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making it impossible to reach colossal patterns. Even depth-first search methods like
FP-growth can be easily trapped in a huge amount of subtrees before reaching colossal
patterns. Clearly, a completely new mining methodology is needed to overcome such a
hurdle.

A new mining strategy called Pattern-Fusion was developed, which fuses a small
number of shorter frequent patterns into colossal pattern candidates. It thereby takes
leaps in the pattern search space and avoids the pitfalls of both breadth-first and depth-
first searches. This method finds a good approximation to the complete set of colossal
frequent patterns.

The Pattern-Fusion method has the following major characteristics. First, it traverses
the tree in a bounded-breadth way. Only a fixed number of patterns in a bounded-size
candidate pool are used as starting nodes to search downward in the pattern tree. As
such, it avoids the problem of exponential search space.

Second, Pattern-Fusion has the capability to identify “shortcuts” whenever possible.
Each pattern’s growth is not performed with one-item addition, but with an agglomera-
tion of multiple patterns in the pool. These shortcuts direct Pattern-Fusion much more
rapidly down the search tree toward the colossal patterns. Figure 7.8 conceptualizes this
mining model.

As Pattern-Fusion is designed to give an approximation to the colossal patterns, a
quality evaluation model is introduced to assess the patterns returned by the algorithm.
An empirical study verifies that Pattern-Fusion is able to efficiently return high-quality
results.

Let’s examine the Pattern-Fusion method in more detail. First, we introduce the con-
cept of core pattern. For a pattern o, an itemset 8 C « is said to be a t-core pattern of

a if Ig;l > 1,0 <t <1, where | Dy| is the number of patterns containing « in database
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Pattern tree traversal: Candidates are taken from a pool of patterns, which results in shortcuts
through pattern space to the colossal patterns.
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D. 7 is called the core ratio. A pattern « is (d, T)-robust if d is the maximum number of
items that can be removed from « for the resulting pattern to remain a t-core pattern
of o, that is,

d= mgx{|ot| —|BlIB S @, and B is a T-core pattern of c}.

Core patterns. Figure 7.9 shows a simple transaction database of four distinct transac-
tions, each with 100 duplicates: {1 = (abe), oz = (bef), as = (acf), as = (abcfe)}. If
we set T = 0.5, then (ab) is a core pattern of «; because (ab) is contained only by ; and

oy4. Therefore, ‘lg(“;)“ = % > 7.7 18 (2,0.5)-robust while o4 is (4, 0.5)-robust. The table
also shows that larger patterns (e.g., (abcfe)) have far more core patterns than smaller
ones (e.g., (bef)). =

From Example 7.11, we can deduce that large or colossal patterns have far more
core patterns than smaller patterns do. Thus, a colossal pattern is more robust in the
sense that if a small number of items are removed from the pattern, the resulting pat-
tern would have a similar support set. The larger the pattern size, the more prominent
this robustness. Such a robustness relationship between a colossal pattern and its corre-
sponding core patterns can be extended to multiple levels. The lower-level core patterns
of a colossal pattern are called core descendants.

Given a small ¢, a colossal pattern usually has far more core descendants of size ¢
than a smaller pattern. This means that if we were to draw randomly from the com-
plete set of patterns of size ¢, we would be more likely to pick a core descendant of a
colossal pattern than that of a smaller pattern. In Figure 7.9, consider the complete set
of patterns of size ¢ = 2, which contains (;) = 10 patterns in total. For illustrative pur-
poses, let’s assume that the larger pattern, abcef, is colossal. The probability of being
able to randomly draw a core descendant of abcef is 0.9. Contrast this to the probabi-
lity of randomly drawing a core descendent of smaller (noncolossal) patterns, which is
at most 0.3. Therefore, a colossal pattern can be generated by merging a proper set of

Transactions

(# of Transactions) | Core Patterns (t = 0.5)

(abe) (100) (abe), (ab), (be), (ae), (e)

(bef) (100) (bef), (be), (bf)

(acf) (100) (acf), (ac), (af)

(abcef) (100) (ab), (ac), (af), (ae), (bc), (bf), (be), (ce), (fe), (e), (abc),
(abf), (abe), (ace), (acf), (afe), (bef), (bee), (bfe), (cfe),
(abcf), (abee), (bcfe), (acfe), (abfe), (abceef)

Figure 7.9 A transaction database, which contains duplicates, and core patterns for each distinct

transaction.
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its core patterns. For instance, abcef can be generated by merging just two of its core
patterns, ab and cef, instead of having to merge all of its 26 core patterns.

Now, let’s see how these observations can help us leap through pattern space more
directly toward colossal patterns. Consider the following scheme. First, generate a com-
plete set of frequent patterns up to a user-specified small size, and then randomly pick
a pattern, 8. B will have a high probability of being a core-descendant of some colossal
pattern, «. Identify all of «’s core-descendants in this complete set, and merge them.
This generates a much larger core-descendant of «, giving us the ability to leap along
a path toward « in the core-pattern tree, T,. In the same fashion we select K pat-
terns. The set of larger core-descendants generated is the candidate pool for the next
iteration.

A question arises: Given S, a core-descendant of a colossal pattern o, how can we

find the other core-descendants of a? Given two patterns, o and B, the pattern dis-
|DyNDg|

Do UD; " Pattern distance satisfies the

tance between them is defined as Dist(«,8) = 1 —

triangle inequality.

For a pattern, «, let C, be the set of all its core patterns. It can be shown that G,
is bounded in metric space by a “ball” of diameter r(t), where r(z) =1 — 2/r_1—1 This
means that given a core pattern 8 € G, we can identify all of «’s core patterns in the
current pool by posing a range query. Note that in the mining algorithm, each ran-
domly drawn pattern could be a core-descendant of more than one colossal pattern,
and as such, when merging the patterns found by the “ball,” more than one larger
core-descendant could be generated.

From this discussion, the Pattern-Fusion method is outlined in the following two
phases:

I. Initial Pool: Pattern-Fusion assumes an initial pool of small frequent patterns is
available. This is the complete set of frequent patterns up to a small size (e.g., 3).
This initial pool can be mined with any existing efficient mining algorithm.

N

Iterative Pattern-Fusion: Pattern-Fusion takes as input a user-specified parameter,
K, which is the maximum number of patterns to be mined. The mining process is
iterative. At each iteration, K seed patterns are randomly picked from the current
pool. For each of these K seeds, we find all the patterns within a ball of a size spec-
ified by 7. All the patterns in each “ball” are then fused together to generate a set of
superpatterns. These superpatterns form a new pool. If the pool contains more than
K patterns, the next iteration begins with this pool for the new round of random
drawing. As the support set of every superpattern shrinks with each new iteration,
the iteration process terminates.

Note that Pattern-Fusion merges small subpatterns of a large pattern instead of
incrementally-expanding patterns with single items. This gives the method an advantage
to circumvent midsize patterns and progress on a path leading to a potential colossal
pattern. The idea is illustrated in Figure 7.10. Each point shown in the metric space
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Figure 7.10 Pattern metric space: Each point represents a core pattern. The core patterns of a colossal
pattern are denser than those of a small pattern, as shown within the dotted lines.

represents a core pattern. In comparison to a smaller pattern, a larger pattern has far
more core patterns that are close to one another, all of which are bounded by a ball, as
shown by the dotted lines. When drawing randomly from the initial pattern pool, we
have a much higher probability of getting a core pattern of a large pattern, because the
ball of a larger pattern is much denser.

It has been theoretically shown that Pattern-Fusion leads to a good approximation
of colossal patterns. The method was tested on synthetic and real data sets constructed
from program tracing data and microarray data. Experiments show that the method can
find most of the colossal patterns with high efficiency.

Mining Compressed or Approximate Patterns

A major challenge in frequent pattern mining is the huge number of discovered patterns.
Using a minimum support threshold to control the number of patterns found has lim-
ited effect. Too low a value can lead to the generation of an explosive number of output
patterns, while too high a value can lead to the discovery of only commonsense patterns.

To reduce the huge set of frequent patterns generated in mining while maintaining
high-quality patterns, we can instead mine a compressed or approximate set of frequent
patterns. Top-k most frequent closed patterns were proposed to make the mining process
concentrate on only the set of k most frequent patterns. Although interesting, they usu-
ally do not epitomize the k most representative patterns because of the uneven frequency
distribution among itemsets. Constraint-based mining of frequent patterns (Section 7.3)
incorporates user-specified constraints to filter out uninteresting patterns. Measures of
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pattern/rule interestingness and correlation (Section 6.3) can also be used to help confine
the search to patterns/rules of interest.

In this section, we look at two forms of “compression” of frequent patterns that
build on the concepts of closed patterns and max-patterns. Recall from Section 6.2.6
that a closed pattern is a lossless compression of the set of frequent patterns, whereas a
max-pattern is a lossy compression. In particular, Section 7.5.1 explores clustering-based
compression of frequent patterns, which groups patterns together based on their similar-
ity and frequency support. Section 7.5.2 takes a “summarization” approach, where the
aim is to derive redundancy-aware top-k representative patterns that cover the whole set
of (closed) frequent itemsets. The approach considers not only the representativeness of
patterns but also their mutual independence to avoid redundancy in the set of gener-
ated patterns. The k representatives provide compact compression over the collection of
frequent patterns, making them easier to interpret and use.

Mining Compressed Patterns by Pattern Clustering

Pattern compression can be achieved by pattern clustering. Clustering techniques are
described in detail in Chapters 10 and 11. In this section, it is not necessary to know
the fine details of clustering. Rather, you will learn how the concept of clustering can be
applied to compress frequent patterns. Clustering is the automatic process of grouping
like objects together, so that objects within a cluster are similar to one another and dis-
similar to objects in other clusters. In this case, the objects are frequent patterns. The
frequent patterns are clustered using a tightness measure called §-cluster. A representa-
tive pattern is selected for each cluster, thereby offering a compressed version of the set
of frequent patterns.

Before we begin, let’s review some definitions. An itemset X is a closed frequent
itemset in a data set D if X is frequent and there exists no proper super-itemset Y of X
such that Y has the same support count as X in D. An itemset X is a maximal frequent
itemset in data set D if X is frequent and there exists no super-itemset Y such that
X C Y and Y is frequent in D. Using these concepts alone is not enough to obtain a
good representative compression of a data set, as we see in Example 7.12.

Shortcomings of closed itemsets and maximal itemsets for compression. Table 7.3
shows a subset of frequent itemsets on a large data set, where g, b, ¢, d, e, f represent indi-
vidual items. There are no closed itemsets here; therefore, we cannot use closed frequent
itemsets to compress the data. The only maximal frequent itemset is P;. However, we
observe that itemsets P, P3, and P are significantly different with respect to their sup-
port counts. If we were to use P3 to represent a compressed version of the data, we would
lose this support count information entirely. From visual inspection, consider the two
pairs (P, P,) and (P4, Ps). The patterns within each pair are very similar with respect to
their support and expression. Therefore, intuitively, P,, P3, and P4, collectively, should
serve as a better compressed version of the data. (]
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Subset of Frequent Itemsets
ID  Itemsets Support
Py {bcde} 205,227

1) {b,c,d, e f} 205,211
P;  {a,b,c,def} 101,758
Py {a,cd,ef} 161,563
Ps  {a,cd,e} 161,576

So, let’s see if we can find a way of clustering frequent patterns as a means of obtain-
ing a compressed representation of them. We will need to define a good similarity
measure, cluster patterns according to this measure, and then select and output only
a representative pattern for each cluster. Since the set of closed frequent patterns is a
lossless compression over the original frequent patterns set, it is a good idea to discover
representative patterns over the collection of closed patterns.

We can use the following distance measure between closed patterns. Let P; and P, be
two closed patterns. Their supporting transaction sets are T(P;) and T'(P), respectively.
The pattern distance of P; and P,, Pat_Dist(Py, P;), is defined as

|T(P1) N T(Py)]

Pat_Dist(P1,P)) =1 — ——————.
|T(P) U T(P)|

(7.14)

Pattern distance is a valid distance metric defined on the set of transactions. Note that it
incorporates the support information of patterns, as desired previously.

Pattern distance. Suppose P; and P; are two patterns such that T(Py) = {f, &, t3, t4, 15}
and T(P,) = {t1,t, 13, t4, ts}, where ¢; is a transaction in the database. The distance
between P; and P, is Pat_Dist(P,P) =1 — % = % n

Now, let’s consider the expression of patterns. Given two patterns A and B, we say
B can be expressed by A if O(B) C O(A), where O(A) is the corresponding itemset of
pattern A. Following this definition, assume patterns P;, P,,..., Py are in the same clus-
ter. The representative pattern P, of the cluster should be able to express all the other
patterns in the cluster. Clearly, we have Ui‘{:1 O(P;) € O(Py).

Using the distance measure, we can simply apply a clustering method, such as
k-means (Section 10.2), on the collection of frequent patterns. However, this introduces
two problems. First, the quality of the clusters cannot be guaranteed; second, it may
not be able to find a representative pattern for each cluster (i.e., the pattern P, may not
belong to the same cluster). To overcome these problems, this is where the concept of
8-cluster comes in, where § (0 < § < 1) measures the tightness of a cluster.

A pattern P is §-covered by another pattern P’ if O(P) C O(P') and Pat_
Dist(P,P’) < §. A set of patterns form a §-cluster if there exists a representative pattern
P, such that for each pattern P in the set, P is §-covered by P,.
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Note that according to the concept of §-cluster, a pattern can belong to multiple clus-
ters. Also, using §-cluster, we only need to compute the distance between each pattern
and the representative pattern of the cluster. Because a pattern P is §-covered by a rep-
resentative pattern P, only if O(P) C O(P,), we can simplify the distance calculation by
considering only the supports of the patterns:

I TP)NTP)I - [T

Pat_Dist(P,P;) =1 — ————— """ — .
|T(P)U T(Py)l | T(P)]

(7.15)

If we restrict the representative pattern to be frequent, then the number of represen-
tative patterns (i.e., clusters) is no less than the number of maximal frequent patterns.
This is because a maximal frequent pattern can only be covered by itself. To achieve
more succinct compression, we relax the constraints on representative patterns, that is,
we allow the support of representative patterns to be somewhat less than min_sup.

For any representative pattern P,, assume its support is k. Since it has to cover at least
one frequent pattern (i.e., P) with support that is at least min_sup, we have

T,k

6 > Pat_Dist(P,P,) =1— >1—— .
| T(P)| min_sup

(7.16)

That is, k > (1 — §) x min_sup. This is the minimum support for a representative pat-
tern, denoted as min_sup,.

Based on the preceding discussion, the pattern compression problem can be defined
as follows: Given a transaction database, a minimum support min_sup, and the cluster
quality measure 8, the pattern compression problem is to find a set of representative patterns
R such that for each frequent pattern P (with respect to min_sup), there is a representa-
tive pattern P, € R (with respect to min_sup,), which covers P, and the value of |R| is
minimized.

Finding a minimum set of representative patterns is an NP-Hard problem. How-
ever, efficient methods have been developed that reduce the number of closed frequent
patterns generated by orders of magnitude with respect to the original collection of
closed patterns. The methods succeed in finding a high-quality compression of the
pattern set.

Extracting Redundancy-Aware Top-k Patterns

Mining the top-k most frequent patterns is a strategy for reducing the number of
patterns returned during mining. However, in many cases, frequent patterns are not
mutually independent but often clustered in small regions. This is somewhat like find-
ing 20 population centers in the world, which may result in cities clustered in a small
number of countries rather than evenly distributed across the globe. Instead, most
users would prefer to derive the k most interesting patterns, which are not only sig-
nificant, but also mutually independent and containing little redundancy. A small set of
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k representative patterns that have not only high significance but also low redundancy
are called redundancy-aware top-k patterns.

Redundancy-aware top-k strategy versus other top-k strategies. Figure 7.11 illus-
trates the intuition behind redundancy-aware top-k patterns versus traditional top-k
patterns and k-summarized patterns. Suppose we have the frequent patterns set shown in
Figure 7.11(a), where each circle represents a pattern of which the significance is colored
in grayscale. The distance between two circles reflects the redundancy of the two corre-
sponding patterns: The closer the circles are, the more redundant the respective patterns
are to one another. Let’s say we want to find three patterns that will best represent the
given set, that is, k = 3. Which three should we choose?

Arrows are used to show the patterns chosen if using redundancy-aware top-k
patterns (Figure 7.11b), traditional top-k patterns (Figure 7.11c¢), or k-summarized pat-
terns (Figure 7.11d). In Figure 7.11(c), the traditional top-k strategy relies solely on
significance: It selects the three most significant patterns to represent the set.

In Figure 7.11(d), the k-summarized pattern strategy selects patterns based solely on
nonredundancy. It detects three clusters, and finds the most representative patterns to
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Conceptual view comparing top-k methodologies (where gray levels represent pattern sig-
nificance, and the closer that two patterns are displayed, the more redundant they are to one
another): (a) original patterns, (b) redundancy-aware top-k patterns, (c) traditional top-k
patterns, and (d) k-summarized patterns.



312

Chapter 7 Advanced Pattern Mining

be the “centermost’™ pattern from each cluster. These patterns are chosen to represent
the data. The selected patterns are considered “summarized patterns” in the sense that
they represent or “provide a summary” of the clusters they stand for.

By contrast, in Figure 7.11(d) the redundancy-aware top-k patterns make a trade-off
between significance and redundancy. The three patterns chosen here have high signif-
icance and low redundancy. Observe, for example, the two highly significant patterns
that, based on their redundancy, are displayed next to each other. The redundancy-aware
top-k strategy selects only one of them, taking into consideration that two would be
redundant. To formalize the definition of redundancy-aware top-k patterns, we’ll need
to define the concepts of significance and redundancy. (]

A significance measure S is a function mapping a pattern p € P to a real value such
that S(p) is the degree of interestingness (or usefulness) of the pattern p. In general,
significance measures can be either objective or subjective. Objective measures depend
only on the structure of the given pattern and the underlying data used in the discovery
process. Commonly used objective measures include support, confidence, correlation,
and tf-idf (or term frequency versus inverse document frequency), where the latter is often
used in information retrieval. Subjective measures are based on user beliefs in the data.
They therefore depend on the users who examine the patterns. A subjective measure
is usually a relative score based on user prior knowledge or a background model. It
often measures the unexpectedness of a pattern by computing its divergence from the
background model. Let S(p,q) be the combined significance of patterns p and g, and
S(plg) = S(p,q) — S(q) be the relative significance of p given g. Note that the combined
significance, S(p, q), means the collective significance of two individual patterns p and g,
not the significance of a single super pattern pU gq.

Given the significance measure S, the redundancy R between two patterns p and
q is defined as R(p,q) = S(p) + S(q) — S(p, q). Subsequently, we have S(p|q) = S(p) —
R(p,q).

We assume that the combined significance of two patterns is no less than the sig-
nificance of any individual pattern (since it is a collective significance of two patterns)
and does not exceed the sum of two individual significance patterns (since there exists
redundancy). That is, the redundancy between two patterns should satisfy

0 < R(p,q) = min(S(p),S(q)). (7.17)

The ideal redundancy measure R(p,q) is usually hard to obtain. However, we can
approximate redundancy using distance between patterns such as with the distance
measure defined in Section 7.5.1.

The problem of finding redundancy-aware top-k patterns can thus be transformed
into finding a k-pattern set that maximizes the marginal significance, which is a well-
studied problem in information retrieval. In this field, a document has high marginal
relevance if it is both relevant to the query and contains minimal marginal similarity to
previously selected documents, where the marginal similarity is computed by choosing
the most relevant selected document. Experimental studies have shown this method to
be efficient and able to find high-significance and low-redundancy top-k patterns.



1.6.1

7.6 Pattern Exploration and Application 313

Pattern Exploration and Application

For discovered frequent patterns, is there any way the mining process can return addi-
tional information that will help us to better understand the patterns? What kinds of
applications exist for frequent pattern mining? These topics are discussed in this section.
Section 7.6.1 looks at the automated generation of semantic annotations for frequent
patterns. These are dictionary-like annotations. They provide semantic information
relating to patterns, based on the context and usage of the patterns, which aids in their
understanding. Semantically similar patterns also form part of the annotation, provid-
ing a more direct connection between discovered patterns and any other patterns already
known to the users.

Section 7.6.2 presents an overview of applications of frequent pattern mining. While
the applications discussed in Chapter 6 and this chapter mainly involve market basket
analysis and correlation analysis, there are many other areas in which frequent pattern
mining is useful. These range from data preprocessing and classification to clustering
and the analysis of complex data.

Semantic Annotation of Frequent Patterns

Pattern mining typically generates a huge set of frequent patterns without providing
enough information to interpret the meaning of the patterns. In the previous section,
we introduced pattern processing techniques to shrink the size of the output set of fre-
quent patterns such as by extracting redundancy-aware top-k patterns or compressing
the pattern set. These, however, do not provide any semantic interpretation of the pat-
terns. It would be helpful if we could also generate semantic annotations for the frequent
patterns found, which would help us to better understand the patterns.

“What is an appropriate semantic annotation for a frequent pattern?” Think about
what we find when we look up the meaning of terms in a dictionary. Suppose we are
looking up the term pattern. A dictionary typically contains the following components
to explain the term:

I. A set of definitions, such as “a decorative design, as for wallpaper, china, or textile
fabrics, etc.; a natural or chance configuration”

2. Example sentences, such as “patterns of frost on the window; the behavior patterns of
teenagers, ...”

3. Synonyms from a thesaurus, such as “model, archetype, design, exemplar, motif, ....”

Analogically, what if we could extract similar types of semantic information and pro-
vide such structured annotations for frequent patterns? This would greatly help users
in interpreting the meaning of patterns and in deciding on how or whether to further
explore them. Unfortunately, it is infeasible to provide such precise semantic defini-
tions for patterns without expertise in the domain. Nevertheless, we can explore how to
approximate such a process for frequent pattern mining.
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Pattern: “{frequent, pattern}”
context indicators:
“mining,” “constraint,” “Apriori,” “FP-growth,”
“rakesh agrawal,” “jiawei han,” ...
representative transactions:
1) mining frequent patterns without candidate ...
2) ... mining closed frequent graph patterns
semantically similar patterns:

» «

“{frequent, sequential, pattern},” “{graph, pattern}”

» <«

“{maximal, pattern},” “{frequent, closed, pattern},” ...

Figure 7.12 Semantic annotation of the pattern “{frequent, pattern}”

In general, the hidden meaning of a pattern can be inferred from patterns with sim-
ilar meanings, data objects co-occurring with it, and transactions in which the pattern
appears. Annotations with such information are analogous to dictionary entries, which
can be regarded as annotating each term with structured semantic information. Let’s
examine an example.

Example 7.15 Semantic annotation of a frequent pattern. Figure 7.12 shows an example of a semantic
annotation for the pattern “{frequent, pattern}” This dictionary-like annotation pro-
vides semantic information related to “{frequent, pattern},” consisting of its strongest
context indicators, the most representative data transactions, and the most semantically
similar patterns. This kind of semantic annotation is similar to natural language pro-
cessing. The semantics of a word can be inferred from its context, and words sharing
similar contexts tend to be semantically similar. The context indicators and the repre-
sentative transactions provide a view of the context of the pattern from different angles
to help users understand the pattern. The semantically similar patterns provide a more
direct connection between the pattern and any other patterns already known to the
users. L]

“How can we perform automated semantic annotation for a frequent pattern?” The
key to high-quality semantic annotation of a frequent pattern is the successful context
modeling of the pattern. For context modeling of a pattern, p, consider the following.

A context unit is a basic object in a database, D, that carries semantic information
and co-occurs with at least one frequent pattern, p, in at least one transaction in D.
A context unit can be an item, a pattern, or even a transaction, depending on the
specific task and data.

The context of a pattern, p, is a selected set of weighted context units (referred
to as context indicators) in the database. It carries semantic information, and
co-occurs with a frequent pattern, p. The context of p can be modeled using a
vector space model, that is, the context of p can be represented as C(p) = (w(uy),
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w(ip),...,w(uy,)), where w(u;) is a weight function of term u;. A transaction t is
represented as a vector (vi,v,,..., V), where v; = 1 if and only if v; € ¢, otherwise
v; = 0.

Based on these concepts, we can define the basic task of semantic pattern annotation
as follows:

I. Select context units and design a strength weight for each unit to model the contexts
of frequent patterns.

N

Design similarity measures for the contexts of two patterns, and for a transaction and
a pattern context.

3. For a given frequent pattern, extract the most significant context indicators, repre-
sentative transactions, and semantically similar patterns to construct a structured
annotation.

“Which context units should we select as context indicators?” Although a context unit can
be an item, a transaction, or a pattern, typically, frequent patterns provide the most
semantic information of the three. There are usually a large number of frequent pat-
terns associated with a pattern, p. Therefore, we need a systematic way to select only the
important and nonredundant frequent patterns from a large pattern set.

Considering that the closed patterns set is a lossless compression of frequent pat-
tern sets, we can first derive the closed patterns set by applying efficient closed pattern
mining methods. However, as discussed in Section 7.5, a closed pattern set is not com-
pact enough, and pattern compression needs to be performed. We could use the pattern
compression methods introduced in Section 7.5.1 or explore alternative compression
methods such as microclustering using the Jaccard coefficient (Chapter 2) and then
selecting the most representative patterns from each cluster.

“How, then, can we assign weights for each context indicator?” A good weighting func-
tion should obey the following properties: (1) the best semantic indicator of a pattern,
D, is itself, (2) assign the same score to two patterns if they are equally strong, and
(3) if two patterns are independent, neither can indicate the meaning of the other.
The meaning of a pattern, p, can be inferred from either the appearance or absence of
indicators.

Mutual information is one of several possible weighting functions. It is widely used
in information theory to measure the mutual independency of two random variables.
Intuitively, it measures how much information a random variable tells about the other.
Given two frequent patterns, p, and pg, let X ={0,1} and Y = {0,1} be two random
variables representing the appearance of p, and pg, respectively. Mutual information
I(X;Y) is computed as

P(x,y)
I(X;Y) = P(x,y)log————, 7.18
(X;Y) ZX;; (x,y) 8 P (7.18)
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Example 7.16

| Dy "Dy _ IDgl—1Da Dy

where P(x=1,y=1)= o Px=0,y=1)= D , Px=1,y=0)=
W’ and P(x=0,y=0) = w. Standard Laplace smoothing can be

used to avoid zero probability.

Mutual information favors strongly correlated units and thus can be used to model
the indicative strength of the context units selected. With context modeling, pattern
annotation can be accomplished as follows:

I. To extract the most significant context indicators, we can use cosine similarity
(Chapter 2) to measure the semantic similarity between pairs of context vectors, rank
the context indicators by the weight strength, and extract the strongest ones.

2. To extract representative transactions, represent each transaction as a context vector.
Rank the transactions with semantic similarity to the pattern p.

3. To extract semantically similar patterns, rank each frequent pattern, p, by the seman-
tic similarity between their context models and the context of p.

Based on these principles, experiments have been conducted on large data sets to
generate semantic annotations. Example 7.16 illustrates one such experiment.

Semantic annotations generated for frequent patterns from the DBLP Computer Sci-
ence Bibliography. Table 7.4 shows annotations generated for frequent patterns from a
portion of the DBLP data set.> The DBLP data set contains papers from the proceed-
ings of 12 major conferences in the fields of database systems, information retrieval,
and data mining. Each transaction consists of two parts: the authors and the title of the
corresponding paper.

Consider two types of patterns: (1) frequent author or coauthorship, each of which
is a frequent itemset of authors, and (2) frequent title terms, each of which is a fre-
quent sequential pattern of the title words. The method can automatically generate
dictionary-like annotations for different kinds of frequent patterns. For frequent item-
sets like coauthorship or single authors, the strongest context indicators are usually the
other coauthors and discriminative title terms that appear in their work. The semanti-
cally similar patterns extracted also reflect the authors and terms related to their work.
However, these similar patterns may not even co-occur with the given pattern in a paper.
For example, the patterns “timos_k_selliy” “ramakrishnan_srikant,” and so on, do not co-
occur with the pattern “christos_faloutsos,” but are extracted because their contexts are
similar since they all are database and/or data mining researchers; thus the annotation
is meaningful.

For the title term “information retrieval,” which is a sequential pattern, its strongest
context indicators are usually the authors who tend to use the term in the titles of their
papers, or the terms that tend to coappear with it. Its semantically similar patterns usu-
ally provide interesting concepts or descriptive terms, which are close in meaning (e.g.,
“information retrieval — information filter).”

3 www.informatik.uni-trier.de/~ley/db/.
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Table 7.4 Annotations Generated for Frequent Patterns in the DBLP Data Set

Pattern

Type

Annotations

christos_faloutsos

Context indicator

spiros_papadimitriou; fast; use fractal;
graph; use correlate

Representative
transactions
Representative
transactions
Representative
transactions

multi-attribute hash use gray code

recovery latent time-series observe sum
network tomography particle filter

index multimedia database tutorial

Semantic similar
patterns

spiros_papadimitriou&christos_faloutsos;
spiros_papadimitriou; flip_korn;
timos_k_selli;

ramakrishnan_srikant;
ramakrishnan_srikant&rakesh_agrawal

information
retrieval

Context indicator

w_bruce_croft; web information;
monika_ rauch_henzinger;

james_p_callan; full-text

Representative
transactions
Representative
transactions

web information retrieval

language model information retrieval

Semantic similar
patterns

information use; web information;
probabilistic information; information

filter;
text information

In both scenarios, the representative transactions extracted give us the titles of papers
that effectively capture the meaning of the given patterns. The experiment demonstrates
the effectiveness of semantic pattern annotation to generate a dictionary-like annota-
tion for frequent patterns, which can help a user understand the meaning of annotated
patterns. ]

The context modeling and semantic analysis method presented here is general and
can deal with any type of frequent patterns with context information. Such semantic
annotations can have many other applications such as ranking patterns, categorizing
and clustering patterns with semantics, and summarizing databases. Applications of
the pattern context model and semantical analysis method are also not limited to pat-
tern annotation; other example applications include pattern compression, transaction
clustering, pattern relations discovery, and pattern synonym discovery.

1.6.1 Applications of Pattern Mining

We have studied many aspects of frequent pattern mining, with topics ranging from effi-
cient mining algorithms and the diversity of patterns to pattern interestingness, pattern
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compression/approximation, and semantic pattern annotation. Let’s take a moment
to consider why this field has generated so much attention. What are some of the
application areas in which frequent pattern mining is useful? This section presents an
overview of applications for frequent pattern mining. We have touched on several appli-
cation areas already, such as market basket analysis and correlation analysis, yet frequent
pattern mining can be applied to many other areas as well. These range from data
preprocessing and classification to clustering and the analysis of complex data.

To summarize, frequent pattern mining is a data mining task that discovers patterns
that occur frequently together and/or have some distinctive properties that distinguish
them from others, often disclosing something inherent and valuable. The patterns may
be itemsets, subsequences, substructures, or values. The task also includes the discov-
ery of rare patterns, revealing items that occur very rarely together yet are of interest.
Uncovering frequent patterns and rare patterns leads to many broad and interesting
applications, described as follows.

Pattern mining is widely used for noise filtering and data cleaning as preprocess-
ing in many data-intensive applications. We can use it to analyze microarray data, for
instance, which typically consists of tens of thousands of dimensions (e.g., representing
genes). Such data can be rather noisy. Frequent pattern data mining can help us dis-
tinguish between what is noise and what isn’t. We may assume that items that occur
frequently together are less likely to be random noise and should not be filtered out.
On the other hand, those that occur very frequently (similar to stopwords in text docu-
ments) are likely indistinctive and may be filtered out. Frequent pattern mining can help
in background information identification and noise reduction.

Pattern mining often helps in the discovery of inherent structures and clusters
hidden in the data. Given the DBLP data set, for instance, frequent pattern min-
ing can easily find interesting clusters like coauthor clusters (by examining authors
who frequently collaborate) and conference clusters (by examining the sharing of
many common authors and terms). Such structure or cluster discovery can be used as
preprocessing for more sophisticated data mining.

Although there are numerous classification methods (Chapters 8 and 9), research has
found that frequent patterns can be used as building blocks in the construction of high-
quality classification models, hence called pattern-based classification. The approach
is successful because (1) the appearance of very infrequent item(s) or itemset(s) can be
caused by random noise and may not be reliable for model construction, yet a relatively
frequent pattern often carries more information gain for constructing more reliable
models; (2) patterns in general (i.e., itemsets consisting of multiple attributes) usu-
ally carry more information gain than a single attribute (feature); and (3) the patterns
so generated are often intuitively understandable and easy to explain. Recent research
has reported several methods that mine interesting, frequent, and discriminative pat-
terns and use them for effective classification. Pattern-based classification methods are
introduced in Chapter 9.

Frequent patterns can also be used effectively for subspace clustering in high-
dimensional space. Clustering is challenging in high-dimensional space, where the
distance between two objects is often difficult to measure. This is because such a dis-
tance is dominated by the different sets of dimensions in which the objects are residing.
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Thus, instead of clustering objects in their full high-dimensional spaces, it can be more
meaningful to find clusters in certain subspaces. Recently, researchers have developed
subspace-based pattern growth methods that cluster objects based on their common
frequent patterns. They have shown that such methods are effective for clustering
microarray-based gene expression data. Subspace clustering methods are discussed in
Chapter 11.

Pattern analysis is useful in the analysis of spatiotemporal data, time-series data,
image data, video data, and multimedia data. An area of spatiotemporal data analysis is
the discovery of colocation patterns. These, for example, can help determine if a certain
disease is geographically colocated with certain objects like a well, a hospital, or a river.
In time-series data analysis, researchers have discretized time-series values into multiple
intervals (or levels) so that tiny fluctuations and value differences can be ignored. The
data can then be summarized into sequential patterns, which can be indexed to facili-
tate similarity search or comparative analysis. In image analysis and pattern recognition,
researchers have also identified frequently occurring visual fragments as “visual words,”
which can be used for effective clustering, classification, and comparative analysis.

Pattern mining has also been used for the analysis of sequence or structural data
such as trees, graphs, subsequences, and networks. In software engineering, researchers
have identified consecutive or gapped subsequences in program execution as sequential
patterns that help identify software bugs. Copy-and-paste bugs in large software pro-
grams can be identified by extended sequential pattern analysis of source programs.
Plagiarized software programs can be identified based on their essentially identical
program flow/loop structures. Authors’ commonly used sentence substructures can be
identified and used to distinguish articles written by different authors.

Frequent and discriminative patterns can be used as primitive indexing structures
(known as graph indices) to help search large, complex, structured data sets and net-
works. These support a similarity search in graph-structured data such as chemical
compound databases or XML-structured databases. Such patterns can also be used for
data compression and summarization.

