubes for efficient top-k (ranking) query processing in
large relational data sets.

This chapter highlighted three approaches to multidimensional data analysis with
data cubes. Prediction cubes compute prediction models in multidimensional
cube space. They help users identify interesting data subsets at varying degrees of
granularity for effective prediction. Multifeature cubes compute complex queries
involving multiple dependent aggregates at multiple granularities. Exception-based,
discovery-driven exploration of cube space displays visual cues to indicate discov-
ered data exceptions at all aggregation levels, thereby guiding the user in the data
analysis process.

5.6 Exercises

5.1 Assume that a 10-D base cuboid contains only three base cells: (1) (a1, d2, d3, d4, . . . ,
d9, d10), (2) (d1,b2, d3, d4, . . . , d9, d10), and (3) (d1, d2, c3, d4, . . . , d9, d10), where a1 �=
d1, b2 �= d2, and c3 �= d3. The measure of the cube is count().

(a) How many nonempty cuboids will a full data cube contain?

(b) How many nonempty aggregate (i.e., nonbase) cells will a full cube contain?

236 Chapter 5 Data Cube Technology

(c) How many nonempty aggregate cells will an iceberg cube contain if the condition of
the iceberg cube is “count ≥ 2”?

(d) A cell, c, is a closed cell if there exists no cell, d, such that d is a specialization of
cell c (i.e., d is obtained by replacing a ∗ in c by a non-∗ value) and d has the same
measure value as c. A closed cube is a data cube consisting of only closed cells. How
many closed cells are in the full cube?

5.2 There are several typical cube computation methods, such as MultiWay [ZDN97], BUC
[BR99], and Star-Cubing [XHLW03]. Briefly describe these three methods (i.e., use one
or two lines to outline the key points), and compare their feasibility and performance
under the following conditions:

(a) Computing a dense full cube of low dimensionality (e.g., less than eight
dimensions).

(b) Computing an iceberg cube of around 10 dimensions with a highly skewed data
distribution.

(c) Computing a sparse iceberg cube of high dimensionality (e.g., over 100 dimensions).

5.3 Suppose a data cube, C, has D dimensions, and the base cuboid contains k distinct
tuples.

(a) Present a formula to calculate the minimum number of cells that the cube, C, may
contain.

(b) Present a formula to calculate the maximum number of cells that C may contain.

(c) Answer parts (a) and (b) as if the count in each cube cell must be no less than a
threshold, v.

(d) Answer parts (a) and (b) as if only closed cells are considered (with the minimum
count threshold, v).

5.4 Suppose that a base cuboid has three dimensions, A, B, C, with the following number
of cells: |A| = 1,000,000, |B| = 100, and |C| = 1000. Suppose that each dimension is
evenly partitioned into 10 portions for chunking.

(a) Assuming each dimension has only one level, draw the complete lattice of the cube.

(b) If each cube cell stores one measure with four bytes, what is the total size of the
computed cube if the cube is dense?

(c) State the order for computing the chunks in the cube that requires the least amount
of space, and compute the total amount of main memory space required for
computing the 2-D planes.

5.5 Often, the aggregate count value of many cells in a large data cuboid is zero, resulting in
a huge, yet sparse, multidimensional matrix.

(a) Design an implementation method that can elegantly overcome this sparse matrix
problem. Note that you need to explain your data structures in detail and discuss the
space needed, as well as how to retrieve data from your structures.

5.6 Exercises 237

(b) Modify your design in (a) to handle incremental data updates. Give the reasoning
behind your new design.

5.6 When computing a cube of high dimensionality, we encounter the inherent curse of
dimensionality problem: There exists a huge number of subsets of combinations of
dimensions.

(a) Suppose that there are only two base cells, {(a1, a2, a3, . . . , a100) and (a1, a2,
b3, . . . , b100)}, in a 100-D base cuboid. Compute the number of nonempty aggregate
cells. Comment on the storage space and time required to compute these cells.

(b) Suppose we are to compute an iceberg cube from (a). If the minimum support count
in the iceberg condition is 2, how many aggregate cells will there be in the iceberg
cube? Show the cells.

(c) Introducing iceberg cubes will lessen the burden of computing trivial aggregate cells
in a data cube. However, even with iceberg cubes, we could still end up having to
compute a large number of trivial uninteresting cells (i.e., with small counts). Sup-
pose that a database has 20 tuples that map to (or cover) the two following base
cells in a 100-D base cuboid, each with a cell count of 10: {(a1, a2, a3, . . . , a100) : 10,
(a1, a2, b3, . . . , b100) : 10}.
i. Let the minimum support be 10. How many distinct aggregate cells will

there be like the following: {(a1, a2, a3, a4, . . . , a99, ∗) : 10, . . . ,(a1, a2, ∗ , a4, . . . ,
a99, a100) : 10, . . . , (a1, a2, a3, ∗ , . . . , ∗ , ∗) : 10}?

ii. If we ignore all the aggregate cells that can be obtained by replacing some con-
stants with ∗’s while keeping the same measure value, how many distinct cells
remain? What are the cells?

5.7 Propose an algorithm that computes closed iceberg cubes efficiently.

5.8 Suppose that we want to compute an iceberg cube for the dimensions, A, B, C, D, where
we wish to materialize all cells that satisfy a minimum support count of at least v, and
where cardinality(A) < cardinality(B) < cardinality(C) < cardinality(D). Show the BUC
processing tree (which shows the order in which the BUC algorithm explores a data
cube’s lattice, starting from all) for the construction of this iceberg cube.

5.9 Discuss how you might extend the Star-Cubing algorithm to compute iceberg cubes
where the iceberg condition tests for an avg that is no bigger than some value, v.

5.10 A flight data warehouse for a travel agent consists of six dimensions: traveler, departure
(city), departure time, arrival, arrival time, and flight; and two measures: count() and
avg fare(), where avg fare() stores the concrete fare at the lowest level but the average fare
at other levels.

(a) Suppose the cube is fully materialized. Starting with the base cuboid [traveler, depar-
ture, departure time, arrival, arrival time, flight], what specific OLAP operations
(e.g., roll-up flight to airline) should one perform to list the average fare per month
for each business traveler who flies American Airlines (AA) from Los Angeles in 2009?

238 Chapter 5 Data Cube Technology

(b) Suppose we want to compute a data cube where the condition is that the minimum
number of records is 10 and the average fare is over $500. Outline an efficient cube
computation method (based on common sense about flight data distribution).

5.11 (Implementation project) There are four typical data cube computation methods: Mul-
tiWay [ZDN97], BUC [BR99], H-Cubing [HPDW01], and Star-Cubing [XHLW03].

(a) Implement any one of these cube computation algorithms and describe your
implementation, experimentation, and performance. Find another student who has
implemented a different algorithm on the same platform (e.g., C++ on Linux) and
compare your algorithm performance with his or hers.

Input:
i. An n-dimensional base cuboid table (for n < 20), which is essentially a relational

table with n attributes.
ii. An iceberg condition: count (C) ≥ k, where k is a positive integer as a parameter.
Output:
i. The set of computed cuboids that satisfy the iceberg condition, in the order of

your output generation.
ii. Summary of the set of cuboids in the form of “cuboid ID: the number of

nonempty cells,” sorted in alphabetical order of cuboids (e.g., A: 155, AB: 120,
ABC: 22, ABCD: 4, ABCE: 6, ABD: 36), where the number after : represents the
number of nonempty cells. (This is used to quickly check the correctness of your
results.)

(b) Based on your implementation, discuss the following:
i. What challenging computation problems are encountered as the number of

dimensions grows large?
ii. How can iceberg cubing solve the problems of part (a) for some data sets (and

characterize such data sets)?
iii. Give one simple example to show that sometimes iceberg cubes cannot provide

a good solution.

(c) Instead of computing a high-dimensionality data cube, we may choose to materi-
alize the cuboids that have only a small number of dimension combinations. For
example, for a 30-D data cube, we may only compute the 5-D cuboids for every
possible 5-D combination. The resulting cuboids form a shell cube. Discuss how
easy or hard it is to modify your cube computation algorithm to facilitate such
computation.

5.12 The sampling cube was proposed for multidimensional analysis of sampling data (e.g.,
survey data). In many real applications, sampling data can be of high dimensionality
(e.g., it is not unusual to have more than 50 dimensions in a survey data set).

(a) How can we construct an efficient and scalable high-dimensional sampling cube in
large sampling data sets?

(b) Design an efficient incremental update algorithm for such a high-dimensional
sampling cube.

5.6 Exercises 239

(c) Discuss how to support quality drill-down given that some low-level cells may be
empty or contain too few data for reliable analysis.

5.13 The ranking cube was proposed for efficient computation of top-k (ranking) queries in
relational databases. Recently, researchers have proposed another kind of query, called a
skyline query. A skyline query returns all the objects pi such that pi is not dominated by any
other object pj , where dominance is defined as follows. Let the value of pi on dimension
d be v(pi ,d). We say pi is dominated by pj if and only if for each preference dimension
d, v(pj ,d) ≤ v(pi ,d), and there is at least one d where the equality does not hold.

(a) Design a ranking cube so that skyline queries can be processed efficiently.

(b) Skyline queries are sometimes too strict to be desirable to some users. One may
generalize the concept of skyline into generalized skyline as follows: Given a d-
dimensional database and a query q, the generalized skyline is the set of the following
objects: (1) the skyline objects and (2) the nonskyline objects that are ε-neighbors of a
skyline object, where r is an ε-neighbor of an object p if the distance between p and
r is no more than ε. Design a ranking cube to process generalized skyline queries
efficiently.

5.14 The ranking cube was designed to support top-k (ranking) queries in relational database
systems. However, ranking queries are also posed to data warehouses, where ranking is
on multidimensional aggregates instead of on measures of base facts. For example, con-
sider a product manager who is analyzing a sales database that stores the nationwide
sales history, organized by location and time. To make investment decisions, the man-
ager may pose the following query: “What are the top-10 (state, year) cells having the
largest total product sales?” He may further drill down and ask, “What are the top-10 (city,
month) cells?” Suppose the system can perform such partial materialization to derive two
types of materialized cuboids: a guiding cuboid and a supporting cuboid, where the for-
mer contains a number of guiding cells that provide concise, high-level data statistics
to guide the ranking query processing, whereas the latter provides inverted indices for
efficient online aggregation.

(a) Derive an efficient method for computing such aggregate ranking cubes.

(b) Extend your framework to handle more advanced measures. One such example
could be as follows. Consider an organization donation database, where donors
are grouped by “age,” “income,” and other attributes. Interesting questions include:
“Which age and income groups have made the top-k average amount of donation (per
donor)?” and “Which income group of donors has the largest standard deviation in the
donation amount?”

5.15 The prediction cube is a good example of multidimensional data mining in cube
space.

(a) Propose an efficient algorithm that computes prediction cubes in a given multidi-
mensional database.

(b) For what kind of classification models can your algorithm be applied? Explain.

240 Chapter 5 Data Cube Technology

5.16 Multifeature cubes allow us to construct interesting data cubes based on rather sophisti-
cated query conditions. Can you construct the following multifeature cube by trans-
lating the following user requests into queries using the form introduced in this
textbook?

(a) Construct a smart shopper cube where a shopper is smart if at least 10% of the goods
she buys in each shopping trip are on sale.

(b) Construct a data cube for best-deal products where best-deal products are those
products for which the price is the lowest for this product in the given month.

5.17 Discovery-driven cube exploration is a desirable way to mark interesting points among
a large number of cells in a data cube. Individual users may have different views on
whether a point should be considered interesting enough to be marked. Suppose one
would like to mark those objects of which the absolute value of z score is over 2 in every
row and column in a d-dimensional plane.

(a) Derive an efficient computation method to identify such points during the data cube
computation.

(b) Suppose a partially materialized cube has (d − 1)-dimensional and (d + 1)-
dimensional cuboids materialized but not the d-dimensional one. Derive an efficient
method to mark those (d − 1)-dimensional cells with d-dimensional children that
contain such marked points.

5.7 Bibliographic Notes

Efficient computation of multidimensional aggregates in data cubes has been studied
by many researchers. Gray, Chaudhuri, Bosworth, et al. [GCB+97] proposed cube-by as
a relational aggregation operator generalizing group-by, crosstabs, and subtotals, and
categorized data cube measures into three categories: distributive, algebraic, and holis-
tic. Harinarayan, Rajaraman, and Ullman [HRU96] proposed a greedy algorithm for
the partial materialization of cuboids in the computation of a data cube. Sarawagi and
Stonebraker [SS94] developed a chunk-based computation technique for the efficient
organization of large multidimensional arrays. Agarwal, Agrawal, Deshpande, et al.
[AAD+96] proposed several guidelines for efficient computation of multidimensional
aggregates for ROLAP servers.

The chunk-based MultiWay array aggregation method for data cube computation in
MOLAP was proposed in Zhao, Deshpande, and Naughton [ZDN97]. Ross and Srivas-
tava [RS97] developed a method for computing sparse data cubes. Iceberg queries are
first described in Fang, Shivakumar, Garcia-Molina, et al. [FSGM+98]. BUC, a scalable
method that computes iceberg cubes from the apex cuboid downwards, was introduced
by Beyer and Ramakrishnan [BR99]. Han, Pei, Dong, and Wang [HPDW01] introduced
an H-Cubing method for computing iceberg cubes with complex measures using an
H-tree structure.

The Star-Cubing method for computing iceberg cubes with a dynamic star-tree struc-
ture was introduced by Xin, Han, Li, and Wah [XHLW03]. MM-Cubing, an efficient

5.7 Bibliographic Notes 241

iceberg cube computation method that factorizes the lattice space was developed by
Shao, Han, and Xin [SHX04]. The shell-fragment-based cubing approach for efficient
high-dimensional OLAP was proposed by Li, Han, and Gonzalez [LHG04].

Aside from computing iceberg cubes, another way to reduce data cube computa-
tion is to materialize condensed, dwarf, or quotient cubes, which are variants of closed
cubes. Wang, Feng, Lu, and Yu proposed computing a reduced data cube, called a con-
densed cube [WLFY02]. Sismanis, Deligiannakis, Roussopoulos, and Kotids proposed
computing a compressed data cube, called a dwarf cube [SDRK02]. Lakeshmanan,
Pei, and Han proposed a quotient cube structure to summarize a data cube’s seman-
tics [LPH02], which has been further extended to a qc-tree structure by Lakshmanan,
Pei, and Zhao [LPZ03]. An aggregation-based approach, called C-Cubing (i.e., Closed-
Cubing), has been developed by Xin, Han, Shao, and Liu [XHSL06], which performs
efficient closed-cube computation by taking advantage of a new algebraic measure
closedness.

There are also various studies on the computation of compressed data cubes by
approximation, such as quasi-cubes by Barbara and Sullivan [BS97]; wavelet cubes by
Vitter, Wang, and Iyer [VWI98]; compressed cubes for query approximation on continu-
ous dimensions by Shanmugasundaram, Fayyad, and Bradley [SFB99]; using log-linear
models to compress data cubes by Barbara and Wu [BW00]; and OLAP over uncertain
and imprecise data by Burdick, Deshpande, Jayram, et al. [BDJ+05].

For works regarding the selection of materialized cuboids for efficient OLAP query
processing, see Chaudhuri and Dayal [CD97]; Harinarayan, Rajaraman, and Ullman
[HRU96]; Srivastava, Dar, Jagadish, and Levy [SDJL96]; Gupta [Gup97], Baralis,
Paraboschi, and Teniente [BPT97]; and Shukla, Deshpande, and Naughton [SDN98].
Methods for cube size estimation can be found in Deshpande, Naughton, Ramasamy,
et al. [DNR+97], Ross and Srivastava [RS97], and Beyer and Ramakrishnan [BR99].
Agrawal, Gupta, and Sarawagi [AGS97] proposed operations for modeling multidimen-
sional databases.

Data cube modeling and computation have been extended well beyond relational
data. Computation of stream cubes for multidimensional stream data analysis has been
studied by Chen, Dong, Han, et al. [CDH+02]. Efficient computation of spatial data
cubes was examined by Stefanovic, Han, and Koperski [SHK00], efficient OLAP in spa-
tial data warehouses was studied by Papadias, Kalnis, Zhang, and Tao [PKZT01], and a
map cube for visualizing spatial data warehouses was proposed by Shekhar, Lu, Tan, et al.
[SLT+01]. A multimedia data cube was constructed in MultiMediaMiner by Zaiane,
Han, Li, et al. [ZHL+98]. For analysis of multidimensional text databases, TextCube,
based on the vector space model, was proposed by Lin, Ding, Han, et al. [LDH+08],
and TopicCube, based on a topic modeling approach, was proposed by Zhang, Zhai, and
Han [ZZH09]. RFID Cube and FlowCube for analyzing RFID data were proposed by
Gonzalez, Han, Li, et al. [GHLK06, GHL06].

The sampling cube was introduced for analyzing sampling data by Li, Han, Yin, et al.
[LHY+08]. The ranking cube was proposed by Xin, Han, Cheng, and Li [XHCL06]
for efficient processing of ranking (top-k) queries in databases. This methodology has
been extended by Wu, Xin, and Han [WXH08] to ARCube, which supports the ranking
of aggregate queries in partially materialized data cubes. It has also been extended by

242 Chapter 5 Data Cube Technology

Wu, Xin, Mei, and Han [WXMH09] to PromoCube, which supports promotion query
analysis in multidimensional space.

The discovery-driven exploration of OLAP data cubes was proposed by Sarawagi,
Agrawal, and Megiddo [SAM98]. Further studies on integration of OLAP with data min-
ing capabilities for intelligent exploration of multidimensional OLAP data were done by
Sarawagi and Sathe [SS01]. The construction of multifeature data cubes is described by
Ross, Srivastava, and Chatziantoniou [RSC98]. Methods for answering queries quickly
by online aggregation are described by Hellerstein, Haas, and Wang [HHW97] and
Hellerstein, Avnur, Chou, et al. [HAC+99]. A cube-gradient analysis problem, called
cubegrade, was first proposed by Imielinski, Khachiyan, and Abdulghani [IKA02]. An
efficient method for multidimensional constrained gradient analysis in data cubes was
studied by Dong, Han, Lam, et al. [DHL+01].

Mining cube space, or integration of knowledge discovery and OLAP cubes, has
been studied by many researchers. The concept of online analytical mining (OLAM),
or OLAP mining, was introduced by Han [Han98]. Chen, Dong, Han, et al. devel-
oped a regression cube for regression-based multidimensional analysis of time-series data
[CDH+02, CDH+06]. Fagin, Guha, Kumar, et al. [FGK+05] studied data mining in
multistructured databases. B.-C. Chen, L. Chen, Lin, and Ramakrishnan [CCLR05] pro-
posed prediction cubes, which integrate prediction models with data cubes to discover
interesting data subspaces for facilitated prediction. Chen, Ramakrishnan, Shavlik, and
Tamma [CRST06] studied the use of data mining models as building blocks in a multi-
step mining process, and the use of cube space to intuitively define the space of interest
for predicting global aggregates from local regions. Ramakrishnan and Chen [RC07]
presented an organized picture of exploratory mining in cube space.

6Mining Frequent Patterns,
Associations, and Correlations:

Basic Concepts and Methods

Imagine that you are a sales manager at AllElectronics, and you are talking to a customer who
recently bought a PC and a digital camera from the store. What should you recommend
to her next? Information about which products are frequently purchased by your cus-
tomers following their purchases of a PC and a digital camera in sequence would be
very helpful in making your recommendation. Frequent patterns and association rules
are the knowledge that you want to mine in such a scenario.

Frequent patterns are patterns (e.g., itemsets, subsequences, or substructures) that
appear frequently in a data set. For example, a set of items, such as milk and bread, that
appear frequently together in a transaction data set is a frequent itemset. A subsequence,
such as buying first a PC, then a digital camera, and then a memory card, if it occurs fre-
quently in a shopping history database, is a (frequent) sequential pattern. A substructure
can refer to different structural forms, such as subgraphs, subtrees, or sublattices, which
may be combined with itemsets or subsequences. If a substructure occurs frequently, it is
called a (frequent) structured pattern. Finding frequent patterns plays an essential role in
mining associations, correlations, and many other interesting relationships among data.
Moreover, it helps in data classification, clustering, and other data mining tasks. Thus,
frequent pattern mining has become an important data mining task and a focused theme
in data mining research.

In this chapter, we introduce the basic concepts of frequent patterns, associations, and
correlations (Section 6.1) and study how they can be mined efficiently (Section 6.2). We
also discuss how to judge whether the patterns found are interesting (Section 6.3). In
Chapter 7, we extend our discussion to advanced methods of frequent pattern mining,
which mine more complex forms of frequent patterns and consider user preferences or
constraints to speed up the mining process.

6.1 Basic Concepts

Frequent pattern mining searches for recurring relationships in a given data set. This
section introduces the basic concepts of frequent pattern mining for the discovery of

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques 243

244 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

interesting associations and correlations between itemsets in transactional and relational
databases. We begin in Section 6.1.1 by presenting an example of market basket analysis,
the earliest form of frequent pattern mining for association rules. The basic concepts of
mining frequent patterns and associations are given in Section 6.1.2.

6.1.1 Market Basket Analysis: A Motivating Example

Frequent itemset mining leads to the discovery of associations and correlations among
items in large transactional or relational data sets. With massive amounts of data contin-
uously being collected and stored, many industries are becoming interested in mining
such patterns from their databases. The discovery of interesting correlation relation-
ships among huge amounts of business transaction records can help in many busi-
ness decision-making processes such as catalog design, cross-marketing, and customer
shopping behavior analysis.

A typical example of frequent itemset mining is market basket analysis. This process
analyzes customer buying habits by finding associations between the different items that
customers place in their “shopping baskets” (Figure 6.1). The discovery of these associa-
tions can help retailers develop marketing strategies by gaining insight into which items
are frequently purchased together by customers. For instance, if customers are buying
milk, how likely are they to also buy bread (and what kind of bread) on the same trip

Which items are frequently
purchased together by customers?

milk
cereal

bread milk bread

butter

milk bread
sugar eggs

Customer 1

Market Analyst

Customer 2

sugar
eggs

Customer n

Customer 3

Shopping Baskets

Figure 6.1 Market basket analysis.

6.1 Basic Concepts 245

to the supermarket? This information can lead to increased sales by helping retailers do
selective marketing and plan their shelf space.

Let’s look at an example of how market basket analysis can be useful.

Example 6.1 Market basket analysis. Suppose, as manager of an AllElectronics branch, you would
like to learn more about the buying habits of your customers. Specifically, you wonder,
“Which groups or sets of items are customers likely to purchase on a given trip to the store?”
To answer your question, market basket analysis may be performed on the retail data of
customer transactions at your store. You can then use the results to plan marketing or
advertising strategies, or in the design of a new catalog. For instance, market basket anal-
ysis may help you design different store layouts. In one strategy, items that are frequently
purchased together can be placed in proximity to further encourage the combined sale
of such items. If customers who purchase computers also tend to buy antivirus software
at the same time, then placing the hardware display close to the software display may
help increase the sales of both items.

In an alternative strategy, placing hardware and software at opposite ends of the store
may entice customers who purchase such items to pick up other items along the way. For
instance, after deciding on an expensive computer, a customer may observe security sys-
tems for sale while heading toward the software display to purchase antivirus software,
and may decide to purchase a home security system as well. Market basket analysis can
also help retailers plan which items to put on sale at reduced prices. If customers tend to
purchase computers and printers together, then having a sale on printers may encourage
the sale of printers as well as computers.

If we think of the universe as the set of items available at the store, then each item has a
Boolean variable representing the presence or absence of that item. Each basket can then
be represented by a Boolean vector of values assigned to these variables. The Boolean
vectors can be analyzed for buying patterns that reflect items that are frequently associ-
ated or purchased together. These patterns can be represented in the form of association
rules. For example, the information that customers who purchase computers also tend
to buy antivirus software at the same time is represented in the following association
rule:

computer ⇒ antivirus software [support = 2%, confidence = 60%]. (6.1)

Rule support and confidence are two measures of rule interestingness. They respec-
tively reflect the usefulness and certainty of discovered rules. A support of 2% for
Rule (6.1) means that 2% of all the transactions under analysis show that computer
and antivirus software are purchased together. A confidence of 60% means that 60% of
the customers who purchased a computer also bought the software. Typically, associa-
tion rules are considered interesting if they satisfy both a minimum support threshold
and a minimum confidence threshold. These thresholds can be a set by users or
domain experts. Additional analysis can be performed to discover interesting statistical
correlations between associated items.

246 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

6.1.2 Frequent Itemsets, Closed Itemsets,
and Association Rules

Let I = {I1, I2, . . . , Im} be an itemset. Let D, the task-relevant data, be a set of database
transactions where each transaction T is a nonempty itemset such that T ⊆ I . Each
transaction is associated with an identifier, called a TID. Let A be a set of items. A trans-
action T is said to contain A if A ⊆ T . An association rule is an implication of the form
A ⇒ B, where A ⊂ I , B ⊂ I , A �= ∅, B �= ∅, and A ∩ B = φ. The rule A ⇒ B holds in the
transaction set D with support s, where s is the percentage of transactions in D that
contain A ∪ B (i.e., the union of sets A and B say, or, both A and B). This is taken to be
the probability, P(A ∪ B).1 The rule A ⇒ B has confidence c in the transaction set D,
where c is the percentage of transactions in D containing A that also contain B. This is
taken to be the conditional probability, P(B|A). That is,

support(A⇒B) =P(A ∪ B) (6.2)

confidence(A⇒B) =P(B|A). (6.3)

Rules that satisfy both a minimum support threshold (min sup) and a minimum con-
fidence threshold (min conf) are called strong. By convention, we write support and
confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

A set of items is referred to as an itemset.2 An itemset that contains k items is a
k-itemset. The set {computer, antivirus software} is a 2-itemset. The occurrence fre-
quency of an itemset is the number of transactions that contain the itemset. This is
also known, simply, as the frequency, support count, or count of the itemset. Note
that the itemset support defined in Eq. (6.2) is sometimes referred to as relative support,
whereas the occurrence frequency is called the absolute support. If the relative support
of an itemset I satisfies a prespecified minimum support threshold (i.e., the absolute
support of I satisfies the corresponding minimum support count threshold), then I is
a frequent itemset.3 The set of frequent k-itemsets is commonly denoted by Lk .4

From Eq. (6.3), we have

confidence(A⇒B) = P(B|A) = support(A ∪ B)

support(A)
= support count(A ∪ B)

support count(A)
. (6.4)

1Notice that the notation P(A ∪ B) indicates the probability that a transaction contains the union of sets
A and B (i.e., it contains every item in A and B). This should not be confused with P(A or B), which
indicates the probability that a transaction contains either A or B.
2In the data mining research literature, “itemset” is more commonly used than “item set.”
3In early work, itemsets satisfying minimum support were referred to as large. This term, however,
is somewhat confusing as it has connotations of the number of items in an itemset rather than the
frequency of occurrence of the set. Hence, we use the more recent term frequent.
4Although the term frequent is preferred over large, for historic reasons frequent k-itemsets are still
denoted as Lk .

6.1 Basic Concepts 247

Equation (6.4) shows that the confidence of rule A ⇒ B can be easily derived from the
support counts of A and A ∪ B. That is, once the support counts of A, B, and A ∪ B are
found, it is straightforward to derive the corresponding association rules A ⇒ B and
B ⇒ A and check whether they are strong. Thus, the problem of mining association
rules can be reduced to that of mining frequent itemsets.

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as
frequently as a predetermined minimum support count, min sup.

2. Generate strong association rules from the frequent itemsets: By definition, these
rules must satisfy minimum support and minimum confidence.

Additional interestingness measures can be applied for the discovery of correlation
relationships between associated items, as will be discussed in Section 6.3. Because
the second step is much less costly than the first, the overall performance of mining
association rules is determined by the first step.

A major challenge in mining frequent itemsets from a large data set is the fact that
such mining often generates a huge number of itemsets satisfying the minimum support
(min sup) threshold, especially when min sup is set low. This is because if an itemset is
frequent, each of its subsets is frequent as well. A long itemset will contain a combinato-
rial number of shorter, frequent sub-itemsets. For example, a frequent itemset of length
100, such as {a1, a2, . . . , a100}, contains

(100
1

)= 100 frequent 1-itemsets: {a1}, {a2}, . . . ,

{a100};
(100

2

)
frequent 2-itemsets: {a1, a2}, {a1, a3}, . . . , {a99, a100}; and so on. The total

number of frequent itemsets that it contains is thus

(
100

1

)
+
(

100

2

)
+ ·· · +

(
100

100

)
= 2100 − 1 ≈ 1.27 × 1030. (6.5)

This is too huge a number of itemsets for any computer to compute or store. To over-
come this difficulty, we introduce the concepts of closed frequent itemset and maximal
frequent itemset.

An itemset X is closed in a data set D if there exists no proper super-itemset Y 5 such
that Y has the same support count as X in D. An itemset X is a closed frequent itemset in
set D if X is both closed and frequent in D. An itemset X is a maximal frequent itemset
(or max-itemset) in a data set D if X is frequent, and there exists no super-itemset Y
such that X ⊂ Y and Y is frequent in D.

Let C be the set of closed frequent itemsets for a data set D satisfying a minimum sup-
port threshold, min sup. Let M be the set of maximal frequent itemsets for D satisfying
min sup. Suppose that we have the support count of each itemset in C and M. Notice
that C and its count information can be used to derive the whole set of frequent itemsets.

5Y is a proper super-itemset of X if X is a proper sub-itemset of Y , that is, if X ⊂ Y . In other words,
every item of X is contained in Y but there is at least one item of Y that is not in X .

248 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Thus, we say that C contains complete information regarding its corresponding frequent
itemsets. On the other hand, M registers only the support of the maximal itemsets. It
usually does not contain the complete support information regarding its corresponding
frequent itemsets. We illustrate these concepts with Example 6.2.

Example 6.2 Closed and maximal frequent itemsets. Suppose that a transaction database has only
two transactions: {〈a1, a2, . . . , a100〉; 〈a1, a2, . . . , a50〉}. Let the minimum support count
threshold be min sup = 1. We find two closed frequent itemsets and their support
counts, that is, C = {{a1, a2, . . . , a100} : 1; {a1, a2, . . . , a50} : 2}. There is only one max-
imal frequent itemset: M = {{a1, a2, . . . , a100} : 1}. Notice that we cannot include
{a1, a2, . . . , a50} as a maximal frequent itemset because it has a frequent superset,
{a1, a2, . . . , a100}. Compare this to the preceding where we determined that there are
2100 − 1 frequent itemsets, which are too many to be enumerated!

The set of closed frequent itemsets contains complete information regarding the fre-
quent itemsets. For example, from C, we can derive, say, (1) {a2, a45 : 2} since {a2, a45} is
a sub-itemset of the itemset {a1, a2, . . . , a50 : 2}; and (2) {a8, a55 : 1} since {a8, a55} is not
a sub-itemset of the previous itemset but of the itemset {a1, a2, . . . , a100 : 1}. However,
from the maximal frequent itemset, we can only assert that both itemsets ({a2, a45} and
{a8, a55}) are frequent, but we cannot assert their actual support counts.

6.2 Frequent Itemset Mining Methods

In this section, you will learn methods for mining the simplest form of frequent pat-
terns such as those discussed for market basket analysis in Section 6.1.1. We begin by
presenting Apriori, the basic algorithm for finding frequent itemsets (Section 6.2.1). In
Section 6.2.2, we look at how to generate strong association rules from frequent item-
sets. Section 6.2.3 describes several variations to the Apriori algorithm for improved
efficiency and scalability. Section 6.2.4 presents pattern-growth methods for mining
frequent itemsets that confine the subsequent search space to only the data sets contain-
ing the current frequent itemsets. Section 6.2.5 presents methods for mining frequent
itemsets that take advantage of the vertical data format.

6.2.1 Apriori Algorithm: Finding Frequent Itemsets
by Confined Candidate Generation

Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for min-
ing frequent itemsets for Boolean association rules [AS94b]. The name of the algorithm
is based on the fact that the algorithm uses prior knowledge of frequent itemset prop-
erties, as we shall see later. Apriori employs an iterative approach known as a level-wise
search, where k-itemsets are used to explore (k + 1)-itemsets. First, the set of frequent
1-itemsets is found by scanning the database to accumulate the count for each item, and

6.2 Frequent Itemset Mining Methods 249

collecting those items that satisfy minimum support. The resulting set is denoted by L1.
Next, L1 is used to find L2, the set of frequent 2-itemsets, which is used to find L3, and
so on, until no more frequent k-itemsets can be found. The finding of each Lk requires
one full scan of the database.

To improve the efficiency of the level-wise generation of frequent itemsets, an
important property called the Apriori property is used to reduce the search space.

Apriori property: All nonempty subsets of a frequent itemset must also be frequent.
The Apriori property is based on the following observation. By definition, if an item-

set I does not satisfy the minimum support threshold, min sup, then I is not frequent,
that is, P(I) < min sup. If an item A is added to the itemset I , then the resulting itemset
(i.e., I ∪ A) cannot occur more frequently than I . Therefore, I ∪ A is not frequent either,
that is, P(I ∪ A) < min sup.

This property belongs to a special category of properties called antimonotonicity in
the sense that if a set cannot pass a test, all of its supersets will fail the same test as well. It
is called antimonotonicity because the property is monotonic in the context of failing a
test.6

“How is the Apriori property used in the algorithm?” To understand this, let us look at
how Lk−1 is used to find Lk for k ≥ 2. A two-step process is followed, consisting of join
and prune actions.

1. The join step: To find Lk , a set of candidate k-itemsets is generated by joining
Lk−1 with itself. This set of candidates is denoted Ck . Let l1 and l2 be itemsets
in Lk−1. The notation li[j] refers to the jth item in li (e.g., l1[k − 2] refers to
the second to the last item in l1). For efficient implementation, Apriori assumes
that items within a transaction or itemset are sorted in lexicographic order. For
the (k − 1)-itemset, li , this means that the items are sorted such that li[1] < li[2]
< · · · < li[k − 1]. The join, Lk−1 � Lk−1, is performed, where members of Lk−1 are
joinable if their first (k − 2) items are in common. That is, members l1 and l2
of Lk−1 are joined if (l1[1] = l2[1]) ∧ (l1[2] = l2[2])∧ ·· · ∧ (l1[k − 2] = l2[k − 2])
∧(l1[k − 1] < l2[k − 1]). The condition l1[k − 1] < l2[k − 1] simply ensures that
no duplicates are generated. The resulting itemset formed by joining l1 and l2 is
{l1[1], l1[2], . . . , l1[k − 2], l1[k − 1], l2[k − 1]}.

2. The prune step: Ck is a superset of Lk , that is, its members may or may not be
frequent, but all of the frequent k-itemsets are included in Ck . A database scan to
determine the count of each candidate in Ck would result in the determination of
Lk (i.e., all candidates having a count no less than the minimum support count are
frequent by definition, and therefore belong to Lk). Ck , however, can be huge, and so
this could involve heavy computation. To reduce the size of Ck , the Apriori property

6The Apriori property has many applications. For example, it can also be used to prune search during
data cube computation (Chapter 5).

250 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

is used as follows. Any (k − 1)-itemset that is not frequent cannot be a subset of a
frequent k-itemset. Hence, if any (k − 1)-subset of a candidate k-itemset is not in
Lk−1, then the candidate cannot be frequent either and so can be removed from Ck .
This subset testing can be done quickly by maintaining a hash tree of all frequent
itemsets.

Example 6.3 Apriori. Let’s look at a concrete example, based on the AllElectronics transaction
database, D, of Table 6.1. There are nine transactions in this database, that is, |D| = 9.
We use Figure 6.2 to illustrate the Apriori algorithm for finding frequent itemsets in D.

1. In the first iteration of the algorithm, each item is a member of the set of candidate
1-itemsets, C1. The algorithm simply scans all of the transactions to count the
number of occurrences of each item.

2. Suppose that the minimum support count required is 2, that is, min sup = 2. (Here,
we are referring to absolute support because we are using a support count. The corre-
sponding relative support is 2/9 = 22%.) The set of frequent 1-itemsets, L1, can then
be determined. It consists of the candidate 1-itemsets satisfying minimum support.
In our example, all of the candidates in C1 satisfy minimum support.

3. To discover the set of frequent 2-itemsets, L2, the algorithm uses the join L1 � L1 to
generate a candidate set of 2-itemsets, C2.7 C2 consists of

(|L1|
2

)
2-itemsets. Note that

no candidates are removed from C2 during the prune step because each subset of the
candidates is also frequent.

Table 6.1 Transactional Data for an AllElectronics
Branch

TID List of item IDs

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

7L1 � L1 is equivalent to L1 × L1, since the definition of Lk � Lk requires the two joining itemsets to
share k − 1 = 0 items.

6.2 Frequent Itemset Mining Methods 251

Figure 6.2 Generation of the candidate itemsets and frequent itemsets, where the minimum support
count is 2.

4. Next, the transactions in D are scanned and the support count of each candidate
itemset in C2 is accumulated, as shown in the middle table of the second row in
Figure 6.2.

5. The set of frequent 2-itemsets, L2, is then determined, consisting of those candidate
2-itemsets in C2 having minimum support.

6. The generation of the set of the candidate 3-itemsets, C3, is detailed in Figure 6.3.
From the join step, we first get C3 = L2 � L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5},
{I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}. Based on the Apriori property that all subsets
of a frequent itemset must also be frequent, we can determine that the four latter
candidates cannot possibly be frequent. We therefore remove them from C3, thereby
saving the effort of unnecessarily obtaining their counts during the subsequent scan
of D to determine L3. Note that when given a candidate k-itemset, we only need to
check if its (k − 1)-subsets are frequent since the Apriori algorithm uses a level-wise

252 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

(a) Join: C3 = L2 � L2 = {{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}
�{{I1, I2}, {I1, I3}, {I1, I5}, {I2, I3}, {I2, I4}, {I2, I5}}

= {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, I3, I5}, {I2, I4, I5}}.
(b) Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be

frequent. Do any of the candidates have a subset that is not frequent?

The 2-item subsets of {I1, I2, I3} are {I1, I2}, {I1, I3}, and {I2, I3}. All 2-item subsets
of {I1, I2, I3} are members of L2. Therefore, keep {I1, I2, I3} in C3.

The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of
{I1, I2, I5} are members of L2. Therefore, keep {I1, I2, I5} in C3.

The 2-item subsets of {I1, I3, I5} are {I1, I3}, {I1, I5}, and {I3, I5}. {I3, I5} is not
a member of L2, and so it is not frequent. Therefore, remove {I1, I3, I5} from C3.

The 2-item subsets of {I2, I3, I4} are {I2, I3}, {I2, I4}, and {I3, I4}. {I3, I4} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I3, I4} from C3.

The 2-item subsets of {I2, I3, I5} are {I2, I3}, {I2, I5}, and {I3, I5}. {I3, I5} is not
a member of L2, and so it is not frequent. Therefore, remove {I2, I3, I5} from C3.

The 2-item subsets of {I2, I4, I5} are {I2, I4}, {I2, I5}, and {I4, I5}. {I4, I5} is not a
member of L2, and so it is not frequent. Therefore, remove {I2, I4, I5} from C3.

(c) Therefore, C3 = {{I1, I2, I3}, {I1, I2, I5}} after pruning.

Figure 6.3 Generation and pruning of candidate 3-itemsets, C3, from L2 using the Apriori property.

search strategy. The resulting pruned version of C3 is shown in the first table of the
bottom row of Figure 6.2.

7. The transactions in D are scanned to determine L3, consisting of those candidate
3-itemsets in C3 having minimum support (Figure 6.2).

8. The algorithm uses L3 � L3 to generate a candidate set of 4-itemsets, C4. Although
the join results in {{I1, I2, I3, I5}}, itemset {I1, I2, I3, I5} is pruned because its subset
{I2, I3, I5} is not frequent. Thus, C4 = φ, and the algorithm terminates, having found
all of the frequent itemsets.