Furthermore, frequent patterns have been used in recommender systems, where
people can find correlations, clusters of customer behaviors, and classification models
based on commonly occurring or discriminative patterns (Chapter 13).

Finally, studies on efficient computation methods in pattern mining mutually
enhance many other studies on scalable computation. For example, the computa-
tion and materialization of iceberg cubes using the BUC and Star-Cubing algorithms
(Chapter 5) respectively share many similarities to computing frequent patterns by the
Apriori and FP-growth algorithms (Chapter 6).

Summary

The scope of frequent pattern mining research reaches far beyond the basic concepts
and methods introduced in Chapter 6 for mining frequent itemsets and associa-
tions. This chapter presented a road map of the field, where topics are organized



320 Chapter 7 Advanced Pattern Mining

with respect to the kinds of patterns and rules that can be mined, mining methods,
and applications.

In addition to mining for basic frequent itemsets and associations, advanced forms
of patterns can be mined such as multilevel associations and multidimensional asso-
ciations, quantitative association rules, rare patterns, and negative patterns. We can
also mine high-dimensional patterns and compressed or approximate patterns.

Multilevel associations involve data at more than one abstraction level (e.g., “buys
computer” and “buys laptop”). These may be mined using multiple minimum
support thresholds. Multidimensional associations contain more than one dimen-
sion. Techniques for mining such associations differ in how they handle repetitive
predicates. Quantitative association rules involve quantitative attributes. Discretiza-
tion, clustering, and statistical analysis that discloses exceptional behavior can be
integrated with the pattern mining process.

Rare patterns occur rarely but are of special interest. Negative patterns are pat-
terns with components that exhibit negatively correlated behavior. Care should be
taken in the definition of negative patterns, with consideration of the null-invariance
property. Rare and negative patterns may highlight exceptional behavior in the data,
which is likely of interest.

Constraint-based mining strategies can be used to help direct the mining process
toward patterns that match users’ intuition or satisfy certain constraints. Many user-
specified constraints can be pushed deep into the mining process. Constraints can
be categorized into pattern-pruning and data-pruning constraints. Properties of
such constraints include monotonicity, antimonotonicity, data-antimonotonicity, and
succinctness. Constraints with such properties can be properly incorporated into
efficient pattern mining processes.

Methods have been developed for mining patterns in high-dimensional space. This
includes a pattern growth approach based on row enumeration for mining data sets
where the number of dimensions is large and the number of data tuples is small (e.g.,
for microarray data), as well as mining colossal patterns (i.e., patterns of very long
length) by a Pattern-Fusion method.

To reduce the number of patterns returned in mining, we can instead mine com-
pressed patterns or approximate patterns. Compressed patterns can be mined with
representative patterns defined based on the concept of clustering, and approximate
patterns can be mined by extracting redundancy-aware top-k patterns (i.e., a small
set of k-representative patterns that have not only high significance but also low
redundancy with respect to one another).

Semantic annotations can be generated to help users understand the meaning of the
frequent patterns found, such as for textual terms like “{frequent, pattern}.” These
are dictionary-like annotations, providing semantic information relating to the term.
This information consists of context indicators (e.g., terms indicating the context of
that pattern), the most representative data transactions (e.g., fragments or sentences
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containing the term), and the most semantically similar patterns (e.g., “{maximal,
pattern}” is semantically similar to “{frequent, pattern}”). The annotations provide a
view of the pattern’s context from different angles, which aids in their understanding.

Frequent pattern mining has many diverse applications, ranging from pattern-based
data cleaning to pattern-based classification, clustering, and outlier or exception
analysis. These methods are discussed in the subsequent chapters in this book.

Exercises

Propose and outline a level-shared mining approach to mining multilevel association
rules in which each item is encoded by its level position. Design it so that an initial
scan of the database collects the count for each item at each concept level, identifying
frequent and subfrequent items. Comment on the processing cost of mining multilevel
associations with this method in comparison to mining single-level associations.

Suppose, as manager of a chain of stores, you would like to use sales transactional data
to analyze the effectiveness of your store’s advertisements. In particular, you would
like to study how specific factors influence the effectiveness of advertisements that
announce a particular category of items on sale. The factors to study are the region in
which customers live and the day-of-the-week and time-of-the-day of the ads. Discuss
how to design an efficient method to mine the transaction data sets and explain how
multidimensional and multilevel mining methods can help you derive a good solution.

Quantitative association rules may disclose exceptional behaviors within a data
set, where “exceptional” can be defined based on statistical theory. For example,
Section 7.2.3 shows the association rule

sex = female = mean_wage = $7.90/ hr (overall_mean_wage = $9.02/ hr),

which suggests an exceptional pattern. The rule states that the average wage for females
is only $7.90 per hour, which is a significantly lower wage than the overall average of
$9.02 per hour. Discuss how such quantitative rules can be discovered systematically
and efficiently in large data sets with quantitative attributes.

In multidimensional data analysis, it is interesting to extract pairs of similar cell char-
acteristics associated with substantial changes in measure in a data cube, where cells
are considered similar if they are related by roll-up (i.e, ancestors), drill-down (i.e,
descendants), or 1-D mutation (i.e, siblings) operations. Such an analysis is called cube
gradient analysis.

Suppose the measure of the cube is average. A user poses a set of probe cells and
would like to find their corresponding sets of gradient cells, each of which satisfies a
certain gradient threshold. For example, find the set of corresponding gradient cells that
have an average sale price greater than 20% of that of the given probe cells. Develop an
algorithm than mines the set of constrained gradient cells efficiently in a large data cube.
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Section 7.2.4 presented various ways of defining negatively correlated patterns. Consider
Definition 7.3: “Suppose that itemsets X and Y are both frequent, that is, sup(X) >
min_sup and sup(Y) > min_sup, where min_sup is the minimum support threshold. If
(P(X|Y) + P(Y|X))/2 < €, where € is a negative pattern threshold, then pattern XU Y
is a negatively correlated pattern.” Design an efficient pattern growth algorithm for
mining the set of negatively correlated patterns.

Prove that each entry in the following table correctly characterizes its corresponding
rule constraint for frequent itemset mining.

Rule Constraint  Antimonotonic ~ Monotonic  Succinct
(a) wveS no yes yes
(b) ScvV yes no yes
(c) min(S) <v no yes yes
(d) range(S) <v yes no no
(e)  wvariance(S) <v  convertible convertible no

The price of each item in a store is non-negative. The store manager is only interested in
rules of certain forms, using the constraints given in (a)—(b). For each of the following
cases, identify the kinds of constraints they represent and briefly discuss how to mine
such association rules using constraint-based pattern mining.

(a) Containing at least one Blu-ray DVD movie.

(b) Containing items with a sum of the prices that is less than $150.

(c) Containing one free item and other items with a sum of the prices that is at least
$200.

(d) Where the average price of all the items is between $100 and $500.

Section 7.4.1 introduced a core Pattern-Fusion method for mining high-dimensional
data. Explain why a long pattern, if one exists in the data set, is likely to be discovered
by this method.

Section 7.5.1 defined a pattern distance measure between closed patterns P; and P, as

. |T(P1) NT(P,)
Pat_Dist(P,P))=1— ——————,
|T(P1) U T(P,)
where T'(P;) and T(P,) are the supporting transaction sets of P; and P,, respectively. Is
this a valid distance metric? Show the derivation to support your answer.

Association rule mining often generates a large number of rules, many of which may
be similar, thus not containing much novel information. Design an efficient algorithm
that compresses a large set of patterns into a small compact set. Discuss whether your
mining method is robust under different pattern similarity definitions.
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Frequent pattern mining may generate many superfluous patterns. Therefore, it is
important to develop methods that mine compressed patterns. Suppose a user would
like to obtain only k patterns (where k is a small integer). Outline an efficient method
that generates the k most representative patterns, where more distinct patterns are pre-
ferred over very similar patterns. Illustrate the effectiveness of your method using a small
data set.

It is interesting to generate semantic annotations for mined patterns. Section 7.6.1
presented a pattern annotation method. Alternative methods are possible, such as by
utilizing type information. In the DBLP data set, for example, authors, conferences,
terms, and papers form multi-typed data. Develop a method for automated semantic
pattern annotation that makes good use of typed information.
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Classification: Basic Concepts

Classification is a form of data analysis that extracts models describing important data classes.
Such models, called classifiers, predict categorical (discrete, unordered) class labels. For
example, we can build a classification model to categorize bank loan applications as either
safe or risky. Such analysis can help provide us with a better understanding of the data at
large. Many classification methods have been proposed by researchers in machine learn-
ing, pattern recognition, and statistics. Most algorithms are memory resident, typically
assuming a small data size. Recent data mining research has built on such work, develop-
ing scalable classification and prediction techniques capable of handling large amounts of
disk-resident data. Classification has numerous applications, including fraud detection,
target marketing, performance prediction, manufacturing, and medical diagnosis.

We start off by introducing the main ideas of classification in Section 8.1. In the
rest of this chapter, you will learn the basic techniques for data classification such as
how to build decision tree classifiers (Section 8.2), Bayesian classifiers (Section 8.3), and
rule-based classifiers (Section 8.4). Section 8.5 discusses how to evaluate and compare
different classifiers. Various measures of accuracy are given as well as techniques for
obtaining reliable accuracy estimates. Methods for increasing classifier accuracy are pre-
sented in Section 8.6, including cases for when the data set is class imbalanced (i.e.,
where the main class of interest is rare).

Basic Concepts

We introduce the concept of classification in Section 8.1.1. Section 8.1.2 describes the
general approach to classification as a two-step process. In the first step, we build a clas-
sification model based on previous data. In the second step, we determine if the model’s
accuracy is acceptable, and if so, we use the model to classify new data.

8.1.| What Is Classification?

A bank loans officer needs analysis of her data to learn which loan applicants are “safe”
and which are “risky” for the bank. A marketing manager at AllElectronics needs data

Data Mining: Concepts and Techniques 3 2 7
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8.1.2

analysis to help guess whether a customer with a given profile will buy a new computer.
A medical researcher wants to analyze breast cancer data to predict which one of three
specific treatments a patient should receive. In each of these examples, the data analysis
task is classification, where a model or classifier is constructed to predict class (categor-
ical) labels, such as “safe” or “risky” for the loan application data; “yes” or “no” for the
marketing data; or “treatment A,” “treatment B,” or “treatment C” for the medical data.
These categories can be represented by discrete values, where the ordering among values
has no meaning. For example, the values 1, 2, and 3 may be used to represent treatments
A, B, and C, where there is no ordering implied among this group of treatment regimes.

Suppose that the marketing manager wants to predict how much a given customer
will spend during a sale at AllElectronics. This data analysis task is an example of numeric
prediction, where the model constructed predicts a continuous-valued function, or
ordered value, as opposed to a class label. This model is a predictor. Regression analysis
is a statistical methodology that is most often used for numeric prediction; hence the
two terms tend to be used synonymously, although other methods for numeric predic-
tion exist. Classification and numeric prediction are the two major types of prediction
problems. This chapter focuses on classification.

General Approach to Classification

“How does classification work?” Data classification is a two-step process, consisting of a
learning step (where a classification model is constructed) and a classification step (where
the model is used to predict class labels for given data). The process is shown for the
loan application data of Figure 8.1. (The data are simplified for illustrative purposes.
In reality, we may expect many more attributes to be considered.

In the first step, a classifier is built describing a predetermined set of data classes or
concepts. This is the learning step (or training phase), where a classification algorithm
builds the classifier by analyzing or “learning from” a training set made up of database
tuples and their associated class labels. A tuple, X, is represented by an n-dimensional
attribute vector, X = (xj, x,..., x,), depicting n measurements made on the tuple
from n database attributes, respectively, A, A, ..., A,.! Each tuple, X, is assumed to
belong to a predefined class as determined by another database attribute called the class
label attribute. The class label attribute is discrete-valued and unordered. It is categor-
ical (or nominal) in that each value serves as a category or class. The individual tuples
making up the training set are referred to as training tuples and are randomly sam-
pled from the database under analysis. In the context of classification, data tuples can be
referred to as samples, examples, instances, data points, or objects.”?

Each attribute represents a “feature” of X. Hence, the pattern recognition literature uses the term fea-
ture vector rather than attribute vector. In our discussion, we use the term attribute vector, and in our
notation, any variable representing a vector is shown in bold italic font; measurements depicting the
vector are shown in italic font (e.g., X = (x1, X2, x3)).

%In the machine learning literature, training tuples are commonly referred to as training samples.
Throughout this text, we prefer to use the term tuples instead of samples.
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[Classification algorithm]

Training data

name age income loan_decision

Sandy Jones youth low risky

Bill Lee youth low risky v

Caroline Fox middle_aged high safe

Rick Field  middle_aged low risky —

Susan Lake senior low safe Classification rules

Claire Phips senior medium safe

Joe Smith middle_aged high safe

- IF age = youth THEN loan_decision = risky

IF income = high THEN loan_decision = safe
IF age = middle_aged AND income = low
THEN loan_decision = risky

(a)

[ Classification rules ]

—

Test data
name age income loan_decision (John Henry, middle_aged, low)
- Loan decision?
Juan Bello  senior low safe

Sylvia Crest middle_aged low risky
Anne Yee  middle_aged high safe

risky
(b)

Figure 8.1 The data classification process: (a) Learning: Training data are analyzed by a classification
algorithm. Here, the class label attribute is loan_decision, and the learned model or classifier is
represented in the form of classification rules. (b) Classification: Test data are used to estimate
the accuracy of the classification rules. If the accuracy is considered acceptable, the rules can
be applied to the classification of new data tuples.
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Because the class label of each training tuple is provided, this step is also known as
supervised learning (i.e., the learning of the classifier is “supervised” in that it is told
to which class each training tuple belongs). It contrasts with unsupervised learning (or
clustering), in which the class label of each training tuple is not known, and the number
or set of classes to be learned may not be known in advance. For example, if we did not
have the loan_decision data available for the training set, we could use clustering to try to
determine “groups of like tuples,” which may correspond to risk groups within the loan
application data. Clustering is the topic of Chapters 10 and 11.

This first step of the classification process can also be viewed as the learning of a map-
ping or function, y = f(X), that can predict the associated class label y of a given tuple X.
In this view, we wish to learn a mapping or function that separates the data classes. Typ-
ically, this mapping is represented in the form of classification rules, decision trees, or
mathematical formulae. In our example, the mapping is represented as classification
rules that identify loan applications as being either safe or risky (Figure 8.1a). The rules
can be used to categorize future data tuples, as well as provide deeper insight into the
data contents. They also provide a compressed data representation.

“What about classification accuracy?” In the second step (Figure 8.1b), the model is
used for classification. First, the predictive accuracy of the classifier is estimated. If we
were to use the training set to measure the classifier’s accuracy, this estimate would likely
be optimistic, because the classifier tends to overfit the data (i.e., during learning it may
incorporate some particular anomalies of the training data that are not present in the
general data set overall). Therefore, a test set is used, made up of test tuples and their
associated class labels. They are independent of the training tuples, meaning that they
were not used to construct the classifier.

The accuracy of a classifier on a given test set is the percentage of test set tuples that
are correctly classified by the classifier. The associated class label of each test tuple is com-
pared with the learned classifier’s class prediction for that tuple. Section 8.5 describes
several methods for estimating classifier accuracy. If the accuracy of the classifier is con-
sidered acceptable, the classifier can be used to classify future data tuples for which the
class label is not known. (Such data are also referred to in the machine learning liter-
ature as “unknown” or “previously unseen” data.) For example, the classification rules
learned in Figure 8.1(a) from the analysis of data from previous loan applications can
be used to approve or reject new or future loan applicants.

Decision Tree Induction

Decision tree induction is the learning of decision trees from class-labeled training
tuples. A decision tree is a flowchart-like tree structure, where each internal node (non-
leaf node) denotes a test on an attribute, each branch represents an outcome of the
test, and each leaf node (or ferminal node) holds a class label. The topmost node in
a tree is the root node. A typical decision tree is shown in Figure 8.2. It represents
the concept buys_computer, that is, it predicts whether a customer at AllElectronics is
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middle_aged

|

senior

credit_rating?

fair

youth

ye excellent

Figure 8.2 A decision tree for the concept buys_computer, indicating whether an AllElectronics cus-
tomer is likely to purchase a computer. Each internal (nonleaf) node represents a test on
an attribute. Each leaf node represents a class (either buys_computer = yes or buys_computer
= no).

likely to purchase a computer. Internal nodes are denoted by rectangles, and leaf nodes
are denoted by ovals. Some decision tree algorithms produce only binary trees (where
each internal node branches to exactly two other nodes), whereas others can produce
nonbinary trees.

“How are decision trees used for classification?” Given a tuple, X, for which the asso-
ciated class label is unknown, the attribute values of the tuple are tested against the
decision tree. A path is traced from the root to a leaf node, which holds the class
prediction for that tuple. Decision trees can easily be converted to classification rules.

“Why are decision tree classifiers so popular?” The construction of decision tree clas-
sifiers does not require any domain knowledge or parameter setting, and therefore is
appropriate for exploratory knowledge discovery. Decision trees can handle multidi-
mensional data. Their representation of acquired knowledge in tree form is intuitive and
generally easy to assimilate by humans. The learning and classification steps of decision
tree induction are simple and fast. In general, decision tree classifiers have good accu-
racy. However, successful use may depend on the data at hand. Decision tree induction
algorithms have been used for classification in many application areas such as medicine,
manufacturing and production, financial analysis, astronomy, and molecular biology.
Decision trees are the basis of several commercial rule induction systems.

In Section 8.2.1, we describe a basic algorithm for learning decision trees. During
tree construction, attribute selection measures are used to select the attribute that best
partitions the tuples into distinct classes. Popular measures of attribute selection are
given in Section 8.2.2. When decision trees are built, many of the branches may reflect
noise or outliers in the training data. Tree pruning attempts to identify and remove such
branches, with the goal of improving classification accuracy on unseen data. Tree prun-
ing is described in Section 8.2.3. Scalability issues for the induction of decision trees
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8.2.1

from large databases are discussed in Section 8.2.4. Section 8.2.5 presents a visual mining
approach to decision tree induction.

Decision Tree Induction

During the late 1970s and early 1980s, J. Ross Quinlan, a researcher in machine learning,
developed a decision tree algorithm known as ID3 (Iterative Dichotomiser). This work
expanded on earlier work on concept learning systems, described by E. B. Hunt, J. Marin,
and P. T. Stone. Quinlan later presented C4.5 (a successor of ID3), which became a
benchmark to which newer supervised learning algorithms are often compared. In 1984,
a group of statisticians (L. Breiman, J. Friedman, R. Olshen, and C. Stone) published
the book Classification and Regression Trees (CART), which described the generation of
binary decision trees. ID3 and CART were invented independently of one another at
around the same time, yet follow a similar approach for learning decision trees from
training tuples. These two cornerstone algorithms spawned a flurry of work on decision
tree induction.

ID3, C4.5, and CART adopt a greedy (i.e., nonbacktracking) approach in which deci-
sion trees are constructed in a top-down recursive divide-and-conquer manner. Most
algorithms for decision tree induction also follow a top-down approach, which starts
with a training set of tuples and their associated class labels. The training set is recur-
sively partitioned into smaller subsets as the tree is being built. A basic decision tree
algorithm is summarized in Figure 8.3. At first glance, the algorithm may appear long,
but fear not! It is quite straightforward. The strategy is as follows.

The algorithm is called with three parameters: D, attribute_list, and Attribute_
selection_method. We refer to D as a data partition. Initially, it is the complete set
of training tuples and their associated class labels. The parameter attribute_list is a
list of attributes describing the tuples. Attribute_selection_method specifies a heuris-
tic procedure for selecting the attribute that “best” discriminates the given tuples
according to class. This procedure employs an attribute selection measure such as
information gain or the Gini index. Whether the tree is strictly binary is generally
driven by the attribute selection measure. Some attribute selection measures, such as
the Gini index, enforce the resulting tree to be binary. Others, like information gain,
do not, therein allowing multiway splits (i.e., two or more branches to be grown from
a node).

The tree starts as a single node, N, representing the training tuples in D (step 1).’

3The partition of class-labeled training tuples at node N is the set of tuples that follow a path from
the root of the tree to node N when being processed by the tree. This set is sometimes referred to in
the literature as the family of tuples at node N. We have referred to this set as the “tuples represented
at node N,” “the tuples that reach node N,” or simply “the tuples at node N.” Rather than storing the
actual tuples at a node, most implementations store pointers to these tuples.
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Algorithm: Generate_decision _tree. Generate a decision tree from the training tuples of
data partition, D.

Input:
Data partition, D, which is a set of training tuples and their associated class labels;
attribute_list, the set of candidate attributes;
Attribute_selection_method, a procedure to determine the splitting criterion that “best”
partitions the data tuples into individual classes. This criterion consists of a
splitting_attribute and, possibly, either a split-point or splitting subset.

Output: A decision tree.

Method:

(1) create anode Nj;
(2) iftuplesin D are all of the same class, C, then

(3) return N as a leaf node labeled with the class C;
(4) if attribute_list is empty then
(5) return N as a leaf node labeled with the majority class in D; // majority voting

(6) apply Attribute_selection_method(D, attribute_list) to find the “best” splitting criterion;
(7) label node N with splitting_criterion;
(8) if splitting_attribute is discrete-valued and
multiway splits allowed then // not restricted to binary trees
9) attribute_list < attribute_list — splitting_attribute; |/ remove splitting_attribute
(10) for each outcome j of splitting_criterion
// partition the tuples and grow subtrees for each partition
(11) let D; be the set of data tuples in D satisfying outcome j; // a partition
(12) if D; is empty then
(13) attach a leaf labeled with the majority class in D to node N;
(14) else attach the node returned by Generate_decision_tree(D;, attribute_list) to node Nj;
endfor
(15) return N;

Figure 8.3 Basic algorithm for inducing a decision tree from training tuples.

If the tuples in D are all of the same class, then node N becomes a leaf and is labeled
with that class (steps 2 and 3). Note that steps 4 and 5 are terminating conditions. All
terminating conditions are explained at the end of the algorithm.

Otherwise, the algorithm calls Attribute_selection_method to determine the splitting
criterion. The splitting criterion tells us which attribute to test at node N by deter-
mining the “best” way to separate or partition the tuples in D into individual classes
(step 6). The splitting criterion also tells us which branches to grow from node N
with respect to the outcomes of the chosen test. More specifically, the splitting cri-
terion indicates the splitting attribute and may also indicate either a split-point or
a splitting subset. The splitting criterion is determined so that, ideally, the resulting
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Figure 8.4

(a)

(b)

(c)

partitions at each branch are as “pure” as possible. A partition is pure if all the tuples
in it belong to the same class. In other words, if we split up the tuples in D according
to the mutually exclusive outcomes of the splitting criterion, we hope for the resulting
partitions to be as pure as possible.

The node N is labeled with the splitting criterion, which serves as a test at the node
(step 7). A branch is grown from node N for each of the outcomes of the splitting
criterion. The tuples in D are partitioned accordingly (steps 10 to 11). There are three
possible scenarios, as illustrated in Figure 8.4. Let A be the splitting attribute. A has v
distinct values, {a1, a2, ..., a,}, based on the training data.

I. A is discrete-valued: In this case, the outcomes of the test at node N correspond
directly to the known values of A. A branch is created for each known value,
aj, of A and labeled with that value (Figure 8.4a). Partition D; is the subset
of class-labeled tuples in D having value a; of A. Because all the tuples in a

Partitioning scenarios Examples
> 2 s B g
a;  a, a, g §F o N 9 & @
‘ /& 8 2% : A
\
/N AR /o \

=42,000

/

>42,000

\

A > split_point

\

A =split_point

/

color € {red, green}?

no

\

yes

/

yes

/

This figure shows three possibilities for partitioning tuples based on the splitting criterion,
each with examples. Let A be the splitting attribute. (a) If A is discrete-valued, then one
branch is grown for each known value of A. (b) If A is continuous-valued, then two branches
are grown, corresponding to A < split_point and A > split_point. (c) If A is discrete-valued
and a binary tree must be produced, then the test is of the form A € Sy, where Sy is the
splitting subset for A.
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given partition have the same value for A, A need not be considered in any future
partitioning of the tuples. Therefore, it is removed from attribute_list (steps 8
and 9).

2. A is continuous-valued: In this case, the test at node N has two possible outcomes,
corresponding to the conditions A < split_point and A > split_point, respectively,
where split_point is the split-point returned by Attribute_selection_method as part
of the splitting criterion. (In practice, the split-point, g, is often taken as the
midpoint of two known adjacent values of A and therefore may not actually be
a preexisting value of A from the training data.) Two branches are grown from
N and labeled according to the previous outcomes (Figure 8.4b). The tuples are
partitioned such that D; holds the subset of class-labeled tuples in D for which
A < split_point, while D, holds the rest.

3. Aisdiscrete-valued and a binary tree must be produced (as dictated by the attribute
selection measure or algorithm being used): The test at node N is of the form “A €
Sa?” where Sy is the splitting subset for A, returned by Attribute_selection_method
as part of the splitting criterion. It is a subset of the known values of A. If a given
tuple has value a; of A and if aj € Sa, then the test at node N is satisfied. Two
branches are grown from N (Figure 8.4c). By convention, the left branch out of N
is labeled yes so that D; corresponds to the subset of class-labeled tuples in D that
satisfy the test. The right branch out of N is labeled #o so that D, corresponds to
the subset of class-labeled tuples from D that do not satisfy the test.

The algorithm uses the same process recursively to form a decision tree for the tuples
at each resulting partition, Dj, of D (step 14).

The recursive partitioning stops only when any one of the following terminating
conditions is true:

I. All the tuples in partition D (represented at node N) belong to the same class
(steps 2 and 3).

2. There are no remaining attributes on which the tuples may be further partitioned
(step 4). In this case, majority voting is employed (step 5). This involves con-
verting node N into a leaf and labeling it with the most common class in D.
Alternatively, the class distribution of the node tuples may be stored.

3. There are no tuples for a given branch, that is, a partition D; is empty (step 12).
In this case, a leaf is created with the majority class in D (step 13).

The resulting decision tree is returned (step 15).

The computational complexity of the algorithm given training set D is O(n x |D| x
log(|D|)), where # is the number of attributes describing the tuples in D and |D] is the
number of training tuples in D. This means that the computational cost of growing a
tree grows at most n x |D| x log(|D|) with | D| tuples. The proof is left as an exercise for
the reader.
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Incremental versions of decision tree induction have also been proposed. When
given new training data, these restructure the decision tree acquired from learning on
previous training data, rather than relearning a new tree from scratch.

Differences in decision tree algorithms include how the attributes are selected in
creating the tree (Section 8.2.2) and the mechanisms used for pruning (Section 8.2.3).
The basic algorithm described earlier requires one pass over the training tuples in D for
each level of the tree. This can lead to long training times and lack of available memory
when dealing with large databases. Improvements regarding the scalability of decision
tree induction are discussed in Section 8.2.4. Section 8.2.5 presents a visual interactive
approach to decision tree construction. A discussion of strategies for extracting rules
from decision trees is given in Section 8.4.2 regarding rule-based classification.

8.2.2 Attribute Selection Measures

An attribute selection measure is a heuristic for selecting the splitting criterion that
“best” separates a given data partition, D, of class-labeled training tuples into individual
classes. If we were to split D into smaller partitions according to the outcomes of the
splitting criterion, ideally each partition would be pure (i.e., all the tuples that fall into a
given partition would belong to the same class). Conceptually, the “best” splitting crite-
rion is the one that most closely results in such a scenario. Attribute selection measures
are also known as splitting rules because they determine how the tuples at a given node
are to be split.

The attribute selection measure provides a ranking for each attribute describing the
given training tuples. The attribute having the best score for the measure* is chosen as
the splitting attribute for the given tuples. If the splitting attribute is continuous-valued
or if we are restricted to binary trees, then, respectively, either a split point or a splitting
subset must also be determined as part of the splitting criterion. The tree node created
for partition D is labeled with the splitting criterion, branches are grown for each out-
come of the criterion, and the tuples are partitioned accordingly. This section describes
three popular attribute selection measures—information gain, gain ratio, and Gini index.

The notation used herein is as follows. Let D, the data partition, be a training set of
class-labeled tuples. Suppose the class label attribute has m distinct values defining m
distinct classes, C; (for i = 1,..., m). Let C; p be the set of tuples of class C; in D. Let | D|
and |C; p| denote the number of tuples in D and C; p, respectively.

Information Gain

ID3 uses information gain as its attribute selection measure. This measure is based on
pioneering work by Claude Shannon on information theory, which studied the value or
“information content” of messages. Let node N represent or hold the tuples of partition
D. The attribute with the highest information gain is chosen as the splitting attribute for
node N. This attribute minimizes the information needed to classify the tuples in the

“Depending on the measure, either the highest or lowest score is chosen as the best (i.e., some measures
strive to maximize while others strive to minimize).
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resulting partitions and reflects the least randomness or “impurity” in these parti-
tions. Such an approach minimizes the expected number of tests needed to classify
a given tuple and guarantees that a simple (but not necessarily the simplest) tree is
found.

The expected information needed to classify a tuple in D is given by

Info(D) = = pilog, (pi), (8.1)

=1

where p; is the nonzero probability that an arbitrary tuple in D belongs to class C; and
is estimated by |C; p|/| D|. A log function to the base 2 is used, because the information
is encoded in bits. Info(D) is just the average amount of information needed to identify
the class label of a tuple in D. Note that, at this point, the information we have is based
solely on the proportions of tuples of each class. Info(D) is also known as the entropy
of D.

Now, suppose we were to partition the tuples in D on some attribute A having v dis-
tinct values, {ai, a,..., a,}, as observed from the training data. If A is discrete-valued,
these values correspond directly to the v outcomes of a test on A. Attribute A can be used
to split D into v partitions or subsets, { D1, Da,..., D,}, where D; contains those tuples in
D that have outcome a; of A. These partitions would correspond to the branches grown
from node N. Ideally, we would like this partitioning to produce an exact classification
of the tuples. That is, we would like for each partition to be pure. However, it is quite
likely that the partitions will be impure (e.g., where a partition may contain a collection
of tuples from different classes rather than from a single class).

How much more information would we still need (after the partitioning) to arrive at
an exact classification? This amount is measured by

v
D.
Info, (D) = Z % x Info(D;j). (8.2)
j=1
The term % acts as the weight of the jth partition. Info, (D) is the expected informa-
tion required to classify a tuple from D based on the partitioning by A. The smaller the
expected information (still) required, the greater the purity of the partitions.

Information gain is defined as the difference between the original information
requirement (i.e., based on just the proportion of classes) and the new requirement (i.e.,

obtained after partitioning on A). That is,

Gain(A) = Info(D) — Info, (D). (8.3)

In other words, Gain(A) tells us how much would be gained by branching on A. It is
the expected reduction in the information requirement caused by knowing the value of
A. The attribute A with the highest information gain, Gain(A), is chosen as the splitting
attribute at node N. This is equivalent to saying that we want to partition on the attribute
A that would do the “best classification,” so that the amount of information still required
to finish classifying the tuples is minimal (i.e., minimum Info, (D)).
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Table 8.1

Example 8.1

Class-Labeled Training Tuples from the AllElectronics Customer Database

RID  age income  student credit_rating  Class: buys_computer
1 youth high no fair no
2 youth high no excellent no
3 middle_aged  high no fair yes
4 senior medium  no fair yes
5 senior low yes fair yes
6 senior low yes excellent no
7 middle_aged low yes excellent yes
8 youth medium  no fair no
9 youth low yes fair yes

10 senior medium  yes fair yes

11 youth medium  yes excellent yes

12 middle_aged medium no excellent yes

13 middle_aged  high yes fair yes

14 senior medium  no excellent no

Induction of a decision tree using information gain. Table 8.1 presents a training set,
D, of class-labeled tuples randomly selected from the AllElectronics customer database.
(The data are adapted from Quinlan [Qui86]. In this example, each attribute is discrete-
valued. Continuous-valued attributes have been generalized.) The class label attribute,
buys_computer, has two distinct values (namely, {yes, no}); therefore, there are two dis-
tinct classes (i.e., m = 2). Let class C; correspond to yes and class C, correspond to no.
There are nine tuples of class yes and five tuples of class no. A (root) node N is created
for the tuples in D. To find the splitting criterion for these tuples, we must compute
the information gain of each attribute. We first use Eq. (8.1) to compute the expected
information needed to classify a tuple in D:

Info(D) ° o > > 0.940 bit
njo = ——10 — | — — 10 —_— = V. 1TS.
14 %82\ 14 14 %82\ 14

Next, we need to compute the expected information requirement for each attribute.
Let’s start with the attribute age. We need to look at the distribution of yes and o tuples
for each category of age. For the age category “youth,” there are two yes tuples and three
no tuples. For the category “middle_aged,” there are four yes tuples and zero no tuples.
For the category “senior,” there are three yes tuples and two no tuples. Using Eq. (8.2),
the expected information needed to classify a tuple in D if the tuples are partitioned
according to age is

2

R NI
Infoage(D)_ ﬁ X _g Ong_g ngg
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+ 2 X (—A—llogz ‘—L>
14 4 4

+2 (_ilogz 3 Elog23>
14 5 5 5 5
= 0.694 bits.

Hence, the gain in information from such a partitioning would be

Gain(age) = Info(D) — Info, (D) = 0.940 — 0.694 = 0.246 bits.

age

Similarly, we can compute Gain(income) = 0.029 bits, Gain(student) = 0.151 bits,
and Gain(credit_rating) = 0.048 bits. Because age has the highest information gain
among the attributes, it is selected as the splitting attribute. Node N is labeled with age,
and branches are grown for each of the attribute’s values. The tuples are then partitioned
accordingly, as shown in Figure 8.5. Notice that the tuples falling into the partition for
age = middle_aged all belong to the same class. Because they all belong to class “yes,”
a leaf should therefore be created at the end of this branch and labeled “yes.” The final

decision tree returned by the algorithm was shown earlier in Figure 8.2. (]
age? |
youth middle_aged senior

income student credit_rating class income student credit_rating class
high no fair no medium | no fair yes
high no excellent no low yes fair yes
medium | no fair no low yes excellent no
low yes fair yes medium yes fair yes
medium | yes excellent yes medium no excellent no

income student credit_rating class

high no fair yes

low yes excellent yes

medium | no excellent yes

high yes fair yes

Figure 8.5 The attribute age has the highest information gain and therefore becomes the splitting
attribute at the root node of the decision tree. Branches are grown for each outcome of age.
The tuples are shown partitioned accordingly.
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“But how can we compute the information gain of an attribute that is continuous-
valued, unlike in the example?” Suppose, instead, that we have an attribute A that is
continuous-valued, rather than discrete-valued. (For example, suppose that instead
of the discretized version of age from the example, we have the raw values for this
attribute.) For such a scenario, we must determine the “best” split-point for A, where
the split-point is a threshold on A.