Figure 6.4 shows pseudocode for the Apriori algorithm and its related procedures.
Step 1 of Apriori finds the frequent 1-itemsets, L1. In steps 2 through 10, Lk−1 is used
to generate candidates Ck to find Lk for k ≥ 2. The apriori gen procedure generates the
candidates and then uses the Apriori property to eliminate those having a subset that is
not frequent (step 3). This procedure is described later. Once all of the candidates have
been generated, the database is scanned (step 4). For each transaction, a subset function
is used to find all subsets of the transaction that are candidates (step 5), and the count
for each of these candidates is accumulated (steps 6 and 7). Finally, all the candidates
satisfying the minimum support (step 9) form the set of frequent itemsets, L (step 11).

6.2 Frequent Itemset Mining Methods 253

Algorithm: Apriori. Find frequent itemsets using an iterative level-wise approach based
on candidate generation.

Input:

D, a database of transactions;

min sup, the minimum support count threshold.

Output: L, frequent itemsets in D.

Method:

(1) L1 = find frequent 1-itemsets(D);
(2) for (k = 2;Lk−1 �= φ;k++) {
(3) Ck = apriori gen(Lk−1);
(4) for each transaction t ∈ D { // scan D for counts
(5) Ct = subset(Ck , t); // get the subsets of t that are candidates
(6) for each candidate c ∈ Ct
(7) c.count++;
(8) }
(9) Lk = {c ∈ Ck|c.count ≥ min sup}
(10) }
(11) return L = ∪kLk ;

procedure apriori gen(Lk−1:frequent (k − 1)-itemsets)
(1) for each itemset l1 ∈ Lk−1
(2) for each itemset l2 ∈ Lk−1
(3) if (l1[1] = l2[1]) ∧ (l1[2] = l2[2])

∧... ∧ (l1[k − 2] = l2[k − 2]) ∧ (l1[k − 1] < l2[k − 1]) then {
(4) c = l1 � l2; // join step: generate candidates
(5) if has infrequent subset(c, Lk−1) then
(6) delete c; // prune step: remove unfruitful candidate
(7) else add c to Ck ;
(8) }
(9) return Ck ;

procedure has infrequent subset(c: candidate k-itemset;
Lk−1: frequent (k − 1)-itemsets); // use prior knowledge

(1) for each (k − 1)-subset s of c
(2) if s �∈ Lk−1 then
(3) return TRUE;
(4) return FALSE;

Figure 6.4 Apriori algorithm for discovering frequent itemsets for mining Boolean association rules.

A procedure can then be called to generate association rules from the frequent itemsets.
Such a procedure is described in Section 6.2.2.

The apriori gen procedure performs two kinds of actions, namely, join and prune, as
described before. In the join component, Lk−1 is joined with Lk−1 to generate potential
candidates (steps 1–4). The prune component (steps 5–7) employs the Apriori property
to remove candidates that have a subset that is not frequent. The test for infrequent
subsets is shown in procedure has infrequent subset.

254 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

6.2.2 Generating Association Rules from Frequent Itemsets

Once the frequent itemsets from transactions in a database D have been found, it is
straightforward to generate strong association rules from them (where strong associa-
tion rules satisfy both minimum support and minimum confidence). This can be done
using Eq. (6.4) for confidence, which we show again here for completeness:

confidence(A ⇒ B) = P(B|A) = support count(A ∪ B)

support count(A)
.

The conditional probability is expressed in terms of itemset support count, where
support count(A ∪ B) is the number of transactions containing the itemsets A ∪ B, and
support count(A) is the number of transactions containing the itemset A. Based on this
equation, association rules can be generated as follows:

For each frequent itemset l, generate all nonempty subsets of l.

For every nonempty subset s of l, output the rule “s ⇒ (l − s)” if support count(l)
support count(s) ≥

min conf, where min conf is the minimum confidence threshold.

Because the rules are generated from frequent itemsets, each one automatically satis-
fies the minimum support. Frequent itemsets can be stored ahead of time in hash tables
along with their counts so that they can be accessed quickly.

Example 6.4 Generating association rules. Let’s try an example based on the transactional data for
AllElectronics shown before in Table 6.1. The data contain frequent itemset X = {I1, I2,
I5}. What are the association rules that can be generated from X? The nonempty subsets
of X are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}. The resulting association rules are
as shown below, each listed with its confidence:

{I1, I2} ⇒ I5, confidence = 2/4 = 50%
{I1, I5} ⇒ I2, confidence = 2/2 = 100%
{I2, I5} ⇒ I1, confidence = 2/2 = 100%
I1 ⇒ {I2, I5}, confidence = 2/6 = 33%
I2 ⇒ {I1, I5}, confidence = 2/7 = 29%
I5 ⇒ {I1, I2}, confidence = 2/2 = 100%

If the minimum confidence threshold is, say, 70%, then only the second, third, and
last rules are output, because these are the only ones generated that are strong. Note
that, unlike conventional classification rules, association rules can contain more than
one conjunct in the right side of the rule.

6.2.3 Improving the Efficiency of Apriori

“How can we further improve the efficiency of Apriori-based mining?” Many variations of
the Apriori algorithm have been proposed that focus on improving the efficiency of the
original algorithm. Several of these variations are summarized as follows:

6.2 Frequent Itemset Mining Methods 255

0

2

{I1, I4}
{I3, I5}

1

2

{I1, I5}
{I1, I5}

2

4

{I2, I3}
{I2, I3}
{I2, I3}
{I2, I3}

3

2

{I2, I4}
{I2, I4}

4

2

{I2, I5}
{I2, I5}

5

4

{I1, I2}
{I1, I2}
{I1, I2}
{I1, I2}

6

4

{I1, I3}
{I1, I3}
{I1, I3}
{I1, I3}

H2

bucket address

bucket count

bucket contents
Create hash table H2
using hash function

h(x, y)� ((order of x)�10
� (order of y)) mod 7

Figure 6.5 Hash table, H2, for candidate 2-itemsets. This hash table was generated by scanning
Table 6.1’s transactions while determining L1. If the minimum support count is, say, 3, then
the itemsets in buckets 0, 1, 3, and 4 cannot be frequent and so they should not be included
in C2.

Hash-based technique (hashing itemsets into corresponding buckets): A hash-based
technique can be used to reduce the size of the candidate k-itemsets, Ck , for k > 1.
For example, when scanning each transaction in the database to generate the frequent
1-itemsets, L1, we can generate all the 2-itemsets for each transaction, hash (i.e., map)
them into the different buckets of a hash table structure, and increase the correspond-
ing bucket counts (Figure 6.5). A 2-itemset with a corresponding bucket count in the
hash table that is below the support threshold cannot be frequent and thus should
be removed from the candidate set. Such a hash-based technique may substantially
reduce the number of candidate k-itemsets examined (especially when k = 2).

Transaction reduction (reducing the number of transactions scanned in future itera-
tions): A transaction that does not contain any frequent k-itemsets cannot contain any
frequent (k + 1)-itemsets. Therefore, such a transaction can be marked or removed
from further consideration because subsequent database scans for j-itemsets, where
j > k, will not need to consider such a transaction.

Partitioning (partitioning the data to find candidate itemsets): A partitioning tech-
nique can be used that requires just two database scans to mine the frequent itemsets
(Figure 6.6). It consists of two phases. In phase I, the algorithm divides the trans-
actions of D into n nonoverlapping partitions. If the minimum relative support
threshold for transactions in D is min sup, then the minimum support count for a
partition is min sup × the number of transactions in that partition. For each partition,
all the local frequent itemsets (i.e., the itemsets frequent within the partition) are found.

A local frequent itemset may or may not be frequent with respect to the entire
database, D. However, any itemset that is potentially frequent with respect to D must
occur as a frequent itemset in at least one of the partitions.8 Therefore, all local frequent
itemsets are candidate itemsets with respect to D. The collection of frequent itemsets
from all partitions forms the global candidate itemsets with respect to D. In phase II,

8The proof of this property is left as an exercise (see Exercise 6.3d).

256 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Transactions
in D

Frequent
itemsets

in D

Divide D
into n

partitions

Find the
frequent
itemsets

local to each
partition
(1 scan)

Combine
all local
frequent
itemsets
to form

candidate
itemset

Find global
frequent
itemsets
among

candidates
(1 scan)

Phase I

Phase II

Figure 6.6 Mining by partitioning the data.

a second scan of D is conducted in which the actual support of each candidate is
assessed to determine the global frequent itemsets. Partition size and the number of
partitions are set so that each partition can fit into main memory and therefore be
read only once in each phase.

Sampling (mining on a subset of the given data): The basic idea of the sampling
approach is to pick a random sample S of the given data D, and then search for
frequent itemsets in S instead of D. In this way, we trade off some degree of accuracy
against efficiency. The S sample size is such that the search for frequent itemsets in S
can be done in main memory, and so only one scan of the transactions in S is required
overall. Because we are searching for frequent itemsets in S rather than in D, it is
possible that we will miss some of the global frequent itemsets.

To reduce this possibility, we use a lower support threshold than minimum support
to find the frequent itemsets local to S (denoted LS). The rest of the database is
then used to compute the actual frequencies of each itemset in LS. A mechanism is
used to determine whether all the global frequent itemsets are included in LS. If LS

actually contains all the frequent itemsets in D, then only one scan of D is required.
Otherwise, a second pass can be done to find the frequent itemsets that were missed
in the first pass. The sampling approach is especially beneficial when efficiency is of
utmost importance such as in computationally intensive applications that must be
run frequently.

Dynamic itemset counting (adding candidate itemsets at different points during a
scan): A dynamic itemset counting technique was proposed in which the database
is partitioned into blocks marked by start points. In this variation, new candidate
itemsets can be added at any start point, unlike in Apriori, which determines new
candidate itemsets only immediately before each complete database scan. The tech-
nique uses the count-so-far as the lower bound of the actual count. If the count-so-far
passes the minimum support, the itemset is added into the frequent itemset collection
and can be used to generate longer candidates. This leads to fewer database scans than
with Apriori for finding all the frequent itemsets.

Other variations are discussed in the next chapter.

6.2 Frequent Itemset Mining Methods 257

6.2.4 A Pattern-Growth Approach for Mining
Frequent Itemsets

As we have seen, in many cases the Apriori candidate generate-and-test method signifi-
cantly reduces the size of candidate sets, leading to good performance gain. However, it
can suffer from two nontrivial costs:

It may still need to generate a huge number of candidate sets. For example, if there are
104 frequent 1-itemsets, the Apriori algorithm will need to generate more than 107

candidate 2-itemsets.

It may need to repeatedly scan the whole database and check a large set of candidates by
pattern matching. It is costly to go over each transaction in the database to determine
the support of the candidate itemsets.

“Can we design a method that mines the complete set of frequent itemsets without such
a costly candidate generation process?” An interesting method in this attempt is called
frequent pattern growth, or simply FP-growth, which adopts a divide-and-conquer
strategy as follows. First, it compresses the database representing frequent items into a
frequent pattern tree, or FP-tree, which retains the itemset association information. It
then divides the compressed database into a set of conditional databases (a special kind of
projected database), each associated with one frequent item or “pattern fragment,” and
mines each database separately. For each “pattern fragment,” only its associated data sets
need to be examined. Therefore, this approach may substantially reduce the size of the
data sets to be searched, along with the “growth” of patterns being examined. You will
see how it works in Example 6.5.

Example 6.5 FP-growth (finding frequent itemsets without candidate generation). We reexamine
the mining of transaction database, D, of Table 6.1 in Example 6.3 using the frequent
pattern growth approach.

The first scan of the database is the same as Apriori, which derives the set of frequent
items (1-itemsets) and their support counts (frequencies). Let the minimum support
count be 2. The set of frequent items is sorted in the order of descending support count.
This resulting set or list is denoted by L. Thus, we have L = {{I2: 7}, {I1: 6}, {I3: 6},
{I4: 2}, {I5: 2}}.

An FP-tree is then constructed as follows. First, create the root of the tree, labeled
with “null.” Scan database D a second time. The items in each transaction are processed
in L order (i.e., sorted according to descending support count), and a branch is created
for each transaction. For example, the scan of the first transaction, “T100: I1, I2, I5,”
which contains three items (I2, I1, I5 in L order), leads to the construction of the first
branch of the tree with three nodes, 〈I2: 1〉, 〈I1: 1〉, and 〈I5: 1〉, where I2 is linked as a
child to the root, I1 is linked to I2, and I5 is linked to I1. The second transaction, T200,
contains the items I2 and I4 in L order, which would result in a branch where I2 is linked
to the root and I4 is linked to I2. However, this branch would share a common prefix,
I2, with the existing path for T100. Therefore, we instead increment the count of the I2
node by 1, and create a new node, 〈I4: 1〉, which is linked as a child to 〈I2: 2〉. In general,

258 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

I2
I1
I3
I4
I5

7
6
6
2
2

I1:2

I3:2
I4:1I3:2

I4:1

I5:1

I5:1

I1:4

I2:7

null{}

I3:2

Node-linkItem ID

Support
count

Figure 6.7 An FP-tree registers compressed, frequent pattern information.

when considering the branch to be added for a transaction, the count of each node along
a common prefix is incremented by 1, and nodes for the items following the prefix are
created and linked accordingly.

To facilitate tree traversal, an item header table is built so that each item points to its
occurrences in the tree via a chain of node-links. The tree obtained after scanning all
the transactions is shown in Figure 6.7 with the associated node-links. In this way, the
problem of mining frequent patterns in databases is transformed into that of mining the
FP-tree.

The FP-tree is mined as follows. Start from each frequent length-1 pattern (as an
initial suffix pattern), construct its conditional pattern base (a “sub-database,” which
consists of the set of prefix paths in the FP-tree co-occurring with the suffix pattern),
then construct its (conditional) FP-tree, and perform mining recursively on the tree. The
pattern growth is achieved by the concatenation of the suffix pattern with the frequent
patterns generated from a conditional FP-tree.

Mining of the FP-tree is summarized in Table 6.2 and detailed as follows. We first
consider I5, which is the last item in L, rather than the first. The reason for starting at
the end of the list will become apparent as we explain the FP-tree mining process. I5
occurs in two FP-tree branches of Figure 6.7. (The occurrences of I5 can easily be found
by following its chain of node-links.) The paths formed by these branches are 〈I2, I1,
I5: 1〉 and 〈I2, I1, I3, I5: 1〉. Therefore, considering I5 as a suffix, its corresponding two
prefix paths are 〈I2, I1: 1〉 and 〈I2, I1, I3: 1〉, which form its conditional pattern base.
Using this conditional pattern base as a transaction database, we build an I5-conditional
FP-tree, which contains only a single path, 〈I2: 2, I1: 2〉; I3 is not included because its
support count of 1 is less than the minimum support count. The single path generates
all the combinations of frequent patterns: {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}.

For I4, its two prefix paths form the conditional pattern base, {{I2 I1: 1}, {I2: 1}},
which generates a single-node conditional FP-tree, 〈I2: 2〉, and derives one frequent
pattern, {I2, I4: 2}.

6.2 Frequent Itemset Mining Methods 259

Table 6.2 Mining the FP-Tree by Creating Conditional (Sub-)Pattern Bases

Item Conditional Pattern Base Conditional FP-tree Frequent Patterns Generated
I5 {{I2, I1: 1}, {I2, I1, I3: 1}} 〈I2: 2, I1: 2〉 {I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}
I4 {{I2, I1: 1}, {I2: 1}} 〈I2: 2〉 {I2, I4: 2}
I3 {{I2, I1: 2}, {I2: 2}, {I1: 2}} 〈I2: 4, I1: 2〉, 〈I1: 2〉 {I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}
I1 {{I2: 4}} 〈I2: 4〉 {I2, I1: 4}

I2 4 I2:4

I1:2

I1:2

Node-linkItem ID

Support
count null{}

I1 4

Figure 6.8 The conditional FP-tree associated with the conditional node I3.

Similar to the preceding analysis, I3’s conditional pattern base is {{I2, I1: 2}, {I2: 2},
{I1: 2}}. Its conditional FP-tree has two branches, 〈I2: 4, I1: 2〉 and 〈I1: 2〉, as shown
in Figure 6.8, which generates the set of patterns {{I2, I3: 4}, {I1, I3: 4}, {I2, I1, I3: 2}}.
Finally, I1’s conditional pattern base is {{I2: 4}}, with an FP-tree that contains only one
node, 〈I2: 4〉, which generates one frequent pattern, {I2, I1: 4}. This mining process is
summarized in Figure 6.9.

The FP-growth method transforms the problem of finding long frequent patterns
into searching for shorter ones in much smaller conditional databases recursively and
then concatenating the suffix. It uses the least frequent items as a suffix, offering good
selectivity. The method substantially reduces the search costs.

When the database is large, it is sometimes unrealistic to construct a main memory-
based FP-tree. An interesting alternative is to first partition the database into a set
of projected databases, and then construct an FP-tree and mine it in each projected
database. This process can be recursively applied to any projected database if its FP-tree
still cannot fit in main memory.

A study of the FP-growth method performance shows that it is efficient and scalable
for mining both long and short frequent patterns, and is about an order of magnitude
faster than the Apriori algorithm.

6.2.5 Mining Frequent Itemsets Using the Vertical Data Format

Both the Apriori and FP-growth methods mine frequent patterns from a set of trans-
actions in TID-itemset format (i.e., {TID : itemset}), where TID is a transaction ID
and itemset is the set of items bought in transaction TID. This is known as the
horizontal data format. Alternatively, data can be presented in item-TID set format

260 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Algorithm: FP growth. Mine frequent itemsets using an FP-tree by pattern fragment growth.

Input:

D, a transaction database;

min sup, the minimum support count threshold.

Output: The complete set of frequent patterns.

Method:

1. The FP-tree is constructed in the following steps:

(a) Scan the transaction database D once. Collect F , the set of frequent items, and their
support counts. Sort F in support count descending order as L, the list of frequent items.

(b) Create the root of an FP-tree, and label it as “null.” For each transaction Trans in D do the
following.
Select and sort the frequent items in Trans according to the order of L. Let the sorted
frequent item list in Trans be [p|P], where p is the first element and P is the remaining
list. Call insert tree([p|P], T), which is performed as follows. If T has a child N such that
N.item-name = p.item-name, then increment N ’s count by 1; else create a new node N ,
and let its count be 1, its parent link be linked to T , and its node-link to the nodes with
the same item-name via the node-link structure. If P is nonempty, call insert tree(P, N)

recursively.

2. The FP-tree is mined by calling FP growth(FP tree, null), which is implemented as follows.

procedure FP growth(Tree, α)
(1) if Tree contains a single path P then
(2) for each combination (denoted as β) of the nodes in the path P
(3) generate pattern β ∪ α with support count = minimum support count of nodes in β;
(4) else for each ai in the header of Tree {
(5) generate pattern β = ai ∪ α with support count = ai .support count ;
(6) construct β’s conditional pattern base and then β’s conditional FP tree Treeβ ;
(7) if Treeβ �= ∅ then
(8) call FP growth(Treeβ , β); }

Figure 6.9 FP-growth algorithm for discovering frequent itemsets without candidate generation.

(i.e., {item : TID set}), where item is an item name, and TID set is the set of transaction
identifiers containing the item. This is known as the vertical data format.

In this subsection, we look at how frequent itemsets can also be mined effi-
ciently using vertical data format, which is the essence of the Eclat (Equivalence Class
Transformation) algorithm.

Example 6.6 Mining frequent itemsets using the vertical data format. Consider the horizontal
data format of the transaction database, D, of Table 6.1 in Example 6.3. This can be
transformed into the vertical data format shown in Table 6.3 by scanning the data
set once.

Mining can be performed on this data set by intersecting the TID sets of every pair
of frequent single items. The minimum support count is 2. Because every single item is

6.2 Frequent Itemset Mining Methods 261

Table 6.3 The Vertical Data Format of the Transaction Data
Set D of Table 6.1

itemset TID set
I1 {T100, T400, T500, T700, T800, T900}
I2 {T100, T200, T300, T400, T600, T800, T900}
I3 {T300, T500, T600, T700, T800, T900}
I4 {T200, T400}
I5 {T100, T800}

Table 6.4 2-Itemsets in Vertical Data Format

itemset TID set
{I1, I2} {T100, T400, T800, T900}
{I1, I3} {T500, T700, T800, T900}
{I1, I4} {T400}
{I1, I5} {T100, T800}
{I2, I3} {T300, T600, T800, T900}
{I2, I4} {T200, T400}
{I2, I5} {T100, T800}
{I3, I5} {T800}

Table 6.5 3-Itemsets in Vertical Data Format

itemset TID set
{I1, I2, I3} {T800, T900}
{I1, I2, I5} {T100, T800}

frequent in Table 6.3, there are 10 intersections performed in total, which lead to eight
nonempty 2-itemsets, as shown in Table 6.4. Notice that because the itemsets {I1, I4}
and {I3, I5} each contain only one transaction, they do not belong to the set of frequent
2-itemsets.

Based on the Apriori property, a given 3-itemset is a candidate 3-itemset only if every
one of its 2-itemset subsets is frequent. The candidate generation process here will gen-
erate only two 3-itemsets: {I1, I2, I3} and {I1, I2, I5}. By intersecting the TID sets of any
two corresponding 2-itemsets of these candidate 3-itemsets, it derives Table 6.5, where
there are only two frequent 3-itemsets: {I1, I2, I3: 2} and {I1, I2, I5: 2}.

Example 6.6 illustrates the process of mining frequent itemsets by exploring the
vertical data format. First, we transform the horizontally formatted data into the
vertical format by scanning the data set once. The support count of an itemset is simply
the length of the TID set of the itemset. Starting with k = 1, the frequent k-itemsets
can be used to construct the candidate (k + 1)-itemsets based on the Apriori property.

262 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

The computation is done by intersection of the TID sets of the frequent k-itemsets to
compute the TID sets of the corresponding (k + 1)-itemsets. This process repeats, with
k incremented by 1 each time, until no frequent itemsets or candidate itemsets can be
found.

Besides taking advantage of the Apriori property in the generation of candidate
(k + 1)-itemset from frequent k-itemsets, another merit of this method is that there
is no need to scan the database to find the support of (k + 1)-itemsets (for k ≥ 1).
This is because the TID set of each k-itemset carries the complete information required
for counting such support. However, the TID sets can be quite long, taking substantial
memory space as well as computation time for intersecting the long sets.

To further reduce the cost of registering long TID sets, as well as the subsequent
costs of intersections, we can use a technique called diffset, which keeps track of only
the differences of the TID sets of a (k + 1)-itemset and a corresponding k-itemset. For
instance, in Example 6.6 we have {I1} = {T100, T400, T500, T700, T800, T900} and {I1,
I2} = {T100, T400, T800, T900}. The diffset between the two is diffset({I1, I2}, {I1}) =
{T500, T700}. Thus, rather than recording the four TIDs that make up the intersection of
{I1} and {I2}, we can instead use diffset to record just two TIDs, indicating the difference
between {I1} and {I1, I2}. Experiments show that in certain situations, such as when the
data set contains many dense and long patterns, this technique can substantially reduce
the total cost of vertical format mining of frequent itemsets.

6.2.6 Mining Closed and Max Patterns

In Section 6.1.2 we saw how frequent itemset mining may generate a huge number of
frequent itemsets, especially when the min sup threshold is set low or when there exist
long patterns in the data set. Example 6.2 showed that closed frequent itemsets9 can
substantially reduce the number of patterns generated in frequent itemset mining while
preserving the complete information regarding the set of frequent itemsets. That is, from
the set of closed frequent itemsets, we can easily derive the set of frequent itemsets and
their support. Thus, in practice, it is more desirable to mine the set of closed frequent
itemsets rather than the set of all frequent itemsets in most cases.

“How can we mine closed frequent itemsets?” A naïve approach would be to first mine
the complete set of frequent itemsets and then remove every frequent itemset that is a
proper subset of, and carries the same support as, an existing frequent itemset. However,
this is quite costly. As shown in Example 6.2, this method would have to first derive
2100 − 1 frequent itemsets to obtain a length-100 frequent itemset, all before it could
begin to eliminate redundant itemsets. This is prohibitively expensive. In fact, there exist
only a very small number of closed frequent itemsets in Example 6.2’s data set.

A recommended methodology is to search for closed frequent itemsets directly dur-
ing the mining process. This requires us to prune the search space as soon as we

9Remember that X is a closed frequent itemset in a data set S if there exists no proper super-itemset Y
such that Y has the same support count as X in S, and X satisfies minimum support.

6.2 Frequent Itemset Mining Methods 263

can identify the case of closed itemsets during mining. Pruning strategies include the
following:

Item merging: If every transaction containing a frequent itemset X also contains an itemset
Y but not any proper superset of Y , then X ∪ Y forms a frequent closed itemset and there
is no need to search for any itemset containing X but no Y .

For example, in Table 6.2 of Example 6.5, the projected conditional database for
prefix itemset {I5:2} is {{I2, I1}, {I2, I1, I3}}, from which we can see that each of its
transactions contains itemset {I2, I1} but no proper superset of {I2, I1}. Itemset {I2,
I1} can be merged with {I5} to form the closed itemset, {I5, I2, I1: 2}, and we do not
need to mine for closed itemsets that contain I5 but not {I2, I1}.

Sub-itemset pruning: If a frequent itemset X is a proper subset of an already found fre-
quent closed itemset Y and support count(X)=support count(Y), then X and all of X’s
descendants in the set enumeration tree cannot be frequent closed itemsets and thus can
be pruned.

Similar to Example 6.2, suppose a transaction database has only two trans-
actions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, and the minimum support count is
min sup = 2. The projection on the first item, a1, derives the frequent itemset, {a1,
a2, . . . , a50 : 2}, based on the itemset merging optimization. Because support({a2}) =
support({a1, a2, . . . , a50}) = 2, and {a2} is a proper subset of {a1, a2, . . . , a50}, there
is no need to examine a2 and its projected database. Similar pruning can be done
for a3, . . . , a50 as well. Thus, the mining of closed frequent itemsets in this data set
terminates after mining a1’s projected database.

Item skipping: In the depth-first mining of closed itemsets, at each level, there will be
a prefix itemset X associated with a header table and a projected database. If a local
frequent item p has the same support in several header tables at different levels, we can
safely prune p from the header tables at higher levels.

Consider, for example, the previous transaction database having only two trans-
actions: {〈a1, a2, . . . , a100〉, 〈a1, a2, . . . , a50〉}, where min sup = 2. Because a2 in a1’s
projected database has the same support as a2 in the global header table, a2 can be
pruned from the global header table. Similar pruning can be done for a3, . . . , a50.
There is no need to mine anything more after mining a1’s projected database.

Besides pruning the search space in the closed itemset mining process, another
important optimization is to perform efficient checking of each newly derived frequent
itemset to see whether it is closed. This is because the mining process cannot ensure that
every generated frequent itemset is closed.

When a new frequent itemset is derived, it is necessary to perform two kinds of
closure checking: (1) superset checking, which checks if this new frequent itemset is a
superset of some already found closed itemsets with the same support, and (2) subset
checking, which checks whether the newly found itemset is a subset of an already found
closed itemset with the same support.

If we adopt the item merging pruning method under a divide-and-conquer frame-
work, then the superset checking is actually built-in and there is no need to explicitly

264 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

perform superset checking. This is because if a frequent itemset X ∪ Y is found later
than itemset X , and carries the same support as X , it must be in X ’s projected database
and must have been generated during itemset merging.

To assist in subset checking, a compressed pattern-tree can be constructed to main-
tain the set of closed itemsets mined so far. The pattern-tree is similar in structure to the
FP-tree except that all the closed itemsets found are stored explicitly in the correspond-
ing tree branches. For efficient subset checking, we can use the following property: If the
current itemset Sc can be subsumed by another already found closed itemset Sa, then (1) Sc

and Sa have the same support, (2) the length of Sc is smaller than that of Sa, and (3) all of
the items in Sc are contained in Sa.

Based on this property, a two-level hash index structure can be built for fast access-
ing of the pattern-tree: The first level uses the identifier of the last item in Sc as a hash key
(since this identifier must be within the branch of Sc), and the second level uses the sup-
port of Sc as a hash key (since Sc and Sa have the same support). This will substantially
speed up the subset checking process.

This discussion illustrates methods for efficient mining of closed frequent itemsets.
“Can we extend these methods for efficient mining of maximal frequent itemsets?” Because
maximal frequent itemsets share many similarities with closed frequent itemsets, many
of the optimization techniques developed here can be extended to mining maximal
frequent itemsets. However, we leave this method as an exercise for interested readers.

6.3 Which Patterns Are Interesting?—Pattern
Evaluation Methods

Most association rule mining algorithms employ a support–confidence framework.
Although minimum support and confidence thresholds help weed out or exclude the
exploration of a good number of uninteresting rules, many of the rules generated are
still not interesting to the users. Unfortunately, this is especially true when mining at
low support thresholds or mining for long patterns. This has been a major bottleneck for
successful application of association rule mining.

In this section, we first look at how even strong association rules can be uninteresting
and misleading (Section 6.3.1). We then discuss how the support–confidence frame-
work can be supplemented with additional interestingness measures based on correlation
analysis (Section 6.3.2). Section 6.3.3 presents additional pattern evaluation measures.
It then provides an overall comparison of all the measures discussed here. By the end,
you will learn which pattern evaluation measures are most effective for the discovery of
only interesting rules.

6.3.1 Strong Rules Are Not Necessarily Interesting

Whether or not a rule is interesting can be assessed either subjectively or objectively.
Ultimately, only the user can judge if a given rule is interesting, and this judgment, being

6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods 265

subjective, may differ from one user to another. However, objective interestingness mea-
sures, based on the statistics “behind” the data, can be used as one step toward the goal
of weeding out uninteresting rules that would otherwise be presented to the user.

“How can we tell which strong association rules are really interesting?” Let’s examine
the following example.

Example 6.7 A misleading “strong” association rule. Suppose we are interested in analyzing trans-
actions at AllElectronics with respect to the purchase of computer games and videos.
Let game refer to the transactions containing computer games, and video refer to those
containing videos. Of the 10,000 transactions analyzed, the data show that 6000 of the
customer transactions included computer games, while 7500 included videos, and 4000
included both computer games and videos. Suppose that a data mining program for
discovering association rules is run on the data, using a minimum support of, say, 30%
and a minimum confidence of 60%. The following association rule is discovered:

buys(X , “computer games”) ⇒ buys(X , “videos”)

[support = 40%, confidence = 66%]. (6.6)

Rule (6.6) is a strong association rule and would therefore be reported, since its support
value of 4000

10,000 = 40% and confidence value of 4000
6000 = 66% satisfy the minimum support

and minimum confidence thresholds, respectively. However, Rule (6.6) is misleading
because the probability of purchasing videos is 75%, which is even larger than 66%. In
fact, computer games and videos are negatively associated because the purchase of one
of these items actually decreases the likelihood of purchasing the other. Without fully
understanding this phenomenon, we could easily make unwise business decisions based
on Rule (6.6).

Example 6.7 also illustrates that the confidence of a rule A ⇒ B can be deceiving. It
does not measure the real strength (or lack of strength) of the correlation and implica-
tion between A and B. Hence, alternatives to the support–confidence framework can be
useful in mining interesting data relationships.

6.3.2 From Association Analysis to Correlation Analysis

As we have seen so far, the support and confidence measures are insufficient at filtering
out uninteresting association rules. To tackle this weakness, a correlation measure can
be used to augment the support–confidence framework for association rules. This leads
to correlation rules of the form

A ⇒ B [support, confidence, correlation]. (6.7)

That is, a correlation rule is measured not only by its support and confidence but also
by the correlation between itemsets A and B. There are many different correlation mea-
sures from which to choose. In this subsection, we study several correlation measures to
determine which would be good for mining large data sets.

266 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Lift is a simple correlation measure that is given as follows. The occurrence of itemset
A is independent of the occurrence of itemset B if P(A ∪ B) = P(A)P(B); otherwise,
itemsets A and B are dependent and correlated as events. This definition can easily be
extended to more than two itemsets. The lift between the occurrence of A and B can be
measured by computing

lift(A, B) = P(A ∪ B)

P(A)P(B)
. (6.8)

If the resulting value of Eq. (6.8) is less than 1, then the occurrence of A is negatively
correlated with the occurrence of B, meaning that the occurrence of one likely leads to
the absence of the other one. If the resulting value is greater than 1, then A and B are
positively correlated, meaning that the occurrence of one implies the occurrence of the
other. If the resulting value is equal to 1, then A and B are independent and there is no
correlation between them.

Equation (6.8) is equivalent to P(B|A)/P(B), or conf(A ⇒ B)/sup(B), which is also
referred to as the lift of the association (or correlation) rule A ⇒ B. In other words, it
assesses the degree to which the occurrence of one “lifts” the occurrence of the other. For
example, if A corresponds to the sale of computer games and B corresponds to the sale
of videos, then given the current market conditions, the sale of games is said to increase
or “lift” the likelihood of the sale of videos by a factor of the value returned by Eq. (6.8).

Let’s go back to the computer game and video data of Example 6.7.

Example 6.8 Correlation analysis using lift. To help filter out misleading “strong” associations of
the form A ⇒ B from the data of Example 6.7, we need to study how the two item-
sets, A and B, are correlated. Let game refer to the transactions of Example 6.7 that do
not contain computer games, and video refer to those that do not contain videos. The
transactions can be summarized in a contingency table, as shown in Table 6.6.

From the table, we can see that the probability of purchasing a computer game
is P({game}) = 0.60, the probability of purchasing a video is P({video}) = 0.75, and
the probability of purchasing both is P({game,video}) = 0.40. By Eq. (6.8), the lift of
Rule (6.6) is P({game, video})/(P({game}) × P({video})) = 0.40/(0.60 × 0.75) = 0.89.
Because this value is less than 1, there is a negative correlation between the occur-
rence of {game} and {video}. The numerator is the likelihood of a customer purchasing
both, while the denominator is what the likelihood would have been if the two pur-
chases were completely independent. Such a negative correlation cannot be identified
by a support–confidence framework.

The second correlation measure that we study is the χ2 measure, which was intro-
duced in Chapter 3 (Eq. 3.1). To compute the χ2 value, we take the squared difference
between the observed and expected value for a slot (A and B pair) in the contin-
gency table, divided by the expected value. This amount is summed for all slots of the
contingency table. Let’s perform a χ2 analysis of Example 6.8.

6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods 267

Table 6.6 2 × 2 Contingency Table Summarizing the
Transactions with Respect to Game and
Video Purchases

game game �row

video 4000 3500 7500

video 2000 500 2500

�col 6000 4000 10,000

Table 6.7 Table 6.6 Contingency Table, Now with
the Expected Values

game game �row

video 4000 (4500) 3500 (3000) 7500

video 2000 (1500) 500 (1000) 2500

�col 6000 4000 10,000

Example 6.9 Correlation analysis using χ2. To compute the correlation using χ2 analysis for nom-
inal data, we need the observed value and expected value (displayed in parenthesis) for
each slot of the contingency table, as shown in Table 6.7. From the table, we can compute
the χ2 value as follows:

χ2 = �
(observed − expected)2

expected
= (4000 − 4500)2

4500
+ (3500 − 3000)2

3000

+ (2000 − 1500)2

1500
+ (500 − 1000)2

1000
= 555.6.

Because the χ2 value is greater than 1, and the observed value of the slot (game, video) =
4000, which is less than the expected value of 4500, buying game and buying video are
negatively correlated. This is consistent with the conclusion derived from the analysis of
the lift measure in Example 6.8.

6.3.3 A Comparison of Pattern Evaluation Measures

The above discussion shows that instead of using the simple support–confidence frame-
work to evaluate frequent patterns, other measures, such as lift and χ2, often disclose
more intrinsic pattern relationships. How effective are these measures? Should we also
consider other alternatives?

Researchers have studied many pattern evaluation measures even before the start of
in-depth research on scalable methods for mining frequent patterns. Recently, several
other pattern evaluation measures have attracted interest. In this subsection, we present

268 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

four such measures: all confidence, max confidence, Kulczynski, and cosine. We’ll then
compare their effectiveness with respect to one another and with respect to the lift and
χ2 measures.

Given two itemsets, A and B, the all confidence measure of A and B is defined as

all conf(A,B) = sup(A ∪ B)

max{sup(A), sup(B)} = min {P(A|B),P(B|A)}, (6.9)

where max{sup(A), sup(B)} is the maximum support of the itemsets A and B. Thus,
all conf(A,B) is also the minimum confidence of the two association rules related to
A and B, namely, “A ⇒ B” and “B ⇒ A.”

Given two itemsets, A and B, the max confidence measure of A and B is defined as

max conf(A, B) = max{P(A |B),P(B |A)}. (6.10)

The max conf measure is the maximum confidence of the two association rules,
“A ⇒ B” and “B ⇒ A.”

Given two itemsets, A and B, the Kulczynski measure of A and B (abbreviated as
Kulc) is defined as

Kulc(A, B) = 1

2
(P(A|B) + P(B|A)). (6.11)

It was proposed in 1927 by Polish mathematician S. Kulczynski. It can be viewed as an
average of two confidence measures. That is, it is the average of two conditional prob-
abilities: the probability of itemset B given itemset A, and the probability of itemset A
given itemset B.

Finally, given two itemsets, A and B, the cosine measure of A and B is defined as

cosine(A, B) = P(A ∪ B)√
P(A) × P(B)

= sup(A ∪ B)√
sup(A) × sup(B)

=
√

P(A|B) × P(B|A). (6.12)

The cosine measure can be viewed as a harmonized lift measure: The two formulae are
similar except that for cosine, the square root is taken on the product of the probabilities
of A and B. This is an important difference, however, because by taking the square root,
the cosine value is only influenced by the supports of A, B, and A ∪ B, and not by the
total number of transactions.

Each of these four measures defined has the following property: Its value is only
influenced by the supports of A, B, and A ∪ B, or more exactly, by the conditional prob-
abilities of P(A|B) and P(B|A), but not by the total number of transactions. Another
common property is that each measure ranges from 0 to 1, and the higher the value, the
closer the relationship between A and B.

Now, together with lift and χ2, we have introduced in total six pattern evaluation
measures. You may wonder, “Which is the best in assessing the discovered pattern rela-
tionships?” To answer this question, we examine their performance on some typical
data sets.

6.3 Which Patterns Are Interesting?—Pattern Evaluation Methods 269

Table 6.8 2 × 2 Contingency Table for Two Items

milk milk �row

coffee mc mc c

coffee mc mc c

�col m m �

Table 6.9 Comparison of Six Pattern Evaluation Measures Using Contingency Tables
for a Variety of Data Sets

Data
Set mc mc mc mc χ2 lift all conf. max conf. Kulc. cosine
D1 10,000 1000 1000 100,000 90557 9.26 0.91 0.91 0.91 0.91

D2 10,000 1000 1000 100 0 1 0.91 0.91 0.91 0.91

D3 100 1000 1000 100,000 670 8.44 0.09 0.09 0.09 0.09

D4 1000 1000 1000 100,000 24740 25.75 0.5 0.5 0.5 0.5

D5 1000 100 10,000 100,000 8173 9.18 0.09 0.91 0.5 0.29

D6 1000 10 100,000 100,000 965 1.97 0.01 0.99 0.5 0.10

Example 6.10 Comparison of six pattern evaluation measures on typical data sets. The relationships
between the purchases of two items, milk and coffee, can be examined by summarizing
their purchase history in Table 6.8, a 2 × 2 contingency table, where an entry such as mc
represents the number of transactions containing both milk and coffee.

Table 6.9 shows a set of transactional data sets with their corresponding contin-
gency tables and the associated values for each of the six evaluation measures. Let’s
first examine the first four data sets, D1 through D4. From the table, we see that m
and c are positively associated in D1 and D2, negatively associated in D3, and neu-
tral in D4. For D1 and D2, m and c are positively associated because mc (10,000)
is considerably greater than mc (1000) and mc (1000). Intuitively, for people who
bought milk (m = 10,000 + 1000 = 11,000), it is very likely that they also bought coffee
(mc/m = 10/11 = 91%), and vice versa.