We first sort the values of A in increasing order. Typically, the midpoint between each
pair of adjacent values is considered as a possible split-point. Therefore, given v values
of A, then v — 1 possible splits are evaluated. For example, the midpoint between the
values g; and a; 1 of Ais

R (8.4)
2

If the values of A are sorted in advance, then determining the best split for A requires
only one pass through the values. For each possible split-point for A, we evaluate
Info, (D), where the number of partitions is two, that is, v =2 (or j = 1,2) in Eq. (8.2).
The point with the minimum expected information requirement for A is selected as the
split_point for A. Dy is the set of tuples in D satisfying A < split_point, and D is the set
of tuples in D satisfying A > split_point.

Gain Ratio

The information gain measure is biased toward tests with many outcomes. That is, it
prefers to select attributes having a large number of values. For example, consider an
attribute that acts as a unique identifier such as product_ID. A split on product_ID would
result in a large number of partitions (as many as there are values), each one containing
just one tuple. Because each partition is pure, the information required to classify data
set D based on this partitioning would be Info,, 4, 1p(D) = 0. Therefore, the informa-
tion gained by partitioning on this attribute is maximal. Clearly, such a partitioning is
useless for classification.

C4.5, a successor of ID3, uses an extension to information gain known as gain ratio,
which attempts to overcome this bias. It applies a kind of normalization to information
gain using a “split information” value defined analogously with Info(D) as

. ~ |Dj| |Djl
Splitlnfo,(D) = — ) |_D]| x log, (ﬁ) . (8.5)
j:l

This value represents the potential information generated by splitting the training
data set, D, into v partitions, corresponding to the v outcomes of a test on attribute A.
Note that, for each outcome, it considers the number of tuples having that outcome
with respect to the total number of tuples in D. It differs from information gain, which
measures the information with respect to classification that is acquired based on the
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same partitioning. The gain ratio is defined as

Gain(A)

GainRatio(A) = —— D
ainRatio(A) SplitInfo, (D)

(8.6)
The attribute with the maximum gain ratio is selected as the splitting attribute. Note,
however, that as the split information approaches 0, the ratio becomes unstable. A con-
straint is added to avoid this, whereby the information gain of the test selected must be
large—at least as great as the average gain over all tests examined.

Computation of gain ratio for the attribute income. A test on income splits the data of
Table 8.1 into three partitions, namely low, medium, and high, containing four, six, and
four tuples, respectively. To compute the gain ratio of income, we first use Eq. (8.5) to
obtain

. 4 4 6 6 4 4
Splitinfo;, .. (D) = TR log, ) 1~ log, ) * log, I

= 1.557.

From Example 8.1, we have Gain(income) = 0.029. Therefore, GainRatio(income) =
0.029/1.557 = 0.019. [ |

Gini Index

The Gini index is used in CART. Using the notation previously described, the Gini index
measures the impurity of D, a data partition or set of training tuples, as

Gini(D) =1- " p}, (8.7)

i=1

where p; is the probability that a tuple in D belongs to class C; and is estimated by
|Ci,pl/|D|. The sum is computed over m classes.

The Gini index considers a binary split for each attribute. Let’s first consider the case
where A is a discrete-valued attribute having v distinct values, {a;, a,..., a,}, occur-
ring in D. To determine the best binary split on A, we examine all the possible subsets
that can be formed using known values of A. Each subset, S4, can be considered as a
binary test for attribute A of the form “A € S4?” Given a tuple, this test is satisfied if
the value of A for the tuple is among the values listed in Sj. If A has v possible val-
ues, then there are 2" possible subsets. For example, if income has three possible values,
namely {low, medium, high}, then the possible subsets are {low, medium, high}, {low,
mediumy}, {low, high}, {medium, high}, {low}, {medium}, {high}, and {}. We exclude the
power set, {low, medium, high}, and the empty set from consideration since, conceptu-
ally, they do not represent a split. Therefore, there are 2 — 2 possible ways to form two
partitions of the data, D, based on a binary split on A.
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When considering a binary split, we compute a weighted sum of the impurity of each
resulting partition. For example, if a binary split on A partitions D into D; and D;, the
Gini index of D given that partitioning is

Giniy(D) = 1Dil Gini(Dy) + 1D Gini(Dy). (8.8)
| D | D

For each attribute, each of the possible binary splits is considered. For a discrete-valued
attribute, the subset that gives the minimum Gini index for that attribute is selected as
its splitting subset.

For continuous-valued attributes, each possible split-point must be considered. The
strategy is similar to that described earlier for information gain, where the midpoint
between each pair of (sorted) adjacent values is taken as a possible split-point. The point
giving the minimum Gini index for a given (continuous-valued) attribute is taken as
the split-point of that attribute. Recall that for a possible split-point of A, D is the
set of tuples in D satisfying A < split_point, and D, is the set of tuples in D satisfying
A > split_point.

The reduction in impurity that would be incurred by a binary split on a discrete- or
continuous-valued attribute A is

AGini(A) = Gini(D) — Ginix(D). (8.9)

The attribute that maximizes the reduction in impurity (or, equivalently, has the
minimum Gini index) is selected as the splitting attribute. This attribute and either
its splitting subset (for a discrete-valued splitting attribute) or split-point (for a
continuous-valued splitting attribute) together form the splitting criterion.

Induction of a decision tree using the Gini index. Let D be the training data shown
earlier in Table 8.1, where there are nine tuples belonging to the class buys_computer =
yes and the remaining five tuples belong to the class buys_computer = no. A (root) node
N is created for the tuples in D. We first use Eq. (8.7) for the Gini index to compute the

impurity of D:
9\ (5)\°
GniD)=1—-{— ) —| — | =0.459.
14 14

To find the splitting criterion for the tuples in D, we need to compute the Gini index
for each attribute. Let’s start with the attribute income and consider each of the possible
splitting subsets. Consider the subset {low, medium}. This would result in 10 tuples in
partition Dj satisfying the condition “income € {low, medium}.” The remaining four
tuples of D would be assigned to partition D,. The Gini index value computed based on
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this partitioning is

Gittlipcome ¢ {low,medium} (D)

10 . (D0 + 4 D)
= — U1t — Gini
14 B! 2

() -6

= Gittijncome € {high} (D).

Similarly, the Gini index values for splits on the remaining subsets are 0.458 (for the sub-
sets {low, high} and {medium}) and 0.450 (for the subsets {medium, high} and {low}).
Therefore, the best binary split for attribute income is on {low, medium} (or {high})
because it minimizes the Gini index. Evaluating age, we obtain {youth, senior} (or
{middle_aged}) as the best split for age with a Gini index of 0.375; the attributes student
and credit_rating are both binary, with Gini index values of 0.367 and 0.429, respectively.

The attribute age and splitting subset {youth, senior} therefore give the minimum
Gini index overall, with a reduction in impurity of 0.459 — 0.357 = 0.102. The binary
split “age € {youth, senior?}” results in the maximum reduction in impurity of the tuples
in D and is returned as the splitting criterion. Node N is labeled with the criterion, two
branches are grown from it, and the tuples are partitioned accordingly. (]

Other Attribute Selection Measures

This section on attribute selection measures was not intended to be exhaustive. We
have shown three measures that are commonly used for building decision trees. These
measures are not without their biases. Information gain, as we saw, is biased toward
multivalued attributes. Although the gain ratio adjusts for this bias, it tends to prefer
unbalanced splits in which one partition is much smaller than the others. The Gini index
is biased toward multivalued attributes and has difficulty when the number of classes is
large. It also tends to favor tests that result in equal-size partitions and purity in both
partitions. Although biased, these measures give reasonably good results in practice.
Many other attribute selection measures have been proposed. CHAID, a decision tree
algorithm that is popular in marketing, uses an attribute selection measure that is based
on the statistical x2 test for independence. Other measures include C-SEP (which per-
forms better than information gain and the Gini index in certain cases) and G-statistic
(an information theoretic measure that is a close approximation to x? distribution).
Attribute selection measures based on the Minimum Description Length (MDL)
principle have the least bias toward multivalued attributes. MDL-based measures use
encoding techniques to define the “best” decision tree as the one that requires the fewest
number of bits to both (1) encode the tree and (2) encode the exceptions to the tree
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(i.e., cases that are not correctly classified by the tree). Its main idea is that the simplest
of solutions is preferred.

Other attribute selection measures consider multivariate splits (i.e., where the par-
titioning of tuples is based on a combination of attributes, rather than on a single
attribute). The CART system, for example, can find multivariate splits based on a lin-
ear combination of attributes. Multivariate splits are a form of attribute (or feature)
construction, where new attributes are created based on the existing ones. (Attribute
construction was also discussed in Chapter 3, as a form of data transformation.) These
other measures mentioned here are beyond the scope of this book. Additional references
are given in the bibliographic notes at the end of this chapter (Section 8.9).

“Which attribute selection measure is the best?” All measures have some bias. It has
been shown that the time complexity of decision tree induction generally increases
exponentially with tree height. Hence, measures that tend to produce shallower trees
(e.g., with multiway rather than binary splits, and that favor more balanced splits) may
be preferred. However, some studies have found that shallow trees tend to have a large
number of leaves and higher error rates. Despite several comparative studies, no one
attribute selection measure has been found to be significantly superior to others. Most
measures give quite good results.

Tree Pruning

When a decision tree is built, many of the branches will reflect anomalies in the training
data due to noise or outliers. Tree pruning methods address this problem of overfitting
the data. Such methods typically use statistical measures to remove the least-reliable
branches. An unpruned tree and a pruned version of it are shown in Figure 8.6. Pruned
trees tend to be smaller and less complex and, thus, easier to comprehend. They are
usually faster and better at correctly classifying independent test data (i.e., of previously
unseen tuples) than unpruned trees.

“How does tree pruning work?” There are two common approaches to tree pruning:
prepruning and postpruning.

In the prepruning approach, a tree is “pruned” by halting its construction early (e.g.,
by deciding not to further split or partition the subset of training tuples at a given node).
Upon halting, the node becomes a leaf. The leaf may hold the most frequent class among
the subset tuples or the probability distribution of those tuples.

When constructing a tree, measures such as statistical significance, information gain,
Gini index, and so on, can be used to assess the goodness of a split. If partitioning the
tuples at a node would result in a split that falls below a prespecified threshold, then fur-
ther partitioning of the given subset is halted. There are difficulties, however, in choosing
an appropriate threshold. High thresholds could result in oversimplified trees, whereas
low thresholds could result in very little simplification.

The second and more common approach is postpruning, which removes subtrees
from a “fully grown” tree. A subtree at a given node is pruned by removing its branches
and replacing it with a leaf. The leaf is labeled with the most frequent class among the
subtree being replaced. For example, notice the subtree at node “A3?” in the unpruned
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Figure 8.6 An unpruned decision tree and a pruned version of it.

tree of Figure 8.6. Suppose that the most common class within this subtree is “class B.”
In the pruned version of the tree, the subtree in question is pruned by replacing it with
the leaf “class B”

The cost complexity pruning algorithm used in CART is an example of the postprun-
ing approach. This approach considers the cost complexity of a tree to be a function of
the number of leaves in the tree and the error rate of the tree (where the error rate is the
percentage of tuples misclassified by the tree). It starts from the bottom of the tree. For
each internal node, N, it computes the cost complexity of the subtree at N, and the cost
complexity of the subtree at N if it were to be pruned (i.e., replaced by a leaf node). The
two values are compared. If pruning the subtree at node N would result in a smaller cost
complexity, then the subtree is pruned. Otherwise, it is kept.

A pruning set of class-labeled tuples is used to estimate cost complexity. This set is
independent of the training set used to build the unpruned tree and of any test set used
for accuracy estimation. The algorithm generates a set of progressively pruned trees. In
general, the smallest decision tree that minimizes the cost complexity is preferred.

C4.5 uses a method called pessimistic pruning, which is similar to the cost complex-
ity method in that it also uses error rate estimates to make decisions regarding subtree
pruning. Pessimistic pruning, however, does not require the use of a prune set. Instead,
it uses the training set to estimate error rates. Recall that an estimate of accuracy or
error based on the training set is overly optimistic and, therefore, strongly biased. The
pessimistic pruning method therefore adjusts the error rates obtained from the training
set by adding a penalty, so as to counter the bias incurred.

Rather than pruning trees based on estimated error rates, we can prune trees based
on the number of bits required to encode them. The “best” pruned tree is the one that
minimizes the number of encoding bits. This method adopts the MDL principle, which
was briefly introduced in Section 8.2.2. The basic idea is that the simplest solution is pre-
ferred. Unlike cost complexity pruning, it does not require an independent set of tuples.
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Alternatively, prepruning and postpruning may be interleaved for a combined
approach. Postpruning requires more computation than prepruning, yet generally leads
to a more reliable tree. No single pruning method has been found to be superior over
all others. Although some pruning methods do depend on the availability of additional
data for pruning, this is usually not a concern when dealing with large databases.

Although pruned trees tend to be more compact than their unpruned counterparts,
they may still be rather large and complex. Decision trees can suffer from repetition
and replication (Figure 8.7), making them overwhelming to interpret. Repetition occurs
when an attribute is repeatedly tested along a given branch of the tree (e.g., “age < 60?,”

Figure 8.7 An example of: (a) subtree repetition, where an attribute is repeatedly tested along a given
branch of the tree (e.g., age) and (b) subtree replication, where duplicate subtrees exist
within a tree (e.g., the subtree headed by the node “credit_rating?”).
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followed by “age < 45?2, and so on). In replication, duplicate subtrees exist within the
tree. These situations can impede the accuracy and comprehensibility of a decision tree.
The use of multivariate splits (splits based on a combination of attributes) can prevent
these problems. Another approach is to use a different form of knowledge representa-
tion, such as rules, instead of decision trees. This is described in Section 8.4.2, which
shows how a rule-based classifier can be constructed by extracting IF-THEN rules from
a decision tree.

8.2.4 Scalability and Decision Tree Induction

“What if D, the disk-resident training set of class-labeled tuples, does not fit in memory? In
other words, how scalable is decision tree induction?” The efficiency of existing decision
tree algorithms, such as ID3, C4.5, and CART, has been well established for relatively
small data sets. Efficiency becomes an issue of concern when these algorithms are applied
to the mining of very large real-world databases. The pioneering decision tree algorithms
that we have discussed so far have the restriction that the training tuples should reside
in memory.

In data mining applications, very large training sets of millions of tuples are com-
mon. Most often, the training data will not fit in memory! Therefore, decision tree
construction becomes inefficient due to swapping of the training tuples in and out
of main and cache memories. More scalable approaches, capable of handling train-
ing data that are too large to fit in memory, are required. Earlier strategies to “save
space” included discretizing continuous-valued attributes and sampling data at each
node. These techniques, however, still assume that the training set can fit in memory.

Several scalable decision tree induction methods have been introduced in recent stud-
ies. RainForest, for example, adapts to the amount of main memory available and applies
to any decision tree induction algorithm. The method maintains an AVC-set (where
“AVC” stands for “Attribute-Value, Classlabel”) for each attribute, at each tree node,
describing the training tuples at the node. The AVC-set of an attribute A at node N
gives the class label counts for each value of A for the tuples at N. Figure 8.8 shows AVC-
sets for the tuple data of Table 8.1. The set of all AVC-sets at a node N is the AVC-group
of N. The size of an AVC-set for attribute A at node N depends only on the number of
distinct values of A and the number of classes in the set of tuples at N. Typically, this size
should fit in memory, even for real-world data. RainForest also has techniques, how-
ever, for handling the case where the AVC-group does not fit in memory. Therefore, the
method has high scalability for decision tree induction in very large data sets.

BOAT (Bootstrapped Optimistic Algorithm for Tree construction) is a decision tree
algorithm that takes a completely different approach to scalability—it is not based on
the use of any special data structures. Instead, it uses a statistical technique known as
“bootstrapping” (Section 8.5.4) to create several smaller samples (or subsets) of the
given training data, each of which fits in memory. Each subset is used to construct a
tree, resulting in several trees. The trees are examined and used to construct a new tree,
T, that turns out to be “very close” to the tree that would have been generated if all the
original training data had fit in memory.



348 Chapter 8 Classification: Basic Concepts

buys_computer buys_computer
age yes no income yes no
youth 2 3 low 3 1
middle_aged| 4 0 medium 4 2
senior 3 2 high 2 2
buys_computer buys_computer
student yes no credit_ratting yes no
yes 6 1 fair 6 2
no 3 excellent 3 3

Figure 8.8 The use of data structures to hold aggregate information regarding the training data (e.g.,
these AVC-sets describing Table 8.1’s data) are one approach to improving the scalability of
decision tree induction.

BOAT can use any attribute selection measure that selects binary splits and that is
based on the notion of purity of partitions such as the Gini index. BOAT uses a lower
bound on the attribute selection measure to detect if this “very good” tree, T, is different
from the “real” tree, T, that would have been generated using all of the data. It refines
T’ to arrive at T.

BOAT usually requires only two scans of D. This is quite an improvement, even
in comparison to traditional decision tree algorithms (e.g., the basic algorithm in
Figure 8.3), which require one scan per tree level! BOAT was found to be two to three
times faster than RainForest, while constructing exactly the same tree. An additional
advantage of BOAT is that it can be used for incremental updates. That is, BOAT can
take new insertions and deletions for the training data and update the decision tree to
reflect these changes, without having to reconstruct the tree from scratch.

8.2.5 Visual Mining for Decision Tree Induction

“Are there any interactive approaches to decision tree induction that allow us to visual-
ize the data and the tree as it is being constructed? Can we use any knowledge of our
data to help in building the tree?” In this section, you will learn about an approach to
decision tree induction that supports these options. Perception-based classification
(PBC) is an interactive approach based on multidimensional visualization techniques
and allows the user to incorporate background knowledge about the data when building
a decision tree. By visually interacting with the data, the user is also likely to develop a
deeper understanding of the data. The resulting trees tend to be smaller than those built
using traditional decision tree induction methods and so are easier to interpret, while
achieving about the same accuracy.

“How can the data be visualized to support interactive decision tree construction?”
PBC uses a pixel-oriented approach to view multidimensional data with its class label
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information. The circle segments approach is adapted, which maps d-dimensional data
objects to a circle that is partitioned into d segments, each representing one attribute
(Section 2.3.1). Here, an attribute value of a data object is mapped to one colored pixel,
reflecting the object’s class label. This mapping is done for each attribute—value pair of
each data object. Sorting is done for each attribute to determine the arrangement order
within a segment. For example, attribute values within a given segment may be orga-
nized so as to display homogeneous (with respect to class label) regions within the same
attribute value. The amount of training data that can be visualized at one time is approx-
imately determined by the product of the number of attributes and the number of data
objects.

The PBC system displays a split screen, consisting of a Data Interaction window and
a Knowledge Interaction window (Figure 8.9). The Data Interaction window displays
the circle segments of the data under examination, while the Knowledge Interaction
window displays the decision tree constructed so far. Initially, the complete training set
is visualized in the Data Interaction window, while the Knowledge Interaction window
displays an empty decision tree.

Traditional decision tree algorithms allow only binary splits for numeric attributes.
PBC, however, allows the user to specify multiple split-points, resulting in multiple
branches to be grown from a single tree node.

o Perception-Dased Classification - segment, 1 train. txi
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Figure 8.9 A screenshot of PBC, a system for interactive decision tree construction. Multidimensional
training data are viewed as circle segments in the Data Interaction window (left). The Know-
ledge Interaction window (right) displays the current decision tree. Source: From Ankerst,
Elsen, Ester, and Kriegel [AEEK99].
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A tree is interactively constructed as follows. The user visualizes the multidimen-
sional data in the Data Interaction window and selects a splitting attribute and one or
more split-points. The current decision tree in the Knowledge Interaction window is
expanded. The user selects a node of the decision tree. The user may either assign a class
label to the node (which makes the node a leaf) or request the visualization of the train-
ing data corresponding to the node. This leads to a new visualization of every attribute
except the ones used for splitting criteria on the same path from the root. The interactive
process continues until a class has been assigned to each leaf of the decision tree.

The trees constructed with PBC were compared with trees generated by the CART,
C4.5, and SPRINT algorithms from various data sets. The trees created with PBC were
of comparable accuracy with the tree from the algorithmic approaches, yet were signifi-
cantly smaller and, thus, easier to understand. Users can use their domain knowledge in
building a decision tree, but also gain a deeper understanding of their data during the
construction process.

Bayes Classification Methods

“What are Bayesian classifiers?” Bayesian classifiers are statistical classifiers. They can
predict class membership probabilities such as the probability that a given tuple belongs
to a particular class.

Bayesian classification is based on Bayes’ theorem, described next. Studies compar-
ing classification algorithms have found a simple Bayesian classifier known as the naive
Bayesian classifier to be comparable in performance with decision tree and selected neu-
ral network classifiers. Bayesian classifiers have also exhibited high accuracy and speed
when applied to large databases.

Naive Bayesian classifiers assume that the effect of an attribute value on a given class
is independent of the values of the other attributes. This assumption is called class-
conditional independence. It is made to simplify the computations involved and, in this
sense, is considered “naive.”

Section 8.3.1 reviews basic probability notation and Bayes’ theorem. In Section 8.3.2
you will learn how to do naive Bayesian classification.

Bayes’ Theorem

Bayes’ theorem is named after Thomas Bayes, a nonconformist English clergyman who
did early work in probability and decision theory during the 18th century. Let X be a
data tuple. In Bayesian terms, X is considered “evidence.” As usual, it is described by
measurements made on a set of n attributes. Let H be some hypothesis such as that
the data tuple X belongs to a specified class C. For classification problems, we want to
determine P(H|X), the probability that the hypothesis H holds given the “evidence” or
observed data tuple X. In other words, we are looking for the probability that tuple X
belongs to class C, given that we know the attribute description of X.
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P(H|X) is the posterior probability, or a posteriori probability, of H conditioned
on X. For example, suppose our world of data tuples is confined to customers described
by the attributes age and income, respectively, and that X is a 35-year-old customer with
an income of $40,000. Suppose that H is the hypothesis that our customer will buy a
computer. Then P(H|X) reflects the probability that customer X will buy a computer
given that we know the customer’s age and income.

In contrast, P(H) is the prior probability, or a priori probability, of H. For our exam-
ple, this is the probability that any given customer will buy a computer, regardless of age,
income, or any other information, for that matter. The posterior probability, P(H|X),
is based on more information (e.g., customer information) than the prior probability,
P(H), which is independent of X.

Similarly, P(X|H) is the posterior probability of X conditioned on H. That is, it is the
probability that a customer, X, is 35 years old and earns $40,000, given that we know the
customer will buy a computer.

P(X) is the prior probability of X. Using our example, it is the probability that a
person from our set of customers is 35 years old and earns $40,000.

“How are these probabilities estimated?” P(H), P(X|H), and P(X) may be estimated
from the given data, as we shall see next. Bayes’ theorem is useful in that it provides
a way of calculating the posterior probability, P(H|X), from P(H), P(X|H), and P(X).
Bayes’ theorem is

p(|x) = ZAIDEED (5.10)
P(X)

Now that we have that out of the way, in the next section, we will look at how Bayes’

theorem is used in the naive Bayesian classifier.

Naive Bayesian Classification

The naive Bayesian classifier, or simple Bayesian classifier, works as follows:

I. Let D be a training set of tuples and their associated class labels. As usual, each tuple
is represented by an n-dimensional attribute vector, X = (x1, x2,. .., X,), depicting n
measurements made on the tuple from # attributes, respectively, A;, Az,..., Aj.

2. Suppose that there are m classes, Ci, C,,..., Cy,. Given a tuple, X, the classifier will
predict that X belongs to the class having the highest posterior probability, condi-
tioned on X. That is, the naive Bayesian classifier predicts that tuple X belongs to the
class C; if and only if

P(Ci|X) > P(Cj|X) for 1 <j<m,j#i.
Thus, we maximize P(C;|X). The class C; for which P(C;|X) is maximized is called
the maximum posteriori hypothesis. By Bayes’ theorem (Eq. 8.10),
PX|C)P(C)
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3. As P(X) is constant for all classes, only P(X|C;) P(C;) needs to be maximized. If the

class prior probabilities are not known, then it is commonly assumed that the classes
are equally likely, that is, P(C)) = P(C;) = --- = P(Cy,), and we would therefore
maximize P(X|C;). Otherwise, we maximize P(X|C;) P(C;). Note that the class prior
probabilities may be estimated by P(C;) = |C; p|/|D|, where |C; p| is the number of
training tuples of class C; in D.

. Given data sets with many attributes, it would be extremely computationally

expensive to compute P(X|C;). To reduce computation in evaluating P(X|C;), the
naive assumption of class-conditional independence is made. This presumes that
the attributes’ values are conditionally independent of one another, given the class
label of the tuple (i.e., that there are no dependence relationships among the
attributes). Thus,

PX|C) = [ [ P(xlC) (8.12)
k=1

= P(x1]C) X P(x2]C) X -+ X P(x4| C)).

We can easily estimate the probabilities P(x;|C;), P(x2|C)), ..., P(x,4|C;) from the
training tuples. Recall that here x; refers to the value of attribute Ay for tuple X. For
each attribute, we look at whether the attribute is categorical or continuous-valued.
For instance, to compute P(X|C;), we consider the following:

(a) If A is categorical, then P(xx|C;) is the number of tuples of class C; in D having
the value xy for Ay, divided by |C; p|, the number of tuples of class C; in D.

(b) If Ay is continuous-valued, then we need to do a bit more work, but the cal-
culation is pretty straightforward. A continuous-valued attribute is typically
assumed to have a Gaussian distribution with a mean u and standard deviation
0, defined by

( oL H (8.13)
X W, 0) = e 20° .
& V2o
so that
P(x|C) = g(xk c;> 0¢,)- (8.14)

These equations may appear daunting, but hold on! We need to compute fic;
and oc;, which are the mean (i.e., average) and standard deviation, respectively,
of the values of attribute Ay, for training tuples of class C;. We then plug these two
quantities into Eq. (8.13), together with xy, to estimate P(xy|C;).

For example, let X = (35,$40,000), where A; and A; are the attributes age and
income, respectively. Let the class label attribute be buys_computer. The associated
class label for X is yes (i.e., buys_computer = yes). Let’s suppose that age has not
been discretized and therefore exists as a continuous-valued attribute. Suppose
that from the training set, we find that customers in D who buy a computer are
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38 £ 12 years of age. In other words, for attribute age and this class, we have
=38 years and o = 12. We can plug these quantities, along with x; = 35 for
our tuple X, into Eq. (8.13) to estimate P(age = 35|buys_computer = yes). For a
quick review of mean and standard deviation calculations, please see Section 2.2.

5. To predict the class label of X, P(X|C;)P(C;) is evaluated for each class C;. The
classifier predicts that the class label of tuple X is the class C; if and only if

PX|C)P(C) > PXICHP(Cy) for 1 <j<m,j#i. (8.15)

In other words, the predicted class label is the class C; for which P(X|C;) P(C;) is the
maximum.

“How effective are Bayesian classifiers?” Various empirical studies of this classifier in
comparison to decision tree and neural network classifiers have found it to be com-
parable in some domains. In theory, Bayesian classifiers have the minimum error rate
in comparison to all other classifiers. However, in practice this is not always the case,
owing to inaccuracies in the assumptions made for its use, such as class-conditional
independence, and the lack of available probability data.

Bayesian classifiers are also useful in that they provide a theoretical justification for
other classifiers that do not explicitly use Bayes’ theorem. For example, under certain
assumptions, it can be shown that many neural network and curve-fitting algorithms
output the maximum posteriori hypothesis, as does the naive Bayesian classifier.

Predicting a class label using naive Bayesian classification. We wish to predict the
class label of a tuple using naive Bayesian classification, given the same training data
as in Example 8.3 for decision tree induction. The training data were shown earlier
in Table 8.1. The data tuples are described by the attributes age, income, student, and
credit_rating. The class label attribute, buys_computer, has two distinct values (namely,
{yes, no}). Let C; correspond to the class buys_computer = yes and C, correspond to
buys_computer = no. The tuple we wish to classify is

X = (age = youth, income = medium, student = yes, credit_rating = fair)

We need to maximize P(X|C;)P(C;), for i = 1, 2. P(C;), the prior probability of each
class, can be computed based on the training tuples:

P(buys_computer = yes) = 9/14 = 0.643
P(buys_computer = no) =5/14 = 0.357

To compute P(X|C;), for i = 1, 2, we compute the following conditional probabilities:

P(age = youth | buys_computer = yes) =2/9=0.222
P(age = youth | buys_computer = no) =3/5=0.600
P(income = medium | buys_computer = yes) = 4/9 = 0.444
P(income = medium | buys_computer = no) = 2/5 = 0.400
P(student = yes | buys_computer = yes) =6/9 = 0.667
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P(student = yes | buys_computer = no) =1/5=0.200
P(credit_rating = fair | buys_computer = yes) = 6/9 = 0.667
P(credit_rating = fair | buys_computer = no) = 2/5 = 0.400

Using these probabilities, we obtain

P(X|buys_computer = yes) = P(age = youth | buys_computer = yes)
x P(income = medium | buys_computer = yes)
x P(student = yes | buys_computer = yes)
x P(credit_rating = fair | buys_computer = yes)
=0.222 x 0.444 x 0.667 x 0.667 = 0.044.

Similarly,
P(X|buys_computer = no) = 0.600 x 0.400 x 0.200 x 0.400 = 0.019.
To find the class, C;, that maximizes P(X|C;) P(C;), we compute

P(X|buys_computer = yes) P(buys_computer = yes) = 0.044 x 0.643 = 0.028
P(X|buys_computer = no) P(buys_computer = no) = 0.019 x 0.357 = 0.007

Therefore, the naive Bayesian classifier predicts buys_computer = yes for tuple X. (]

“What if I encounter probability values of zero?” Recall that in Eq. (8.12), we esti-
mate P(X|C;) as the product of the probabilities P(x;|C;), P(x2|C)),..., P(x,|C;), based
on the assumption of class-conditional independence. These probabilities can be esti-
mated from the training tuples (step 4). We need to compute P(X|C;) for each class (i =
1,2,...,m) to find the class C; for which P(X|C;) P(C;) is the maximum (step 5). Let’s

consider this calculation. For each attribute—value pair (i.e., Ay = x¢, for k=1,2,...,n)
in tuple X, we need to count the number of tuples having that attribute—value pair, per
class (i.e., per C;, for i=1,..., m). In Example 8.4, we have two classes (1 = 2), namely

buys_computer = yes and buys_computer = no. Therefore, for the attribute—value pair
student = yes of X, say, we need two counts—the number of customers who are students
and for which buys_computer = yes (which contributes to P(X|buys_computer = yes))
and the number of customers who are students and for which buys_computer = no
(which contributes to P(X|buys_computer = no)).

But what if, say, there are no training tuples representing students for the class
buys_computer = no, resulting in P(student = yes|buys_computer = no) = 0? In other
words, what happens if we should end up with a probability value of zero for some
P(xx| C;)? Plugging this zero value into Eq. (8.12) would return a zero probability for
P(X|C;), even though, without the zero probability, we may have ended up with a high
probability, suggesting that X belonged to class C;! A zero probability cancels the effects
of all the other (posteriori) probabilities (on C;) involved in the product.

There is a simple trick to avoid this problem. We can assume that our training data-
base, D, is so large that adding one to each count that we need would only make a
negligible difference in the estimated probability value, yet would conveniently avoid the
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case of probability values of zero. This technique for probability estimation is known as
the Laplacian correction or Laplace estimator, named after Pierre Laplace, a French
mathematician who lived from 1749 to 1827. If we have, say, q counts to which we each
add one, then we must remember to add g to the corresponding denominator used in
the probability calculation. We illustrate this technique in Example 8.5.

Using the Laplacian correction to avoid computing probability values of zero. Sup-
pose that for the class buys_computer = yes in some training database, D, containing
1000 tuples, we have 0 tuples with income = low, 990 tuples with income = medium, and
10 tuples with income = high. The probabilities of these events, without the Laplacian
correction, are 0, 0.990 (from 990/1000), and 0.010 (from 10/1000), respectively. Using
the Laplacian correction for the three quantities, we pretend that we have 1 more tuple
for each income-value pair. In this way, we instead obtain the following probabilities
(rounded up to three decimal places):

1 991 11
—— =0.001, —— =0.988, and —— = 0.011,
1003

1003 1003
respectively. The “corrected” probability estimates are close to their “uncorrected”
counterparts, yet the zero probability value is avoided. (]

Rule-Based Classification

In this section, we look at rule-based classifiers, where the learned model is represented
as a set of [F-THEN rules. We first examine how such rules are used for classification
(Section 8.4.1). We then study ways in which they can be generated, either from a deci-
sion tree (Section 8.4.2) or directly from the training data using a sequential covering
algorithm (Section 8.4.3).

Using IF-THEN Rules for Classification

Rules are a good way of representing information or bits of knowledge. A rule-based
classifier uses a set of IF-THEN rules for classification. An IF-THEN rule is an expres-
sion of the form

IF condition THEN conclusion.

An example is rule R1,
R1: IF age = youth AND student = yes THEN buys_computer = yes.

The “IF” part (or left side) of a rule is known as the rule antecedent or precondition.
The “THEN” part (or right side) is the rule consequent. In the rule antecedent, the
condition consists of one or more attribute tests (e.g., age = youth and student = yes)
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that are logically ANDed. The rule’s consequent contains a class prediction (in this case,
we are predicting whether a customer will buy a computer). R1 can also be written as

R1: (age = youth) A (student = yes) = (buys_computer = yes).

If the condition (i.e., all the attribute tests) in a rule antecedent holds true for a given
tuple, we say that the rule antecedent is satisfied (or simply, that the rule is satisfied)
and that the rule covers the tuple.

A rule R can be assessed by its coverage and accuracy. Given a tuple, X, from a class-
labeled data set, D, let 1.y,rs be the number of tuples covered by R; #1¢orrec: be the number
of tuples correctly classified by R; and |D| be the number of tuples in D. We can define
the coverage and accuracy of R as

Neovers

coverage(R) = (8.16)
g D]
Neorrect
accuracy(R) = . (8.17)
Neovers

That is, a rule’s coverage is the percentage of tuples that are covered by the rule (i.e., their
attribute values hold true for the rule’s antecedent). For a rule’s accuracy, we look at the
tuples that it covers and see what percentage of them the rule can correctly classify.