The results of the four newly introduced measures show that m and c are strongly
positively associated in both data sets by producing a measure value of 0.91. However,
lift and χ2 generate dramatically different measure values for D1 and D2 due to their
sensitivity to mc. In fact, in many real-world scenarios, mc is usually huge and unstable.
For example, in a market basket database, the total number of transactions could fluctu-
ate on a daily basis and overwhelmingly exceed the number of transactions containing
any particular itemset. Therefore, a good interestingness measure should not be affected
by transactions that do not contain the itemsets of interest; otherwise, it would generate
unstable results, as illustrated in D1 and D2.

270 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

Similarly, in D3, the four new measures correctly show that m and c are strongly
negatively associated because the m to c ratio equals the mc to m ratio, that is,
100/1100 = 9.1%. However, lift and χ2 both contradict this in an incorrect way: Their
values for D2 are between those for D1 and D3.

For data set D4, both lift and χ2 indicate a highly positive association between
m and c, whereas the others indicate a “neutral” association because the ratio of mc to
mc equals the ratio of mc to mc, which is 1. This means that if a customer buys
coffee (or milk), the probability that he or she will also purchase milk (or coffee) is
exactly 50%.

“Why are lift and χ2 so poor at distinguishing pattern association relationships in
the previous transactional data sets?” To answer this, we have to consider the null-
transactions. A null-transaction is a transaction that does not contain any of the item-
sets being examined. In our example, mc represents the number of null-transactions.
Lift and χ2 have difficulty distinguishing interesting pattern association relationships
because they are both strongly influenced by mc. Typically, the number of null-
transactions can outweigh the number of individual purchases because, for example,
many people may buy neither milk nor coffee. On the other hand, the other four
measures are good indicators of interesting pattern associations because their defi-
nitions remove the influence of mc (i.e., they are not influenced by the number of
null-transactions).

This discussion shows that it is highly desirable to have a measure that has a value
that is independent of the number of null-transactions. A measure is null-invariant if
its value is free from the influence of null-transactions. Null-invariance is an impor-
tant property for measuring association patterns in large transaction databases. Among
the six discussed measures in this subsection, only lift and χ2 are not null-invariant
measures.

“Among the all confidence, max confidence, Kulczynski, and cosine measures, which
is best at indicating interesting pattern relationships?”

To answer this question, we introduce the imbalance ratio (IR), which assesses the
imbalance of two itemsets, A and B, in rule implications. It is defined as

IR(A,B) = |sup(A) − sup(B)|
sup(A) + sup(B) − sup(A ∪ B)

, (6.13)

where the numerator is the absolute value of the difference between the support of the
itemsets A and B, and the denominator is the number of transactions containing A or
B. If the two directional implications between A and B are the same, then IR(A,B) will
be zero. Otherwise, the larger the difference between the two, the larger the imbalance
ratio. This ratio is independent of the number of null-transactions and independent of
the total number of transactions.

Let’s continue examining the remaining data sets in Example 6.10.

Example 6.11 Comparing null-invariant measures in pattern evaluation. Although the four mea-
sures introduced in this section are null-invariant, they may present dramatically

6.4 Summary 271

different values on some subtly different data sets. Let’s examine data sets D5 and D6,
shown earlier in Table 6.9, where the two events m and c have unbalanced conditional
probabilities. That is, the ratio of mc to c is greater than 0.9. This means that knowing
that c occurs should strongly suggest that m occurs also. The ratio of mc to m is less than
0.1, indicating that m implies that c is quite unlikely to occur. The all confidence and
cosine measures view both cases as negatively associated and the Kulc measure views
both as neutral. The max confidence measure claims strong positive associations for
these cases. The measures give very diverse results!

“Which measure intuitively reflects the true relationship between the purchase of milk
and coffee?” Due to the “balanced” skewness of the data, it is difficult to argue whether
the two data sets have positive or negative association. From one point of view, only
mc/(mc + mc) = 1000/(1000 + 10,000) = 9.09% of milk-related transactions contain
coffee in D5 and this percentage is 1000/(1000 + 100,000) = 0.99% in D6, both indi-
cating a negative association. On the other hand, 90.9% of transactions in D5 (i.e.,
mc/(mc + mc) = 1000/(1000 + 100)) and 9% in D6 (i.e., 1000/(1000 + 10)) contain-
ing coffee contain milk as well, which indicates a positive association between milk and
coffee. These draw very different conclusions.

For such “balanced” skewness, it could be fair to treat it as neutral, as Kulc does,
and in the meantime indicate its skewness using the imbalance ratio (IR). According to
Eq. (6.13), for D4 we have IR(m, c) = 0, a perfectly balanced case; for D5, IR(m, c) =
0.89, a rather imbalanced case; whereas for D6, IR(m, c) = 0.99, a very skewed case.
Therefore, the two measures, Kulc and IR, work together, presenting a clear picture for
all three data sets, D4 through D6.

In summary, the use of only support and confidence measures to mine associa-
tions may generate a large number of rules, many of which can be uninteresting to
users. Instead, we can augment the support–confidence framework with a pattern inter-
estingness measure, which helps focus the mining toward rules with strong pattern
relationships. The added measure substantially reduces the number of rules gener-
ated and leads to the discovery of more meaningful rules. Besides those introduced in
this section, many other interestingness measures have been studied in the literature.
Unfortunately, most of them do not have the null-invariance property. Because large
data sets typically have many null-transactions, it is important to consider the null-
invariance property when selecting appropriate interestingness measures for pattern
evaluation. Among the four null-invariant measures studied here, namely all confidence,
max confidence, Kulc, and cosine, we recommend using Kulc in conjunction with the
imbalance ratio.

6.4 Summary

The discovery of frequent patterns, associations, and correlation relationships among
huge amounts of data is useful in selective marketing, decision analysis, and business
management. A popular area of application is market basket analysis, which studies

272 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

customers’ buying habits by searching for itemsets that are frequently purchased
together (or in sequence).

Association rule mining consists of first finding frequent itemsets (sets of items,
such as A and B, satisfying a minimum support threshold, or percentage of the task-
relevant tuples), from which strong association rules in the form of A ⇒ B are
generated. These rules also satisfy a minimum confidence threshold (a prespecified
probability of satisfying B under the condition that A is satisfied). Associations can be
further analyzed to uncover correlation rules, which convey statistical correlations
between itemsets A and B.

Many efficient and scalable algorithms have been developed for frequent itemset
mining, from which association and correlation rules can be derived. These algo-
rithms can be classified into three categories: (1) Apriori-like algorithms, (2) frequent
pattern growth–based algorithms such as FP-growth, and (3) algorithms that use the
vertical data format.

The Apriori algorithm is a seminal algorithm for mining frequent itemsets for
Boolean association rules. It explores the level-wise mining Apriori property that all
nonempty subsets of a frequent itemset must also be frequent. At the kth iteration (for
k ≥ 2), it forms frequent k-itemset candidates based on the frequent (k − 1)-itemsets,
and scans the database once to find the complete set of frequent k-itemsets, Lk .

Variations involving hashing and transaction reduction can be used to make the
procedure more efficient. Other variations include partitioning the data (mining on
each partition and then combining the results) and sampling the data (mining on
a data subset). These variations can reduce the number of data scans required to as
little as two or even one.

Frequent pattern growth is a method of mining frequent itemsets without candidate
generation. It constructs a highly compact data structure (an FP-tree) to compress the
original transaction database. Rather than employing the generate-and-test strategy of
Apriori-like methods, it focuses on frequent pattern (fragment) growth, which avoids
costly candidate generation, resulting in greater efficiency.

Mining frequent itemsets using the vertical data format (Eclat) is a method that
transforms a given data set of transactions in the horizontal data format of TID-
itemset into the vertical data format of item-TID set. It mines the transformed
data set by TID set intersections based on the Apriori property and additional
optimization techniques such as diffset.

Not all strong association rules are interesting. Therefore, the support–confidence
framework should be augmented with a pattern evaluation measure, which promotes
the mining of interesting rules. A measure is null-invariant if its value is free from
the influence of null-transactions (i.e., the transactions that do not contain any of
the itemsets being examined). Among many pattern evaluation measures, we exam-
ined lift, χ2, all confidence, max confidence, Kulczynski, and cosine, and showed

6.5 Exercises 273

that only the latter four are null-invariant. We suggest using the Kulczynski measure,
together with the imbalance ratio, to present pattern relationships among itemsets.

6.5 Exercises

6.1 Suppose you have the set C of all frequent closed itemsets on a data set D, as well
as the support count for each frequent closed itemset. Describe an algorithm to
determine whether a given itemset X is frequent or not, and the support of X if it
is frequent.

6.2 An itemset X is called a generator on a data set D if there does not exist a proper
sub-itemset Y ⊂ X such that support(X) = support(Y). A generator X is a frequent
generator if support(X) passes the minimum support threshold. Let G be the set of
all frequent generators on a data set D.

(a) Can you determine whether an itemset A is frequent and the support of A, if it
is frequent, using only G and the support counts of all frequent generators? If
yes, present your algorithm. Otherwise, what other information is needed? Can
you give an algorithm assuming the information needed is available?

(b) What is the relationship between closed itemsets and generators?

6.3 The Apriori algorithm makes use of prior knowledge of subset support properties.

(a) Prove that all nonempty subsets of a frequent itemset must also be frequent.

(b) Prove that the support of any nonempty subset s′ of itemset s must be at least
as great as the support of s.

(c) Given frequent itemset l and subset s of l, prove that the confidence of the rule
“s′ ⇒ (l − s′)” cannot be more than the confidence of “s ⇒ (l − s),” where s′ is
a subset of s.

(d) A partitioning variation of Apriori subdivides the transactions of a database D
into n nonoverlapping partitions. Prove that any itemset that is frequent in D
must be frequent in at least one partition of D.

6.4 Let c be a candidate itemset in Ck generated by the Apriori algorithm. How many
length-(k − 1) subsets do we need to check in the prune step? Per your previ-
ous answer, can you give an improved version of procedure has infrequent subset
in Figure 6.4?

6.5 Section 6.2.2 describes a method for generating association rules from frequent
itemsets. Propose a more efficient method. Explain why it is more efficient than
the one proposed there. (Hint: Consider incorporating the properties of Exercises
6.3(b), (c) into your design.)

6.6 A database has five transactions. Let min sup = 60% and min conf = 80%.

274 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

TID items bought

T100 {M, O, N, K, E, Y}
T200 {D, O, N, K, E, Y }
T300 {M, A, K, E}
T400 {M, U, C, K, Y}
T500 {C, O, O, K, I, E}

(a) Find all frequent itemsets using Apriori and FP-growth, respectively. Compare
the efficiency of the two mining processes.

(b) List all the strong association rules (with support s and confidence c) matching
the following metarule, where X is a variable representing customers, and itemi

denotes variables representing items (e.g., “A,” “B,”):

∀x ∈ transaction, buys(X , item1) ∧ buys(X , item2) ⇒ buys(X , item3) [s, c]

6.7 (Implementation project) Using a programming language that you are familiar
with, such as C++ or Java, implement three frequent itemset mining algorithms
introduced in this chapter: (1) Apriori [AS94b], (2) FP-growth [HPY00], and
(3) Eclat [Zak00] (mining using the vertical data format). Compare the perfor-
mance of each algorithm with various kinds of large data sets. Write a report to
analyze the situations (e.g., data size, data distribution, minimal support thresh-
old setting, and pattern density) where one algorithm may perform better than the
others, and state why.

6.8 A database has four transactions. Let min sup = 60% and min conf = 80%.

cust ID TID items bought (in the form of brand-item category)

01 T100 {King’s-Crab, Sunset-Milk, Dairyland-Cheese, Best-Bread}
02 T200 {Best-Cheese, Dairyland-Milk, Goldenfarm-Apple, Tasty-Pie, Wonder-Bread}
01 T300 {Westcoast-Apple, Dairyland-Milk, Wonder-Bread, Tasty-Pie}
03 T400 {Wonder-Bread, Sunset-Milk, Dairyland-Cheese}

(a) At the granularity of item category (e.g., itemi could be “Milk”), for the rule
template,

∀X ∈ transaction, buys(X , item1) ∧ buys(X , item2) ⇒ buys(X , item3) [s, c],

list the frequent k-itemset for the largest k, and all the strong association rules
(with their support s and confidence c) containing the frequent k-itemset for the
largest k.

(b) At the granularity of brand-item category (e.g., itemi could be “Sunset-Milk”),
for the rule template,

∀X ∈ customer, buys(X , item1) ∧ buys(X , item2) ⇒ buys(X , item3),

list the frequent k-itemset for the largest k (but do not print any rules).

6.5 Exercises 275

6.9 Suppose that a large store has a transactional database that is distributed among
four locations. Transactions in each component database have the same for-
mat, namely Tj : {i1, . . . , im}, where Tj is a transaction identifier, and ik (1 ≤
k ≤ m) is the identifier of an item purchased in the transaction. Propose an
efficient algorithm to mine global association rules. You may present your algo-
rithm in the form of an outline. Your algorithm should not require shipping
all the data to one site and should not cause excessive network communication
overhead.

6.10 Suppose that frequent itemsets are saved for a large transactional database, DB.
Discuss how to efficiently mine the (global) association rules under the same
minimum support threshold, if a set of new transactions, denoted as �DB, is
(incrementally) added in?

6.11 Most frequent pattern mining algorithms consider only distinct items in a transac-
tion. However, multiple occurrences of an item in the same shopping basket, such
as four cakes and three jugs of milk, can be important in transactional data analysis.
How can one mine frequent itemsets efficiently considering multiple occurrences
of items? Propose modifications to the well-known algorithms, such as Apriori and
FP-growth, to adapt to such a situation.

6.12 (Implementation project) Many techniques have been proposed to further
improve the performance of frequent itemset mining algorithms. Taking FP-tree–
based frequent pattern growth algorithms (e.g., FP-growth) as an example, imple-
ment one of the following optimization techniques. Compare the performance of
your new implementation with the unoptimized version.

(a) The frequent pattern mining method of Section 6.2.4 uses an FP-tree to gen-
erate conditional pattern bases using a bottom-up projection technique (i.e.,
project onto the prefix path of an item p). However, one can develop a top-
down projection technique, that is, project onto the suffix path of an item p in
the generation of a conditional pattern base. Design and implement such a top-
down FP-tree mining method. Compare its performance with the bottom-up
projection method.

(b) Nodes and pointers are used uniformly in an FP-tree in the FP-growth algo-
rithm design. However, such a structure may consume a lot of space when
the data are sparse. One possible alternative design is to explore array- and
pointer-based hybrid implementation, where a node may store multiple items
when it contains no splitting point to multiple sub-branches. Develop such an
implementation and compare it with the original one.

(c) It is time and space consuming to generate numerous conditional pattern bases
during pattern-growth mining. An interesting alternative is to push right the
branches that have been mined for a particular item p, that is, to push them to
the remaining branch(es) of the FP-tree. This is done so that fewer conditional
pattern bases have to be generated and additional sharing can be explored when
mining the remaining FP-tree branches. Design and implement such a method
and conduct a performance study on it.

276 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

6.13 Give a short example to show that items in a strong association rule actually may
be negatively correlated.

6.14 The following contingency table summarizes supermarket transaction data, where
hot dogs refers to the transactions containing hot dogs, hot dogs refers to the
transactions that do not contain hot dogs, hamburgers refers to the transactions
containing hamburgers, and hamburgers refers to the transactions that do not
contain hamburgers.

hot dogs hot dogs �row

hamburgers 2000 500 2500

hamburgers 1000 1500 2500

�col 3000 2000 5000

(a) Suppose that the association rule “hot dogs ⇒ hamburgers” is mined. Given a
minimum support threshold of 25% and a minimum confidence threshold of
50%, is this association rule strong?

(b) Based on the given data, is the purchase of hot dogs independent of the purchase
of hamburgers? If not, what kind of correlation relationship exists between the
two?

(c) Compare the use of the all confidence, max confidence, Kulczynski, and cosine
measures with lift and correlation on the given data.

6.15 (Implementation project) The DBLP data set (www.informatik.uni-trier
.de/∼ley/db/) consists of over one million entries of research papers pub-
lished in computer science conferences and journals. Among these entries, there
are a good number of authors that have coauthor relationships.

(a) Propose a method to efficiently mine a set of coauthor relationships that are
closely correlated (e.g., often coauthoring papers together).

(b) Based on the mining results and the pattern evaluation measures discussed in
this chapter, discuss which measure may convincingly uncover close collabora-
tion patterns better than others.

(c) Based on the study in (a), develop a method that can roughly predict advi-
sor and advisee relationships and the approximate period for such advisory
supervision.

6.6 Bibliographic Notes

Association rule mining was first proposed by Agrawal, Imielinski, and Swami [AIS93].
The Apriori algorithm discussed in Section 6.2.1 for frequent itemset mining was pre-
sented in Agrawal and Srikant [AS94b]. A variation of the algorithm using a similar
pruning heuristic was developed independently by Mannila, Tiovonen, and Verkamo

6.6 Bibliographic Notes 277

[MTV94]. A joint publication combining these works later appeared in Agrawal,
Mannila, Srikant et al. [AMS+96]. A method for generating association rules from
frequent itemsets is described in Agrawal and Srikant [AS94a].

References for the variations of Apriori described in Section 6.2.3 include the
following. The use of hash tables to improve association mining efficiency was stud-
ied by Park, Chen, and Yu [PCY95a]. The partitioning technique was proposed by
Savasere, Omiecinski, and Navathe [SON95]. The sampling approach is discussed in
Toivonen [Toi96]. A dynamic itemset counting approach is given in Brin, Motwani,
Ullman, and Tsur [BMUT97]. An efficient incremental updating of mined association
rules was proposed by Cheung, Han, Ng, and Wong [CHNW96]. Parallel and dis-
tributed association data mining under the Apriori framework was studied by Park,
Chen, and Yu [PCY95b]; Agrawal and Shafer [AS96]; and Cheung, Han, Ng, et al.
[CHN+96]. Another parallel association mining method, which explores itemset clus-
tering using a vertical database layout, was proposed in Zaki, Parthasarathy, Ogihara,
and Li [ZPOL97].

Other scalable frequent itemset mining methods have been proposed as alterna-
tives to the Apriori-based approach. FP-growth, a pattern-growth approach for mining
frequent itemsets without candidate generation, was proposed by Han, Pei, and Yin
[HPY00] (Section 6.2.4). An exploration of hyper structure mining of frequent patterns,
called H-Mine, was proposed by Pei, Han, Lu, et al. [PHL+01]. A method that integrates
top-down and bottom-up traversal of FP-trees in pattern-growth mining was proposed
by Liu, Pan, Wang, and Han [LPWH02]. An array-based implementation of prefix-
tree structure for efficient pattern growth mining was proposed by Grahne and Zhu
[GZ03b]. Eclat, an approach for mining frequent itemsets by exploring the vertical data
format, was proposed by Zaki [Zak00]. A depth-first generation of frequent itemsets by
a tree projection technique was proposed by Agarwal, Aggarwal, and Prasad [AAP01].
An integration of association mining with relational database systems was studied by
Sarawagi, Thomas, and Agrawal [STA98].

The mining of frequent closed itemsets was proposed in Pasquier, Bastide, Taouil,
and Lakhal [PBTL99], where an Apriori-based algorithm called A-Close for such min-
ing was presented. CLOSET, an efficient closed itemset mining algorithm based on
the frequent pattern growth method, was proposed by Pei, Han, and Mao [PHM00].
CHARM by Zaki and Hsiao [ZH02] developed a compact vertical TID list structure
called diffset, which records only the difference in the TID list of a candidate pattern
from its prefix pattern. A fast hash-based approach is also used in CHARM to prune
nonclosed patterns. CLOSET+ by Wang, Han, and Pei [WHP03] integrates previously
proposed effective strategies as well as newly developed techniques such as hybrid tree-
projection and item skipping. AFOPT, a method that explores a right push operation on
FP-trees during the mining process, was proposed by Liu, Lu, Lou, and Yu [LLLY03].
Grahne and Zhu [GZ03b] proposed a prefix-tree–based algorithm integrated with
array representation, called FPClose, for mining closed itemsets using a pattern-growth
approach.