Rule accuracy and coverage. Let’s go back to our data in Table 8.1. These are class-
labeled tuples from the AllElectronics customer database. Our task is to predict whether
a customer will buy a computer. Consider rule R1, which covers 2 of the 14 tuples.
It can correctly classify both tuples. Therefore, coverage(R1) =2/14 = 14.28% and
accuracy(R1) =2/2 = 100%. ]

Let’s see how we can use rule-based classification to predict the class label of a given
tuple, X. If a rule is satisfied by X, the rule is said to be triggered. For example, suppose
we have

X= (age = youth, income = medium, student = yes, credit_rating = fair).

We would like to classify X according to buys_computer. X satisfies R1, which triggers
the rule.

If R1 is the only rule satisfied, then the rule fires by returning the class prediction
for X. Note that triggering does not always mean firing because there may be more than
one rule that is satisfied! If more than one rule is triggered, we have a potential problem.
What if they each specify a different class? Or what if no rule is satisfied by X?

We tackle the first question. If more than one rule is triggered, we need a conflict
resolution strategy to figure out which rule gets to fire and assign its class prediction
to X. There are many possible strategies. We look at two, namely size ordering and rule
ordering.
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The size ordering scheme assigns the highest priority to the triggering rule that has
the “toughest” requirements, where toughness is measured by the rule antecedent size.
That is, the triggering rule with the most attribute tests is fired.

The rule ordering scheme prioritizes the rules beforehand. The ordering may be
class-based or rule-based. With class-based ordering, the classes are sorted in order of
decreasing “importance” such as by decreasing order of prevalence. That is, all the rules
for the most prevalent (or most frequent) class come first, the rules for the next prevalent
class come next, and so on. Alternatively, they may be sorted based on the misclassifica-
tion cost per class. Within each class, the rules are not ordered—they don’t have to be
because they all predict the same class (and so there can be no class conflict!).

With rule-based ordering, the rules are organized into one long priority list, accord-
ing to some measure of rule quality, such as accuracy, coverage, or size (number of
attribute tests in the rule antecedent), or based on advice from domain experts. When
rule ordering is used, the rule set is known as a decision list. With rule ordering, the trig-
gering rule that appears earliest in the list has the highest priority, and so it gets to fire its
class prediction. Any other rule that satisfies X is ignored. Most rule-based classification
systems use a class-based rule-ordering strategy.

Note that in the first strategy, overall the rules are unordered. They can be applied in
any order when classifying a tuple. That is, a disjunction (logical OR) is implied between
each of the rules. Each rule represents a standalone nugget or piece of knowledge. This
is in contrast to the rule ordering (decision list) scheme for which rules must be applied
in the prescribed order so as to avoid conflicts. Each rule in a decision list implies the
negation of the rules that come before it in the list. Hence, rules in a decision list are
more difficult to interpret.

Now that we have seen how we can handle conflicts, let’s go back to the scenario
where there is no rule satisfied by X. How, then, can we determine the class label of X?
In this case, a fallback or default rule can be set up to specify a default class, based on
a training set. This may be the class in majority or the majority class of the tuples that
were not covered by any rule. The default rule is evaluated at the end, if and only if no
other rule covers X. The condition in the default rule is empty. In this way, the rule fires
when no other rule is satisfied.

In the following sections, we examine how to build a rule-based classifier.

Rule Extraction from a Decision Tree

In Section 8.2, we learned how to build a decision tree classifier from a set of training
data. Decision tree classifiers are a popular method of classification—it is easy to under-
stand how decision trees work and they are known for their accuracy. Decision trees can
become large and difficult to interpret. In this subsection, we look at how to build a rule-
based classifier by extracting [F-THEN rules from a decision tree. In comparison with a
decision tree, the IF-THEN rules may be easier for humans to understand, particularly
if the decision tree is very large.

To extract rules from a decision tree, one rule is created for each path from the root
to a leaf node. Each splitting criterion along a given path is logically ANDed to form the
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rule antecedent (“IF” part). The leaf node holds the class prediction, forming the rule
consequent (“THEN” part).

Extracting classification rules from a decision tree. The decision tree of Figure 8.2 can
be converted to classification IF-THEN rules by tracing the path from the root node to
each leaf node in the tree. The rules extracted from Figure 8.2 are as follows:

R1:IF age = youth AND student = no THEN buys_computer = no
R2: TF age = youth AND student = yes THEN buys_computer = yes
R3: IF age = middle_aged THEN buys_computer = yes
RA4: TF age = senior AND credit_rating = excellent THEN buys_computer = yes
R5: TF age = senior AND credit_rating = fair THEN buys_computer = no

]

A disjunction (logical OR) is implied between each of the extracted rules. Because the
rules are extracted directly from the tree, they are mutually exclusive and exhaustive.
Mutually exclusive means that we cannot have rule conflicts here because no two rules
will be triggered for the same tuple. (We have one rule per leaf, and any tuple can map
to only one leaf.) Exhaustive means there is one rule for each possible attribute-value
combination, so that this set of rules does not require a default rule. Therefore, the order
of the rules does not matter—they are unordered.

Since we end up with one rule per leaf, the set of extracted rules is not much simpler
than the corresponding decision tree! The extracted rules may be even more difficult
to interpret than the original trees in some cases. As an example, Figure 8.7 showed
decision trees that suffer from subtree repetition and replication. The resulting set of
rules extracted can be large and difficult to follow, because some of the attribute tests
may be irrelevant or redundant. So, the plot thickens. Although it is easy to extract rules
from a decision tree, we may need to do some more work by pruning the resulting
rule set.

“How can we prune the rule set?” For a given rule antecedent, any condition that does
not improve the estimated accuracy of the rule can be pruned (i.e., removed), thereby
generalizing the rule. C4.5 extracts rules from an unpruned tree, and then prunes the
rules using a pessimistic approach similar to its tree pruning method. The training tuples
and their associated class labels are used to estimate rule accuracy. However, because this
would result in an optimistic estimate, alternatively, the estimate is adjusted to compen-
sate for the bias, resulting in a pessimistic estimate. In addition, any rule that does not
contribute to the overall accuracy of the entire rule set can also be pruned.

Other problems arise during rule pruning, however, as the rules will no longer be
mutually exclusive and exhaustive. For conflict resolution, C4.5 adopts a class-based
ordering scheme. It groups together all rules for a single class, and then determines a
ranking of these class rule sets. Within a rule set, the rules are not ordered. C4.5 orders
the class rule sets so as to minimize the number of false-positive errors (i.e., where a
rule predicts a class, C, but the actual class is not C). The class rule set with the least
number of false positives is examined first. Once pruning is complete, a final check is
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done to remove any duplicates. When choosing a default class, C4.5 does not choose
the majority class, because this class will likely have many rules for its tuples. Instead, it
selects the class that contains the most training tuples that were not covered by any rule.

8.4.3 Rule Induction Using a Sequential Covering Algorithm

IF-THEN rules can be extracted directly from the training data (i.e., without having to
generate a decision tree first) using a sequential covering algorithm. The name comes
from the notion that the rules are learned sequentially (one at a time), where each rule
for a given class will ideally cover many of the class’s tuples (and hopefully none of
the tuples of other classes). Sequential covering algorithms are the most widely used
approach to mining disjunctive sets of classification rules, and form the topic of this
subsection.

There are many sequential covering algorithms. Popular variations include AQ, CN2,
and the more recent RIPPER. The general strategy is as follows. Rules are learned one at
a time. Each time a rule is learned, the tuples covered by the rule are removed, and the
process repeats on the remaining tuples. This sequential learning of rules is in contrast
to decision tree induction. Because the path to each leaf in a decision tree corresponds to
a rule, we can consider decision tree induction as learning a set of rules simultaneously.

A basic sequential covering algorithm is shown in Figure 8.10. Here, rules are learned
for one class at a time. Ideally, when learning a rule for a class, C, we would like the rule
to cover all (or many) of the training tuples of class C and none (or few) of the tuples

Algorithm: Sequential covering. Learn a set of IF-THEN rules for classification.
Input:
D, a data set of class-labeled tuples;
Att_vals, the set of all attributes and their possible values.
Output: A set of [F-THEN rules.
Method:

(1) Rule_set = {}; // initial set of rules learned is empty
(2) for each class c do

(3) repeat

(4) Rule = Learn_One_Rule(D, Att_vals, c);

(5) remove tuples covered by Rule from D;

(6) Rule_set = Rule_set + Rule; // add new rule to rule set
(7) until terminating condition;

(8) endfor

(9) return Rule_Set;

Figure 8.10 Basic sequential covering algorithm.
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from other classes. In this way, the rules learned should be of high accuracy. The rules
need not necessarily be of high coverage. This is because we can have more than one rule
for a class, so that different rules may cover different tuples within the same class. The
process continues until the terminating condition is met, such as when there are no more
training tuples or the quality of a rule returned is below a user-specified threshold. The
Learn_One_Rule procedure finds the “best” rule for the current class, given the current
set of training tuples.

“How are rules learned?” Typically, rules are grown in a general-to-specific manner
(Figure 8.11). We can think of this as a beam search, where we start off with an empty
rule and then gradually keep appending attribute tests to it. We append by adding the
attribute test as a logical conjunct to the existing condition of the rule antecedent. Sup-
pose our training set, D, consists of loan application data. Attributes regarding each
applicant include their age, income, education level, residence, credit rating, and the
term of the loan. The classifying attribute is loan_decision, which indicates whether a
loan is accepted (considered safe) or rejected (considered risky). To learn a rule for the
class “accept,” we start off with the most general rule possible, that is, the condition of
the rule antecedent is empty. The rule is

IF THEN loan_decision = accept.

We then consider each possible attribute test that may be added to the rule. These
can be derived from the parameter Att_vals, which contains a list of attributes with their
associated values. For example, for an attribute—value pair (att, val), we can consider
attribute tests such as att = val, att < val, att > val, and so on. Typically, the training
data will contain many attributes, each of which may have several possible values. Find-
ing an optimal rule set becomes computationally explosive. Instead, Learn_One_Rule

IF
THEN loan_decision = accept

s

IF loan_term = short IF loan_term = long IF income = high IF income =medium
THEN loan_decision THEN loan_decision THEN loan_decision = accept | THEN loan_decision
= accept =accept = accept

NS

IF income = high AND  IF income = high AND IF income = high AND IF income = high AND
age = youth age = middle_age . . credit_rating = fair

. . credit_rating = excellent o
THEN loan_decision THEN loan_decision THEN loan_decision = accept THEN loan_decision
= accept = accept - = accept

Figure 8.11 A general-to-specific search through rule space.
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adopts a greedy depth-first strategy. Each time it is faced with adding a new attribute
test (conjunct) to the current rule, it picks the one that most improves the rule qual-
ity, based on the training samples. We will say more about rule quality measures in a
minute. For the moment, let’s say we use rule accuracy as our quality measure. Getting
back to our example with Figure 8.11, suppose Learn_One_Rule finds that the attribute
test income = high best improves the accuracy of our current (empty) rule. We append
it to the condition, so that the current rule becomes

IF income = high THEN loan_decision = accept.

Each time we add an attribute test to a rule, the resulting rule should cover relatively
more of the “accept” tuples. During the next iteration, we again consider the possible
attribute tests and end up selecting credit_rating = excellent. Our current rule grows to
become

IF income = high AND credit_rating = excellent THEN loan_decision = accept.

The process repeats, where at each step we continue to greedily grow rules until the
resulting rule meets an acceptable quality level.

Greedy search does not allow for backtracking. At each step, we heuristically add what
appears to be the best choice at the moment. What if we unknowingly made a poor
choice along the way? To lessen the chance of this happening, instead of selecting the best
attribute test to append to the current rule, we can select the best k attribute tests. In this
way, we perform a beam search of width k, wherein we maintain the k best candidates
overall at each step, rather than a single best candidate.

Rule Quality Measures

Learn_One_Rule needs a measure of rule quality. Every time it considers an attribute test,
it must check to see if appending such a test to the current rule’s condition will result
in an improved rule. Accuracy may seem like an obvious choice at first, but consider
Example 8.8.

Choosing between two rules based on accuracy. Consider the two rules as illustrated

« _»

in Figure 8.12. Both are for the class loan_decision = accept. We use “a” to represent the
tuples of class “accept” and “r” for the tuples of class “reject.” Rule R1 correctly classifies
38 of the 40 tuples it covers. Rule R2 covers only two tuples, which it correctly classifies.
Their respective accuracies are 95% and 100%. Thus, R2 has greater accuracy than R1,

but it is not the better rule because of its small coverage. (]

From this example, we see that accuracy on its own is not a reliable estimate of rule
quality. Coverage on its own is not useful either—for a given class we could have a rule
that covers many tuples, most of which belong to other classes! Thus, we seek other mea-
sures for evaluating rule quality, which may integrate aspects of accuracy and coverage.
Here we will look at a few, namely entropy, another based on information gain, and a
statistical test that considers coverage. For our discussion, suppose we are learning rules
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Figure 8.12 Rules for the class loan_decision = accept, showing accept (a) and reject (r) tuples.

for the class c. Our current rule is R: IF condition THEN class = c. We want to see if
logically ANDing a given attribute test to condition would result in a better rule. We call
the new condition, conditior’, where R': IF condition’ THEN class = c is our potential
new rule. In other words, we want to see if R’ is any better than R.

We have already seen entropy in our discussion of the information gain measure used
for attribute selection in decision tree induction (Section 8.2.2, Eq. 8.1). It is also known
as the expected information needed to classify a tuple in data set, D. Here, D is the set
of tuples covered by condition’ and p; is the probability of class C; in D. The lower the
entropy, the better condition’ is. Entropy prefers conditions that cover a large number of
tuples of a single class and few tuples of other classes.

Another measure is based on information gain and was proposed in FOIL (First
Order Inductive Learner), a sequential covering algorithm that learns first-order logic
rules. Learning first-order rules is more complex because such rules contain variables,
whereas the rules we are concerned with in this section are propositional (i.e., variable-
free).” In machine learning, the tuples of the class for which we are learning rules are
called positive tuples, while the remaining tuples are negative. Let pos (neg) be the num-
ber of positive (negative) tuples covered by R. Let pos’ (neg’) be the number of positive
(negative) tuples covered by R'. FOIL assesses the information gained by extending
condition’ as

) , pos’ pos
FOIL_Gain = 1 —1 . 8.18
an = pos x ( 082 pos' + neg 8 pos+ neg) (8.18)

It favors rules that have high accuracy and cover many positive tuples.
We can also use a statistical test of significance to determine if the apparent effect of
a rule is not attributed to chance but instead indicates a genuine correlation between

>Incidentally, FOIL was also proposed by Quinlan, the father of ID3.
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attribute values and classes. The test compares the observed distribution among classes
of tuples covered by a rule with the expected distribution that would result if the
rule made predictions at random. We want to assess whether any observed differences
between these two distributions may be attributed to chance. We can use the likelihood
ratio statistic,

m
Likelihood_Ratio=2) " filog (’i) , (8.19)
. €;

=1

where m is the number of classes.

For tuples satisfying the rule, f; is the observed frequency of each class i among the
tuples. e; is what we would expect the frequency of each class i to be if the rule made
random predictions. The statistic has a x? distribution with 7 — 1 degrees of freedom.
The higher the likelihood ratio, the more likely that there is a significant difference in the
number of correct predictions made by our rule in comparison with a “random guessor.”
That is, the performance of our rule is not due to chance. The ratio helps identify rules
with insignificant coverage.

CN2 uses entropy together with the likelihood ratio test, while FOIL’s information
gain is used by RIPPER.

Rule Pruning

Learn_One_Rule does not employ a test set when evaluating rules. Assessments of rule
quality as described previously are made with tuples from the original training data.
These assessments are optimistic because the rules will likely overfit the data. That is,
the rules may perform well on the training data, but less well on subsequent data. To
compensate for this, we can prune the rules. A rule is pruned by removing a conjunct
(attribute test). We choose to prune a rule, R, if the pruned version of R has greater
quality, as assessed on an independent set of tuples. As in decision tree pruning, we refer
to this set as a pruning set. Various pruning strategies can be used such as the pessimistic
pruning approach described in the previous section.
FOIL uses a simple yet effective method. Given a rule, R,

pos — neg
FOIL_Prune(R) = ———=,
pos—+ neg

(8.20)
where pos and neg are the number of positive and negative tuples covered by R, respec-
tively. This value will increase with the accuracy of R on a pruning set. Therefore, if the
FOIL_Prune value is higher for the pruned version of R, then we prune R.

By convention, RIPPER starts with the most recently added conjunct when con-
sidering pruning. Conjuncts are pruned one at a time as long as this results in an
improvement.
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8.5.1

Model Evaluation and Selection

Now that you may have built a classification model, there may be many questions going
through your mind. For example, suppose you used data from previous sales to build
a classifier to predict customer purchasing behavior. You would like an estimate of how
accurately the classifier can predict the purchasing behavior of future customers, that
is, future customer data on which the classifier has not been trained. You may even
have tried different methods to build more than one classifier and now wish to compare
their accuracy. But what is accuracy? How can we estimate it? Are some measures of a
classifier’s accuracy more appropriate than others? How can we obtain a reliable accuracy
estimate? These questions are addressed in this section.

Section 8.5.1 describes various evaluation metrics for the predictive accuracy
of a classifier. Holdout and random subsampling (Section 8.5.2), cross-validation
(Section 8.5.3), and bootstrap methods (Section 8.5.4) are common techniques for
assessing accuracy, based on randomly sampled partitions of the given data. What if
we have more than one classifier and want to choose the “best” one? This is referred
to as model selection (i.e., choosing one classifier over another). The last two sections
address this issue. Section 8.5.5 discusses how to use tests of statistical significance
to assess whether the difference in accuracy between two classifiers is due to chance.
Section 8.5.6 presents how to compare classifiers based on cost—benefit and receiver
operating characteristic (ROC) curves.

Metrics for Evaluating Classifier Performance

This section presents measures for assessing how good or how “accurate” your classifier
is at predicting the class label of tuples. We will consider the case of where the class tuples
are more or less evenly distributed, as well as the case where classes are unbalanced (e.g.,
where an important class of interest is rare such as in medical tests). The classifier eval-
uation measures presented in this section are summarized in Figure 8.13. They include
accuracy (also known as recognition rate), sensitivity (or recall), specificity, precision,
Fi, and Fg. Note that although accuracy is a specific measure, the word “accuracy” is
also used as a general term to refer to a classifier’s predictive abilities.

Using training data to derive a classifier and then estimate the accuracy of the
resulting learned model can result in misleading overoptimistic estimates due to over-
specialization of the learning algorithm to the data. (We will say more on this in a
moment!) Instead, it is better to measure the classifier’s accuracy on a test set consisting
of class-labeled tuples that were not used to train the model.

Before we discuss the various measures, we need to become comfortable with
some terminology. Recall that we can talk in terms of positive tuples (tuples of the
main class of interest) and negative tuples (all other tuples).® Given two classes, for
example, the positive tuples may be buys_computer = yes while the negative tuples are

®In the machine learning and pattern recognition literature, these are referred to as positive samples and
negative samples, respectively.
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Measure Formula

s TP+ TN
accuracy, recognition rate PN
error rate, misclassification rate FP+FN

P+N
sensitivity, true positive rate, P
recall 2
specificity, true negative rate T—I\I,\T
precision %
F, Fy, F-score, 2 x precision X recall
harmonic mean of precision and recall precision recall
. . 1+8%) x precision X recall

Fg, where f is a non-negative real number 7 precision-+ recall

Figure 8.13 Evaluation measures. Note that some measures are known by more than one name.
TP, TN, FP, P, N refer to the number of true positive, true negative, false positive, positive,
and negative samples, respectively (see text).

buys_computer = no. Suppose we use our classifier on a test set of labeled tuples. P is the
number of positive tuples and N is the number of negative tuples. For each tuple, we
compare the classifier’s class label prediction with the tuple’s known class label.

There are four additional terms we need to know that are the “building blocks” used
in computing many evaluation measures. Understanding them will make it easy to grasp
the meaning of the various measures.

True positives (TP): These refer to the positive tuples that were correctly labeled by
the classifier. Let TP be the number of true positives.

True negatives (TN): These are the negative tuples that were correctly labeled by the
classifier. Let TN be the number of true negatives.

False positives (FP): These are the negative tuples that were incorrectly labeled as
positive (e.g., tuples of class buys_computer = no for which the classifier predicted
buys_computer = yes). Let FP be the number of false positives.

False negatives (FN): These are the positive tuples that were mislabeled as neg-
ative (e.g., tuples of class buys_computer = yes for which the classifier predicted
buys_computer = no). Let EN be the number of false negatives.

These terms are summarized in the confusion matrix of Figure 8.14.

The confusion matrix is a useful tool for analyzing how well your classifier can
recognize tuples of different classes. TP and TN tell us when the classifier is getting
things right, while FP and EN tell us when the classifier is getting things wrong (i.e.,
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Predicted class

yes | no | Total
Actual class | yes P | FN | P

no FP | TN | N
Total || PP | N | P+N

Figure 8.14 Confusion matrix, shown with totals for positive and negative tuples.

Classes buys_computer = yes | buys_computer = no || Total | Recognition (%)
buys_computer = yes 6954 46 7000 99.34
buys_computer = no 412 2588 3000 86.27
Total 7366 2634 10,000 95.42

Figure 8.15 Confusion matrix for the classes buys_computer = yes and buys_computer = no, where an
entry in row i and column j shows the number of tuples of class i that were labeled by the
classifier as class j. Ideally, the nondiagonal entries should be zero or close to zero.

mislabeling). Given m classes (where m > 2), a confusion matrix is a table of at least
size m by m. An entry, CM;; in the first m rows and m columns indicates the number
of tuples of class i that were labeled by the classifier as class j. For a classifier to have
good accuracy, ideally most of the tuples would be represented along the diagonal of the
confusion matrix, from entry CM;; to entry CM,,,,, with the rest of the entries being
zero or close to zero. That is, ideally, FP and FN are around zero.

The table may have additional rows or columns to provide totals. For example, in
the confusion matrix of Figure 8.14, P and N are shown. In addition, P’ is the number
of tuples that were labeled as positive (TP + FP) and N’ is the number of tuples that
were labeled as negative (TN + FN). The total number of tuplesis TP + TN + FP+ TN,
or P+ N, or P+ N'. Note that although the confusion matrix shown is for a binary
classification problem, confusion matrices can be easily drawn for multiple classes in a
similar manner.

Now let’s look at the evaluation measures, starting with accuracy. The accuracy of a
classifier on a given test set is the percentage of test set tuples that are correctly classified
by the classifier. That is,

TP+ TN

—_ 8.21
P+N ( )

accuracy =

In the pattern recognition literature, this is also referred to as the overall recognition
rate of the classifier, that is, it reflects how well the classifier recognizes tuples of the var-
ious classes. An example of a confusion matrix for the two classes buys_computer = yes
(positive) and buys_computer = no (negative) is given in Figure 8.15. Totals are shown,
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as well as the recognition rates per class and overall. By glancing at a confusion matrix,
it is easy to see if the corresponding classifier is confusing two classes.

For example, we see that it mislabeled 412 “no” tuples as “yes.” Accuracy is most
effective when the class distribution is relatively balanced.

We can also speak of the error rate or misclassification rate of a classifier, M, which
is simply 1 — accuracy(M), where accuracy(M) is the accuracy of M. This also can be
computed as

error rate = M (8.22)
P+N
If we were to use the training set (instead of a test set) to estimate the error rate of
a model, this quantity is known as the resubstitution error. This error estimate is
optimistic of the true error rate (and similarly, the corresponding accuracy estimate is
optimistic) because the model is not tested on any samples that it has not already seen.

We now consider the class imbalance problem, where the main class of interest is
rare. That is, the data set distribution reflects a significant majority of the negative class
and a minority positive class. For example, in fraud detection applications, the class of
interest (or positive class) is “fraud,” which occurs much less frequently than the negative
“nonfraudulant” class. In medical data, there may be a rare class, such as “cancer.” Sup-
pose that you have trained a classifier to classify medical data tuples, where the class
label attribute is “cancer” and the possible class values are “yes” and “no.” An accu-
racy rate of, say, 97% may make the classifier seem quite accurate, but what if only,
say, 3% of the training tuples are actually cancer? Clearly, an accuracy rate of 97% may
not be acceptable—the classifier could be correctly labeling only the noncancer tuples,
for instance, and misclassifying all the cancer tuples. Instead, we need other measures,
which access how well the classifier can recognize the positive tuples (cancer = yes) and
how well it can recognize the negative tuples (cancer = no).

The sensitivity and specificity measures can be used, respectively, for this purpose.
Sensitivity is also referred to as the true positive (recognition) rate (i.e., the proportion
of positive tuples that are correctly identified), while specificity is the true negative rate
(i.e., the proportion of negative tuples that are correctly identified). These measures are
defined as

sensitivity = T_;’ (8.23)
.y N
specificity = ~ (8.24)
It can be shown that accuracy is a function of sensitivity and specificity:
accuracy = sensitiw’z‘yL + speciﬁcityi. (8.25)
(P+N) (P+N)

Sensitivity and specificity. Figure 8.16 shows a confusion matrix for medical data
where the class values are yes and no for a class label attribute, cancer. The sensitivity
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Classes || yes | no Total | Recognition (%)
yes 90 210 300 30.00
no 140 [ 9560 9700 98.56
Total 230 9770 || 10,000 96.40

Confusion matrix for the classes cancer = yes and cancer = no.

of the classifier is % = 30.00%. The specificity is % = 98.56%. The classifier’s over-

all accuracy is 1%6580 = 96.50%. Thus, we note that although the classifier has a high
accuracy, it’s ability to correctly label the positive (rare) class is poor given its low sen-
sitivity. It has high specificity, meaning that it can accurately recognize negative tuples.

Techniques for handling class-imbalanced data are given in Section 8.6.5. (]

The precision and recall measures are also widely used in classification. Precision
can be thought of as a measure of exactness (i.e., what percentage of tuples labeled as
positive are actually such), whereas recall is a measure of completeness (what percentage
of positive tuples are labeled as such). If recall seems familiar, that’s because it is the same
as sensitivity (or the true positive rate). These measures can be computed as

.. TP
precision = TP P 7P (8.26)
TP TP
recall = —— = —. (8.27)
TP+ FN P

Precision and recall. The precision of the classifier in Figure 8.16 for the yes class is

% = 39.13%. The recall is % = 30.00%, which is the same calculation for sensitivity

in Example 8.9. [

A perfect precision score of 1.0 for a class C means that every tuple that the classifier
labeled as belonging to class C does indeed belong to class C. However, it does not tell
us anything about the number of class C tuples that the classifier mislabeled. A perfect
recall score of 1.0 for C means that every item from class C was labeled as such, but it
does not tell us how many other tuples were incorrectly labeled as belonging to class C.
There tends to be an inverse relationship between precision and recall, where it is possi-
ble to increase one at the cost of reducing the other. For example, our medical classifier
may achieve high precision by labeling all cancer tuples that present a certain way as
cancer, but may have low recall if it mislabels many other instances of cancer tuples. Pre-
cision and recall scores are typically used together, where precision values are compared
for a fixed value of recall, or vice versa. For example, we may compare precision values
at a recall value of, say, 0.75.

An alternative way to use precision and recall is to combine them into a single mea-
sure. This is the approach of the F measure (also known as the F; score or F-score) and
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the Fg measure. They are defined as

2 x precision X recall
F= — (8.28)
precision + recall

(14 B2) x precision x recall

Fg = (8.29)

B2 x precision + recall

where B is a non-negative real number. The F measure is the harmonic mean of precision
and recall (the proof of which is left as an exercise). It gives equal weight to precision and
recall. The Fg measure is a weighted measure of precision and recall. It assigns 8 times
as much weight to recall as to precision. Commonly used Fg measures are F, (which
weights recall twice as much as precision) and Fy5 (which weights precision twice as
much as recall).

“Are there other cases where accuracy may not be appropriate?” In classification prob-
lems, it is commonly assumed that all tuples are uniquely classifiable, that is, that each
training tuple can belong to only one class. Yet, owing to the wide diversity of data in
large databases, it is not always reasonable to assume that all tuples are uniquely classi-
fiable. Rather, it is more probable to assume that each tuple may belong to more than
one class. How then can the accuracy of classifiers on large databases be measured? The
accuracy measure is not appropriate, because it does not take into account the possibility
of tuples belonging to more than one class.

Rather than returning a class label, it is useful to return a probability class distri-
bution. Accuracy measures may then use a second guess heuristic, whereby a class
prediction is judged as correct if it agrees with the first or second most probable class.
Although this does take into consideration, to some degree, the nonunique classification
of tuples, it is not a complete solution.

In addition to accuracy-based measures, classifiers can also be compared with respect
to the following additional aspects:

Speed: This refers to the computational costs involved in generating and using the
given classifier.

Robustness: This is the ability of the classifier to make correct predictions given noisy
data or data with missing values. Robustness is typically assessed with a series of
synthetic data sets representing increasing degrees of noise and missing values.

Scalability: This refers to the ability to construct the classifier efficiently given large
amounts of data. Scalability is typically assessed with a series of data sets of increasing
size.

Interpretability: This refers to the level of understanding and insight that is provided
by the classifier or predictor. Interpretability is subjective and therefore more difficult
to assess. Decision trees and classification rules can be easy to interpret, yet their
interpretability may diminish the more they become complex. We discuss some work
in this area, such as the extraction of classification rules from a “black box” neural
network classifier called backpropagation, in Chapter 9.
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Figure 8.17 Estimating accuracy with the holdout method.

8.5.2

8.53

In summary, we have presented several evaluation measures. The accuracy measure
works best when the data classes are fairly evenly distributed. Other measures, such as
sensitivity (or recall), specificity, precision, F, and Fg, are better suited to the class imbal-
ance problem, where the main class of interest is rare. The remaining subsections focus
on obtaining reliable classifier accuracy estimates.

Holdout Method and Random Subsampling

The holdout method is what we have alluded to so far in our discussions about accuracy.
In this method, the given data are randomly partitioned into two independent sets, a
training set and a fest set. Typically, two-thirds of the data are allocated to the training
set, and the remaining one-third is allocated to the test set. The training set is used to
derive the model. The model’s accuracy is then estimated with the test set (Figure 8.17).
The estimate is pessimistic because only a portion of the initial data is used to derive
the model.

Random subsampling is a variation of the holdout method in which the holdout
method is repeated k times. The overall accuracy estimate is taken as the average of the
accuracies obtained from each iteration.

Cross-Validation

In k-fold cross-validation, the initial data are randomly partitioned into k mutually
exclusive subsets or “folds,” Dy, Ds,..., Dy, each of approximately equal size. Training
and testing is performed k times. In iteration i, partition D; is reserved as the test set,
and the remaining partitions are collectively used to train the model. That is, in the
first iteration, subsets D,,..., Dy collectively serve as the training set to obtain a first
model, which is tested on Dj; the second iteration is trained on subsets Dy, Ds,..., Di
and tested on Ds; and so on. Unlike the holdout and random subsampling methods,
here each sample is used the same number of times for training and once for testing. For
classification, the accuracy estimate is the overall number of correct classifications from
the k iterations, divided by the total number of tuples in the initial data.
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Leave-one-out is a special case of k-fold cross-validation where k is set to the number
of initial tuples. That is, only one sample is “left out” at a time for the test set. In strat-
ified cross-validation, the folds are stratified so that the class distribution of the tuples
in each fold is approximately the same as that in the initial data.

In general, stratified 10-fold cross-validation is recommended for estimating accu-
racy (even if computation power allows using more folds) due to its relatively low bias
and variance.

Bootstrap

Unlike the accuracy estimation methods just mentioned, the bootstrap method sam-
ples the given training tuples uniformly with replacement. That is, each time a tuple is
selected, it is equally likely to be selected again and re-added to the training set. For
instance, imagine a machine that randomly selects tuples for our training set. In sam-
pling with replacement, the machine is allowed to select the same tuple more than once.

There are several bootstrap methods. A commonly used one is the .632 bootstrap,
which works as follows. Suppose we are given a data set of d tuples. The data set is
sampled d times, with replacement, resulting in a bootstrap sample or training set of d
samples. It is very likely that some of the original data tuples will occur more than once
in this sample. The data tuples that did not make it into the training set end up forming
the test set. Suppose we were to try this out several times. As it turns out, on average,
63.2% of the original data tuples will end up in the bootstrap sample, and the remaining
36.8% will form the test set (hence, the name, .632 bootstrap).

“Where does the figure, 63.2%, come from?” Each tuple has a probability of 1/d of
being selected, so the probability of not being chosen is (1 — 1/d). We have to select
d times, so the probability that a tuple will not be chosen during this whole time is
(1—1/d)“.1f d is large, the probability approaches e~! = 0.368.7 Thus, 36.8% of tuples
will not be selected for training and thereby end up in the test set, and the remaining
63.2% will form the training set.

We can repeat the sampling procedure k times, where in each iteration, we use the
current test set to obtain an accuracy estimate of the model obtained from the current
bootstrap sample. The overall accuracy of the model, M, is then estimated as

k
1
Ace(M) = ¢ > (0.632 x Acc(M;) est_ser + 0.368 x Acc(M;) train.ser) (8.30)

i=1

where Acc(M;) est_ser 1S the accuracy of the model obtained with bootstrap sample i when
it is applied to test set i. Acc(M;) rain_ser is the accuracy of the model obtained with boot-
strap sample i when it is applied to the original set of data tuples. Bootstrapping tends
to be overly optimistic. It works best with small data sets.

7¢ is the base of natural logarithms, that is, e = 2.718.
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8.5.5 Model Selection Using Statistical Tests of Significance

Suppose that we have generated two classification models, M; and M,, from our data.
We have performed 10-fold cross-validation to obtain a mean error rate® for each. How
can we determine which model is best? It may seem intuitive to select the model with
the lowest error rate; however, the mean error rates are just estimates of error on the true
population of future data cases. There can be considerable variance between error rates
within any given 10-fold cross-validation experiment. Although the mean error rates
obtained for M; and M, may appear different, that difference may not be statistically
significant. What if any difference between the two may just be attributed to chance?
This section addresses these questions.

To determine if there is any “real” difference in the mean error rates of two models,
we need to employ a test of statistical significance. In addition, we want to obtain some
confidence limits for our mean error rates so that we can make statements like, “Any
observed mean will not vary by & two standard errors 95% of the time for future samples”
or “One model is better than the other by a margin of error of + 4%.”