Pan, Cong, Tung, et al. [PCT+03] proposed CARPENTER, a method for finding
closed patterns in long biological data sets, which integrates the advantages of vertical

278 Chapter 6 Mining Frequent Patterns, Associations, and Correlations

data formats and pattern growth methods. Mining max-patterns was first studied by
Bayardo [Bay98], where MaxMiner, an Apriori-based, level-wise, breadth-first search
method, was proposed to find max-itemset by performing superset frequency pruning
and subset infrequency pruning for search space reduction. Another efficient method,
MAFIA, developed by Burdick, Calimlim, and Gehrke [BCG01], uses vertical bitmaps
to compress TID lists, thus improving the counting efficiency. A FIMI (Frequent Itemset
Mining Implementation) workshop dedicated to implementation methods for frequent
itemset mining was reported by Goethals and Zaki [GZ03a].

The problem of mining interesting rules has been studied by many researchers.
The statistical independence of rules in data mining was studied by Piatetski-Shapiro
[P-S91]. The interestingness problem of strong association rules is discussed in Chen,
Han, and Yu [CHY96]; Brin, Motwani, and Silverstein [BMS97]; and Aggarwal and
Yu [AY99], which cover several interestingness measures, including lift. An efficient
method for generalizing associations to correlations is given in Brin, Motwani, and
Silverstein [BMS97]. Other alternatives to the support–confidence framework for assess-
ing the interestingness of association rules are proposed in Brin, Motwani, Ullman, and
Tsur [BMUT97] and Ahmed, El-Makky, and Taha [AEMT00].

A method for mining strong gradient relationships among itemsets was proposed
by Imielinski, Khachiyan, and Abdulghani [IKA02]. Silverstein, Brin, Motwani, and
Ullman [SBMU98] studied the problem of mining causal structures over transaction
databases. Some comparative studies of different interestingness measures were done by
Hilderman and Hamilton [HH01]. The notion of null transaction invariance was intro-
duced, together with a comparative analysis of interestingness measures, by Tan, Kumar,
and Srivastava [TKS02]. The use of all confidence as a correlation measure for generating
interesting association rules was studied by Omiecinski [Omi03] and by Lee, Kim, Cai,
and Han [LKCH03]. Wu, Chen, and Han [WCH10] introduced the Kulczynski measure
for associative patterns and performed a comparative analysis of a set of measures for
pattern evaluation.

7Advanced Pattern Mining

Frequent pattern mining has reached far beyond the basics due to substantial research, numer-
ous extensions of the problem scope, and broad application studies. In this chapter, you
will learn methods for advanced pattern mining. We begin by laying out a general road
map for pattern mining. We introduce methods for mining various kinds of patterns,
and discuss extended applications of pattern mining. We include in-depth coverage of
methods for mining many kinds of patterns: multilevel patterns, multidimensional pat-
terns, patterns in continuous data, rare patterns, negative patterns, constrained frequent
patterns, frequent patterns in high-dimensional data, colossal patterns, and compressed
and approximate patterns. Other pattern mining themes, including mining sequential
and structured patterns and mining patterns from spatiotemporal, multimedia, and
stream data, are considered more advanced topics and are not covered in this book.
Notice that pattern mining is a more general term than frequent pattern mining since the
former covers rare and negative patterns as well. However, when there is no ambiguity,
the two terms are used interchangeably.

7.1 Pattern Mining: A Road Map

Chapter 6 introduced the basic concepts, techniques, and applications of frequent pat-
tern mining using market basket analysis as an example. Many other kinds of data,
user requests, and applications have led to the development of numerous, diverse
methods for mining patterns, associations, and correlation relationships. Given the
rich literature in this area, it is important to lay out a clear road map to help us get
an organized picture of the field and to select the best methods for pattern mining
applications.

Figure 7.1 outlines a general road map on pattern mining research. Most stud-
ies mainly address three pattern mining aspects: the kinds of patterns mined, mining
methodologies, and applications. Some studies, however, integrate multiple aspects; for
example, different applications may need to mine different patterns, which naturally
leads to the development of new mining methodologies.

c© 2012 Elsevier Inc. All rights reserved.

Data Mining: Concepts and Techniques 279

280 Chapter 7 Advanced Pattern Mining

frequent patterns
association rules
closed/max patterns
generators

candidate generation (Apriori, partitioning, sampling, ...)
Pattern growth (FP-growth, HMine, FPMax, Closet+, ...)
vertical format (Eclat, CHARM, ...)

multilevel (uniform, varied, or itemset-based support)
multidimensional patterns (incl. high-dimensional patterns)
continuous data (discretization-based or statistical)

sequential and time-series patterns
structural (e.g., tree, lattice, graph) patterns
spatial (e.g., colocation) patterns
temporal (evolutionary, periodic) patterns
image, video, and multimedia patterns
network patterns

interestingness (subjective vs. objective)
constraint-based mining
correlation rules
exception rules

distributed/parallel mining
incremental mining
stream patterns

approximate patterns
uncertain patterns
compressed patterns
rare patterns/negative patterns
high-dimensional and colossal patterns

Basic Patterns

Basic Mining
Methods

Multilevel and
Multidimensional

Patterns

Extended Data
Types

Applications

pattern-based classification
pattern-based clustering
pattern-based semantic annotation
collaborative filtering
privacy-preserving

Kinds of
Patterns

and Rules

Mining Methods

Pa
tte

rn
 M

in
in

g
R

es
ea

rc
h

Mining Interesting
Patterns

Distributed, Parallel,
and Incremental

Extensions and
Applications

Extended Patterns

Figure 7.1 A general road map on pattern mining research.

Based on pattern diversity, pattern mining can be classified using the following
criteria:

Basic patterns: As discussed in Chapter 6, a frequent pattern may have several alter-
native forms, including a simple frequent pattern, a closed pattern, or a max-pattern.
To review, a frequent pattern is a pattern (or itemset) that satisfies a minimum sup-
port threshold. A pattern p is a closed pattern if there is no superpattern p′ with the
same support as p. Pattern p is a max-pattern if there exists no frequent superpattern
of p. Frequent patterns can also be mapped into association rules, or other kinds
of rules based on interestingness measures. Sometimes we may also be interested in
infrequent or rare patterns (i.e., patterns that occur rarely but are of critical impor-
tance, or negative patterns (i.e., patterns that reveal a negative correlation between
items).

7.1 Pattern Mining: A Road Map 281

Based on the abstraction levels involved in a pattern: Patterns or association rules
may have items or concepts residing at high, low, or multiple abstraction levels. For
example, suppose that a set of association rules mined includes the following rules
where X is a variable representing a customer:

buys(X , “computer”) ⇒ buys(X , “printer”) (7.1)

buys(X , “laptop computer”) ⇒ buys(X , “color laser printer”) (7.2)

In Rules (7.1) and (7.2), the items bought are referenced at different abstraction levels
(e.g., “computer” is a higher-level abstraction of “laptop computer,” and “color laser
printer” is a lower-level abstraction of “printer”). We refer to the rule set mined as
consisting of multilevel association rules. If, instead, the rules within a given set do
not reference items or attributes at different abstraction levels, then the set contains
single-level association rules.

Based on the number of dimensions involved in the rule or pattern: If the items
or attributes in an association rule or pattern reference only one dimension, it is a
single-dimensional association rule/pattern. For example, Rules (7.1) and (7.2) are
single-dimensional association rules because they each refer to only one dimension,
buys.1

If a rule/pattern references two or more dimensions, such as age, income, and buys,
then it is a multidimensional association rule/pattern. The following is an example
of a multidimensional rule:

age(X , “20 . . .29”)∧ income(X , “52K . . .58K”)⇒buys(X , “iPad ”). (7.3)

Based on the types of values handled in the rule or pattern: If a rule involves associ-
ations between the presence or absence of items, it is a Boolean association rule. For
example, Rules (7.1) and (7.2) are Boolean association rules obtained from market
basket analysis.

If a rule describes associations between quantitative items or attributes, then it
is a quantitative association rule. In these rules, quantitative values for items or
attributes are partitioned into intervals. Rule (7.3) can also be considered a quan-
titative association rule where the quantitative attributes age and income have been
discretized.

Based on the constraints or criteria used to mine selective patterns: The patterns
or rules to be discovered can be constraint-based (i.e., satisfying a set of user-
defined constraints), approximate, compressed, near-match (i.e., those that tally
the support count of the near or almost matching itemsets), top-k (i.e., the k most
frequent itemsets for a user-specified value, k), redundancy-aware top-k (i.e., the
top-k patterns with similar or redundant patterns excluded), and so on.

1Following the terminology used in multidimensional databases, we refer to each distinct predicate in a
rule as a dimension.

282 Chapter 7 Advanced Pattern Mining

Alternatively, pattern mining can be classified with respect to the kinds of data and
applications involved, using the following criteria:

Based on kinds of data and features to be mined: Given relational and data ware-
house data, most people are interested in itemsets. Thus, frequent pattern mining
in this context is essentially frequent itemset mining, that is, to mine frequent sets
of items. However, in many other applications, patterns may involve sequences and
structures. For example, by studying the order in which items are frequently pur-
chased, we may find that customers tend to first buy a PC, followed by a digital
camera, and then a memory card. This leads to sequential patterns, that is, fre-
quent subsequences (which are often separated by some other events) in a sequence
of ordered events.

We may also mine structural patterns, that is, frequent substructures, in a struc-
tured data set. Note that structure is a general concept that covers many different
kinds of structural forms such as directed graphs, undirected graphs, lattices, trees,
sequences, sets, single items, or combinations of such structures. Single items are the
simplest form of structure. Each element of a general pattern may contain a subse-
quence, a subtree, a subgraph, and so on, and such containment relationships can
be defined recursively. Therefore, structural pattern mining can be considered as the
most general form of frequent pattern mining.

Based on application domain-specific semantics: Both data and applications can be
very diverse, and therefore the patterns to be mined can differ largely based on their
domain-specific semantics. Various kinds of application data include spatial data,
temporal data, spatiotemporal data, multimedia data (e.g., image, audio, and video
data), text data, time-series data, DNA and biological sequences, software programs,
chemical compound structures, web structures, sensor networks, social and informa-
tion networks, biological networks, data streams, and so on. This diversity can lead
to dramatically different pattern mining methodologies.

Based on data analysis usages: Frequent pattern mining often serves as an interme-
diate step for improved data understanding and more powerful data analysis. For
example, it can be used as a feature extraction step for classification, which is often
referred to as pattern-based classification. Similarly, pattern-based clustering has
shown its strength at clustering high-dimensional data. For improved data under-
standing, patterns can be used for semantic annotation or contextual analysis. Pattern
analysis can also be used in recommender systems, which recommend information
items (e.g., books, movies, web pages) that are likely to be of interest to the user
based on similar users’ patterns. Different analysis tasks may require mining rather
different kinds of patterns as well.

The next several sections present advanced methods and extensions of pattern min-
ing, as well as their application. Section 7.2 discusses methods for mining multilevel
patterns, multidimensional patterns, patterns and rules with continuous attributes,
rare patterns, and negative patterns. Constraint-based pattern mining is studied in

7.2 Pattern Mining in Multilevel, Multidimensional Space 283

Section 7.3. Section 7.4 explains how to mine high-dimensional and colossal patterns.
The mining of compressed and approximate patterns is detailed in Section 7.5.
Section 7.6 discusses the exploration and applications of pattern mining. More advanced
topics regarding mining sequential and structural patterns, and pattern mining in
complex and diverse kinds of data are briefly introduced in Chapter 13.

7.2 Pattern Mining in Multilevel, Multidimensional Space

This section focuses on methods for mining in multilevel, multidimensional space.
In particular, you will learn about mining multilevel associations (Section 7.2.1), multi-
dimensional associations (Section 7.2.2), quantitative association rules (Section 7.2.3),
and rare patterns and negative patterns (Section 7.2.4). Multilevel associations involve
concepts at different abstraction levels. Multidimensional associations involve more than
one dimension or predicate (e.g., rules that relate what a customer buys to his or her age).
Quantitative association rules involve numeric attributes that have an implicit ordering
among values (e.g., age). Rare patterns are patterns that suggest interesting although rare
item combinations. Negative patterns show negative correlations between items.

7.2.1 Mining Multilevel Associations

For many applications, strong associations discovered at high abstraction levels, though
with high support, could be commonsense knowledge. We may want to drill down to
find novel patterns at more detailed levels. On the other hand, there could be too many
scattered patterns at low or primitive abstraction levels, some of which are just trivial
specializations of patterns at higher levels. Therefore, it is interesting to examine how
to develop effective methods for mining patterns at multiple abstraction levels, with
sufficient flexibility for easy traversal among different abstraction spaces.

Example 7.1 Mining multilevel association rules. Suppose we are given the task-relevant set of trans-
actional data in Table 7.1 for sales in an AllElectronics store, showing the items purchased
for each transaction. The concept hierarchy for the items is shown in Figure 7.2. A con-
cept hierarchy defines a sequence of mappings from a set of low-level concepts to a
higher-level, more general concept set. Data can be generalized by replacing low-level
concepts within the data by their corresponding higher-level concepts, or ancestors, from
a concept hierarchy.

Figure 7.2’s concept hierarchy has five levels, respectively referred to as levels 0
through 4, starting with level 0 at the root node for all (the most general abstraction
level). Here, level 1 includes computer, software, printer and camera, and computer acces-
sory; level 2 includes laptop computer, desktop computer, office software, antivirus software,
etc.; and level 3 includes Dell desktop computer, . . . , Microsoft office software, etc. Level 4
is the most specific abstraction level of this hierarchy. It consists of the raw data values.

284 Chapter 7 Advanced Pattern Mining

Table 7.1 Task-Relevant Data, D

TID Items Purchased

T100 Apple 17′′ MacBook Pro Notebook, HP Photosmart Pro b9180

T200 Microsoft Office Professional 2010, Microsoft Wireless Optical Mouse 5000

T300 Logitech VX Nano Cordless Laser Mouse, Fellowes GEL Wrist Rest

T400 Dell Studio XPS 16 Notebook, Canon PowerShot SD1400

T500 Lenovo ThinkPad X200 Tablet PC, Symantec Norton Antivirus 2010
.

all

Laptop

Computer Software Printer and Camera Computer Accessory

IBM Dell Microsoft HP Canon Fellowes LogiTech

Desktop Office Antivirus Printer Digital
Camera

Wrist Pad Mouse

Figure 7.2 Concept hierarchy for AllElectronics computer items.

Concept hierarchies for nominal attributes are often implicit within the database
schema, in which case they may be automatically generated using methods such as those
described in Chapter 3. For our example, the concept hierarchy of Figure 7.2 was gene-
rated from data on product specifications. Concept hierarchies for numeric attributes
can be generated using discretization techniques, many of which were introduced in
Chapter 3. Alternatively, concept hierarchies may be specified by users familiar with the
data such as store managers in the case of our example.

The items in Table 7.1 are at the lowest level of Figure 7.2’s concept hierarchy. It is
difficult to find interesting purchase patterns in such raw or primitive-level data. For
instance, if “Dell Studio XPS 16 Notebook” or “Logitech VX Nano Cordless Laser Mouse”
occurs in a very small fraction of the transactions, then it can be difficult to find strong
associations involving these specific items. Few people may buy these items together,
making it unlikely that the itemset will satisfy minimum support. However, we would
expect that it is easier to find strong associations between generalized abstractions of
these items, such as between “Dell Notebook” and “Cordless Mouse.”

Association rules generated from mining data at multiple abstraction levels are
called multiple-level or multilevel association rules. Multilevel association rules can be

7.2 Pattern Mining in Multilevel, Multidimensional Space 285

mined efficiently using concept hierarchies under a support-confidence framework. In
general, a top-down strategy is employed, where counts are accumulated for the calcu-
lation of frequent itemsets at each concept level, starting at concept level 1 and working
downward in the hierarchy toward the more specific concept levels, until no more fre-
quent itemsets can be found. For each level, any algorithm for discovering frequent
itemsets may be used, such as Apriori or its variations.

A number of variations to this approach are described next, where each variation
involves “playing” with the support threshold in a slightly different way. The variations
are illustrated in Figures 7.3 and 7.4, where nodes indicate an item or itemset that has
been examined, and nodes with thick borders indicate that an examined item or itemset
is frequent.

Using uniform minimum support for all levels (referred to as uniform support):
The same minimum support threshold is used when mining at each abstraction level.
For example, in Figure 7.3, a minimum support threshold of 5% is used throughout
(e.g., for mining from “computer” downward to “laptop computer”). Both “computer”
and “laptop computer” are found to be frequent, whereas “desktop computer” is not.

When a uniform minimum support threshold is used, the search procedure is
simplified. The method is also simple in that users are required to specify only

computer [support = 10%]

laptop computer [support = 6%]

Level 1
min_sup = 5%

Level 2
min_sup = 5%

desktop computer [support = 4%]

Figure 7.3 Multilevel mining with uniform support.

computer [support = 10%]

laptop computer [support = 6%]

Level 1
min_sup = 5%

Level 2
min_sup = 3%

desktop computer [support = 4%]

Figure 7.4 Multilevel mining with reduced support.

286 Chapter 7 Advanced Pattern Mining

one minimum support threshold. An Apriori-like optimization technique can be
adopted, based on the knowledge that an ancestor is a superset of its descendants:
The search avoids examining itemsets containing any item of which the ancestors do
not have minimum support.

The uniform support approach, however, has some drawbacks. It is unlikely that
items at lower abstraction levels will occur as frequently as those at higher abstraction
levels. If the minimum support threshold is set too high, it could miss some mean-
ingful associations occurring at low abstraction levels. If the threshold is set too low,
it may generate many uninteresting associations occurring at high abstraction levels.
This provides the motivation for the next approach.

Using reduced minimum support at lower levels (referred to as reduced support):
Each abstraction level has its own minimum support threshold. The deeper the
abstraction level, the smaller the corresponding threshold. For example, in Figure 7.4,
the minimum support thresholds for levels 1 and 2 are 5% and 3%, respectively. In
this way, “computer,” “laptop computer,” and “desktop computer” are all considered
frequent.

Using item or group-based minimum support (referred to as group-based sup-
port): Because users or experts often have insight as to which groups are more
important than others, it is sometimes more desirable to set up user-specific, item, or
group-based minimal support thresholds when mining multilevel rules. For example,
a user could set up the minimum support thresholds based on product price or on
items of interest, such as by setting particularly low support thresholds for “camera
with price over $1000” or “Tablet PC,” to pay particular attention to the association
patterns containing items in these categories.

For mining patterns with mixed items from groups with different support thresh-
olds, usually the lowest support threshold among all the participating groups is
taken as the support threshold in mining. This will avoid filtering out valuable
patterns containing items from the group with the lowest support threshold. In
the meantime, the minimal support threshold for each individual group should be
kept to avoid generating uninteresting itemsets from each group. Other interest-
ingness measures can be used after the itemset mining to extract truly interesting
rules.

Notice that the Apriori property may not always hold uniformly across all of the
items when mining under reduced support and group-based support. However, efficient
methods can be developed based on the extension of the property. The details are left as
an exercise for interested readers.

A serious side effect of mining multilevel association rules is its generation of many
redundant rules across multiple abstraction levels due to the “ancestor” relationships
among items. For example, consider the following rules where “laptop computer” is an
ancestor of “Dell laptop computer” based on the concept hierarchy of Figure 7.2, and

7.2 Pattern Mining in Multilevel, Multidimensional Space 287

where X is a variable representing customers who purchased items in AllElectronics
transactions.

buys(X , “laptop computer”) ⇒ buys(X , “HP printer”)

[support = 8%, confidence = 70%] (7.4)

buys(X , “Dell laptop computer”) ⇒ buys(X , “HP printer”)

[support = 2%, confidence = 72%] (7.5)

“If Rules (7.4) and (7.5) are both mined, then how useful is Rule (7.5)? Does it really
provide any novel information?” If the latter, less general rule does not provide new infor-
mation, then it should be removed. Let’s look at how this may be determined. A rule R1
is an ancestor of a rule R2, if R1 can be obtained by replacing the items in R2 by their
ancestors in a concept hierarchy. For example, Rule (7.4) is an ancestor of Rule (7.5)
because “laptop computer” is an ancestor of “Dell laptop computer.” Based on this defini-
tion, a rule can be considered redundant if its support and confidence are close to their
“expected” values, based on an ancestor of the rule.