What do we need to perform the statistical test? Suppose that for each model, we
did 10-fold cross-validation, say, 10 times, each time using a different 10-fold data par-
titioning. Each partitioning is independently drawn. We can average the 10 error rates
obtained each for M) and M, respectively, to obtain the mean error rate for each model.
For a given model, the individual error rates calculated in the cross-validations may be
considered as different, independent samples from a probability distribution. In gen-
eral, they follow a t-distribution with k — 1 degrees of freedom where, here, k = 10. (This
distribution looks very similar to a normal, or Gaussian, distribution even though the
functions defining the two are quite different. Both are unimodal, symmetric, and bell-
shaped.) This allows us to do hypothesis testing where the significance test used is the
t-test, or Student’s £-test. Our hypothesis is that the two models are the same, or in other
words, that the difference in mean error rate between the two is zero. If we can reject this
hypothesis (referred to as the null hypothesis), then we can conclude that the difference
between the two models is statistically significant, in which case we can select the model
with the lower error rate.

In data mining practice, we may often employ a single test set, that is, the same
test set can be used for both M) and M,. In such cases, we do a pairwise compari-
son of the two models for each 10-fold cross-validation round. That is, for the ith round
of 10-fold cross-validation, the same cross-validation partitioning is used to obtain an
error rate for My and for M. Let err(M;); (or err(M;);) be the error rate of model M;
(or M) on round i. The error rates for M, are averaged to obtain a mean error rate for
M,, denoted err(M;). Similarly, we can obtain err(M,). The variance of the difference
between the two models is denoted var(M; — M>). The t-test computes the t-statistic
with k — 1 degrees of freedom for k samples. In our example we have k = 10 since, here,
the k samples are our error rates obtained from ten 10-fold cross-validations for each

8Recall that the error rate of a model, M, is 1 — accuracy(M).
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model. The t-statistic for pairwise comparison is computed as follows:
err(My) —err(M;)

- V/ var(M, —Mz)/k’

(8.31)

where
1 k
var(My — M) = P Z lerr(My); — err(My); — (err(My) — err(Mp))]*. (8.32)
i=1

To determine whether M; and M, are significantly different, we compute ¢ and select
a significance level, sig. In practice, a significance level of 5% or 1% is typically used. We
then consult a table for the t-distribution, available in standard textbooks on statistics.
This table is usually shown arranged by degrees of freedom as rows and significance
levels as columns. Suppose we want to ascertain whether the difference between M; and
M, is significantly different for 95% of the population, that is, sig = 5% or 0.05. We
need to find the ¢-distribution value corresponding to k — 1 degrees of freedom (or 9
degrees of freedom for our example) from the table. However, because the ¢-distribution
is symmetric, typically only the upper percentage points of the distribution are shown.
Therefore, we look up the table value for z = sig/2, which in this case is 0.025, where
z is also referred to as a confidence limit. If ¢ > z or t < —z, then our value of ¢ lies
in the rejection region, within the distribution’s tails. This means that we can reject the
null hypothesis that the means of M; and M, are the same and conclude that there is
a statistically significant difference between the two models. Otherwise, if we cannot
reject the null hypothesis, we conclude that any difference between M; and M, can be
attributed to chance.

If two test sets are available instead of a single test set, then a nonpaired version of the
t-test is used, where the variance between the means of the two models is estimated as

var(M;) n var(My) ’

8.33
0 5 (8.33)

var(M; — M) = \/

and k; and k; are the number of cross-validation samples (in our case, 10-fold cross-
validation rounds) used for M; and M, respectively. This is also known as the two
sample ¢-test.” When consulting the table of ¢-distribution, the number of degrees of
freedom used is taken as the minimum number of degrees of the two models.

Comparing Classifiers Based on Cost-Benefit
and ROC Curves

The true positives, true negatives, false positives, and false negatives are also useful in
assessing the costs and benefits (or risks and gains) associated with a classification

9This test was used in sampling cubes for OLAP-based mining in Chapter 5.
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model. The cost associated with a false negative (such as incorrectly predicting that a
cancerous patient is not cancerous) is far greater than those of a false positive
(incorrectly yet conservatively labeling a noncancerous patient as cancerous). In such
cases, we can outweigh one type of error over another by assigning a different cost to
each. These costs may consider the danger to the patient, financial costs of resulting
therapies, and other hospital costs. Similarly, the benefits associated with a true positive
decision may be different than those of a true negative. Up to now, to compute classifier
accuracy, we have assumed equal costs and essentially divided the sum of true positives
and true negatives by the total number of test tuples.

Alternatively, we can incorporate costs and benefits by instead computing the average
cost (or benefit) per decision. Other applications involving cost-benefit analysis include
loan application decisions and target marketing mailouts. For example, the cost of loan-
ing to a defaulter greatly exceeds that of the lost business incurred by denying a loan to a
nondefaulter. Similarly, in an application that tries to identify households that are likely
to respond to mailouts of certain promotional material, the cost of mailouts to numer-
ous households that do not respond may outweigh the cost of lost business from not
mailing to households that would have responded. Other costs to consider in the overall
analysis include the costs to collect the data and to develop the classification tool.

Receiver operating characteristic curves are a useful visual tool for comparing two
classification models. ROC curves come from signal detection theory that was deve-
loped during World War II for the analysis of radar images. An ROC curve for a given
model shows the trade-off between the true positive rate (TPR) and the false positive rate
(FPR).'° Given a test set and a model, TPR is the proportion of positive (or “yes”) tuples
that are correctly labeled by the model; FPR is the proportion of negative (or “no”)
tuples that are mislabeled as positive. Given that TP, FP, P, and N are the number of
true positive, false positive, positive, and negative tuples, respectively, from Section 8.5.1
we know that TPR= %, which is sensitivity. Furthermore, FPR= %, which is
1 — specificity.

For a two-class problem, an ROC curve allows us to visualize the trade-off between
the rate at which the model can accurately recognize positive cases versus the rate at
which it mistakenly identifies negative cases as positive for different portions of the test
set. Any increase in TPR occurs at the cost of an increase in FPR. The area under the
ROC curve is a measure of the accuracy of the model.

To plot an ROC curve for a given classification model, M, the model must be able to
return a probability of the predicted class for each test tuple. With this information, we
rank and sort the tuples so that the tuple that is most likely to belong to the positive or
“yes” class appears at the top of the list, and the tuple that is least likely to belong to the
positive class lands at the bottom of the list. Naive Bayesian (Section 8.3) and backpropa-
gation (Section 9.2) classifiers return a class probability distribution for each prediction
and, therefore, are appropriate, although other classifiers, such as decision tree classifiers
(Section 8.2), can easily be modified to return class probability predictions. Let the value

10TPR and FPR are the two operating characteristics being compared.
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that a probabilistic classifier returns for a given tuple X be f(X) — [0,1]. For a binary
problem, a threshold t is typically selected so that tuples where f(X) > t are considered
positive and all the other tuples are considered negative. Note that the number of true
positives and the number of false positives are both functions of ¢, so that we could write
TP(t) and FP(t). Both are monotonic descending functions.

We first describe the general idea behind plotting an ROC curve, and then follow up
with an example. The vertical axis of an ROC curve represents TPR. The horizontal axis
represents FPR. To plot an ROC curve for M, we begin as follows. Starting at the bottom
left corner (where TPR = FPR = 0), we check the tuple’s actual class label at the top of
the list. If we have a true positive (i.e., a positive tuple that was correctly classified), then
TP and thus TPR increase. On the graph, we move up and plot a point. If, instead, the
model classifies a negative tuple as positive, we have a false positive, and so both FP and
FPR increase. On the graph, we move right and plot a point. This process is repeated
for each of the test tuples in ranked order, each time moving up on the graph for a true
positive or toward the right for a false positive.

Plotting an ROC curve. Figure 8.18 shows the probability value (column 3) returned
by a probabilistic classifier for each of the 10 tuples in a test set, sorted by decreasing
probability order. Column 1 is merely a tuple identification number, which aids in our
explanation. Column 2 is the actual class label of the tuple. There are five positive tuples
and five negative tuples, thus P =5 and N = 5. As we examine the known class label
of each tuple, we can determine the values of the remaining columns, TP, FP, TN, EN,
TPR, and FPR. We start with tuple 1, which has the highest probability score, and take
that score as our threshold, that is, t = 0.9. Thus, the classifier considers tuple 1 to be
positive, and all the other tuples are considered negative. Since the actual class label
of tuple 1 is positive, we have a true positive, hence TP =1 and FP = 0. Among the

| Tuple # | Class | Prob. || TP | FP | TN | FN || TPR | FPR |

1 P 0.90 1 0 5 4 0.2 0
2 p 0.80 2 0 5 3 0.4 0
3 N 0.70 2 1 4 3 0.4 0.2
4 p 0.60 3 1 4 2 0.6 0.2
5 P 0.55 4 1 4 1 0.8 0.2
6 N 0.54 4 2 3 1 0.8 0.4
7 N 0.53 4 3 2 1 0.8 0.6
8 N 0.51 4 4 1 1 0.8 0.8
9 P 0.50 5 4 0 1 1.0 0.8
10 N 0.40 5 5 0 0 1.0 1.0

Figure 8.18 Tuples sorted by decreasing score, where the score is the value returned by a probabilistic

classifier.
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Figure 8.19 ROC curve for the data in Figure 8.18.

remaining nine tuples, which are all classified as negative, five actually are negative (thus,
TN =5). The remaining four are all actually positive, thus, FN = 4. We can therefore
compute TPR = %) = % = 0.2, while FPR = 0. Thus, we have the point (0.2,0) for the
ROC curve.

Next, threshold £ is set to 0.8, the probability value for tuple 2, so this tuple is now
also considered positive, while tuples 3 through 10 are considered negative. The actual
class label of tuple 2 is positive, thus now TP = 2. The rest of the row can easily be
computed, resulting in the point (0.4,0). Next, we examine the class label of tuple 3 and
let ¢ be 0.7, the probability value returned by the classifier for that tuple. Thus, tuple 3 is
considered positive, yet its actual label is negative, and so it is a false positive. Thus, TP
stays the same and FP increments so that FP = 1. The rest of the values in the row can
also be easily computed, yielding the point (0.4,0.2). The resulting ROC graph, from
examining each tuple, is the jagged line shown in Figure 8.19.

There are many methods to obtain a curve out of these points, the most common
of which is to use a convex hull. The plot also shows a diagonal line where for every
true positive of such a model, we are just as likely to encounter a false positive. For
comparison, this line represents random guessing. (]

Figure 8.20 shows the ROC curves of two classification models. The diagonal line
representing random guessing is also shown. Thus, the closer the ROC curve of a model
is to the diagonal line, the less accurate the model. If the model is really good, initially
we are more likely to encounter true positives as we move down the ranked list. Thus,
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ROC curves of two classification models, M) and M,. The diagonal shows where, for every
true positive, we are equally likely to encounter a false positive. The closer an ROC curve is
to the diagonal line, the less accurate the model is. Thus, M1 is more accurate here.

the curve moves steeply up from zero. Later, as we start to encounter fewer and fewer
true positives, and more and more false positives, the curve eases off and becomes more
horizontal.

To assess the accuracy of a model, we can measure the area under the curve. Several
software packages are able to perform such calculation. The closer the area is to 0.5, the
less accurate the corresponding model is. A model with perfect accuracy will have an
area of 1.0.

Techniques to Improve Classification Accuracy

In this section, you will learn some tricks for increasing classification accuracy. We focus
on ensemble methods. An ensemble for classification is a composite model, made up of
a combination of classifiers. The individual classifiers vote, and a class label prediction
is returned by the ensemble based on the collection of votes. Ensembles tend to be more
accurate than their component classifiers. We start off in Section 8.6.1 by introducing
ensemble methods in general. Bagging (Section 8.6.2), boosting (Section 8.6.3), and
random forests (Section 8.6.4) are popular ensemble methods.

Traditional learning models assume that the data classes are well distributed. In
many real-world data domains, however, the data are class-imbalanced, where the
main class of interest is represented by only a few tuples. This is known as the class
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Figure 8.21

imbalance problem. We also study techniques for improving the classification accuracy
of class-imbalanced data. These are presented in Section 8.6.5.

Introducing Ensemble Methods

Bagging, boosting, and random forests are examples of ensemble methods (Figure 8.21).
An ensemble combines a series of k learned models (or base classifiers), My, Mo, ..., My,
with the aim of creating an improved composite classification model, M. A given data
set, D, is used to create k training sets, D1, D,,..., D, where D; (1 <i < k— 1) is used
to generate classifier M;. Given a new data tuple to classify, the base classifiers each vote
by returning a class prediction. The ensemble returns a class prediction based on the
votes of the base classifiers.

An ensemble tends to be more accurate than its base classifiers. For example, con-
sider an ensemble that performs majority voting. That is, given a tuple X to classify, it
collects the class label predictions returned from the base classifiers and outputs the class
in majority. The base classifiers may make mistakes, but the ensemble will misclassify X
only if over half of the base classifiers are in error. Ensembles yield better results when
there is significant diversity among the models. That is, ideally, there is little correla-
tion among classifiers. The classifiers should also perform better than random guessing.
Each base classifier can be allocated to a different CPU and so ensemble methods are
parallelizable.

To help illustrate the power of an ensemble, consider a simple two-class problem
described by two attributes, x; and x,. The problem has a linear decision boundary.
Figure 8.22(a) shows the decision boundary of a decision tree classifier on the problem.
Figure 8.22(b) shows the decision boundary of an ensemble of decision tree classifiers
on the same problem. Although the ensemble’s decision boundary is still piecewise
constant, it has a finer resolution and is better than that of a single tree.

! New data
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Increasing classifier accuracy: Ensemble methods generate a set of classification models,
M, My, ..., M. Given a new data tuple to classify, each classifier “votes” for the class label
of that tuple. The ensemble combines the votes to return a class prediction.
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Figure 8.22 Decision boundary by (a) a single decision tree and (b) an ensemble of decision trees for a

8.6.2

linearly separable problem (i.e., where the actual decision boundary is a straight line). The
decision tree struggles with approximating a linear boundary. The decision boundary of the
ensemble is closer to the true boundary. Source: From Seni and Elder [SE10]. (©) 2010 Morgan
& Claypool Publishers; used with permission.

Bagging
We now take an intuitive look at how bagging works as a method of increasing accuracy.
Suppose that you are a patient and would like to have a diagnosis made based on your
symptoms. Instead of asking one doctor, you may choose to ask several. If a certain
diagnosis occurs more than any other, you may choose this as the final or best diagnosis.
That is, the final diagnosis is made based on a majority vote, where each doctor gets an
equal vote. Now replace each doctor by a classifier, and you have the basic idea behind
bagging. Intuitively, a majority vote made by a large group of doctors may be more
reliable than a majority vote made by a small group.

Given a set, D, of d tuples, bagging works as follows. For iteration i(i =1, 2,..., k),
a training set, D;, of d tuples is sampled with replacement from the original set of
tuples, D. Note that the term bagging stands for bootstrap aggregation. Each training
set is a bootstrap sample, as described in Section 8.5.4. Because sampling with replace-
ment is used, some of the original tuples of D may not be included in D;, whereas others
may occur more than once. A classifier model, M;, is learned for each training set, D;.
To classify an unknown tuple, X, each classifier, M;, returns its class prediction, which
counts as one vote. The bagged classifier, Mx*, counts the votes and assigns the class
with the most votes to X. Bagging can be applied to the prediction of continuous values
by taking the average value of each prediction for a given test tuple. The algorithm is
summarized in Figure 8.23.

The bagged classifier often has significantly greater accuracy than a single classifier
derived from D, the original training data. It will not be considerably worse and is more
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Algorithm: Bagging. The bagging algorithm—create an ensemble of classification models
for a learning scheme where each model gives an equally weighted prediction.

Input:
D, a set of d training tuples;
k, the number of models in the ensemble;

a classification learning scheme (decision tree algorithm, naive Bayesian, etc.).

Output: The ensemble—a composite model, M.

Method:

(1) fori=1to kdo// create k models:

(2) create bootstrap sample, D;, by sampling D with replacement;
(3) use D; and the learning scheme to derive a model, M;;

(4) endfor

To use the ensemble to classify a tuple, X:

let each of the k models classify X and return the majority vote;

Figure 8.23 Bagging.

8.6.3

robust to the effects of noisy data and overfitting. The increased accuracy occurs because
the composite model reduces the variance of the individual classifiers.

Boosting and AdaBoost

We now look at the ensemble method of boosting. As in the previous section, suppose
that as a patient, you have certain symptoms. Instead of consulting one doctor, you
choose to consult several. Suppose you assign weights to the value or worth of each doc-
tor’s diagnosis, based on the accuracies of previous diagnoses they have made. The final
diagnosis is then a combination of the weighted diagnoses. This is the essence behind
boosting.

In boosting, weights are also assigned to each training tuple. A series of k classifiers is
iteratively learned. After a classifier, M;, is learned, the weights are updated to allow the
subsequent classifier, My, to “pay more attention” to the training tuples that were mis-
classified by M;. The final boosted classifier, M, combines the votes of each individual
classifier, where the weight of each classifier’s vote is a function of its accuracy.

AdaBoost (short for Adaptive Boosting) is a popular boosting algorithm. Suppose
we want to boost the accuracy of a learning method. We are given D, a data set of
d class-labeled tuples, (X1,1),(X2,%2),-..,(Xa,y4), where y; is the class label of tuple
X;. Initially, AdaBoost assigns each training tuple an equal weight of 1/d. Generating
k classifiers for the ensemble requires k rounds through the rest of the algorithm. In
round i, the tuples from D are sampled to form a training set, D;, of size d. Sampling
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with replacement is used—the same tuple may be selected more than once. Each tuple’s
chance of being selected is based on its weight. A classifier model, M;, is derived from
the training tuples of D;. Its error is then calculated using D; as a test set. The weights of
the training tuples are then adjusted according to how they were classified.

If a tuple was incorrectly classified, its weight is increased. If a tuple was correctly
classified, its weight is decreased. A tuple’s weight reflects how difficult it is to classify—
the higher the weight, the more often it has been misclassified. These weights will be
used to generate the training samples for the classifier of the next round. The basic idea
is that when we build a classifier, we want it to focus more on the misclassified tuples of
the previous round. Some classifiers may be better at classifying some “difficult” tuples
than others. In this way, we build a series of classifiers that complement each other. The
algorithm is summarized in Figure 8.24.

Now, let’s look at some of the math that’s involved in the algorithm. To compute
the error rate of model M;, we sum the weights of each of the tuples in D; that M;
misclassified. That is,

d
error(M;) = Z w; X err(Xj), (8.34)
j=1

where err(Xj) is the misclassification error of tuple X;: If the tuple was misclassified, then
err(X;) is 1; otherwise, it is 0. If the performance of classifier M; is so poor that its error
exceeds 0.5, then we abandon it. Instead, we try again by generating a new D; training
set, from which we derive a new M;.

The error rate of M; affects how the weights of the training tuples are updated.
If a tuple in round i was correctly classified, its weight is multiplied by error(M;)/
(1 — error(M;)). Once the weights of all the correctly classified tuples are updated, the
weights for all tuples (including the misclassified ones) are normalized so that their sum
remains the same as it was before. To normalize a weight, we multiply it by the sum of
the old weights, divided by the sum of the new weights. As a result, the weights of mis-
classified tuples are increased and the weights of correctly classified tuples are decreased,
as described before.

“Once boosting is complete, how is the ensemble of classifiers used to predict the class label
of a tuple, X?” Unlike bagging, where each classifier was assigned an equal vote, boosting
assigns a weight to each classifier’s vote, based on how well the classifier performed. The
lower a classifier’s error rate, the more accurate it is, and therefore, the higher its weight
for voting should be. The weight of classifier M;’s vote is

1 — error(M;)

error(M;) (8.35)

For each class, ¢, we sum the weights of each classifier that assigned class ¢ to X. The class
with the highest sum is the “winner” and is returned as the class prediction for tuple X.

“How does boosting compare with bagging?” Because of the way boosting focuses on
the misclassified tuples, it risks overfitting the resulting composite model to such data.



382

Chapter 8 Classification: Basic Concepts

Algorithm: AdaBoost. A boosting algorithm—create an ensemble of classifiers. Each one
gives a weighted vote.

Input:
D, a set of d class-labeled training tuples;
k, the number of rounds (one classifier is generated per round);
a classification learning scheme.

Output: A composite model.

Method:

(1) initialize the weight of each tuple in D to 1/d;
(2) fori=1to kdo// for each round:

(3) sample D with replacement according to the tuple weights to obtain Dj;

(4) use training set D; to derive a model, M;;

(5) compute error(M;), the error rate of M; (Eq. 8.34)

(6) if error(M;) > 0.5 then

(7) go back to step 3 and try again;

(8) endif

9) for each tuple in D; that was correctly classified do

(10) multiply the weight of the tuple by error(M;)/(1 — error(M;)); // update weights

(11) normalize the weight of each tuple;
(12) endfor

To use the ensemble to classify tuple, X:

(1) initialize weight of each class to 0;
(2) fori=1to kdo// for each classifier:

(3) w; = lag%‘m; /1 weight of the classifier’s vote
(4) ¢ = M;(X); // get class prediction for X from M;
(5) add w; to weight for class ¢

(6) endfor

(7) return the class with the largest weight;

Figure 8.24 AdaBoost, a boosting algorithm.

8.6.4

Therefore, sometimes the resulting “boosted” model may be less accurate than a single
model derived from the same data. Bagging is less susceptible to model overfitting. While
both can significantly improve accuracy in comparison to a single model, boosting tends
to achieve greater accuracy.

Random Forests

We now present another ensemble method called random forests. Imagine that each of
the classifiers in the ensemble is a decision tree classifier so that the collection of classifiers
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is a “forest.” The individual decision trees are generated using a random selection of
attributes at each node to determine the split. More formally, each tree depends on the
values of a random vector sampled independently and with the same distribution for
all trees in the forest. During classification, each tree votes and the most popular class is
returned.

Random forests can be built using bagging (Section 8.6.2) in tandem with random
attribute selection. A training set, D, of d tuples is given. The general procedure to gen-
erate k decision trees for the ensemble is as follows. For each iteration, i(i=1, 2,..., k),
a training set, D;, of d tuples is sampled with replacement from D. That is, each D; is a
bootstrap sample of D (Section 8.5.4), so that some tuples may occur more than once
in Dj, while others may be excluded. Let F be the number of attributes to be used to
determine the split at each node, where F is much smaller than the number of avail-
able attributes. To construct a decision tree classifier, M;, randomly select, at each node,
F attributes as candidates for the split at the node. The CART methodology is used to
grow the trees. The trees are grown to maximum size and are not pruned. Random
forests formed this way, with random input selection, are called Forest-RI.

Another form of random forest, called Forest-RC, uses random linear combinations
of the input attributes. Instead of randomly selecting a subset of the attributes, it cre-
ates new attributes (or features) that are a linear combination of the existing attributes.
That is, an attribute is generated by specifying L, the number of original attributes to be
combined. At a given node, L attributes are randomly selected and added together with
coefficients that are uniform random numbers on [—1,1]. F linear combinations are
generated, and a search is made over these for the best split. This form of random forest
is useful when there are only a few attributes available, so as to reduce the correlation
between individual classifiers.

Random forests are comparable in accuracy to AdaBoost, yet are more robust to
errors and outliers. The generalization error for a forest converges as long as the num-
ber of trees in the forest is large. Thus, overfitting is not a problem. The accuracy of a
random forest depends on the strength of the individual classifiers and a measure of the
dependence between them. The ideal is to maintain the strength of individual classifiers
without increasing their correlation. Random forests are insensitive to the number of
attributes selected for consideration at each split. Typically, up to logzd + 1 are chosen.
(An interesting empirical observation was that using a single random input attribute
may result in good accuracy that is often higher than when using several attributes.)
Because random forests consider many fewer attributes for each split, they are efficient
on very large databases. They can be faster than either bagging or boosting. Random
forests give internal estimates of variable importance.

Improving Classification Accuracy of Class-Imbalanced Data

In this section, we revisit the class imbalance problem. In particular, we study approaches
to improving the classification accuracy of class-imbalanced data.

Given two-class data, the data are class-imbalanced if the main class of interest (the
positive class) is represented by only a few tuples, while the majority of tuples represent
the negative class. For multiclass-imbalanced data, the data distribution of each class
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differs substantially where, again, the main class or classes of interest are rare. The
class imbalance problem is closely related to cost-sensitive learning, wherein the costs of
errors, per class, are not equal. In medical diagnosis, for example, it is much more costly
to falsely diagnose a cancerous patient as healthy (a false negative) than to misdiagnose
a healthy patient as having cancer (a false positive). A false negative error could lead to
the loss of life and therefore is much more expensive than a false positive error. Other
applications involving class-imbalanced data include fraud detection, the detection of
oil spills from satellite radar images, and fault monitoring.

Traditional classification algorithms aim to minimize the number of errors made dur-
ing classification. They assume that the costs of false positive and false negative errors
are equal. By assuming a balanced distribution of classes and equal error costs, they
are therefore not suitable for class-imbalanced data. Earlier parts of this chapter pre-
sented ways of addressing the class imbalance problem. Although the accuracy measure
assumes that the cost of classes are equal, alternative evaluation metrics can be used that
consider the different types of classifications. Section 8.5.1, for example, presented sersi-
tivity or recall (the true positive rate) and specificity (the true negative rate), which help
to assess how well a classifier can predict the class label of imbalanced data. Additional
relevant measures discussed include F; and Fg. Section 8.5.6 showed how ROC curves
plot sensitivity versus 1 — specificity (i.e., the false positive rate). Such curves can provide
insight when studying the performance of classifiers on class-imbalanced data.

In this section, we look at general approaches for improving the classification accu-
racy of class-imbalanced data. These approaches include (1) oversampling, (2) under-
sampling, (3) threshold moving, and (4) ensemble techniques. The first three do not
involve any changes to the construction of the classification model. That is, oversam-
pling and undersampling change the distribution of tuples in the training set; threshold
moving affects how the model makes decisions when classifying new data. Ensemble
methods follow the techniques described in Sections 8.6.2 through 8.6.4. For ease of
explanation, we describe these general approaches with respect to the two-class imbal-
ance data problem, where the higher-cost classes are rarer than the lower-cost classes.

Both oversampling and undersampling change the training data distribution so that
the rare (positive) class is well represented. Oversampling works by resampling the pos-
itive tuples so that the resulting training set contains an equal number of positive and
negative tuples. Undersampling works by decreasing the number of negative tuples. It
randomly eliminates tuples from the majority (negative) class until there are an equal
number of positive and negative tuples.

Oversampling and undersampling. Suppose the original training set contains 100 pos-
itive and 1000 negative tuples. In oversampling, we replicate tuples of the rarer class
to form a new training set containing 1000 positive tuples and 1000 negative tuples.
In undersampling, we randomly eliminate negative tuples so that the new training set
contains 100 positive tuples and 100 negative tuples. (]

Several variations to oversampling and undersampling exist. They may vary, for
instance, in how tuples are added or eliminated. For example, the SMOTE algorithm
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uses oversampling where synthetic tuples are added, which are “close to” the given
positive tuples in tuple space.

The threshold-moving approach to the class imbalance problem does not involve
any sampling. It applies to classifiers that, given an input tuple, return a continuous
output value (just like in Section 8.5.6, where we discussed how to construct ROC
curves). That is, for an input tuple, X, such a classifier returns as output a mapping,
f(X) — [0,1]. Rather than manipulating the training tuples, this method returns a clas-
sification decision based on the output values. In the simplest approach, tuples for which
f(X) > t, for some threshold, t, are considered positive, while all other tuples are con-
sidered negative. Other approaches may involve manipulating the outputs by weighting.
In general, threshold moving moves the threshold, ¢, so that the rare class tuples are eas-
ier to classify (and hence, there is less chance of costly false negative errors). Examples of
such classifiers include naive Bayesian classifiers (Section 8.3) and neural network clas-
sifiers like backpropagation (Section 9.2). The threshold-moving method, although not
as popular as over- and undersampling, is simple and has shown some success for the
two-class-imbalanced data.

Ensemble methods (Sections 8.6.2 through 8.6.4) have also been applied to the class
imbalance problem. The individual classifiers making up the ensemble may include
versions of the approaches described here such as oversampling and threshold moving.

These methods work relatively well for the class imbalance problem on two-class
tasks. Threshold-moving and ensemble methods were empirically observed to outper-
form oversampling and undersampling. Threshold moving works well even on data
sets that are extremely imbalanced. The class imbalance problem on multiclass tasks
is much more difficult, where oversampling and threshold moving are less effective.
Although threshold-moving and ensemble methods show promise, finding a solution
for the multiclass imbalance problem remains an area of future work.

Summary

Classification is a form of data analysis that extracts models describing data classes.
A classifier, or classification model, predicts categorical labels (classes). Numeric pre-
diction models continuous-valued functions. Classification and numeric prediction
are the two major types of prediction problems.

Decision tree induction is a top-down recursive tree induction algorithm, which
uses an attribute selection measure to select the attribute tested for each nonleaf node
in the tree. ID3, C4.5, and CART are examples of such algorithms using different
attribute selection measures. Tree pruning algorithms attempt to improve accuracy
by removing tree branches reflecting noise in the data. Early decision tree algorithms
typically assume that the data are memory resident. Several scalable algorithms, such
as RainForest, have been proposed for scalable tree induction.

Naive Bayesian classification is based on Bayes’ theorem of posterior probability. It
assumes class-conditional independence—that the effect of an attribute value on a
given class is independent of the values of the other attributes.
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A rule-based classifier uses a set of IF-THEN rules for classification. Rules can be
extracted from a decision tree. Rules may also be generated directly from training
data using sequential covering algorithms.

A confusion matrix can be used to evaluate a classifier’s quality. For a two-class
problem, it shows the true positives, true negatives, false positives, and false negatives.
Measures that assess a classifier’s predictive ability include accuracy, sensitivity (also
known as recall), specificity, precision, F, and Fg. Reliance on the accuracy measure
can be deceiving when the main class of interest is in the minority.

Construction and evaluation of a classifier require partitioning labeled data into
a training set and a test set. Holdout, random sampling, cross-validation, and
bootstrapping are typical methods used for such partitioning.

Significance tests and ROC curves are useful tools for model selection. Significance
tests can be used to assess whether the difference in accuracy between two classifiers
is due to chance. ROC curves plot the true positive rate (or sensitivity) versus the
false positive rate (or 1 — specificity) of one or more classifiers.

Ensemble methods can be used to increase overall accuracy by learning and combin-
ing a series of individual (base) classifier models. Bagging, boosting, and random
forests are popular ensemble methods.

The class imbalance problem occurs when the main class of interest is represented
by only a few tuples. Strategies to address this problem include oversampling,
undersampling, threshold moving, and ensemble techniques.

Exercises

Briefly outline the major steps of decision tree classification.

Why is tree pruning useful in decision tree induction? What is a drawback of using a
separate set of tuples to evaluate pruning?

Given a decision tree, you have the option of (a) converting the decision tree to rules and
then pruning the resulting rules, or (b) pruning the decision tree and then converting
the pruned tree to rules. What advantage does (a) have over (b)?

It is important to calculate the worst-case computational complexity of the decision tree
algorithm. Given data set, D, the number of attributes, #, and the number of training
tuples, |D|, show that the computational cost of growing a tree is at most n x |D| x
log(1D).

Given a 5-GB data set with 50 attributes (each containing 100 distinct values) and 512
MB of main memory in your laptop, outline an efficient method that constructs deci-
sion trees in such large data sets. Justify your answer by rough calculation of your main
memory usage.
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8.6 Why is naive Bayesian classification called “naive”? Briefly outline the major ideas of
naive Bayesian classification.

8.7 The following table consists of training data from an employee database. The data have
been generalized. For example, “31 ... 35” for age represents the age range of 31 to 35.
For a given row entry, count represents the number of data tuples having the values for
department, status, age, and salary given in that row.

department  status  age salary count
sales senior 31...35 46K...50K 30
sales junior 26...30 26K...30K 40
sales junior 31...35 31K...35K 40
systems junior 21...25 46K...50K 20
systems senior 31...35 66K...70K 5
systems junior 26...30 46K...50K

systems senior 41...45 66K...70K

marketing  senior 36...40 46K...50K 10
marketing  junior 31...35 41K...45K
secretary senior 46...50 36K...40K
secretary junior 26...30 26K...30K

Let status be the class label attribute.

(a) How would you modify the basic decision tree algorithm to take into consideration
the count of each generalized data tuple (i.e., of each row entry)?

(b) Use your algorithm to construct a decision tree from the given data.

(c) Given a data tuple having the values “systems,” “26...30,” and “46-50K” for the
attributes department, age, and salary, respectively, what would a naive Bayesian
classification of the status for the tuple be?

8.8 RainForest is a scalable algorithm for decision tree induction. Develop a scalable naive
Bayesian classification algorithm that requires just a single scan of the entire data set
for most databases. Discuss whether such an algorithm can be refined to incorporate
boosting to further enhance its classification accuracy.

8.9 Design an efficient method that performs effective naive Bayesian classification over
an infinite data stream (i.e., you can scan the data stream only once). If we wanted
to discover the evolution of such classification schemes (e.g., comparing the classifica-
tion scheme at this moment with earlier schemes such as one from a week ago), what
modified design would you suggest?

8.10 Show that accuracy is a function of sensitivity and specificity, that is, prove Eq. (8.25).

8.11 The harmonic mean is one of several kinds of averages. Chapter 2 discussed how to
compute the arithmetic mean, which is what most people typically think of when they
compute an average. The harmonic mean, H, of the positive real numbers, x1,x2,. . ., Xy,
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is defined as

Xiix

The F measure is the harmonic mean of precision and recall. Use this fact to derive
Eq. (8.28) for F. In addition, write Fg as a function of true positives, false negatives, and
false positives.

The data tuples of Figure 8.25 are sorted by decreasing probability value, as returned by
a classifier. For each tuple, compute the values for the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives (FN). Compute the true
positive rate (TPR) and false positive rate (FPR). Plot the ROC curve for the data.

It is difficult to assess classification accuracy when individual data objects may belong to
more than one class at a time. In such cases, comment on what criteria you would use
to compare different classifiers modeled after the same data.

Suppose that we want to select between two prediction models, M) and M,. We have
performed 10 rounds of 10-fold cross-validation on each model, where the same data
partitioning in round i is used for both M; and M. The error rates obtained for M; are
30.5, 32.2, 20.7, 20.6, 31.0, 41.0, 27.7, 26.0, 21.5, 26.0. The error rates for M, are 22.4,
14.5, 22.4, 19.6, 20.7, 20.4, 22.1, 19.4, 16.2, 35.0. Comment on whether one model is
significantly better than the other considering a significance level of 1%.