Example 7.2 Checking redundancy among multilevel association rules. Suppose that Rule (7.4) has
a 70% confidence and 8% support, and that about one-quarter of all “laptop computer”
sales are for “Dell laptop computers.” We may expect Rule (7.5) to have a confidence of
around 70% (since all data samples of “Dell laptop computer” are also samples of “laptop
computer”) and a support of around 2% (i.e., 8% × 1

4). If this is indeed the case, then
Rule (7.5) is not interesting because it does not offer any additional information and is
less general than Rule (7.4).

7.2.2 Mining Multidimensional Associations

So far, we have studied association rules that imply a single predicate, that is, the pred-
icate buys. For instance, in mining our AllElectronics database, we may discover the
Boolean association rule

buys(X , “digital camera”) ⇒ buys(X , “HP printer”). (7.6)

Following the terminology used in multidimensional databases, we refer to each distinct
predicate in a rule as a dimension. Hence, we can refer to Rule (7.6) as a single-
dimensional or intradimensional association rule because it contains a single distinct
predicate (e.g., buys) with multiple occurrences (i.e., the predicate occurs more than
once within the rule). Such rules are commonly mined from transactional data.

Instead of considering transactional data only, sales and related information are often
linked with relational data or integrated into a data warehouse. Such data stores are
multidimensional in nature. For instance, in addition to keeping track of the items pur-
chased in sales transactions, a relational database may record other attributes associated

288 Chapter 7 Advanced Pattern Mining

with the items and/or transactions such as the item description or the branch location
of the sale. Additional relational information regarding the customers who purchased
the items (e.g., customer age, occupation, credit rating, income, and address) may also
be stored. Considering each database attribute or warehouse dimension as a predicate,
we can therefore mine association rules containing multiple predicates such as

age(X , “20 . . .29”) ∧ occupation(X , “student”)⇒buys(X , “laptop”). (7.7)

Association rules that involve two or more dimensions or predicates can be referred
to as multidimensional association rules. Rule (7.7) contains three predicates (age,
occupation, and buys), each of which occurs only once in the rule. Hence, we say that it
has no repeated predicates. Multidimensional association rules with no repeated predi-
cates are called interdimensional association rules. We can also mine multidimensional
association rules with repeated predicates, which contain multiple occurrences of some
predicates. These rules are called hybrid-dimensional association rules. An example of
such a rule is the following, where the predicate buys is repeated:

age(X , “20 . . .29”) ∧ buys(X , “laptop”)⇒buys(X , “HP printer”). (7.8)

Database attributes can be nominal or quantitative. The values of nominal (or cate-
gorical) attributes are “names of things.” Nominal attributes have a finite number of
possible values, with no ordering among the values (e.g., occupation, brand, color).
Quantitative attributes are numeric and have an implicit ordering among values (e.g.,
age, income, price). Techniques for mining multidimensional association rules can be
categorized into two basic approaches regarding the treatment of quantitative attributes.

In the first approach, quantitative attributes are discretized using predefined concept
hierarchies. This discretization occurs before mining. For instance, a concept hierarchy
for income may be used to replace the original numeric values of this attribute by inter-
val labels such as “0..20K,” “21K..30K,” “31K..40K,” and so on. Here, discretization is
static and predetermined. Chapter 3 on data preprocessing gave several techniques for
discretizing numeric attributes. The discretized numeric attributes, with their interval
labels, can then be treated as nominal attributes (where each interval is considered a
category). We refer to this as mining multidimensional association rules using static
discretization of quantitative attributes.

In the second approach, quantitative attributes are discretized or clustered into “bins”
based on the data distribution. These bins may be further combined during the mining
process. The discretization process is dynamic and established so as to satisfy some min-
ing criteria such as maximizing the confidence of the rules mined. Because this strategy
treats the numeric attribute values as quantities rather than as predefined ranges or cat-
egories, association rules mined from this approach are also referred to as (dynamic)
quantitative association rules.

Let’s study each of these approaches for mining multidimensional association rules.
For simplicity, we confine our discussion to interdimensional association rules. Note
that rather than searching for frequent itemsets (as is done for single-dimensional
association rule mining), in multidimensional association rule mining we search for

7.2 Pattern Mining in Multilevel, Multidimensional Space 289

frequent predicate sets. A k-predicate set is a set containing k conjunctive predicates. For
instance, the set of predicates {age, occupation, buys} from Rule (7.7) is a 3-predicate set.
Similar to the notation used for itemsets in Chapter 6, we use the notation Lk to refer to
the set of frequent k-predicate sets.

7.2.3 Mining Quantitative Association Rules

As discussed earlier, relational and data warehouse data often involve quantitative
attributes or measures. We can discretize quantitative attributes into multiple inter-
vals and then treat them as nominal data in association mining. However, such simple
discretization may lead to the generation of an enormous number of rules, many of
which may not be useful. Here we introduce three methods that can help overcome
this difficulty to discover novel association relationships: (1) a data cube method, (2)
a clustering-based method, and (3) a statistical analysis method to uncover exceptional
behaviors.

Data Cube–Based Mining of Quantitative Associations
In many cases quantitative attributes can be discretized before mining using predefined
concept hierarchies or data discretization techniques, where numeric values are replaced
by interval labels. Nominal attributes may also be generalized to higher conceptual levels
if desired. If the resulting task-relevant data are stored in a relational table, then any
of the frequent itemset mining algorithms we have discussed can easily be modified
so as to find all frequent predicate sets. In particular, instead of searching on only one
attribute like buys, we need to search through all of the relevant attributes, treating each
attribute–value pair as an itemset.

Alternatively, the transformed multidimensional data may be used to construct a
data cube. Data cubes are well suited for the mining of multidimensional association
rules: They store aggregates (e.g., counts) in multidimensional space, which is essen-
tial for computing the support and confidence of multidimensional association rules.
An overview of data cube technology was presented in Chapter 4. Detailed algorithms
for data cube computation were given in Chapter 5. Figure 7.5 shows the lattice of
cuboids defining a data cube for the dimensions age, income, and buys. The cells of an
n-dimensional cuboid can be used to store the support counts of the corresponding
n-predicate sets. The base cuboid aggregates the task-relevant data by age, income, and
buys; the 2-D cuboid, (age, income), aggregates by age and income, and so on; the 0-D
(apex) cuboid contains the total number of transactions in the task-relevant data.

Due to the ever-increasing use of data warehouse and OLAP technology, it is pos-
sible that a data cube containing the dimensions that are of interest to the user may
already exist, fully or partially materialized. If this is the case, we can simply fetch the
corresponding aggregate values or compute them using lower-level materialized aggre-
gates, and return the rules needed using a rule generation algorithm. Notice that even
in this case, the Apriori property can still be used to prune the search space. If a given
k-predicate set has support sup, which does not satisfy minimum support, then further

290 Chapter 7 Advanced Pattern Mining

(income) (buys)(age)

()

(income, buys)

(age, income, buys)

(age, income) (age, buys)

0-D (apex) cuboid

1-D cuboids

2-D cuboids

3-D (base) cuboid

Figure 7.5 Lattice of cuboids, making up a 3-D data cube. Each cuboid represents a different group-by.
The base cuboid contains the three predicates age, income, and buys.

exploration of this set should be terminated. This is because any more-specialized ver-
sion of the k-itemset will have support no greater than sup and, therefore, will not satisfy
minimum support either. In cases where no relevant data cube exists for the mining task,
we must create one on-the-fly. This becomes an iceberg cube computation problem,
where the minimum support threshold is taken as the iceberg condition (Chapter 5).

Mining Clustering-Based Quantitative Associations
Besides using discretization-based or data cube–based data sets to generate quantita-
tive association rules, we can also generate quantitative association rules by clustering
data in the quantitative dimensions. (Recall that objects within a cluster are similar
to one another and dissimilar to those in other clusters.) The general assumption is
that interesting frequent patterns or association rules are in general found at relatively
dense clusters of quantitative attributes. Here, we describe a top-down approach and a
bottom-up approach to clustering that finds quantitative associations.

A typical top-down approach for finding clustering-based quantitative frequent pat-
terns is as follows. For each quantitative dimension, a standard clustering algorithm
(e.g., k-means or a density-based clustering algorithm, as described in Chapter 10) can
be applied to find clusters in this dimension that satisfy the minimum support thresh-
old. For each cluster, we then examine the 2-D spaces generated by combining the cluster
with a cluster or nominal value of another dimension to see if such a combination passes
the minimum support threshold. If it does, we continue to search for clusters in this
2-D region and progress to even higher-dimensional combinations. The Apriori prun-
ing still applies in this process: If, at any point, the support of a combination does not
have minimum support, its further partitioning or combination with other dimensions
cannot have minimum support either.

7.2 Pattern Mining in Multilevel, Multidimensional Space 291

A bottom-up approach for finding clustering-based frequent patterns works by first
clustering in high-dimensional space to form clusters with support that satisfies the
minimum support threshold, and then projecting and merging those clusters in the
space containing fewer dimensional combinations. However, for high-dimensional data
sets, finding high-dimensional clustering itself is a tough problem. Thus, this approach
is less realistic.

Using Statistical Theory to Disclose Exceptional
Behavior
It is possible to discover quantitative association rules that disclose exceptional behavior,
where “exceptional” is defined based on a statistical theory. For example, the following
association rule may indicate exceptional behavior:

sex = female ⇒ meanwage = $7.90/hr (overall mean wage = $9.02/hr). (7.9)

This rule states that the average wage for females is only $7.90/hr. This rule is (subjec-
tively) interesting because it reveals a group of people earning a significantly lower wage
than the average wage of $9.02/hr. (If the average wage was close to $7.90/hr, then the
fact that females also earn $7.90/hr would be “uninteresting.”)

An integral aspect of our definition involves applying statistical tests to confirm the
validity of our rules. That is, Rule (7.9) is only accepted if a statistical test (in this case,
a Z-test) confirms that with high confidence it can be inferred that the mean wage of
the female population is indeed lower than the mean wage of the rest of the population.
(The above rule was mined from a real database based on a 1985 U.S. census.)

An association rule under the new definition is a rule of the form:

population subset ⇒ mean of values for the subset , (7.10)

where the mean of the subset is significantly different from the mean of its complement
in the database (and this is validated by an appropriate statistical test).

7.2.4 Mining Rare Patterns and Negative Patterns

All the methods presented so far in this chapter have been for mining frequent patterns.
Sometimes, however, it is interesting to find patterns that are rare instead of frequent, or
patterns that reflect a negative correlation between items. These patterns are respectively
referred to as rare patterns and negative patterns. In this subsection, we consider various
ways of defining rare patterns and negative patterns, which are also useful to mine.

Example 7.3 Rare patterns and negative patterns. In jewelry sales data, sales of diamond watches
are rare; however, patterns involving the selling of diamond watches could be interest-
ing. In supermarket data, if we find that customers frequently buy Coca-Cola Classic or
Diet Coke but not both, then buying Coca-Cola Classic and buying Diet Coke together

292 Chapter 7 Advanced Pattern Mining

is considered a negative (correlated) pattern. In car sales data, a dealer sells a few fuel-
thirsty vehicles (e.g., SUVs) to a given customer, and then later sells hybrid mini-cars to
the same customer. Even though buying SUVs and buying hybrid mini-cars may be neg-
atively correlated events, it can be interesting to discover and examine such exceptional
cases.

An infrequent (or rare) pattern is a pattern with a frequency support that is below
(or far below) a user-specified minimum support threshold. However, since the occur-
rence frequencies of the majority of itemsets are usually below or even far below the
minimum support threshold, it is desirable in practice for users to specify other con-
ditions for rare patterns. For example, if we want to find patterns containing at least
one item with a value that is over $500, we should specify such a constraint explic-
itly. Efficient mining of such itemsets is discussed under mining multidimensional
associations (Section 7.2.1), where the strategy is to adopt multiple (e.g., item- or
group-based) minimum support thresholds. Other applicable methods are discussed
under constraint-based pattern mining (Section 7.3), where user-specified constraints
are pushed deep into the iterative mining process.

There are various ways we could define a negative pattern. We will consider three
such definitions.

Definition 7.1: If itemsets X and Y are both frequent but rarely occur together (i.e.,
sup(X ∪ Y) < sup(X) × sup(Y)), then itemsets X and Y are negatively correlated, and
the pattern X ∪ Y is a negatively correlated pattern. If sup(X ∪ Y) � sup(X) × sup(Y),
then X and Y are strongly negatively correlated, and the pattern X ∪ Y is a strongly
negatively correlated pattern. �

This definition can easily be extended for patterns containing k-itemsets for k > 2.
A problem with the definition, however, is that it is not null-invariant. That is, its

value can be misleadingly influenced by null transactions, where a null-transaction is a
transaction that does not contain any of the itemsets being examined (Section 6.3.3).
This is illustrated in Example 7.4.

Example 7.4 Null-transaction problem with Definition 7.1. If there are a lot of null-transactions in
the data set, then the number of null-transactions rather than the patterns observed may
strongly influence a measure’s assessment as to whether a pattern is negatively correlated.
For example, suppose a sewing store sells needle packages A and B. The store sold 100
packages each of A and B, but only one transaction contains both A and B. Intuitively,
A is negatively correlated with B since the purchase of one does not seem to encourage
the purchase of the other.

Let’s see how the above Definition 7.1 handles this scenario. If there are 200
transactions, we have sup(A ∪ B) = 1/200 = 0.005 and sup(A) × sup(B) = 100/200 ×
100/200 = 0.25. Thus, sup(A ∪ B) � sup(A) × sup(B), and so Definition 7.1 indi-
cates that A and B are strongly negatively correlated. What if, instead of only
200 transactions in the database, there are 106? In this case, there are many null-
transactions, that is, many contain neither A nor B. How does the definition hold up?
It computes sup(A ∪ B) = 1/106 and sup(X) × sup(Y) = 100/106 × 100/106 = 1/108.

7.2 Pattern Mining in Multilevel, Multidimensional Space 293

Thus, sup(A ∪ B) � sup(X) × sup(Y), which contradicts the earlier finding even though
the number of occurrences of A and B has not changed. The measure in Definition 7.1 is
not null-invariant, where null-invariance is essential for quality interestingness measures
as discussed in Section 6.3.3.

Definition 7.2: If X and Y are strongly negatively correlated, then

sup(X ∪ Y) × sup(X ∪ Y) � sup(X ∪ Y) × sup(X ∪ Y).

Is this measure null-invariant? �

Example 7.5 Null-transaction problem with Definition 7.2. Given our needle package example,
when there are in total 200 transactions in the database, we have

sup(A ∪ B) × sup(A ∪ B) = 99/200 × 99/200 = 0.245

� sup(A ∪ B) × sup(A ∪ B) = 199/200 × 1/200 ≈ 0.005,

which, according to Definition 7.2, indicates that A and B are strongly negatively
correlated. What if there are 106 transactions in the database? The measure would
compute

sup(A ∪ B) × sup(A ∪ B) = 99/106 × 99/106 = 9.8 × 10−9

� sup(A ∪ B) × sup(A ∪ B) = 199/106 × (106 − 199)/106 ≈ 1.99 × 10−4.

This time, the measure indicates that A and B are positively correlated, hence, a
contradiction. The measure is not null-invariant.

As a third alternative, consider Definition 7.3, which is based on the Kulczynski mea-
sure (i.e., the average of conditional probabilities). It follows the spirit of interestingness
measures introduced in Section 6.3.3.

Definition 7.3: Suppose that itemsets X and Y are both frequent, that is, sup(X) ≥
min sup and sup(Y) ≥ min sup, where min sup is the minimum support threshold. If
(P(X|Y) + P(Y |X))/2 < ε, where ε is a negative pattern threshold, then pattern X ∪ Y
is a negatively correlated pattern. �

Example 7.6 Negatively correlated patterns using Definition 7.3, based on the Kulczynski measure.
Let’s reexamine our needle package example. Let min sup be 0.01% and ε = 0.02. When
there are 200 transactions in the database, we have sup(A) = sup(B) = 100/200 = 0.5 >

0.01% and (P(B|A) + P(A|B))/2 = (0.01 + 0.01)/2 < 0.02; thus A and B are negatively
correlated. Does this still hold true if we have many more transactions? When there are
106 transactions in the database, the measure computes sup(A) = sup(B) = 100/106 =
0.01% ≥ 0.01% and (P(B|A) + P(A|B))/2 = (0.01 + 0.01)/2 < 0.02, again indicating
that A and B are negatively correlated. This matches our intuition. The measure does
not have the null-invariance problem of the first two definitions considered.

Let’s examine another case: Suppose that among 100,000 transactions, the store sold
1000 needle packages of A but only 10 packages of B; however, every time package B is

294 Chapter 7 Advanced Pattern Mining

sold, package A is also sold (i.e., they appear in the same transaction). In this case, the
measure computes (P(B|A) + P(A|B))/2 = (0.01 + 1)/2 = 0.505 � 0.02, which indi-
cates that A and B are positively correlated instead of negatively correlated. This also
matches our intuition.

With this new definition of negative correlation, efficient methods can easily be
derived for mining negative patterns in large databases. This is left as an exercise for
interested readers.

7.3 Constraint-Based Frequent Pattern Mining

A data mining process may uncover thousands of rules from a given data set, most of
which end up being unrelated or uninteresting to users. Often, users have a good sense of
which “direction” of mining may lead to interesting patterns and the “form” of the pat-
terns or rules they want to find. They may also have a sense of “conditions” for the rules,
which would eliminate the discovery of certain rules that they know would not be of
interest. Thus, a good heuristic is to have the users specify such intuition or expectations
as constraints to confine the search space. This strategy is known as constraint-based
mining. The constraints can include the following:

Knowledge type constraints: These specify the type of knowledge to be mined, such
as association, correlation, classification, or clustering.

Data constraints: These specify the set of task-relevant data.

Dimension/level constraints: These specify the desired dimensions (or attributes)
of the data, the abstraction levels, or the level of the concept hierarchies to be used in
mining.

Interestingness constraints: These specify thresholds on statistical measures of rule
interestingness such as support, confidence, and correlation.

Rule constraints: These specify the form of, or conditions on, the rules to be mined.
Such constraints may be expressed as metarules (rule templates), as the maximum or
minimum number of predicates that can occur in the rule antecedent or consequent,
or as relationships among attributes, attribute values, and/or aggregates.

These constraints can be specified using a high-level declarative data mining query
language and user interface.

The first four constraint types have already been addressed in earlier sections of this
book and this chapter. In this section, we discuss the use of rule constraints to focus the
mining task. This form of constraint-based mining allows users to describe the rules that
they would like to uncover, thereby making the data mining process more effective. In
addition, a sophisticated mining query optimizer can be used to exploit the constraints
specified by the user, thereby making the mining process more efficient.

7.3 Constraint-Based Frequent Pattern Mining 295

Constraint-based mining encourages interactive exploratory mining and analysis. In
Section 7.3.1, you will study metarule-guided mining, where syntactic rule constraints
are specified in the form of rule templates. Section 7.3.2 discusses the use of pattern space
pruning (which prunes patterns being mined) and data space pruning (which prunes
pieces of the data space for which further exploration cannot contribute to the discovery
of patterns satisfying the constraints).

For pattern space pruning, we introduce three classes of properties that facilitate
constraint-based search space pruning: antimonotonicity, monotonicity, and succinct-
ness. We also discuss a special class of constraints, called convertible constraints, where
by proper data ordering, the constraints can be pushed deep into the iterative mining
process and have the same pruning power as monotonic or antimonotonic constraints.
For data space pruning, we introduce two classes of properties—data succinctness and
data antimonotonicty—and study how they can be integrated within a data mining
process.

For ease of discussion, we assume that the user is searching for association rules. The
procedures presented can be easily extended to the mining of correlation rules by adding
a correlation measure of interestingness to the support-confidence framework.