What is boosting? State why it may improve the accuracy of decision tree induction.

| Tuple # | Class | Probability
1 p 0.95
2 N 0.85
3 P 0.78
4 P 0.66
5 N 0.60
6 p 0.55
7 N 0.53
8 N 0.52
9 N 0.51
10 P 0.40

Figure 8.25 Tuples sorted by decreasing score, where the score is the value returned by a
probabilistic classifier.
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8.16 Outline methods for addressing the class imbalance problem. Suppose a bank wants to
develop a classifier that guards against fraudulent credit card transactions. Illustrate how
you can induce a quality classifier based on a large set of nonfraudulent examples and a
very small set of fraudulent cases.
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CHAID (Kass [Kas80] and Magidson [Mag94]). INFERULE (Uthurusamy, Fayyad, and
Spangler [UFS91]) learns decision trees from inconclusive data, where probabilistic
rather than categorical classification rules are obtained. KATE (Manago and Kodratoft
[MK91]) learns decision trees from complex structured data. Incremental versions of
ID3 include ID4 (Schlimmer and Fisher [SF86]) and ID5 (Utgoff [Utg88]), the latter
of which is extended in Utgoff, Berkman, and Clouse [UBC97]. An incremental ver-
sion of CART is described in Crawford [Cra89]. BOAT (Gehrke, Ganti, Ramakrishnan,
and Loh [GGRL99]), a decision tree algorithm that addresses the scalability issue in
data mining, is also incremental. Other decision tree algorithms that address scalability
include SLIQ (Mehta, Agrawal, and Rissanen [MAR96]), SPRINT (Shafer, Agrawal, and
Mehta [SAM96]), RainForest (Gehrke, Ramakrishnan, and Ganti [GRG98]), and earlier
approaches such as Catlet [Cat91] and Chan and Stolfo [CS93a, CS93b].

For a comprehensive survey of many salient issues relating to decision tree induc-
tion, such as attribute selection and pruning, see Murthy [Mur98]. Perception-based
classification (PBC), a visual and interactive approach to decision tree construction, is
presented in Ankerst, Elsen, Ester, and Kriegel [AEEK99].

For a detailed discussion on attribute selection measures, see Kononenko and Hong
[KH97]. Information gain was proposed by Quinlan [Qui86] and is based on pio-
neering work on information theory by Shannon and Weaver [SW49]. The gain ratio,
proposed as an extension to information gain, is described as part of C4.5 (Quinlan
[Qui93]). The Gini index was proposed for CART in Breiman, Friedman, Olshen, and
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Stone [BFOS84]. The G-statistic, based on information theory, is given in Sokal and
Rohlf [SR81]. Comparisons of attribute selection measures include Buntine and Niblett
[BN92], Fayyad and Irani [F192], Kononenko [Kon95], Loh and Shih [LS97], and Shih
[Shi99]. Fayyad and Irani [FI92] show limitations of impurity-based measures such as
information gain and the Gini index. They propose a class of attribute selection mea-
sures called C-SEP (Class SEParation), which outperform impurity-based measures in
certain cases.

Kononenko [Kon95] notes that attribute selection measures based on the minimum
description length principle have the least bias toward multivalued attributes. Martin
and Hirschberg [MH95] proved that the time complexity of decision tree induction
increases exponentially with respect to tree height in the worst case, and under fairly
general conditions in the average case. Fayad and Irani [FI90] found that shallow deci-
sion trees tend to have many leaves and higher error rates for a large variety of domains.
Attribute (or feature) construction is described in Liu and Motoda [LM98a, LM98b].

There are numerous algorithms for decision tree pruning, including cost complex-
ity pruning (Breiman, Friedman, Olshen, and Stone [BFOS84]), reduced error pruning
(Quinlan [Qui87]), and pessimistic pruning (Quinlan [Qui86]). PUBLIC (Rastogi and
Shim [RS98]) integrates decision tree construction with tree pruning. MDL-based prun-
ing methods can be found in Quinlan and Rivest [QR89]; Mehta, Agrawal, and Rissanen
[MAR96]; and Rastogi and Shim [RS98]. Other methods include Niblett and Bratko
[NB86] and Hosking, Pednault, and Sudan [HPS97]. For an empirical comparison of
pruning methods, see Mingers [Min89] and Malerba, Floriana, and Semeraro [MFS95].
For a survey on simplifying decision trees, see Breslow and Aha [BA97].

Thorough presentations of Bayesian classification can be found in Duda, Hart, and
Stork [DHS01], Weiss and Kulikowski [WK91], and Mitchell [Mit97]. For an anal-
ysis of the predictive power of naive Bayesian classifiers when the class-conditional
independence assumption is violated, see Domingos and Pazzani [DP96]. Experiments
with kernel density estimation for continuous-valued attributes, rather than Gaussian
estimation, have been reported for naive Bayesian classifiers in John [Joh97].

There are several examples of rule-based classifiers. These include AQ15 (Hong,
Mozetic, and Michalski [HMMS86]), CN2 (Clark and Niblett [CN89]), ITRULE (Smyth
and Goodman [SG92]), RISE (Domingos [Dom94]), IREP (Furnkranz and Widmer
[FW94]), RIPPER (Cohen [Coh95]), FOIL (Quinlan and Cameron-Jones [Qui90,
QC-J93]), and Swap-1 (Weiss and Indurkhya [WI98]). Rule-based classifiers that are
based on frequent-pattern mining are described in Chapter 9. For the extraction of
rules from decision trees, see Quinlan [Qui87, Qui93]. Rule refinement strategies that
identify the most interesting rules among a given rule set can be found in Major and
Mangano [MM95].

Issues involved in estimating classifier accuracy are described in Weiss and Kulikowski
[WK91] and Witten and Frank [WF05]. Sensitivity, specificity, and precision are dis-
cussed in most information retrieval textbooks. For the F and Fg measures, see van
Rijsbergen [vR90]. The use of stratified 10-fold cross-validation for estimating classi-
fier accuracy is recommended over the holdout, cross-validation, leave-one-out (Stone
[Sto74]), and bootstrapping (Efron and Tibshirani [ET93]) methods, based on a



8.9 Bibliographic Notes 391

theoretical and empirical study by Kohavi [Koh95]. See Freedman, Pisani, and Purves
[FPP07] for the confidence limits and statistical tests of significance.

For ROC analysis, see Egan [Ega75], Swets [Swe88], and Vuk and Curk [VCO06]. Bag-
ging is proposed in Breiman [Bre96]. Freund and Schapire [FS97] proposed AdaBoost.
This boosting technique has been applied to several different classifiers, including deci-
sion tree induction (Quinlan [Qui96]) and naive Bayesian classification (Elkan [Elk97]).
Friedman [Fri01] proposed the gradient boosting machine for regression. The ensem-
ble technique of random forests is described by Breiman [Bre01]. Seni and Elder [SE10]
proposed the Importance Sampling Learning Ensembles (ISLE) framework, which views
bagging, AdaBoost, random forests, and gradient boosting as special cases of a generic
ensemble generation procedure.

Friedman and Popescu [FB08, FP05] present Rule Ensembles, an ISLE-based model
where the classifiers combined are composed of simple readable rules. Such ensembles
were observed to have comparable or greater accuracy and greater interpretability. There
are many online software packages for ensemble routines, including bagging, AdaBoost,
gradient boosting, and random forests. Studies on the class imbalance problem and/or
cost-sensitive learning include Weiss [Wei04], Zhou and Liu [ZL06], Zapkowicz and
Stephen [ZS02], Elkan [Elk01], and Domingos [Dom99].

The University of California at Irvine (UCI) maintains a Machine Learning Repos-
itory of data sets for the development and testing of classification algorithms. It also
maintains a Knowledge Discovery in Databases (KDD) Archive, an online repository of
large data sets that encompasses a wide variety of data types, analysis tasks, and appli-
cation areas. For information on these two repositories, see www.ics.uci.edu/~mlearn/
MLRepository.html and http://kdd.ics.uci.edu.

No classification method is superior to all others for all data types and domains.
Empirical comparisons of classification methods include Quinlan [Qui88]; Shavlik,
Mooney, and Towell [SMT91]; Brown, Corruble, and Pittard [BCP93]; Curram and
Mingers [CM94]; Michie, Spiegelhalter, and Taylor [MST94]; Brodley and Utgoff
[BU95]; and Lim, Loh, and Shih [LLS00].
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Classification: Advanced
Methods

In this chapter, you will learn advanced techniques for data classification. We start with
Bayesian belief networks (Section 9.1), which unlike naive Bayesian classifiers, do not
assume class conditional independence. Backpropagation, a neural network algorithm,
is discussed in Section 9.2. In general terms, a neural network is a set of connected
input/output units in which each connection has a weight associated with it. The weights
are adjusted during the learning phase to help the network predict the correct class label
of the input tuples. A more recent approach to classification known as support vector
machines is presented in Section 9.3. A support vector machine transforms training
data into a higher dimension, where it finds a hyperplane that separates the data by
class using essential training tuples called support vectors. Section 9.4 describes classi-
fication using frequent patterns, exploring relationships between attribute—value pairs
that occur frequently in data. This methodology builds on research on frequent pattern
mining (Chapters 6 and 7).

Section 9.5 presents lazy learners or instance-based methods of classification, such
as nearest-neighbor classifiers and case-based reasoning classifiers, which store all of the
training tuples in pattern space and wait until presented with a test tuple before perform-
ing generalization. Other approaches to classification, such as genetic algorithms, rough
sets, and fuzzy logic techniques, are introduced in Section 9.6. Section 9.7 introduces
additional topics in classification, including multiclass classification, semi-supervised
classification, active learning, and transfer learning.

Bayesian Belief Networks

Chapter 8 introduced Bayes’ theorem and naive Bayesian classification. In this chap-
ter, we describe Bayesian belief networks—probabilistic graphical models, which unlike
naive Bayesian classifiers allow the representation of dependencies among subsets of
attributes. Bayesian belief networks can be used for classification. Section 9.1.1 intro-
duces the basic concepts of Bayesian belief networks. In Section 9.1.2, you will learn
how to train such models.

Data Mining: Concepts and Techniques 3 9 3
(© 2012 Elsevier Inc. All rights reserved.
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9.1.1

Figure 9.1

Concepts and Mechanisms

The naive Bayesian classifier makes the assumption of class conditional independence,
that is, given the class label of a tuple, the values of the attributes are assumed to
be conditionally independent of one another. This simplifies computation. When the
assumption holds true, then the naive Bayesian classifier is the most accurate in com-
parison with all other classifiers. In practice, however, dependencies can exist between
variables. Bayesian belief networks specify joint conditional probability distributions.
They allow class conditional independencies to be defined between subsets of variables.
They provide a graphical model of causal relationships, on which learning can be per-
formed. Trained Bayesian belief networks can be used for classification. Bayesian belief
networks are also known as belief networks, Bayesian networks, and probabilistic
networks. For brevity, we will refer to them as belief networks.

A Dbelief network is defined by two components—a directed acyclic graph and a set of
conditional probability tables (Figure 9.1). Each node in the directed acyclic graph rep-
resents a random variable. The variables may be discrete- or continuous-valued. They
may correspond to actual attributes given in the data or to “hidden variables” believed
to form a relationship (e.g., in the case of medical data, a hidden variable may indicate
a syndrome, representing a number of symptoms that, together, characterize a specific
disease). Each arc represents a probabilistic dependence. If an arc is drawn from a node
Y to anode Z, then Y is a parent or immediate predecessor of Z, and Z is a descendant

( FamilyHistory b

Smoker

Y

FH, S FH ~S ~FH S ~FH, ~S
LC| 08 |05 0.7 0.1
~LC| 02 |05 0.3 0.9
(@ (b)

( PositiveXRay ’

Simple Bayesian belief network. (a) A proposed causal model, represented by a directed
acyclic graph. (b) The conditional probability table for the values of the variable LungCancer
(LC) showing each possible combination of the values of its parent nodes, FamilyHis-
tory (FH) and Smoker (S). Source: Adapted from Russell, Binder, Koller, and Kanazawa
[RBKK95].
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of Y. Each variable is conditionally independent of its nondescendants in the graph, given
its parents.

Figure 9.1 is a simple belief network, adapted from Russell, Binder, Koller, and
Kanazawa [RBKK95] for six Boolean variables. The arcs in Figure 9.1(a) allow a rep-
resentation of causal knowledge. For example, having lung cancer is influenced by a
person’s family history of lung cancer, as well as whether or not the person is a smoker.
Note that the variable PositiveXRay is independent of whether the patient has a family
history of lung cancer or is a smoker, given that we know the patient has lung cancer. In
other words, once we know the outcome of the variable LungCancer, then the variables
FamilyHistory and Smoker do not provide any additional information regarding Posi-
tiveXRay. The arcs also show that the variable LungCancer is conditionally independent
of Emphysema, given its parents, FamilyHistory and Smoker.

A belief network has one conditional probability table (CPT) for each variable.
The CPT for a variable Y specifies the conditional distribution P(Y|Parents(Y)), where
Parents(Y) are the parents of Y. Figure 9.1(b) shows a CPT for the variable LungCancer.
The conditional probability for each known value of LungCancer is given for each pos-
sible combination of the values of its parents. For instance, from the upper leftmost and
bottom rightmost entries, respectively, we see that

P(LungCancer = yes| FamilyHistory = yes, Smoker = yes) = 0.8
P(LungCancer = no| FamilyHistory = no, Smoker = no) = 0.9.

Let X = (x1,..., x,) be a data tuple described by the variables or attributes Yy, ..., Yy,
respectively. Recall that each variable is conditionally independent of its nondescen-
dants in the network graph, given its parents. This allows the network to provide a
complete representation of the existing joint probability distribution with the following
equation:

P(x1,...,xy) = l_[ P(x;| Parents(Y;)), (9.1)

i=1

where P(xj,..., x,) is the probability of a particular combination of values of X, and the
values for P(x;|Parents(Y;)) correspond to the entries in the CPT for Y;.

A node within the network can be selected as an “output” node, representing a class
label attribute. There may be more than one output node. Various algorithms for infer-
ence and learning can be applied to the network. Rather than returning a single class
label, the classification process can return a probability distribution that gives the prob-
ability of each class. Belief networks can be used to answer probability of evidence
queries (e.g., what is the probability that an individual will have LungCancer, given that
they have both PositiveXRay and Dyspnea) and most probable explanation queries (e.g.,
which group of the population is most likely to have both PositiveXRay and Dyspnea).

Belief networks have been used to model a number of well-known problems. One
example is genetic linkage analysis (e.g., the mapping of genes onto a chromosome). By
casting the gene linkage problem in terms of inference on Bayesian networks, and using
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state-of-the art algorithms, the scalability of such analysis has advanced considerably.
Other applications that have benefited from the use of belief networks include computer
vision (e.g., image restoration and stereo vision), document and text analysis, decision-
support systems, and sensitivity analysis. The ease with which many applications can
be reduced to Bayesian network inference is advantageous in that it curbs the need to
invent specialized algorithms for each such application.

9.1.2 Training Bayesian Belief Networks

“How does a Bayesian belief network learn?” In the learning or training of a belief net-
work, a number of scenarios are possible. The network topology (or “layout” of nodes
and arcs) may be constructed by human experts or inferred from the data. The network
variables may be observable or hidden in all or some of the training tuples. The hidden
data case is also referred to as missing values or incomplete data.

Several algorithms exist for learning the network topology from the training data
given observable variables. The problem is one of discrete optimization. For solutions,
please see the bibliographic notes at the end of this chapter (Section 9.10). Human
experts usually have a good grasp of the direct conditional dependencies that hold in the
domain under analysis, which helps in network design. Experts must specify conditional
probabilities for the nodes that participate in direct dependencies. These probabilities
can then be used to compute the remaining probability values.

If the network topology is known and the variables are observable, then training the
network is straightforward. It consists of computing the CPT entries, as is similarly done
when computing the probabilities involved in naive Bayesian classification.

When the network topology is given and some of the variables are hidden, there
are various methods to choose from for training the belief network. We will describe
a promising method of gradient descent. For those without an advanced math back-
ground, the description may look rather intimidating with its calculus-packed formulae.
However, packaged software exists to solve these equations, and the general idea is easy
to follow.

Let D be a training set of data tuples, X1,X>,..., X|p|. Training the belief network
means that we must learn the values of the CPT entries. Let w;j be a CPT entry for
the variable Y; = yj; having the parents U; = uj, where wjj = P(Y; = y;j| Ui = ujx). For
example, if wyj is the upper leftmost CPT entry of Figure 9.1(b), then Y; is LungCancer;
yij is its value, “yes”; U; lists the parent nodes of Y;, namely, { FamilyHistory, Smoker};
and uy, lists the values of the parent nodes, namely, {yes’; “yes”}. The wj are viewed
as weights, analogous to the weights in hidden units of neural networks (Section 9.2).
The set of weights is collectively referred to as W. The weights are initialized to ran-
dom probability values. A gradient descent strategy performs greedy hill-climbing. At
each iteration, the weights are updated and will eventually converge to a local optimum
solution.

A gradient descent strategy is used to search for the w;j values that best model the
data, based on the assumption that each possible setting of w;j is equally likely. Such
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a strategy is iterative. It searches for a solution along the negative of the gradient (i.e.,
steepest descent) of a criterion function. We want to find the set of weights, W, that
maximize this function. To start with, the weights are initialized to random probabil-
ity values. The gradient descent method performs greedy hill-climbing in that, at each
iteration or step along the way, the algorithm moves toward what appears to be the
best solution at the moment, without backtracking. The weights are updated at each
iteration. Eventually, they converge to a local optimum solution.

For our problem, we maximize P, (D) = ]_[ldzl1 P,,(X4). This can be done by fol-
lowing the gradient of In P,,(S), which makes the problem simpler. Given the network
topology and initialized w;j, the algorithm proceeds as follows:

I. Compute the gradients: For each i, j, k, compute

|D|
3ln P,,(D) Z P(Y; = yij, Ui = uig|X )
w . (9.2)
d=1

aWijk Wik

The probability on the right side of Eq. (9.2) is to be calculated for each training tuple,
X4, in D. For brevity, let’s refer to this probability simply as p. When the variables
represented by Y; and Uj are hidden for some X, then the corresponding proba-
bility p can be computed from the observed variables of the tuple using standard
algorithms for Bayesian network inference such as those available in the commercial
software package HUGIN (www.hugin.dk).

2. Take a small step in the direction of the gradient: The weights are updated by

dn P, (D)

) (9.3)
Wik

Wik < Wik + ()

where [ is the learning rate representing the step size and %’Y?ﬁm is computed from
y

Eq. (9.2). The learning rate is set to a small constant and helps with convergence.

3. Renormalize the weights: Because the weights w;j; are probability values, they must
be between 0.0 and 1.0, and Zj wijx must equal 1 for all 4, k. These criteria are
achieved by renormalizing the weights after they have been updated by Eq. (9.3).

Algorithms that follow this learning form are called adaptive probabilistic networks.
Other methods for training belief networks are referenced in the bibliographic notes
at the end of this chapter (Section 9.10). Belief networks are computationally inten-
sive. Because belief networks provide explicit representations of causal structure, a
human expert can provide prior knowledge to the training process in the form of net-
work topology and/or conditional probability values. This can significantly improve the
learning rate.
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Classification by Backpropagation

“What is backpropagation?” Backpropagation is a neural network learning algorithm.
The neural networks field was originally kindled by psychologists and neurobiologists
who sought to develop and test computational analogs of neurons. Roughly speaking, a
neural network is a set of connected input/output units in which each connection has
a weight associated with it. During the learning phase, the network learns by adjusting
the weights so as to be able to predict the correct class label of the input tuples. Neural
network learning is also referred to as connectionist learning due to the connections
between units.

Neural networks involve long training times and are therefore more suitable for appli-
cations where this is feasible. They require a number of parameters that are typically
best determined empirically such as the network topology or “structure.” Neural net-
works have been criticized for their poor interpretability. For example, it is difficult for
humans to interpret the symbolic meaning behind the learned weights and of “hidden
units” in the network. These features initially made neural networks less desirable for
data mining.

Advantages of neural networks, however, include their high tolerance of noisy data
as well as their ability to classify patterns on which they have not been trained. They
can be used when you may have little knowledge of the relationships between attributes
and classes. They are well suited for continuous-valued inputs and outputs, unlike most
decision tree algorithms. They have been successful on a wide array of real-world data,
including handwritten character recognition, pathology and laboratory medicine, and
training a computer to pronounce English text. Neural network algorithms are inher-
ently parallel; parallelization techniques can be used to speed up the computation
process. In addition, several techniques have been recently developed for rule extrac-
tion from trained neural networks. These factors contribute to the usefulness of neural
networks for classification and numeric prediction in data mining.

There are many different kinds of neural networks and neural network algorithms.
The most popular neural network algorithm is backpropagation, which gained repute
in the 1980s. In Section 9.2.1 you will learn about multilayer feed-forward net-
works, the type of neural network on which the backpropagation algorithm performs.
Section 9.2.2 discusses defining a network topology. The backpropagation algorithm is
described in Section 9.2.3. Rule extraction from trained neural networks is discussed in
Section 9.2.4.

9.2.1 A Multilayer Feed-Forward Neural Network

The backpropagation algorithm performs learning on a multilayer feed-forward neural
network. It iteratively learns a set of weights for prediction of the class label of tuples.
A multilayer feed-forward neural network consists of an input layer, one or more hidden
layers, and an output layer. An example of a multilayer feed-forward network is shown
in Figure 9.2.
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Input Hidden Output
layer layer layer

Multilayer feed-forward neural network.

Each layer is made up of units. The inputs to the network correspond to the attributes
measured for each training tuple. The inputs are fed simultaneously into the units
making up the input layer. These inputs pass through the input layer and are then
weighted and fed simultaneously to a second layer of “neuronlike” units, known as a
hidden layer. The outputs of the hidden layer units can be input to another hidden
layer, and so on. The number of hidden layers is arbitrary, although in practice, usually
only one is used. The weighted outputs of the last hidden layer are input to units making
up the output layer, which emits the network’s prediction for given tuples.

The units in the input layer are called input units. The units in the hidden layers and
output layer are sometimes referred to as neurodes, due to their symbolic biological
basis, or as output units. The multilayer neural network shown in Figure 9.2 has two
layers of output units. Therefore, we say that it is a two-layer neural network. (The
input layer is not counted because it serves only to pass the input values to the next
layer.) Similarly, a network containing two hidden layers is called a three-layer neural
network, and so on. It is a feed-forward network since none of the weights cycles back
to an input unit or to a previous layer’s output unit. It is fully connected in that each
unit provides input to each unit in the next forward layer.

Each output unit takes, as input, a weighted sum of the outputs from units in the
previous layer (see Figure 9.4 later). It applies a nonlinear (activation) function to the
weighted input. Multilayer feed-forward neural networks are able to model the class pre-
diction as a nonlinear combination of the inputs. From a statistical point of view, they
perform nonlinear regression. Multilayer feed-forward networks, given enough hidden
units and enough training samples, can closely approximate any function.
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9.0.2 Defining a Network Topology

923

“How can I design the neural network’s topology?” Before training can begin, the user
must decide on the network topology by specifying the number of units in the input
layer, the number of hidden layers (if more than one), the number of units in each
hidden layer, and the number of units in the output layer.

Normalizing the input values for each attribute measured in the training tuples will
help speed up the learning phase. Typically, input values are normalized so as to fall
between 0.0 and 1.0. Discrete-valued attributes may be encoded such that there is one
input unit per domain value. For example, if an attribute A has three possible or known
values, namely {ag, a1, a»}, then we may assign three input units to represent A. That
is, we may have, say, Iy, I, I, as input units. Each unit is initialized to 0. If A = gy, then
Iy is set to 1 and the rest are 0. If A= a;, then I; is set to 1 and the rest are 0, and
$O On.

Neural networks can be used for both classification (to predict the class label of a
given tuple) and numeric prediction (to predict a continuous-valued output). For clas-
sification, one output unit may be used to represent two classes (where the value 1
represents one class, and the value 0 represents the other). If there are more than two
classes, then one output unit per class is used. (See Section 9.7.1 for more strategies on
multiclass classification.)

There are no clear rules as to the “best” number of hidden layer units. Network design
is a trial-and-error process and may affect the accuracy of the resulting trained net-
work. The initial values of the weights may also affect the resulting accuracy. Once a
network has been trained and its accuracy is not considered acceptable, it is common to
repeat the training process with a different network topology or a different set of initial
weights. Cross-validation techniques for accuracy estimation (described in Chapter 8)
can be used to help decide when an acceptable network has been found. A number of
automated techniques have been proposed that search for a “good” network structure.
These typically use a hill-climbing approach that starts with an initial structure that is
selectively modified.

Backpropagation

“How does backpropagation work?” Backpropagation learns by iteratively processing a
data set of training tuples, comparing the network’s prediction for each tuple with the
actual known target value. The target value may be the known class label of the training
tuple (for classification problems) or a continuous value (for numeric prediction). For
each training tuple, the weights are modified so as to minimize the mean-squared error
between the network’s prediction and the actual target value. These modifications are
made in the “backwards” direction (i.e., from the output layer) through each hidden
layer down to the first hidden layer (hence the name backpropagation). Although it is
not guaranteed, in general the weights will eventually converge, and the learning process
stops. The algorithm is summarized in Figure 9.3. The steps involved are expressed in
terms of inputs, outputs, and errors, and may seem awkward if this is your first look at
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Algorithm: Backpropagation. Neural network learning for classification or numeric
prediction, using the backpropagation algorithm.
Input:

D, a data set consisting of the training tuples and their associated target values;
I, the learning rate;
network, a multilayer feed-forward network.

Output: A trained neural network.
Method:

(1) Initialize all weights and biases in network;
(2) while terminating condition is not satisfied {

(3) for each training tuple X in D {

(4) /I Propagate the inputs forward:

(5) for each input layer unit j {

(6) Oj = I;; // output of an input unit is its actual input value

(7) for each hidden or output layer unit j {

(8) I; =3 ";w;;O; 4 6;; //compute the net input of unit j with respect to
the previous layer, i

9) O;= 1+iflf ; } /] compute the output of each unit §

(10) /] Backpropagate the errors:

(11) for each unit j in the output layer

(12) Err; = Oj(1 — Oj)(Tj — Oj); // compute the error

(13) for each unit j in the hidden layers, from the last to the first hidden layer

(14) Errj=0;(1-0) Y ; Errywi; // compute the error with respect to

the next higher layer, k

(15) for each weight wj; in network {

(16) Awj; = () ErrjO;; /] weight increment

17) wij = wjj + Awjj; } // weight update

(18) for each bias 6; in network {

(19) AB; = (I)Errj; [/ bias increment

(20) 0; = 0; + AYj; } // bias update

(21) 1}

Figure 9.3 Backpropagation algorithm.

neural network learning. However, once you become familiar with the process, you will
see that each step is inherently simple. The steps are described next.

Initialize the weights: The weights in the network are initialized to small random num-
bers (e.g., ranging from —1.0 to 1.0, or —0.5 to 0.5). Each unit has a bias associated with
it, as explained later. The biases are similarly initialized to small random numbers.

Each training tuple, X, is processed by the following steps.

Propagate the inputs forward: First, the training tuple is fed to the network’s input
layer. The inputs pass through the input units, unchanged. That is, for an input unit, j,
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Hidden or output layer unit j: The inputs to unit j are outputs from the previous layer. These
are multiplied by their corresponding weights to form a weighted sum, which is added to the
bias associated with unit j. A nonlinear activation function is applied to the net input. (For
ease of explanation, the inputs to unit j are labeled y;, y3,..., y,. If unit j were in the first
hidden layer, then these inputs would correspond to the input tuple (x1, x2,.. ., xp).)

its output, O, is equal to its input value, I;. Next, the net input and output of each unit
in the hidden and output layers are computed. The net input to a unit in the hidden or
output layers is computed as a linear combination of its inputs. To help illustrate this
point, a hidden layer or output layer unit is shown in Figure 9.4. Each such unit has
a number of inputs to it that are, in fact, the outputs of the units connected to it in
the previous layer. Each connection has a weight. To compute the net input to the unit,
each input connected to the unit is multiplied by its corresponding weight, and this is
summed. Given a unit, j in a hidden or output layer, the net input, Ij, to unit j is

=Y w0+, (9.4)

1

where w; is the weight of the connection from unit 7 in the previous layer to unit j; O; is
the output of unit 7 from the previous layer; and 6; is the bias of the unit. The bias acts
as a threshold in that it serves to vary the activity of the unit.

Each unit in the hidden and output layers takes its net input and then applies an acti-
vation function to it, as illustrated in Figure 9.4. The function symbolizes the activation
of the neuron represented by the unit. The logistic, or sigmoid, function is used. Given
the net input J; to unit j, then O}, the output of unit j, is computed as

1

0= ——.
! 14 ¢

(9.5)



9.2 Classification by Backpropagation 403

This function is also referred to as a squashing function, because it maps a large input
domain onto the smaller range of 0 to 1. The logistic function is nonlinear and
differentiable, allowing the backpropagation algorithm to model classification problems
that are linearly inseparable.

We compute the output values, Oj, for each hidden layer, up to and including the
output layer, which gives the network’s prediction. In practice, it is a good idea to
cache (i.e., save) the intermediate output values at each unit as they are required again
later when backpropagating the error. This trick can substantially reduce the amount of
computation required.

Backpropagate the error: The error is propagated backward by updating the weights
and biases to reflect the error of the network’s prediction. For a unit j in the output
layer, the error Err; is computed by

Errj = Oj(1 — O)(T; — O)), (9.6)

where O; is the actual output of unit j, and Tj is the known target value of the given
training tuple. Note that Oj(1 — O)) is the derivative of the logistic function.

To compute the error of a hidden layer unit j, the weighted sum of the errors of the
units connected to unit j in the next layer are considered. The error of a hidden layer
unit j 1s

Errj= 0j(1— 0)) Y _ Errgwj, 9.7)
k

where wj is the weight of the connection from unit j to a unit k in the next higher layer,
and Erry is the error of unit k.

The weights and biases are updated to reflect the propagated errors. Weights are
updated by the following equations, where Aw;; is the change in weight wj;:

Awjj = (l)ErrjOi. (9.8)
Wij = wij + Awj;. (9.9)

“Whatislin Eq. (9.8)?” The variable [ is the learning rate, a constant typically having
a value between 0.0 and 1.0. Backpropagation learns using a gradient descent method
to search for a set of weights that fits the training data so as to minimize the mean-
squared distance between the network’s class prediction and the known target value of
the tuples.' The learning rate helps avoid getting stuck at a local minimum in decision
space (i.e., where the weights appear to converge, but are not the optimum solution) and
encourages finding the global minimum. If the learning rate is too small, then learning
will occur at a very slow pace. If the learning rate is too large, then oscillation between

'A method of gradient descent was also used for training Bayesian belief networks, as described in
Section 9.1.2.
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Example 9.1

inadequate solutions may occur. A rule of thumb is to set the learning rate to 1/¢, where
t is the number of iterations through the training set so far.
Biases are updated by the following equations, where A is the change in bias 6;:

AO; = (D Err;. (9.10)
0; = 0; + Ab;. (9.11)

Note that here we are updating the weights and biases after the presentation of each
tuple. This is referred to as case updating. Alternatively, the weight and bias incre-
ments could be accumulated in variables, so that the weights and biases are updated
after all the tuples in the training set have been presented. This latter strategy is called
epoch updating, where one iteration through the training set is an epoch. In the-
ory, the mathematical derivation of backpropagation employs epoch updating, yet
in practice, case updating is more common because it tends to yield more accurate
results.

Terminating condition: Training stops when

All Awj; in the previous epoch are so small as to be below some specified
threshold, or

The percentage of tuples misclassified in the previous epoch is below some thresh-
old, or

A prespecified number of epochs has expired.

In practice, several hundreds of thousands of epochs may be required before the weights
will converge.

“How efficient is backpropagation?” The computational efficiency depends on the
time spent training the network. Given |D| tuples and w weights, each epoch requires
O(|D| x w) time. However, in the worst-case scenario, the number of epochs can be
exponential in 1, the number of inputs. In practice, the time required for the networks
to converge is highly variable. A number of techniques exist that help speed up the train-
ing time. For example, a technique known as simulated annealing can be used, which
also ensures convergence to a global optimum.

Sample calculations for learning by the backpropagation algorithm. Figure 9.5 shows
a multilayer feed-forward neural network. Let the learning rate be 0.9. The initial weight
and bias values of the network are given in Table 9.1, along with the first training tuple,
X = (1,0, 1), with a class label of 1.

This example shows the calculations for backpropagation, given the first training
tuple, X. The tuple is fed into the network, and the net input and output of each unit
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are computed. These values are shown in Table 9.2. The error of each unit is computed
and propagated backward. The error values are shown in Table 9.3. The weight and bias
updates are shown in Table 9.4. n

Figure 9.5 Example of a multilayer feed-forward neural network.

Table 9.1 Initial Input, Weight, and Bias Values

X1 X2 X3 Wia Wi Waq W25 Wiy w35 Wi W56 04 05 O

1 0 1 02 -03 04 0.1 -05 02 -03 -02 -04 02 0.1

Table 9.2 Net Input and Output Calculations

Unit,j  Net Input, I; Output, O;
4 024+0—0.5—0.4=—07 1/(1+€%7) =0.332
—0.3404+0.2402=0.1 1/(14 ¢ %) =0.525

(—0.3)(0.332) — (0.2)(0.525) + 0.1 = —0.105  1/(1 + €*195) = 0.474

Table 9.3 Calculation of the Error at Each Node

Unit, j  Err;
6 (0.474)(1 — 0.474)(1 — 0.474) = 0.1311
5 (0.525)(1 — 0.525)(0.1311)(—0.2) = —0.0065

4 (0.332)(1 — 0.332)(0.1311)(—0.3) = —0.0087
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Table 9.4 Calculations for Weight and Bias Updating

9.24

Weight

or Bias  New Value

Wig —0.3 4 (0.9)(0.1311)(0.332) = —0.261
W6 —0.2+ (0.9)(0.1311)(0.525) = —0.138
Wia 0.2 + (0.9)(—0.0087)(1) = 0.192

Wis —0.3 + (0.9)(—0.0065)(1) = —0.306
Woa 0.4 + (0.9)(—0.0087)(0) = 0.4

W5 0.1+ (0.9)(—0.0065)(0) = 0.1

Wia —0.5+ (0.9)(—0.0087)(1) = —0.508
wss 0.2 + (0.9)(—0.0065)(1) = 0.194

06 0.1+ (0.9)(0.1311) = 0.218

05 0.2 + (0.9)(—0.0065) = 0.194

04 —0.4+ (0.9)(—0.0087) = —0.408

“How can we classify an unknown tuple using a trained network?” To classify an
unknown tuple, X, the tuple is input to the trained network, and the net input and
output of each unit are computed. (There is no need for computation and/or backpro-
pagation of the error.) If there is one output node per class, then the output node with
the highest value determines the predicted class label for X. If there is only one output
node, then output values greater than or equal to 0.5 may be considered as belonging to
the positive class, while values less than 0.5 may be considered negative.