7.3.1 Metarule-Guided Mining of Association Rules

“How are metarules useful?” Metarules allow users to specify the syntactic form of rules
that they are interested in mining. The rule forms can be used as constraints to help
improve the efficiency of the mining process. Metarules may be based on the ana-
lyst’s experience, expectations, or intuition regarding the data or may be automatically
generated based on the database schema.

Example 7.7 Metarule-guided mining. Suppose that as a market analyst for AllElectronics you have
access to the data describing customers (e.g., customer age, address, and credit rating)
as well as the list of customer transactions. You are interested in finding associations
between customer traits and the items that customers buy. However, rather than finding
all of the association rules reflecting these relationships, you are interested only in deter-
mining which pairs of customer traits promote the sale of office software. A metarule
can be used to specify this information describing the form of rules you are interested in
finding. An example of such a metarule is

P1(X , Y) ∧ P2(X , W) ⇒ buys(X , “office software”), (7.11)

where P1 and P2 are predicate variables that are instantiated to attributes from the given
database during the mining process, X is a variable representing a customer, and Y
and W take on values of the attributes assigned to P1 and P2, respectively. Typically,
a user will specify a list of attributes to be considered for instantiation with P1 and P2.
Otherwise, a default set may be used.

In general, a metarule forms a hypothesis regarding the relationships that the user
is interested in probing or confirming. The data mining system can then search for

296 Chapter 7 Advanced Pattern Mining

rules that match the given metarule. For instance, Rule (7.12) matches or complies with
Metarule (7.11):

age(X , “30..39”) ∧ income(X , “41K ..60K”)⇒buys(X , “office software”). (7.12)

“How can metarules be used to guide the mining process?” Let’s examine this prob-
lem closely. Suppose that we wish to mine interdimensional association rules such as in
Example 7.7. A metarule is a rule template of the form

P1 ∧ P2 ∧ ·· · ∧ Pl ⇒ Q1 ∧ Q2 ∧ ·· · ∧ Qr , (7.13)

where Pi (i = 1, . . . , l) and Qj (j = 1, . . . , r) are either instantiated predicates or predi-
cate variables. Let the number of predicates in the metarule be p = l + r. To find
interdimensional association rules satisfying the template,

We need to find all frequent p-predicate sets, Lp.

We must also have the support or count of the l-predicate subsets of Lp to compute
the confidence of rules derived from Lp.

This is a typical case of mining multidimensional association rules. By extending such
methods using the constraint-pushing techniques described in the following section, we
can derive efficient methods for metarule-guided mining.

7.3.2 Constraint-Based Pattern Generation: Pruning
Pattern Space and Pruning Data Space

Rule constraints specify expected set/subset relationships of the variables in the mined
rules, constant initiation of variables, and constraints on aggregate functions and other
forms of constraints. Users typically employ their knowledge of the application or
data to specify rule constraints for the mining task. These rule constraints may be
used together with, or as an alternative to, metarule-guided mining. In this section,
we examine rule constraints as to how they can be used to make the mining pro-
cess more efficient. Let’s study an example where rule constraints are used to mine
hybrid-dimensional association rules.

Example 7.8 Constraints for mining association rules. Suppose that AllElectronics has a sales
multidimensional database with the following interrelated relations:

item(item ID, item name, description, category, price)

sales(transaction ID, day, month, year, store ID, city)

trans item(item ID, transaction ID)

7.3 Constraint-Based Frequent Pattern Mining 297

Here, the item table contains attributes item ID, item name, description, category, and
price; the sales table contains attributes transaction ID day, month, year, store ID,
and city; and the two tables are linked via the foreign key attributes, item ID and
transaction ID, in the table trans item.

Suppose our association mining query is “Find the patterns or rules about the sales of
which cheap items (where the sum of the prices is less than $10) may promote (i.e., appear
in the same transaction) the sales of which expensive items (where the minimum price is
$50), shown in the sales in Chicago in 2010.”

This query contains the following four constraints: (1) sum(I .price) < $10, where I
represents the item ID of a cheap item; (2) min(J .price) ≥ $50), where J represents the
item ID of an expensive item; (3) T .city = Chicago; and (4) T .year = 2010, where T
represents a transaction ID. For conciseness, we do not show the mining query explicitly
here; however, the constraints’ context is clear from the mining query semantics.

Dimension/level constraints and interestingness constraints can be applied after
mining to filter out discovered rules, although it is generally more efficient and less
expensive to use them during mining to help prune the search space. Dimension/level
constraints were discussed in Section 7.2, and interestingness constraints, such as sup-
port, confidence, and correlation measures, were discussed in Chapter 6. Let’s focus now
on rule constraints.

“How can we use rule constraints to prune the search space? More specifically, what
kind of rule constraints can be ‘pushed’ deep into the mining process and still ensure the
completeness of the answer returned for a mining query?”

In general, an efficient frequent pattern mining processor can prune its search space
during mining in two major ways: pruning pattern search space and pruning data search
space. The former checks candidate patterns and decides whether a pattern can be
pruned. Applying the Apriori property, it prunes a pattern if no superpattern of it can be
generated in the remaining mining process. The latter checks the data set to determine
whether the particular data piece will be able to contribute to the subsequent generation
of satisfiable patterns (for a particular pattern) in the remaining mining process. If not,
the data piece is pruned from further exploration. A constraint that may facilitate pat-
tern space pruning is called a pattern pruning constraint, whereas one that can be used
for data space pruning is called a data pruning constraint.

Pruning Pattern Space with Pattern Pruning
Constraints
Based on how a constraint may interact with the pattern mining process, there are five
categories of pattern mining constraints: (1) antimonotonic, (2) monotonic, (3) succinct,
(4) convertible, and (5) inconvertible. For each category, we use an example to show its
characteristics and explain how such kinds of constraints can be used in the mining
process.

298 Chapter 7 Advanced Pattern Mining

The first category of constraints is antimonotonic. Consider the rule constraint
“sum(I .price) ≤ $100” of Example 7.8. Suppose we are using the Apriori framework,
which explores itemsets of size k at the kth iteration. If the price summation of the
items in a candidate itemset is no less than $100, this itemset can be pruned from the
search space, since adding more items into the set (assuming price is no less than zero)
will only make it more expensive and thus will never satisfy the constraint. In other
words, if an itemset does not satisfy this rule constraint, none of its supersets can satisfy
the constraint. If a rule constraint obeys this property, it is antimonotonic. Pruning
by antimonotonic constraints can be applied at each iteration of Apriori-style algo-
rithms to help improve the efficiency of the overall mining process while guaranteeing
completeness of the data mining task.

The Apriori property, which states that all nonempty subsets of a frequent itemset
must also be frequent, is antimonotonic. If a given itemset does not satisfy minimum
support, none of its supersets can. This property is used at each iteration of the Apriori
algorithm to reduce the number of candidate itemsets examined, thereby reducing the
search space for association rules.

Other examples of antimonotonic constraints include “min(J .price) ≥ $50,”
“count(I) ≤ 10,” and so on. Any itemset that violates either of these constraints can be
discarded since adding more items to such itemsets can never satisfy the constraints.
Note that a constraint such as “avg(I .price) ≤ $10” is not antimonotonic. For a given
itemset that does not satisfy this constraint, a superset created by adding some (cheap)
items may result in satisfying the constraint. Hence, pushing this constraint inside the
mining process will not guarantee completeness of the data mining task. A list of SQL
primitives–based constraints is given in the first column of Table 7.2. The antimono-
tonicity of the constraints is indicated in the second column. To simplify our discussion,
only existence operators (e.g., = , ∈, but not �= , /∈) and comparison (or containment)
operators with equality (e.g., ≤ , ⊆) are given.

The second category of constraints is monotonic. If the rule constraint in
Example 7.8 were “sum(I .price) ≥ $100,” the constraint-based processing method
would be quite different. If an itemset I satisfies the constraint, that is, the sum of the
prices in the set is no less than $100, further addition of more items to I will increase
cost and will always satisfy the constraint. Therefore, further testing of this constraint
on itemset I becomes redundant. In other words, if an itemset satisfies this rule con-
straint, so do all of its supersets. If a rule constraint obeys this property, it is monotonic.
Similar rule monotonic constraints include “min(I .price) ≤ $10,” “count(I) ≥ 10,” and
so on. The monotonicity of the list of SQL primitives–based constraints is indicated in
the third column of Table 7.2.

The third category is succinct constraints. For this constraints category, we can
enumerate all and only those sets that are guaranteed to satisfy the constraint. That is,
if a rule constraint is succinct, we can directly generate precisely the sets that satisfy
it, even before support counting begins. This avoids the substantial overhead of the
generate-and-test paradigm. In other words, such constraints are precounting prunable.
For example, the constraint “min(J.price) ≥ $50” in Example 7.8 is succinct because we
can explicitly and precisely generate all the itemsets that satisfy the constraint.

7.3 Constraint-Based Frequent Pattern Mining 299

Table 7.2 Characterization of Commonly Used SQL-Based
Pattern Pruning Constraints

Constraint Antimonotonic Monotonic Succinct

v ∈ S no yes yes

S ⊇ V no yes yes

S ⊆ V yes no yes

min(S) ≤ v no yes yes

min(S) ≥ v yes no yes

max(S) ≤ v yes no yes

max(S) ≥ v no yes yes

count(S) ≤ v yes no weakly

count(S) ≥ v no yes weakly

sum(S) ≤ v (∀a ∈ S, a ≥ 0) yes no no

sum(S) ≥ v (∀a ∈ S, a ≥ 0) no yes no

range(S) ≤ v yes no no

range(S) ≥ v no yes no

avg(S) θ v, θ ∈ {≤ , ≥} convertible convertible no

support(S) ≥ ξ yes no no

support(S) ≤ ξ no yes no

all confidence(S) ≥ ξ yes no no

all confidence(S) ≤ ξ no yes no

Specifically, such a set must consist of a nonempty set of items that have a price no less
than $50. It is of the form S, where S �= ∅ is a subset of the set of all items with prices no
less than $50. Because there is a precise “formula” for generating all the sets satisfying
a succinct constraint, there is no need to iteratively check the rule constraint during
the mining process. The succinctness of the list of SQL primitives–based constraints is
indicated in the fourth column of Table 7.2.2

The fourth category is convertible constraints. Some constraints belong to none of
the previous three categories. However, if the items in the itemset are arranged in a par-
ticular order, the constraint may become monotonic or antimonotonic with regard to
the frequent itemset mining process. For example, the constraint “avg(I .price) ≤ $10”
is neither antimonotonic nor monotonic. However, if items in a transaction are added
to an itemset in price-ascending order, the constraint becomes antimonotonic, because
if an itemset I violates the constraint (i.e., with an average price greater than $10),
then further addition of more expensive items into the itemset will never make it

2For constraint count(S) ≤ v (and similarly for count(S) ≥ v), we can have a member generation func-
tion based on a cardinality constraint (i.e., {X | X ⊆ Itemset ∧ |X| ≤ v}). Member generation in this
manner is of a different flavor and thus is called weakly succinct.

300 Chapter 7 Advanced Pattern Mining

satisfy the constraint. Similarly, if items in a transaction are added to an itemset in
price-descending order, it becomes monotonic, because if the itemset satisfies the con-
straint (i.e., with an average price no greater than $10), then adding cheaper items into
the current itemset will still make the average price no greater than $10. Aside from
“avg(S) ≤ v” and “avg(S) ≥ v,” given in Table 7.2, there are many other convertible
constraints such as “variance(S) ≥ v” “standard deviation(S) ≥ v,” and so on.

Note that the previous discussion does not imply that every constraint is convertible.
For example, “sum(S)θv,” where θ ∈ {≤ , ≥} and each element in S could be of any
real value, is not convertible. Therefore, there is yet a fifth category of constraints, called
inconvertible constraints. The good news is that although there still exist some tough
constraints that are not convertible, most simple SQL expressions with built-in SQL
aggregates belong to one of the first four categories to which efficient constraint mining
methods can be applied.

Pruning Data Space with Data Pruning Constraints
The second way of search space pruning in constraint-based frequent pattern mining
is pruning data space. This strategy prunes pieces of data if they will not contribute to
the subsequent generation of satisfiable patterns in the mining process. We consider two
properties: data succinctness and data antimonotonicity.

Constraints are data-succinct if they can be used at the beginning of a pattern mining
process to prune the data subsets that cannot satisfy the constraints. For example, if a
mining query requires that the mined pattern must contain digital camera, then any
transaction that does not contain digital camera can be pruned at the beginning of the
mining process, which effectively reduces the data set to be examined.

Interestingly, many constraints are data-antimonotonic in the sense that during the
mining process, if a data entry cannot satisfy a data-antimonotonic constraint based on
the current pattern, then it can be pruned. We prune it because it will not be able to
contribute to the generation of any superpattern of the current pattern in the remaining
mining process.

Example 7.9 Data antimonotonicity. A mining query requires that C1 : sum(I .price) ≥ $100, that is,
the sum of the prices of the items in the mined pattern must be no less than $100. Sup-
pose that the current frequent itemset, S, does not satisfy constraint C1 (say, because the
sum of the prices of the items in S is $50). If the remaining frequent items in a transac-
tion Ti are such that, say, {i2.price = $5, i5.price = $10, i8.price = $20}, then Ti will not
be able to make S satisfy the constraint. Thus, Ti cannot contribute to the patterns to be
mined from S, and thus can be pruned.

Note that such pruning cannot be done at the beginning of the mining because at
that time, we do not know yet if the total sum of the prices of all the items in Ti will
be over $100 (e.g., we may have i3.price = $80). However, during the iterative mining
process, we may find some items (e.g., i3) that are not frequent with S in the transaction
data set, and thus they would be pruned. Therefore, such checking and pruning should
be enforced at each iteration to reduce the data search space.

7.4 Mining High-Dimensional Data and Colossal Patterns 301

Notice that constraint C1 is a monotonic constraint with respect to pattern space
pruning. As we have seen, this constraint has very limited power for reducing the
search space in pattern pruning. However, the same constraint can be used for effective
reduction of the data search space.

For an antimonotonic constraint, such as C2 : sum(I .price) ≤ $100, we can prune
both pattern and data search spaces at the same time. Based on our study of pattern
pruning, we already know that the current itemset can be pruned if the sum of the prices
in it is over $100 (since its further expansion can never satisfy C2). At the same time, we
can also prune any remaining items in a transaction Ti that cannot make the constraint
C2 valid. For example, if the sum of the prices of items in the current itemset S is $90,
any patterns over $10 in the remaining frequent items in Ti can be pruned. If none of
the remaining items in Ti can make the constraint valid, the entire transaction Ti should
be pruned.

Consider pattern constraints that are neither antimonotonic nor monotonic such
as “C3 : avg(I .price) ≤ 10.” These can be data-antimonotonic because if the remaining
items in a transaction Ti cannot make the constraint valid, then Ti can be pruned as well.
Therefore, data-antimonotonic constraints can be quite useful for constraint-based data
space pruning.

Notice that search space pruning by data antimonotonicity is confined only to a pat-
tern growth–based mining algorithm because the pruning of a data entry is determined
based on whether it can contribute to a specific pattern. Data antimonotonicity cannot
be used for pruning the data space if the Apriori algorithm is used because the data
are associated with all of the currently active patterns. At any iteration, there are usu-
ally many active patterns. A data entry that cannot contribute to the formation of the
superpatterns of a given pattern may still be able to contribute to the superpattern of
other active patterns. Thus, the power of data space pruning can be very limited for
nonpattern growth–based algorithms.

7.4 Mining High-Dimensional Data and Colossal Patterns

The frequent pattern mining methods presented so far handle large data sets having
a small number of dimensions. However, some applications may need to mine high-
dimensional data (i.e., data with hundreds or thousands of dimensions). Can we use
the methods studied so far to mine high-dimensional data? The answer is unfortunately
negative because the search spaces of such typical methods grow exponentially with the
number of dimensions.

Researchers have overcome this difficulty in two directions. One direction extends a
pattern growth approach by further exploring the vertical data format to handle data
sets with a large number of dimensions (also called features or items, e.g., genes) but
a small number of rows (also called transactions or tuples, e.g., samples). This is use-
ful in applications like the analysis of gene expressions in bioinformatics, for example,
where we often need to analyze microarray data that contain a large number of genes

302 Chapter 7 Advanced Pattern Mining

(e.g., 10,000 to 100,000) but only a small number of samples (e.g., 100 to 1000). The
other direction develops a new mining methodology, called Pattern-Fusion, which mines
colossal patterns, that is, patterns of very long length.

Let’s first briefly examine the first direction, in particular, a pattern growth–based row
enumeration approach. Its general philosophy is to explore the vertical data format, as
described in Section 6.2.5, which is also known as row enumeration. Row enumeration
differs from traditional column (i.e., item) enumeration (also known as the horizon-
tal data format). In traditional column enumeration, the data set, D, is viewed as a
set of rows, where each row consists of an itemset. In row enumeration, the data set
is instead viewed as an itemset, each consisting of a set of row IDs indicating where the
item appears in the traditional view of D. The original data set, D, can easily be trans-
formed into a transposed data set, T . A data set with a small number of rows but a large
number of dimensions is then transformed into a transposed data set with a large num-
ber of rows but a small number of dimensions. Efficient pattern growth methods can
then be developed on such relatively low-dimensional data sets. The details of such an
approach are left as an exercise for interested readers.

The remainder of this section focuses on the second direction. We introduce Pattern-
Fusion, a new mining methodology that mines colossal patterns (i.e., patterns of very
long length). This method takes leaps in the pattern search space, leading to a good
approximation of the complete set of colossal frequent patterns.

7.4.1 Mining Colossal Patterns by Pattern-Fusion

Although we have studied methods for mining frequent patterns in various situations,
many applications have hidden patterns that are tough to mine, due mainly to their
immense length or size. Consider bioinformatics, for example, where a common activ-
ity is DNA or microarray data analysis. This involves mapping and analyzing very long
DNA and protein sequences. Researchers are more interested in finding large patterns
(e.g., long sequences) than finding small ones since larger patterns usually carry more
significant meaning. We call these large patterns colossal patterns, as distinguished from
patterns with large support sets. Finding colossal patterns is challenging because incre-
mental mining tends to get “trapped” by an explosive number of midsize patterns before
it can even reach candidate patterns of large size. This is illustrated in Example 7.10.

Example 7.10 The challenge of mining colossal patterns. Consider a 40 × 40 square table where each
row contains the integers 1 through 40 in increasing order. Remove the integers on the
diagonal, and this gives a 40 × 39 table. Add 20 identical rows to the bottom of the
table, where each row contains the integers 41 through 79 in increasing order, result-
ing in a 60 × 39 table (Figure 7.6). We consider each row as a transaction and set the
minimum support threshold at 20. The table has an exponential number (i.e.,

(40
20

)
)

of midsize closed/maximal frequent patterns of size 20, but only one that is colossal:
α = (41,42, . . . , 79) of size 39. None of the frequent pattern mining algorithms that
we have introduced so far can complete execution in a reasonable amount of time.

7.4 Mining High-Dimensional Data and Colossal Patterns 303

row/col 1 2 3 4 . . . 38 39

1 2 3 4 5 . . . 39 40

2 1 3 4 5 . . . 39 40

3 1 2 4 5 . . . 39 40

4 1 2 3 5 . . . 39 40

5 1 2 3 4 . . . 39 40

. .

39 1 2 3 4 . . . 38 40

40 1 2 3 4 . . . 38 39

41 41 42 43 44 . . . 78 79

42 41 42 43 44 . . . 78 79

. .

60 41 42 43 44 . . . 78 79

Figure 7.6 A simple colossal patterns example: The data set contains an exponential number of midsize
patterns of size 20 but only one that is colossal, namely (41,42, . . . , 79).

Colossal patterns
Midsize patterns

F
re

qu
en

t
P

at
te

rn
 S

iz
e

Figure 7.7 Synthetic data that contain some colossal patterns but exponentially many midsize patterns.

The pattern search space is similar to that in Figure 7.7, where midsize patterns largely
outnumber colossal patterns.

All of the pattern mining strategies we have studied so far, such as Apriori and
FP-growth, use an incremental growth strategy by nature, that is, they increase the
length of candidate patterns by one at a time. Breadth-first search methods like Apri-
ori cannot bypass the generation of an explosive number of midsize patterns generated,