Several variations and alternatives to the backpropagation algorithm have been pro-
posed for classification in neural networks. These may involve the dynamic adjustment
of the network topology and of the learning rate or other parameters, or the use of
different error functions.

Inside the Black Box: Backpropagation and Interpretability

“Neural networks are like a black box. How can I ‘understand’ what the backpropagation
network has learned?” A major disadvantage of neural networks lies in their knowledge
representation. Acquired knowledge in the form of a network of units connected by
weighted links is difficult for humans to interpret. This factor has motivated research in
extracting the knowledge embedded in trained neural networks and in representing that
knowledge symbolically. Methods include extracting rules from networks and sensitivity
analysis.

Various algorithms for rule extraction have been proposed. The methods typically
impose restrictions regarding procedures used in training the given neural network, the
network topology, and the discretization of input values.

Fully connected networks are difficult to articulate. Hence, often the first step in
extracting rules from neural networks is network pruning. This consists of simplifying
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the network structure by removing weighted links that have the least effect on the trained
network. For example, a weighted link may be deleted if such removal does not result in
a decrease in the classification accuracy of the network.

Once the trained network has been pruned, some approaches will then perform link,
unit, or activation value clustering. In one method, for example, clustering is used to
find the set of common activation values for each hidden unit in a given trained two-
layer neural network (Figure 9.6). The combinations of these activation values for each
hidden unit are analyzed. Rules are derived relating combinations of activation values

Identify sets of common activation values for
each hidden node, H;:

for H: (-1,0,1)

for H,: (0,1)

for Hy: (-1,0.24,1)

Derive rules relating common activation values
with output nodes, Oj:
IF (H,=0 AND H;=-1) OR
(H,=-1 AND H,=1 AND H;=-1) OR
(H;=-1 AND H,=0 AND H;=0.24)
THEN 0,=1, 0,=0
ELSE 0,=0, 0,=1

Derive rules relating input nodes, lj, to
output nodes, O_,-:
IF (1,=0 AND /,=0) THEN H,=0
IF (/4=1 AND I¢=1) THEN H;=-1
IF (I5=0) THEN H3=—

Obtain rules relating inputs and output classes:
IF (1,=0 AND ;=0 AND I,=1 AND
I¢=1) THEN class=1
IF (1,=0 AND ;=0 AND /5=0) THEN
class=1

Figure 9.6 Rules can be extracted from training neural networks. Source: Adapted from Lu, Setiono, and
Liu [LSL95].
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9.3.1

with corresponding output unit values. Similarly, the sets of input values and activation
values are studied to derive rules describing the relationship between the input layer
and the hidden “layer units”? Finally, the two sets of rules may be combined to form
IF-THEN rules. Other algorithms may derive rules of other forms, including M-of-N
rules (where M out of a given N conditions in the rule antecedent must be true for the
rule consequent to be applied), decision trees with M-of-N tests, fuzzy rules, and finite
automata.

Sensitivity analysis is used to assess the impact that a given input variable has on a
network output. The input to the variable is varied while the remaining input variables
are fixed at some value. Meanwhile, changes in the network output are monitored. The
knowledge gained from this analysis form can be represented in rules such as “IF X
decreases 5% THEN'Y increases 8%.

Support Vector Machines

In this section, we study support vector machines (SVMs), a method for the classifi-
cation of both linear and nonlinear data. In a nutshell, an SVM is an algorithm that
works as follows. It uses a nonlinear mapping to transform the original training data
into a higher dimension. Within this new dimension, it searches for the linear opti-
mal separating hyperplane (i.e., a “decision boundary” separating the tuples of one class
from another). With an appropriate nonlinear mapping to a sufficiently high dimen-
sion, data from two classes can always be separated by a hyperplane. The SVM finds this
hyperplane using support vectors (“essential” training tuples) and margins (defined by
the support vectors). We will delve more into these new concepts later.

“I've heard that SVMs have attracted a great deal of attention lately. Why?” The first
paper on support vector machines was presented in 1992 by Vladimir Vapnik and col-
leagues Bernhard Boser and Isabelle Guyon, although the groundwork for SVMs has
been around since the 1960s (including early work by Vapnik and Alexei Chervonenkis
on statistical learning theory). Although the training time of even the fastest SVMs
can be extremely slow, they are highly accurate, owing to their ability to model com-
plex nonlinear decision boundaries. They are much less prone to overfitting than other
methods. The support vectors found also provide a compact description of the learned
model. SVMs can be used for numeric prediction as well as classification. They have
been applied to a number of areas, including handwritten digit recognition, object
recognition, and speaker identification, as well as benchmark time-series prediction
tests.

The Case When the Data Are Linearly Separable

To explain the mystery of SVMs, let’s first look at the simplest case—a two-class prob-
lem where the classes are linearly separable. Let the data set D be given as (X1, y1),
(X2, »2)>...> (X\p|> ¥p|)> where X; is the set of training tuples with associated class
labels, y;. Each y; can take one of two values, either +1 or —1 (i.e., y; € {+1, —1}),
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O Class 1, y=+1 (buys_computer=yes)
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Figure 9.7 The 2-D training data are linearly separable. There are an infinite number of possible
separating hyperplanes or “decision boundaries,” some of which are shown here as dashed
lines. Which one is best?

corresponding to the classes buys_computer = yes and buys_computer = no, respectively.
To aid in visualization, let’s consider an example based on two input attributes, A; and
Ay, as shown in Figure 9.7. From the graph, we see that the 2-D data are linearly separa-
ble (or “linear,” for short), because a straight line can be drawn to separate all the tuples
of class +1 from all the tuples of class —1.

There are an infinite number of separating lines that could be drawn. We want to find
the “best” one, that is, one that (we hope) will have the minimum classification error on
previously unseen tuples. How can we find this best line? Note that if our data were 3-D
(i.e., with three attributes), we would want to find the best separating plane. Generalizing
to n dimensions, we want to find the best hyperplane. We will use “hyperplane” to refer to
the decision boundary that we are seeking, regardless of the number of input attributes.
So, in other words, how can we find the best hyperplane?

An SVM approaches this problem by searching for the maximum marginal hyper-
plane. Consider Figure 9.8, which shows two possible separating hyperplanes and their
associated margins. Before we get into the definition of margins, let’s take an intuitive
look at this figure. Both hyperplanes can correctly classify all the given data tuples. Intu-
itively, however, we expect the hyperplane with the larger margin to be more accurate
at classifying future data tuples than the hyperplane with the smaller margin. This is
why (during the learning or training phase) the SVM searches for the hyperplane with
the largest margin, that is, the maximum marginal hyperplane (MMH). The associated
margin gives the largest separation between classes.
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Figure 9.8 Here we see just two possible separating hyperplanes and their associated margins. Which
one is better? The one with the larger margin (b) should have greater generalization accuracy.

Getting to an informal definition of margin, we can say that the shortest distance
from a hyperplane to one side of its margin is equal to the shortest distance from the
hyperplane to the other side of its margin, where the “sides” of the margin are parallel
to the hyperplane. When dealing with the MMH, this distance is, in fact, the shortest
distance from the MMH to the closest training tuple of either class.

A separating hyperplane can be written as

W-X+b=0, (9.12)

where W is a weight vector, namely, W = {wy, wa, ..., wy,}; nis the number of attributes;
and b is a scalar, often referred to as a bias. To aid in visualization, let’s consider two input
attributes, A; and A,, as in Figure 9.8(b). Training tuples are 2-D (e.g., X = (x1, x2)),
where x; and x;, are the values of attributes A; and A, respectively, for X. If we think of
b as an additional weight, wy, we can rewrite Eq. (9.12) as

wo + wix] + waxy = 0. (9.13)
Thus, any point that lies above the separating hyperplane satisfies

wo + wix] + waxy > 0. (9.14)
Similarly, any point that lies below the separating hyperplane satisfies

wo + wix) +waxp < 0. (9.15)
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The weights can be adjusted so that the hyperplanes defining the “sides” of the margin
can be written as

Hy:wo+wixi +waxy; > 1 for y; = +1, (9.16)
Hy:wy+wix +wxy <—1 fory,=—1. (9.17)

That is, any tuple that falls on or above H; belongs to class +1, and any tuple that falls
on or below H; belongs to class —1. Combining the two inequalities of Egs. (9.16) and
(9.17), we get

yi(wo + wix) + woxp) > 1, Vi. (9.18)

Any training tuples that fall on hyperplanes H; or H, (i.e., the “sides” defining the
margin) satisfy Eq. (9.18) and are called support vectors. That is, they are equally close
to the (separating) MMH. In Figure 9.9, the support vectors are shown encircled with
a thicker border. Essentially, the support vectors are the most difficult tuples to classify
and give the most information regarding classification.

From this, we can obtain a formula for the size of the maximal margin. The distance
from the separating hyperplane to any point on H; is m, where ||W|| is the Euclidean

norm of W, that is, /W - W.2 By definition, this is equal to the distance from any point
on H, to the separating hyperplane. Therefore, the maximal margin is ﬁ
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Figure 9.9 Support vectors. The SVM finds the maximum separating hyperplane, that is, the one with
maximum distance between the nearest training tuples. The support vectors are shown with
a thicker border.

2IfEW = {wi, way..., Wy}, then VW - W = wf—i—w%—i—m—l—wﬁ.
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“So, how does an SVM find the MMH and the support vectors?” Using some “fancy
math tricks,” we can rewrite Eq. (9.18) so that it becomes what is known as a constrained
(convex) quadratic optimization problem. Such fancy math tricks are beyond the scope
of this book. Advanced readers may be interested to note that the tricks involve rewrit-
ing Eq. (9.18) using a Lagrangian formulation and then solving for the solution using
Karush-Kuhn-Tucker (KKT) conditions. Details can be found in the bibliographic notes
at the end of this chapter (Section 9.10).

If the data are small (say, less than 2000 training tuples), any optimization software
package for solving constrained convex quadratic problems can then be used to find
the support vectors and MMH. For larger data, special and more efficient algorithms
for training SVMs can be used instead, the details of which exceed the scope of this
book. Once we’ve found the support vectors and MMH (note that the support vectors
define the MMH!), we have a trained support vector machine. The MMH is a linear class
boundary, and so the corresponding SVM can be used to classify linearly separable data.
We refer to such a trained SVM as a linear SVM.

“Once I've got a trained support vector machine, how do I use it to classify test (i.e.,
new) tuples?” Based on the Lagrangian formulation mentioned before, the MMH can be
rewritten as the decision boundary

1
dX")=>"yeiXiX" + b, (9.19)
i=1

where y; is the class label of support vector X;; X is a test tuple; o;; and by are numeric
parameters that were determined automatically by the optimization or SVM algorithm
noted before; and [ is the number of support vectors.

Interested readers may note that the o; are Lagrangian multipliers. For linearly sepa-
rable data, the support vectors are a subset of the actual training tuples (although there
will be a slight twist regarding this when dealing with nonlinearly separable data, as we
shall see in the following).

Given a test tuple, X T we plug it into Eq. (9.19), and then check to see the sign of the
result. This tells us on which side of the hyperplane the test tuple falls. If the sign is posi-
tive, then X falls on or above the MMH, and so the SVM predicts that XT belongs
to class +1 (representing buys_computer = yes, in our case). If the sign is negative,
then XT falls on or below the MMH and the class prediction is —1 (representing
buys_computer = no).

Notice that the Lagrangian formulation of our problem (Eq. 9.19) contains a dot
product between support vector X; and test tuple X”. This will prove very useful for
finding the MMH and support vectors for the case when the given data are nonlinearly
separable, as described further in the next section.

Before we move on to the nonlinear case, there are two more important things to
note. The complexity of the learned classifier is characterized by the number of support
vectors rather than the dimensionality of the data. Hence, SVMs tend to be less prone
to overfitting than some other methods. The support vectors are the essential or critical
training tuples—they lie closest to the decision boundary (MMH). If all other training
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tuples were removed and training were repeated, the same separating hyperplane would
be found. Furthermore, the number of support vectors found can be used to compute
an (upper) bound on the expected error rate of the SVM classifier, which is independent
of the data dimensionality. An SVM with a small number of support vectors can have
good generalization, even when the dimensionality of the data is high.

9.3.1 The Case When the Data Are Linearly Inseparable

In Section 9.3.1 we learned about linear SVMs for classifying linearly separable data, but
what if the data are not linearly separable, as in Figure 9.10? In such cases, no straight
line can be found that would separate the classes. The linear SVMs we studied would
not be able to find a feasible solution here. Now what?

The good news is that the approach described for linear SVMs can be extended to
create nonlinear SVMs for the classification of linearly inseparable data (also called non-
linearly separable data, or nonlinear data for short). Such SVMs are capable of finding
nonlinear decision boundaries (i.e., nonlinear hypersurfaces) in input space.

“So,” you may ask, “how can we extend the linear approach?” We obtain a nonlinear
SVM by extending the approach for linear SVMs as follows. There are two main steps.
In the first step, we transform the original input data into a higher dimensional space
using a nonlinear mapping. Several common nonlinear mappings can be used in this
step, as we will further describe next. Once the data have been transformed into the
new higher space, the second step searches for a linear separating hyperplane in the new
space. We again end up with a quadratic optimization problem that can be solved using
the linear SVM formulation. The maximal marginal hyperplane found in the new space
corresponds to a nonlinear separating hypersurface in the original space.

QO Class 1, y=+1 (buys_computer=yes)
O Class 2, y=—1 (buys_computer=no)

A

Figure 9.10 A simple 2-D case showing linearly inseparable data. Unlike the linear separable data of
Figure 9.7, here it is not possible to draw a straight line to separate the classes. Instead, the
decision boundary is nonlinear.
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Example 9.2 Nonlinear transformation of original input data into a higher dimensional space.
Consider the following example. A 3-D input vector X = (x1, x2, x3) is mapped into
a 6-D space, Z, using the mappings ¢1(X) = x1, ¢2(X) =x2, $3(X) = x3, pa(X) =
(x1)%, ¢5(X) = x1%2, and ¢6(X) = x1x3. A decision hyperplane in the new space is
d(Z) = WZ + b, where W and Z are vectors. This is linear. We solve for W and
b and then substitute back so that the linear decision hyperplane in the new (Z)
space corresponds to a nonlinear second-order polynomial in the original 3-D input
space:

d(Z) = wix1 + waxa + wsxs + wa(x1)* + wsx1 0 + Wexi X3 + b

= w121 + Wrzp + W32z + Wazg + W525 + Wezg + b. |

But there are some problems. First, how do we choose the nonlinear mapping to
a higher dimensional space? Second, the computation involved will be costly. Refer to
Eq. (9.19) for the classification of a test tuple, XT. Given the test tuple, we have to com-
pute its dot product with every one of the support vectors.? In training, we have to
compute a similar dot product several times in order to find the MMH. This is espe-
cially expensive. Hence, the dot product computation required is very heavy and costly.
We need another trick!

Luckily, we can use another math trick. It so happens that in solving the quadratic
optimization problem of the linear SVM (i.e., when searching for a linear SVM in the
new higher dimensional space), the training tuples appear only in the form of dot prod-
ucts, ¢(X;) - #(X;), where ¢ (X) is simply the nonlinear mapping function applied to
transform the training tuples. Instead of computing the dot product on the transformed
data tuples, it turns out that it is mathematically equivalent to instead apply a kernel
function, K(X;, X;), to the original input data. That is,

K(X;, X)) = ¢(Xi) - 9 (X)). (9.20)

In other words, everywhere that ¢ (X;) - ¢ (X;) appears in the training algorithm, we can
replace it with K(X;, X 7). In this way, all calculations are made in the original input space,
which is of potentially much lower dimensionality! We can safely avoid the mapping—it
turns out that we don’t even have to know what the mapping is! We will talk more later
about what kinds of functions can be used as kernel functions for this problem.

After applying this trick, we can then proceed to find a maximal separating hyper-
plane. The procedure is similar to that described in Section 9.3.1, although it involves
placing a user-specified upper bound, C, on the Lagrange multipliers, «;. This upper
bound is best determined experimentally.

“What are some of the kernel functions that could be used?” Properties of the kinds of
kernel functions that could be used to replace the dot product scenario just described

3The dot product of two vectors, xT = (xlT, XQT,. . an) and X; = (xi1, Xi2,. . ., Xin) 18 xlTx,-l + xQTx,-z
+ -+ an Xin. Note that this involves one multiplication and one addition for each of the n dimensions.
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have been studied. Three admissible kernel functions are
Polynomial kernel of degree h:  K(X;, X;) = (X;- X+ "

Gaussian radial basis function kernel: K(X;, Xj) = ¢~ 1Xi—Xj1*/20

Sigmoid kernel: K (X, X;) = tanh(x X; - X; — §)

Each of these results in a different nonlinear classifier in (the original) input space.
Neural network aficionados will be interested to note that the resulting decision hyper-
planes found for nonlinear SVMs are the same type as those found by other well-known
neural network classifiers. For instance, an SVM with a Gaussian radial basis func-
tion (RBF) gives the same decision hyperplane as a type of neural network known as
a radial basis function network. An SVM with a sigmoid kernel is equivalent to a simple
two-layer neural network known as a multilayer perceptron (with no hidden layers).

There are no golden rules for determining which admissible kernel will result in the
most accurate SVM. In practice, the kernel chosen does not generally make a large
difference in resulting accuracy. SVM training always finds a global solution, unlike
neural networks, such as backpropagation, where many local minima usually exist
(Section 9.2.3).

So far, we have described linear and nonlinear SVMs for binary (i.e., two-class) clas-
sification. SVM classifiers can be combined for the multiclass case. See Section 9.7.1 for
some strategies, such as training one classifier per class and the use of error-correcting
codes.

A major research goal regarding SVMs is to improve the speed in training and testing
so that SVMs may become a more feasible option for very large data sets (e.g., millions
of support vectors). Other issues include determining the best kernel for a given data set
and finding more efficient methods for the multiclass case.

Classification Using Frequent Patterns

Frequent patterns show interesting relationships between attribute—value pairs that
occur frequently in a given data set. For example, we may find that the attribute—value
pairs age = youth and credit = OK occur in 20% of data tuples describing AllElectronics
customers who buy a computer. We can think of each attribute—value pair as an item,
so the search for these frequent patterns is known as frequent pattern mining or frequent
itemset mining. In Chapters 6 and 7, we saw how association rules are derived from
frequent patterns, where the associations are commonly used to analyze the purchas-
ing patterns of customers in a store. Such analysis is useful in many decision-making
processes such as product placement, catalog design, and cross-marketing.

In this section, we examine how frequent patterns can be used for classification.
Section 9.4.1 explores associative classification, where association rules are generated
from frequent patterns and used for classification. The general idea is that we can search
for strong associations between frequent patterns (conjunctions of attribute—value
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pairs) and class labels. Section 9.4.2 explores discriminative frequent pattern—based
classification, where frequent patterns serve as combined features, which are considered
in addition to single features when building a classification model. Because frequent
patterns explore highly confident associations among multiple attributes, frequent
pattern—based classification may overcome some constraints introduced by decision tree
induction, which considers only one attribute at a time. Studies have shown many fre-
quent pattern—based classification methods to have greater accuracy and scalability than
some traditional classification methods such as C4.5.

94.1 Associative Classification

In this section, you will learn about associative classification. The methods discussed are
CBA, CMAR, and CPAR.

Before we begin, however, let’s look at association rule mining in general. Association
rules are mined in a two-step process consisting of frequent itemset mining followed by
rule generation. The first step searches for patterns of attribute—value pairs that occur
repeatedly in a data set, where each attribute—value pair is considered an itern. The
resulting attribute—value pairs form frequent itemsets (also referred to as frequent pat-
terns). The second step analyzes the frequent itemsets to generate association rules. All
association rules must satisfy certain criteria regarding their “accuracy” (or confidence)
and the proportion of the data set that they actually represent (referred to as support).
For example, the following is an association rule mined from a data set, D, shown with
its confidence and support:

age = youth A credit = OK = buys_computer
= yes [support = 20%, confidence = 93%], (9.21)

where A represents a logical “AND.” We will say more about confidence and support
later.

More formally, let D be a data set of tuples. Each tuple in D is described by n
attributes, Aj, A,..., A,, and a class label attribute, A,. All continuous attributes are
discretized and treated as categorical (or nominal) attributes. An item, p, is an attribute—
value pair of the form (A;, v), where A; is an attribute taking a value, v. A data tuple
X = (x1, X2,..., x,) satisfies an item, p = (A;, v), if and only if x; = v, where x; is the
value of the ith attribute of X. Association rules can have any number of items in the
rule antecedent (left side) and any number of items in the rule consequent (right side).
However, when mining association rules for use in classification, we are only interested
in association rules of the form p; A po A ... p1 = Agass = C, where the rule antecedent
is a conjunction of items, pi, p2,..., p; (I < n), associated with a class label, C. For a
given rule, R, the percentage of tuples in D satisfying the rule antecedent that also have
the class label C is called the confidence of R.

From a classification point of view, this is akin to rule accuracy. For example, a con-
fidence of 93% for Rule (9.21) means that 93% of the customers in D who are young
and have an OK credit rating belong to the class buys_computer = yes. The percentage of
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tuples in D satisfying the rule antecedent and having class label C is called the support
of R. A support of 20% for Rule (9.21) means that 20% of the customers in D are young,
have an OK credit rating, and belong to the class buys_computer = yes.

In general, associative classification consists of the following steps:

I. Mine the data for frequent itemsets, that is, find commonly occurring attribute—value
pairs in the data.

2. Analyze the frequent itemsets to generate association rules per class, which satisfy
confidence and support criteria.

3. Organize the rules to form a rule-based classifier.

Methods of associative classification differ primarily in the approach used for frequent
itemset mining and in how the derived rules are analyzed and used for classification. We
now look at some of the various methods for associative classification.

One of the earliest and simplest algorithms for associative classification is CBA (Clas-
sification Based on Associations). CBA uses an iterative approach to frequent itemset
mining, similar to that described for Apriori in Section 6.2.1, where multiple passes are
made over the data and the derived frequent itemsets are used to generate and test longer
itemsets. In general, the number of passes made is equal to the length of the longest rule
found. The complete set of rules satisfying minimum confidence and minimum sup-
port thresholds are found and then analyzed for inclusion in the classifier. CBA uses
a heuristic method to construct the classifier, where the rules are ordered according to
decreasing precedence based on their confidence and support. If a set of rules has the
same antecedent, then the rule with the highest confidence is selected to represent the
set. When classifying a new tuple, the first rule satisfying the tuple is used to classify it.
The classifier also contains a default rule, having lowest precedence, which specifies a
default class for any new tuple that is not satisfied by any other rule in the classifier. In
this way, the set of rules making up the classifier form a decision list. In general, CBA was
empirically found to be more accurate than C4.5 on a good number of data sets.

CMAR (Classification based on Multiple Association Rules) differs from CBA in its
strategy for frequent itemset mining and its construction of the classifier. It also employs
several rule pruning strategies with the help of a tree structure for efficient storage
and retrieval of rules. CMAR adopts a variant of the FP-growth algorithm to find the
complete set of rules satisfying the minimum confidence and minimum support thresh-
olds. FP-growth was described in Section 6.2.4. FP-growth uses a tree structure, called
an FP-tree, to register all the frequent itemset information contained in the given data
set, D. This requires only two scans of D. The frequent itemsets are then mined from the
FP-tree. CMAR uses an enhanced FP-tree that maintains the distribution of class labels
among tuples satisfying each frequent itemset. In this way, it is able to combine rule
generation together with frequent itemset mining in a single step.

CMAR employs another tree structure to store and retrieve rules efficiently and
to prune rules based on confidence, correlation, and database coverage. Rule pruning
strategies are triggered whenever a rule is inserted into the tree. For example, given
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two rules, R1 and R2, if the antecedent of R1 is more general than that of R2 and
conf(R1) > conf(R2), then R2 is pruned. The rationale is that highly specialized rules
with low confidence can be pruned if a more generalized version with higher confidence
exists. CMAR also prunes rules for which the rule antecedent and class are not positively
correlated, based on an x? test of statistical significance.

“If more than one rule applies, which one do we use?” As a classifier, CMAR operates
differently than CBA. Suppose that we are given a tuple X to classify and that only one
rule satisfies or matches X.* This case is trivial—we simply assign the rule’s class label.
Suppose, instead, that more than one rule satisfies X. These rules form a set, S. Which
rule would we use to determine the class label of X? CBA would assign the class label
of the most confident rule among the rule set, S. CMAR instead considers multiple
rules when making its class prediction. It divides the rules into groups according to
class labels. All rules within a group share the same class label and each group has a
distinct class label.

CMAR uses a weighted x? measure to find the “strongest” group of rules, based on
the statistical correlation of rules within a group. It then assigns X the class label of
the strongest group. In this way it considers multiple rules, rather than a single rule
with highest confidence, when predicting the class label of a new tuple. In experiments,
CMAR had slightly higher average accuracy in comparison with CBA. Its runtime,
scalability, and use of memory were found to be more efficient.

“Is there a way to cut down on the number of rules generated?” CBA and CMAR
adopt methods of frequent itemset mining to generate candidate association rules, which
include all conjunctions of attribute—value pairs (items) satisfying minimum support.
These rules are then examined, and a subset is chosen to represent the classifier. How-
ever, such methods generate quite a large number of rules. CPAR (Classification based
on Predictive Association Rules) takes a different approach to rule generation, based on a
rule generation algorithm for classification known as FOIL (Section 8.4.3). FOIL builds
rules to distinguish positive tuples (e.g., buys_computer = yes) from negative tuples (e.g.,
buys_computer = no). For multiclass problems, FOIL is applied to each class. That is, for
a class, C, all tuples of class C are considered positive tuples, while the rest are consid-
ered negative tuples. Rules are generated to distinguish C tuples from all others. Each
time a rule is generated, the positive samples it satisfies (or covers) are removed until
all the positive tuples in the data set are covered. In this way, fewer rules are generated.
CPAR relaxes this step by allowing the covered tuples to remain under consideration,
but reducing their weight. The process is repeated for each class. The resulting rules are
merged to form the classifier rule set.

During classification, CPAR employs a somewhat different multiple rule strategy
than CMAR. If more than one rule satisfies a new tuple, X, the rules are divided into
groups according to class, similar to CMAR. However, CPAR uses the best k rules of
each group to predict the class label of X, based on expected accuracy. By considering
the best k rules rather than all of a group’s rules, it avoids the influence of lower-ranked

41f a rule’s antecedent satisfies or matches X, then we say that the rule satisfies X.
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rules. CPAR’s accuracy on numerous data sets was shown to be close to that of CMAR.
However, since CPAR generates far fewer rules than CMAR, it shows much better
efficiency with large sets of training data.

In summary, associative classification offers an alternative classification scheme by
building rules based on conjunctions of attribute—value pairs that occur frequently
in data.

Discriminative Frequent Pattern-Based Classification

From work on associative classification, we see that frequent patterns reflect strong asso-
ciations between attribute—value pairs (or items) in data and are useful for classification.

“But just how discriminative are frequent patterns for classification?” Frequent patterns
represent feature combinations. Let’s compare the discriminative power of frequent pat-
terns and single features. Figure 9.11 plots the information gain of frequent patterns and
single features (i.e., of pattern length 1) for three UCI data sets.> The discrimination
power of some frequent patterns is higher than that of single features. Frequent patterns
map data to a higher dimensional space. They capture more underlying semantics of the
data, and thus can hold greater expressive power than single features.

“Why not consider frequent patterns as combined features, in addition to single features
when building a classification model?” This notion is the basis of frequent pattern—
based classification—the learning of a classification model in the feature space of single
attributes as well as frequent patterns. In this way, we transfer the original feature space
to a larger space. This will likely increase the chance of including important features.

Let’s get back to our earlier question: How discriminative are frequent patterns?
Many of the frequent patterns generated in frequent itemset mining are indiscrimina-
tive because they are based solely on support, without considering predictive power.
That is, by definition, a pattern must satisfy a user-specified minimum support thresh-
old, min_sup, to be considered frequent. For example, if min_sup, is, say, 5%, a pattern
is frequent if it occurs in 5% of the data tuples. Consider Figure 9.12, which plots infor-
mation gain versus pattern frequency (support) for three UCI data sets. A theoretical
upper bound on information gain, which was derived analytically, is also plotted. The
figure shows that the discriminative power (assessed here as information gain) of low-
frequency patterns is bounded by a small value. This is due to the patterns’ limited
coverage of the data set. Similarly, the discriminative power of very high-frequency pat-
terns is also bounded by a small value, which is due to their commonness in the data. The
upper bound of information gain is a function of pattern frequency. The information
gain upper bound increases monotonically with pattern frequency. These observations
can be confirmed analytically. Patterns with medium-large supports (e.g., support = 300
in Figure 9.12a) may be discriminative or not. Thus, not every frequent pattern is useful.

>The University of California at Irvine (UCI) archives several large data sets at http://kdd.ics.uci.edul.
These are commonly used by researchers for the testing and comparison of machine learning and data
mining algorithms.
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Figure 9.11 Single feature versus frequent pattern: Information gain is plotted for single features (pat-
terns of length 1, indicated by arrows) and frequent patterns (combined features) for three
UCI data sets. Source: Adapted from Cheng, Yan, Han, and Hsu [CYHHO07].

If we were to add all the frequent patterns to the feature space, the resulting feature
space would be huge. This slows down the model learning process and may also lead
to decreased accuracy due to a form of overfitting in which there are too many features.
Many of the patterns may be redundant. Therefore, it’s a good idea to apply feature selec-
tion to eliminate the less discriminative and redundant frequent patterns as features. The
general framework for discriminative frequent pattern—based classification is as follows.

I. Feature generation: The data, D, are partitioned according to class label. Use fre-
quent itemset mining to discover frequent patterns in each partition, satisfying
minimum support. The collection of frequent patterns, F, makes up the feature
candidates.

2. Feature selection: Apply feature selection to F, resulting in Fg, the set of selected
(more discriminating) frequent patterns. Information gain, Fisher score, or other
evaluation measures can be used for this step. Relevancy checking can also be
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Figure 9.12 Information gain versus pattern frequency (support) for three UCI data sets. A theoretical
upper bound on information gain (IGyyperBound) is also shown. Source: Adapted from Cheng,
Yan, Han, and Hsu [CYHHO07].

incorporated into this step to weed out redundant patterns. The data set D is trans-
formed to D', where the feature space now includes the single features as well as the
selected frequent patterns, Fs.

3. Learning of classification model: A classifier is built on the data set D'. Any learning
algorithm can be used as the classification model.

The general framework is summarized in Figure 9.13(a), where the discriminative
patterns are represented by dark circles. Although the approach is straightforward,
we can encounter a computational bottleneck by having to first find all the frequent
patterns, and then analyze each one for selection. The amount of frequent patterns found
can be huge due to the explosive number of pattern combinations between items.
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A framework for frequent pattern-based classification: (a) a two-step general approach
versus (b) the direct approach of DDPMine.

To improve the efficiency of the general framework, consider condensing steps 1 and
2 into just one step. That is, rather than generating the complete set of frequent patterns,
it’s possible to mine only the highly discriminative ones. This more direct approach
is referred to as direct discriminative pattern mining. The DDPMine algorithm follows
this approach, as illustrated in Figure 9.13(b). It first transforms the training data into
a compact tree structure known as a frequent pattern tree, or FP-tree (Section 6.2.4),
which holds all of the attribute—value (itemset) association information. It then searches
for discriminative patterns on the tree. The approach is direct in that it avoids generat-
ing a large number of indiscriminative patterns. It incrementally reduces the problem
by eliminating training tuples, thereby progressively shrinking the FP-tree. This further
speeds up the mining process.

By choosing to transform the original data to an FP-tree, DDPMine avoids gener-
ating redundant patterns because an FP-tree stores only the closed frequent patterns.
By definition, any subpattern, S, of a closed pattern, «, is redundant with respect to
a (Section 6.1.2). DDPMine directly mines the discriminative patterns and integrates
feature selection into the mining framework. The theoretical upper bound on infor-
mation gain is used to facilitate a branch-and-bound search, which prunes the search
space significantly. Experimental results show that DDPMine achieves orders of mag-
nitude speedup over the two-step approach without decline in classification accuracy.
DDPMine also outperforms state-of-the-art associative classification methods in terms
of both accuracy and efficiency.

Lazy Learners (or Learning from Your Neighbors)

The classification methods discussed so far in this book—decision tree induction,
Bayesian classification, rule-based classification, classification by backpropagation,
support vector machines, and classification based on association rule mining—are all
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examples of eager learners. Eager learners, when given a set of training tuples, will
construct a generalization (i.e., classification) model before receiving new (e.g., test)
tuples to classify. We can think of the learned model as being ready and eager to classify
previously unseen tuples.

Imagine a contrasting lazy approach, in which the learner instead waits until the last
minute before doing any model construction to classify a given test tuple. That is, when
given a training tuple, a lazy learner simply stores it (or does only a little minor pro-
cessing) and waits until it is given a test tuple. Only when it sees the test tuple does it
perform generalization to classify the tuple based on its similarity to the stored train-
ing tuples. Unlike eager learning methods, lazy learners do less work when a training
tuple is presented and more work when making a classification or numeric prediction.
Because lazy learners store the training tuples or “instances,” they are also referred to as
instance-based learners, even though all learning is essentially based on instances.

When making a classification or numeric prediction, lazy learners can be compu-
tationally expensive. They require efficient storage techniques and are well suited to
implementation on parallel hardware. They offer little explanation or insight into the
data’s structure. Lazy learners, however, naturally support incremental learning. They
are able to model complex decision spaces having hyperpolygonal shapes that may
not be as easily describable by other learning algorithms (such as hyperrectangular
shapes modeled by decision trees). In this section, we look at two examples of lazy
learners: k-nearest-neighbor classifiers (Section 9.5.1) and case-based reasoning classifiers
(Section 9.5.2).

9.5.] k-Nearest-Neighbor Classifiers

The k-nearest-neighbor method was first described in the early 1950s. The method is
labor intensive when given large training sets, and did not gain popularity until the
1960s when increased computing power became available. It has since been widely used
in the area of pattern recognition.

Nearest-neighbor classifiers are based on learning by analogy, that is, by compar-
ing a given test tuple with training tuples that are similar to it. The training tuples are
described by n attributes. Each tuple represents a point in an n-dimensional space. In
this way, all the training tuples are stored in an n-dimensional pattern space. When given
an unknown tuple, a k-nearest-neighbor classifier searches the pattern space for the k
training tuples that are closest to the unknown tuple. These k training tuples are the k
“nearest neighbors” of the unknown tuple.

“Closeness” is defined in terms of a distance metric, such as Euclidean distance. The
Euclidean distance between two points or tuples, say, X1 = (x11, X12,. .., X1,) and X, =
(x21’ X225+ 44> xZH)) is

diSt(Xl,Xz) = (9.22)
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In other words, for each numeric attribute, we take the difference between the corre-
sponding values of that attribute in tuple X; and in tuple X;, square this difference,
and accumulate it. The square root is taken of the total accumulated distance count.
Typically, we normalize the values of each attribute before using Eq. (9.22). This helps
prevent attributes with initially large ranges (e.g., income) from outweighing attributes
with initially smaller ranges (e.g., binary attributes). Min-max normalization, for exam-
ple, can be used to transform a value v of a numeric attribute A to v’ in the range [0, 1]
by computing

Vv — ming
V= (9.23)
maxs — ming

where miny and max, are the minimum and maximum values of attribute A. Chapter 3
describes other methods for data normalization as a form of data transformation.

For k-nearest-neighbor classification, the unknown tuple is assigned the most com-
mon class among its k-nearest neighbors. When k = 1, the unknown tuple is assigned
the class of the training tuple that is closest to it in pattern space. Nearest-neighbor clas-
sifiers can also be used for numeric prediction, that is, to return a real-valued prediction
for a given unknown tuple. In this case, the classifier returns the average value of the
real-valued labels associated with the k-nearest neighbors of the unknown tuple.

“But how can distance be computed for attributes that are not numeric, but nominal
(or categorical) such as color?” The previous discussion assumes that the attributes used
to describe the tuples are all numeric. For nominal attributes, a simple method is to
compare the corresponding value of the attribute in tuple X; with that in tuple X5. If
the two are identical (e.g., tuples X7 and X, both have the color blue), then the difference
between the two is taken as 0. If the two are different (e.g., tuple X; is blue but tuple X,
is red), then the difference is considered to be 1. Other methods may incorporate more
sophisticated schemes for differential grading (e.g., where a larger difference score is
assigned, say, for blue and white than for blue and black).

“What about missing values?” In general, if the value of a given attribute A is missing
in tuple X; and/or in tuple X, we assume the maximum possible difference. Suppose
that each of the attributes has been mapped to the range [0, 1]. For nominal attributes,
we take the difference value to be 1 if either one or both of the corresponding values of A
are missing. If A is numeric and missing from both tuples X; and X, then the difference
is also taken to be 1. If only one value is missing and the other (which we will call v') is
present and normalized, then we can take the difference to be either |1 — v'| or |0 — V|
(i.e., 1 — v/ or v'), whichever is greater.

“How can I determine a good value for k, the number of neighbors?” This can be deter-
mined experimentally. Starting with k = 1, we use a test set to estimate the error rate
of the classifier. This process can be repeated each time by incrementing k to allow for
one more neighbor. The k value that gives the minimum error rate may be selected. In
general, the larger the number of training tuples, the larger the value of k will be (so
that classification and numeric prediction decisions can be based on a larger portion of
the stored tuples). As the number of training tuples approaches infinity and k = 1, the
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error rate can be no worse than twice the Bayes error rate (the latter being the theoretical
minimum). If k also approaches infinity, the error rate approaches the Bayes error rate.

Nearest-neighbor classifiers use distance-based comparisons that intrinsically assign
equal weight to each attribute. They therefore can suffer from poor accuracy when given
noisy or irrelevant attributes. The method, however, has been modified to incorporate
attribute weighting and the pruning of noisy data tuples. The choice of a distance metric
can be critical. The Manhattan (city block) distance (Section 2.4.4), or other distance
measurements, may also be used.

Nearest-neighbor classifiers can be extremely slow when classifying test tuples. If D
is a training database of | D| tuples and k = 1, then O(|D|) comparisons are required to
classify a given test tuple. By presorting and arranging the stored tuples into search trees,
the number of comparisons can be reduced to O(log(|D|). Parallel implementation can
reduce the running time to a constant, that is, O(1), which is independent of | D|.

Other techniques to speed up classification time include the use of partial distance
calculations and editing the stored tuples. In the partial distance method, we compute
the distance based on a subset of the n attributes. If this distance exceeds a threshold,
then further computation for the given stored tuple is halted, and the process moves on
to the next stored tuple. The editing method removes training tuples that prove useless.
This method is also referred to as pruning or condensing because it reduces the total
number of tuples stored.

Case-Based Reasoning

Case-based reasoning (CBR) classifiers use a database of problem solutions to solve
new problems. Unlike nearest-neighbor classifiers, which store training tuples as points
in Euclidean space, CBR stores the tuples or “cases” for problem solving as complex
symbolic descriptions. Business applications of CBR include problem resolution for
customer service help desks, where cases describe product-related diagnostic problems.
CBR has also been applied to areas such as engineering and law, where cases are either
technical designs or legal rulings, respectively. Medical education is another area for
CBR, where patient case histories and treatments are used to help diagnose and treat
new patients.

When given a new case to classify, a case-based reasoner will first check if an iden-
tical training case exists. If one is found, then the accompanying solution to that case
is returned. If no identical case is found, then the case-based reasoner will search for
training cases having components that are similar to those of the new case. Concep-
tually, these training cases may be considered as neighbors of the new case. If cases
are represented as graphs, this involves searching for subgraphs that are similar to sub-
graphs within the new case. The case-based reasoner tries to combine the solutions of
the neighboring training cases to propose a solution for the new case. If incompatibili-
ties arise with the individual solutions, then backtracking to search for other solutions
may be necessary. The case-based reasoner may employ background knowledge and
problem-solving strategies to propose a feasible combined solution.



426

Chapter 9 Classification: Advanced Methods

9.6.1

Challenges in case-based reasoning include finding a good similarity metric (e.g., for
matching subgraphs) and suitable methods for combining solutions. Other challenges
include the selection of salient features for indexing training cases and the development
of efficient indexing techniques. A trade-off between accuracy and efficiency evolves as
the number of stored cases becomes very large. As this number increases, the case-based
reasoner becomes more intelligent. After a certain point, however, the system’s efficiency
will suffer as the time required to search for and process relevant cases increases. As with
nearest-neighbor classifiers, one solution is to edit the training database. Cases that are
redundant or that have not proved useful may be discarded for the sake of improved
performance. These decisions, however, are not clear-cut and their automation remains
an active area of research.

Other Classification Methods

In this section, we give a brief description of several other classification methods, includ-
ing genetic algorithms (Section 9.6.1), rough set approach (Section 9.6.2), and fuzzy set
approaches (Section 9.6.3). In general, these methods are less commonly used for clas-
sification in commercial data mining systems than the methods described earlier in this
book. However, these methods show their strength in certain applications, and hence it
is worthwhile to include them here.

Genetic Algorithms

Genetic algorithms attempt to incorporate ideas of natural evolution. In general,
genetic learning starts as follows. An initial population is created consisting of randomly
generated rules. Each rule can be represented by a string of bits. As a simple example,
suppose that samples in a given training set are described by two Boolean attributes,
A; and A;, and that there are two classes, C; and C,. The rule “IF A; AND NOT A,
THEN C,” can be encoded as the bit string “100,” where the two leftmost bits represent
attributes A; and A;, respectively, and the rightmost bit represents the class. Similarly,
the rule “IF NOT A; AND NOT A, THEN C;” can be encoded as “001.” If an attribute
has k values, where k > 2, then k bits may be used to encode the attribute’s values.
Classes can be encoded in a similar fashion.

Based on the notion of survival of the fittest, a new population is formed to consist
of the fittest rules in the current population, as well as offspring of these rules. Typically,
the fitness of a rule is assessed by its classification accuracy on a set of training samples.

Offspring are created by applying genetic operators such as crossover and mutation.
In crossover, substrings from pairs of rules are swapped to form new pairs of rules. In
mutation, randomly selected bits in a rule’s string are inverted.

The process of generating new populations based on prior populations of rules con-
tinues until a population, P, evolves where each rule in P satisfies a prespecified fitness
threshold.
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Genetic algorithms are easily parallelizable and have been used for classification as
well as other optimization problems. In data mining, they may be used to evaluate the
fitness of other algorithms.

9.6.2 Rough Set Approach

Rough set theory can be used for classification to discover structural relationships within
imprecise or noisy data. It applies to discrete-valued attributes. Continuous-valued
attributes must therefore be discretized before its use.

Rough set theory is based on the establishment of equivalence classes within the
given training data. All the data tuples forming an equivalence class are indiscernible,
that is, the samples are identical with respect to the attributes describing the data. Given
real-world data, it is common that some classes cannot be distinguished in terms of the
available attributes. Rough sets can be used to approximately or “roughly” define such
classes. A rough set definition for a given class, C, is approximated by two sets—a lower
approximation of C and an upper approximation of C. The lower approximation of C
consists of all the data tuples that, based on the knowledge of the attributes, are certain to
belong to C without ambiguity. The upper approximation of C consists of all the tuples
that, based on the knowledge of the attributes, cannot be described as not belonging to
C. The lower and upper approximations for a class C are shown in Figure 9.14, where
each rectangular region represents an equivalence class. Decision rules can be generated
for each class. Typically, a decision table is used to represent the rules.

Rough sets can also be used for attribute subset selection (or feature reduction, where
attributes that do not contribute to the classification of the given training data can be
identified and removed) and relevance analysis (where the contribution or significance
of each attribute is assessed with respect to the classification task). The problem of find-
ing the minimal subsets (reducts) of attributes that can describe all the concepts in
the given data set is NP-hard. However, algorithms to reduce the computation intensity
have been proposed. In one method, for example, a discernibility matrix is used that
stores the differences between attribute values for each pair of data tuples. Rather than

A

I

: . Upper approximation of C
: < Lower approximation of C
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I

Figure 9.14 A rough set approximation of class C’s set of tuples using lower and upper approximation
sets of C. The rectangular regions represent equivalence classes.



428

Chapter 9

9.6.3

Figure 9.15

Classification: Advanced Methods

searching on the entire training set, the matrix is instead searched to detect redundant
attributes.

Fuzzy Set Approaches

Rule-based systems for classification have the disadvantage that they involve sharp cut-
offs for continuous attributes. For example, consider the following rule for customer
credit application approval. The rule essentially says that applications for customers
who have had a job for two or more years and who have a high income (i.e., of at least
$50,000) are approved:

IF (years_employed > 2) AND (income > 50,000) THEN credit = approved. (9.24)

By Rule (9.24), a customer who has had a job for at least two years will receive credit
if her income is, say, $50,000, but not if it is $49,000. Such harsh thresholding may seem
unfair.

Instead, we can discretize income into categories (e.g., {low_income, medium_income,
high_income}) and then apply fuzzy logic to allow “fuzzy” thresholds or boundaries to
be defined for each category (Figure 9.15). Rather than having a precise cutoff between
categories, fuzzy logic uses truth values between 0.0 and 1.0 to represent the degree of
membership that a certain value has in a given category. Each category then represents a
fuzzy set. Hence, with fuzzy logic, we can capture the notion that an income of $49,000
is, more or less, high, although not as high as an income of $50,000. Fuzzy logic systems
typically provide graphical tools to assist users in converting attribute values to fuzzy
truth values.

Fuzzy set theory is also known as possibility theory. It was proposed by Lotfi Zadeh
in 1965 as an alternative to traditional two-value logic and probability theory. It lets
us work at a high abstraction level and offers a means for dealing with imprecise data
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Fuzzy truth values for income, representing the degree of membership of income values with
respect to the categories {low, medium, high}. Each category represents a fuzzy set. Note that
a given income value, x, can have membership in more than one fuzzy set. The membership
values of x in each fuzzy set do not have to total to 1.
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measurement. Most important, fuzzy set theory allows us to deal with vague or inexact
facts. For example, being a member of a set of high incomes is inexact (e.g., if $50,000
is high, then what about $49,000? or $48,000?) Unlike the notion of traditional “crisp”
sets where an element belongs to either a set S or its complement, in fuzzy set theory,
elements can belong to more than one fuzzy set. For example, the income value $49,000
belongs to both the medium and high fuzzy sets, but to differing degrees. Using fuzzy set
notation and following Figure 9.15, this can be shown as

Mmedium_income($49,000) = 0.15 and mhigh,income($49’000) = 0.96,

where m denotes the membership function, that is operating on the fuzzy sets of
medium_income and high_income, respectively. In fuzzy set theory, membership val-
ues for a given element, x (e.g., for $49,000), do not have to sum to 1. This is unlike
traditional probability theory, which is constrained by a summation axiom.

Fuzzy set theory is useful for data mining systems performing rule-based classi-
fication. It provides operations for combining fuzzy measurements. Suppose that in
addition to the fuzzy sets for income, we defined the fuzzy sets junior_employee and
senior_employee for the attribute years_employed. Suppose also that we have a rule that,
say, tests high_income and senior_employee in the rule antecedent (IF part) for a given
employee, x. If these two fuzzy measures are ANDed together, the minimum of their
measure is taken as the measure of the rule. In other words,

M(high_income AND senior_employee) (x) = min(mhigh,income(x)’ msenior,employee(x))-

This is akin to saying that a chain is as strong as its weakest link. If the two measures
are ORed, the maximum of their measure is taken as the measure of the rule. In other
words,

M(high_income OR senior_employee) (%) = max(mhigh,income (%), Msenior_employee (2)).

Intuitively, this is like saying that a rope is as strong as its strongest strand.

Given a tuple to classify, more than one fuzzy rule may apply. Each applicable rule
contributes a vote for membership in the categories. Typically, the truth values for each
predicted category are summed, and these sums are combined. Several procedures exist
for translating the resulting fuzzy output into a defuzzified or crisp value that is returned
by the system.

Fuzzy logic systems have been used in numerous areas for classification, including
market research, finance, health care, and environmental engineering.

Additional Topics Regarding Classification

Most of the classification algorithms we have studied handle multiple classes, but some,
such as support vector machines, assume only two classes exist in the data. What adap-
tations can be made to allow for when there are more than two classes? This question is
addressed in Section 9.7.1 on multiclass classification.
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9.1.1

What can we do if we want to build a classifier for data where only some of the data
are class-labeled, but most are not? Document classification, speech recognition, and
information extraction are just a few examples of applications in which unlabeled data
are abundant. Consider document classification, for example. Suppose we want to build
amodel to automatically classify text documents like articles or web pages. In particular,
we want the model to distinguish between hockey and football documents. We have a
vast amount of documents available, yet the documents are not class-labeled. Recall that
supervised learning requires a training set, that is, a set of classlabeled data. To have a
human examine and assign a class label to individual documents (to form a training set)
is time consuming and expensive.

Speech recognition requires the accurate labeling of speech utterances by trained lin-
guists. It was reported that 1 minute of speech takes 10 minutes to label, and annotating
phonemes (basic units of sound) can take 400 times as long. Information extraction sys-
tems are trained using labeled documents with detailed annotations. These are obtained
by having human experts highlight items or relations of interest in text such as the names
of companies or individuals. High-level expertise may be required for certain knowl-
edge domains such as gene and disease mentions in biomedical information extraction.
Clearly, the manual assignment of class labels to prepare a training set can be extremely
costly, time consuming, and tedious.

We study three approaches to classification that are suitable for situations where there
is an abundance of unlabeled data. Section 9.7.2 introduces semisupervised classifi-
cation, which builds a classifier using both labeled and unlabeled data. Section 9.7.3
presents active learning, where the learning algorithm carefully selects a few of the un-
labeled data tuples and asks a human to label only those tuples. Section 9.7.4 presents
transfer learning, which aims to extract the knowledge from one or more source tasks
(e.g., classifying camera reviews) and apply the knowledge to a target task (e.g., TV
reviews). Each of these strategies can reduce the need to annotate large amounts of data,
resulting in cost and time savings.

Multiclass Classification

Some classification algorithms, such as support vector machines, are designed for binary
classification. How can we extend these algorithms to allow for multiclass classification
(i.e., classification involving more than two classes)?

A simple approach is one-versus-all (OVA). Given m classes, we train m binary clas-
sifiers, one for each class. Classifier j is trained using tuples of class j as the positive class,
and the remaining tuples as the negative class. It learns to return a positive value for class
j and a negative value for the rest. To classify an unknown tuple, X, the set of classifiers
vote as an ensemble. For example, if classifier j predicts the positive class for X, then
class j gets one vote. If it predicts the negative class for X, then each of the classes except
j gets one vote. The class with the most votes is assigned to X.

All-versus-all (AVA) is an alternative approach that learns a classifier for each pair
of classes. Given m classes, we construct w binary classifiers. A classifier is trained
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using tuples of the two classes it should discriminate. To classify an unknown tuple,
each classifier votes. The tuple is assigned the class with the maximum number of votes.
All-versus-all tends to be superior to one-versus-all.

A problem with the previous schemes is that binary classifiers are sensitive to errors.
If any classifier makes an error, it can affect the vote count.

Error-correcting codes can be used to improve the accuracy of multiclass classifica-
tion, not just in the previous situations, but for classification in general. Error-correcting
codes were originally designed to correct errors during data transmission for commu-
nication tasks. For such tasks, the codes are used to add redundancy to the data being
transmitted so that, even if some errors occur due to noise in the channel, the data can
be correctly received at the other end. For multiclass classification, even if some of the
individual binary classifiers make a prediction error for a given unknown tuple, we may
still be able to correctly label the tuple.

An error-correcting code is assigned to each class, where each code is a bit vector.
Figure 9.16 show an example of 7-bit codewords assigned to classes Ci, Gy, C3, and Cy.
We train one classifier for each bit position. Therefore, in our example we train seven
classifiers. If a classifier makes an error, there is a better chance that we may still be
able to predict the right class for a given unknown tuple because of the redundancy
gained by having additional bits. The technique uses a distance measurement called the
Hamming distance to guess the “closest” class in case of errors, and is illustrated in
Example 9.3.

Multiclass classification with error-correcting codes. Consider the 7-bit codewords
associated with classes C; to C4 in Figure 9.16. Suppose that, given an unknown tuple
to label, the seven trained binary classifiers collectively output the codeword 0001010,
which does not match a codeword for any of the four classes. A classification error has
obviously occurred, but can we figure out what the classification most likely should
be? We can try by using the Hamming distance, which is the number of different
bits between two codewords. The Hamming distance between the output codeword
and the codeword for C; is 5 because five bits—namely, the first, second, third, fifth,
and seventh—differ. Similarly, the Hamming distance between the output code and the
codewords for C, through Cy4 are 3, 3, and 1, respectively. Note that the output code-
word is closest to the codeword for Cy. That is, the smallest Hamming distance between
the output and a class codeword is for class Cy. Therefore, we assign Cy as the class label
of the given tuple. L]

Class  Error-correcting codeword
C 1111111
G 0000111
G 0011001
Cy 0101010

Error-correcting codes for a multiclass classification problem involving four classes.
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9.1.2

Error-correcting codes can correct up to h;hl 1-bit errors, where h is the minimum
Hamming distance between any two codewords. If we use one bit per class, such as for
4-bit codewords for classes C; through Cy, then this is equivalent to the one-versus-all
approach, and the codes are not sufficient to self-correct. (Try it as an exercise.) When
selecting error-correcting codes for multiclass classification, there must be good row-
wise and column-wise separation between the codewords. The greater the distance, the
more likely that errors will be corrected.

Semi-Supervised Classification

Semi-supervised classification uses labeled data and unlabeled data to build a classifier.
Let Xj = {(x1,1)...,%5, 1)} be the set of labeled data and X, = {x;11,...,%,} be the set
of unlabeled data. Here we describe a few examples of this approach for learning.

Self-training is the simplest form of semi-supervised classification. It first builds a
classifier using the labeled data. The classifier then tries to label the unlabeled data. The
tuple with the most confident label prediction is added to the set of labeled data, and the
process repeats (Figure 9.17). Although the method is easy to understand, a disadvantage
is that it may reinforce errors.

Cotraining is another form of semi-supervised classification, where two or more
classifiers teach each other. Each learner uses a different and ideally independent set
of features for each tuple. Consider web page data, for example, where attributes relat-
ing to the images on the page may be used as one set of features, while attributes relating
to the corresponding text constitute another set of features for the same data. Each set

Self-training
I. Select a learning method such as, say, Bayesian classification. Build the classifier using the labeled
data, X].

2. Use the classifier to label the unlabeled data, X,,.

3. Select the tuple x € X, having the highest confidence (most confident prediction). Add it and its
predicted label to Xj.

4. Repeat (i.e., retrain the classifier using the augmented set of labeled data).
Cotraining
I. Define two separate nonoverlapping feature sets for the labeled data, X;.

2. Train two classifiers, f; and f,, on the labeled data, where f; is trained using one of the feature sets and
f» is trained using the other.

3. Classify X, with f; and f, separately.

4. Add the most confident (x, fi (x)) to the set of labeled data used by f,, where x € X,,. Similarly, add the
most confident (x, 2(x)) to the set of labeled data used by f;.

5. Repeat.

Figure 9.17 Self-training and cotraining methods of semi-supervised classification.
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of features should be sufficient to train a good classifier. Suppose we split the feature
set into two sets and train two classifiers, f; and f,, where each classifier is trained on a
different set. Then, f; and f, are used to predict the class labels for the unlabeled data,
X, Each classifier then teaches the other in that the tuple having the most confident
prediction from f; is added to the set of labeled data for f, (along with its label).

Similarly, the tuple having the most confident prediction from £, is added to the set of
labeled data for f;. The method is summarized in Figure 9.17. Cotraining is less sensitive
to errors than self-training. A difficulty is that the assumptions for its usage may not
hold true, that is, it may not be possible to split the features into mutually exclusive and
class-conditionally independent sets.

Alternate approaches to semi-supervised learning exist. For example, we can model
the joint probability distribution of the features and the labels. For the unlabeled data,
the labels can then be treated as missing data. The EM algorithm (Chapter 11) can be
used to maximize the likelihood of the model. Methods using support vector machines
have also been proposed.

9.1.3 Active Learning

Active learning is an iterative type of supervised learning that is suitable for situations
where data are abundant, yet the class labels are scarce or expensive to obtain. The learn-
ing algorithm is active in that it can purposefully query a user (e.g., a human oracle) for
labels. The number of tuples used to learn a concept this way is often much smaller than
the number required in typical supervised learning.

“How does active learning work to overcome the labeling bottleneck?” To keep costs
down, the active learner aims to achieve high accuracy using as few labeled instances
as possible. Let D be all of data under consideration. Various strategies exist for active
learning on D. Figure 9.18 illustrates a pool-based approach to active learning. Suppose
that a small subset of D is class-labeled. This set is denoted L. U is the set of unlabeled
data in D. It is also referred to as a pool of unlabeled data. An active learner begins with
L as the initial training set. It then uses a querying function to carefully select one or
more data samples from U and requests labels for them from an oracle (e.g., a human
annotator). The newly labeled samples are added to L, which the learner then uses in
a standard supervised way. The process repeats. The active learning goal is to achieve
high accuracy using as few labeled tuples as possible. Active learning algorithms are
typically evaluated with the use of learning curves, which plot accuracy as a function of
the number of instances queried.

Most of the active learning research focuses on how to choose the data tuples to
be queried. Several frameworks have been proposed. Uncertainty sampling is the most
common, where the active learner chooses to query the tuples which it is the least cer-
tain how to label. Other strategies work to reduce the version space, that is, the subset
of all hypotheses that are consistent with the observed training tuples. Alternatively,
we may follow a decision-theoretic approach that estimates expected error reduction.
This selects tuples that would result in the greatest reduction in the total number of
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Figure 9.18 The pool-based active learning cycle. Source: From Settles [Set10], Burr Settles Computer
Sciences Technical Report 1648, University of Wisconsin—-Madison; used with permission.
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incorrect predictions such as by reducing the expected entropy over U. This latter
approach tends to be more computationally expensive.

9.14 Transfer Learning

Suppose that AllElectronics has collected a number of customer reviews on a product
such as a brand of camera. The classification task is to automatically label the reviews
as either positive or negative. This task is known as sentiment classification. We could
examine each review and annotate it by adding a positive or negative class label. The
labeled reviews can then be used to train and test a classifier to label future reviews of
the product as either positive or negative. The manual effort involved in annotating the
review data can be expensive and time consuming.

Suppose that AllElectronics has customer reviews for other products as well such as
TVs. The distribution of review data for different types of products can vary greatly. We
cannot assume that the TV-review data will have the same distribution as the camera-
review data; thus we must build a separate classification model for the TV-review data.
Examining and labeling the TV-review data to form a training set will require a lot of
effort. In fact, we would need to label a large amount of the data to train the review-
classification models for each product. It would be nice if we could adapt an existing
classification model (e.g., the one we built for cameras) to help learn a classification
model for TVs. Such knowledge transfer would reduce the need to annotate a large
amount of data, resulting in cost and time savings. This is the essence behind transfer
learning.
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Figure 9.19 Transfer learning versus traditional learning. (a) Traditional learning methods build a new
classifier from scratch for each classification task. (b) Transfer learning applies knowledge
from a source classifier to simplify the construction of a classifier for a new, target task.
Source: From Pan and Yang [PY10]; used with permission.

Transfer learning aims to extract the knowledge from one or more source tasks and
apply the knowledge to a target task. In our example, the source task is the classification
of camera reviews, and the target task is the classification of TV reviews. Figure 9.19
illustrates a comparison between traditional learning methods and transfer learning.
Traditional learning methods build a new classifier for each new classification task, based
on available class-labeled training and test data. Transfer learning algorithms apply
knowledge about source tasks when building a classifier for a new (target) task. Con-
struction of the resulting classifier requires fewer training data and less training time.
Traditional learning algorithms assume that the training data and test data are drawn
from the same distribution and the same feature space. Thus, if the distribution changes,
such methods need to rebuild the models from scratch.

Transfer learning allows the distributions, tasks, and even the data domains used in
training and testing to be different. Transfer learning is analogous to the way humans
may apply their knowledge of a task to facilitate the learning of another task. For exam-
ple, if we know how to play the recorder, we may apply our knowledge of note reading
and music to simplify the task of learning to play the piano. Similarly, knowing Spanish
may make it easier to learn Italian.

Transfer learning is useful for common applications where the data become outdated
or the distribution changes. Here we give two more examples. Consider web-document
classification, where we may have trained a classifier to label, say, articles from vari-
ous newsgroups according to predefined categories. The web data that were used to
train the classifier can easily become outdated because the topics on the Web change
frequently. Another application area for transfer learning is email spam filtering. We
could train a classifier to label email as either “spam” or “not spam,” using email from a
group of users. If new users come along, the distribution of their email can be different
from the original group, hence the need to adapt the learned model to incorporate the
new data.
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There are various approaches to transfer learning, the most common of which is
the instance-based transfer learning approach. This approach reweights some of the
data from the source task and uses it to learn the target task. The TrAdaBoost (Trans-
fer AdaBoost) algorithm exemplifies this approach. Consider our previous example of
web-document classification, where the distribution of the old data on which the clas-
sifier was trained (the source data) is different from the newer data (the target data).
TrAdaBoost assumes that the source and target domain data are each described by the
same set of attributes (i.e., they have the same “feature space”) and the same set of
class labels, but that the distribution of the data in the two domains is very different. It
extends the AdaBoost ensemble method described in Section 8.6.3. TrAdaBoost requires
the labeling of only a small amount of the target data. Rather than throwing out all the
old source data, TrAdaBoost assumes that a large amount of it can be useful in training
the new classification model. The idea is to filter out the influence of any old data that
are very different from the new data by automatically adjusting weights assigned to the
training tuples.

Recall that in boosting, an ensemble is created by learning a series of classifiers. To
begin, each tuple is assigned a weight. After a classifier M; is learned, the weights are
updated to allow the subsequent classifier, Mjy 1, to “pay more attention” to the training
tuples that were misclassified by M;. TrAdaBoost follows this strategy for the target data.
However, if a source data tuple is misclassified, TrAdaBoost reasons that the tuple is
probably very different from the target data. It therefore reduces the weight of such tuples
so that they will have less effect on the subsequent classifier. As a result, TrAdaBoost can
learn an accurate classification model using only a small amount of new data and a large
amount of old data, even when the new data alone are insufficient to train the model.
Hence, in this way TrAdaBoost allows knowledge to be transferred from the old classifier
to the new one.

A challenge with transfer learning is negative transfer, which occurs when the new
classifier performs worse than if there had been no transfer at all. Work on how to
avoid negative transfer is an area of future research. Heterogeneous transfer learning,
which involves transferring knowledge from different feature spaces and multiple source
domains, is another venue for further work. Much of the research on transfer learning to
date has been on small-scale applications. The use of transfer learning on larger appli-
cations, such as social network analysis and video classification, is an area for further
investigation.

Summary

Unlike naive Bayesian classification (which assumes class conditional independence),
Bayesian belief networks allow class conditional independencies to be defined
between subsets of variables. They provide a graphical model of causal relationships,
on which learning can be performed. Trained Bayesian belief networks can be used
for classification.
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Backpropagation is a neural network algorithm for classification that employs a
method of gradient descent. It searches for a set of weights that can model the data
s0 as to minimize the mean-squared distance between the network’s class prediction
and the actual class label of data tuples. Rules may be extracted from trained neural
networks to help improve the interpretability of the learned network.

A support vector machine is an algorithm for the classification of both linear and
nonlinear data. It transforms the original data into a higher dimension, from where
it can find a hyperplane for data separation using essential training tuples called
support vectors.

Frequent patterns reflect strong associations between attribute—value pairs (or items)
in data and are used in classification based on frequent patterns. Approaches to this
methodology include associative classification and discriminant frequent pattern—
based classification. In associative classification, a classifier is built from association
rules generated from frequent patterns. In discriminative frequent pattern-based
classification, frequent patterns serve as combined features, which are considered in
addition to single features when building a classification model.

Decision tree classifiers, Bayesian classifiers, classification by backpropagation, sup-
port vector machines, and classification based on frequent patterns are all examples
of eager learners in that they use training tuples to construct a generalization model
and in this way are ready for classifying new tuples. This contrasts with lazy learners
or instance-based methods of classification, such as nearest-neighbor classifiers and
case-based reasoning classifiers, which store all of the training tuples in pattern space
and wait until presented with a test tuple before performing generalization. Hence,
lazy learners require efficient indexing techniques.

In genetic algorithms, populations of rules “evolve” via operations of crossover and
mutation until all rules within a population satisfy a specified threshold. Rough set
theory can be used to approximately define classes that are not distinguishable based
on the available attributes. Fuzzy set approaches replace “brittle” threshold cutoffs
for continuous-valued attributes with membership degree functions.

Binary classification schemes, such as support vector machines, can be adapted to
handle multiclass classification. This involves constructing an ensemble of binary
classifiers. Error-correcting codes can be used to increase the accuracy of the
ensemble.

Semi-supervised classification is useful when large amounts of unlabeled data
exist. It builds a classifier using both labeled and unlabeled data. Examples of
semi-supervised classification include self-training and cotraining.

Active learning is a form of supervised learning that is also suitable for situations
where data are abundant, yet the class labels are scarce or expensive to obtain. The
learning algorithm can actively query a user (e.g., a human oracle) for labels. To keep
costs down, the active learner aims to achieve high accuracy using as few labeled
instances as possible.
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Transfer learning aims to extract the knowledge from one or more source tasks and
apply the knowledge to a target task. TrAdaBoost is an example of the instance-based
approach to transfer learning, which reweights some of the data from the source task
and uses it to learn the target task, thereby requiring fewer labeled target-task tuples.

Exercises

9.1 The following table consists of training data from an employee database. The data have
been generalized. For example, “31 ... 35” for age represents the age range of 31 to 35.
For a given row entry, count represents the number of data tuples having the values for
department, status, age, and salary given in that row.

department status age salary count
sales senior 31 ... 35 46K ... 50K 30
sales junior 26 ... 30 26K ... 30K 40
sales junior 31 ... 35 31K ... 35K 40
systems junior 21 ... 25 46K ... 50K 20
systems senior 31 ... 35 66K... 70K 5
systems junior 26 ... 30 46K ... 50K 3
systems senior 41 ... 45 66K ... 70K 3
marketing senior 36 ... 40 46K ... 50K 10
marketing junior 31 ... 35 4IK... 45K
secretary senior 46 ... 50 36K ... 40K
secretary junior 26 ... 30 26K ... 30K

Let status be the class-label attribute.

(a) Design a multilayer feed-forward neural network for the given data. Label the nodes
in the input and output layers.

(b) Using the multilayer feed-forward neural network obtained in (a), show the weight
values after one iteration of the backpropagation algorithm, given the training
instance “(sales, senior, 31 ...35, 46K... 50K)”. Indicate your initial weight values and

biases and the learning rate used.

9.2 The support vector machine is a highly accurate classification method. However, SVM
classifiers suffer from slow processing when training with a large set of data tuples. Dis-
cuss how to overcome this difficulty and develop a scalable SVM algorithm for efficient
SVM classification in large data sets.

9.3 Compare and contrast associative classification and discriminative frequent pattern—based
classification. Why is classification based on frequent patterns able to achieve higher
classification accuracy in many cases than a classic decision tree method?
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Compare the advantages and disadvantages of eager classification (e.g., decision tree,
Bayesian, neural network) versus lazy classification (e.g., k-nearest neighbor, case-based
reasoning).

Write an algorithm for k-nearest-neighbor classification given k, the nearest number of
neighbors, and #n, the number of attributes describing each tuple.

Briefly describe the classification processes using (a) genetic algorithms, (b) rough sets,
and (c) fuzzy sets.

Example 9.3 showed a use of error-correcting codes for a multiclass classification
problem having four classes.

(a) Suppose that, given an unknown tuple to label, the seven trained binary classifiers
collectively output the codeword 0101110, which does not match a codeword for
any of the four classes. Using error correction, what class label should be assigned to
the tuple?

(b) Explain why using a 4-bit vector for the codewords is insufficient for error
correction.

Semi-supervised classification, active learning, and transfer learning are useful for situa-
tions in which unlabeled data are abundant.

(a) Describe semi-supervised classification, active learning, and transfer learning. Elab-
orate on applications for which they are useful, as well as the challenges of these
approaches to classification.

(b) Research and describe an approach to semi-supervised classification other than self-
training and cotraining.

(c) Research and describe an approach to active learning other than pool-based
learning.

(d) Research and describe an alternative approach to instance-based transfer learning.
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ence in unconstrained belief networks is NP-hard. Limitations of belief networks, such
as their large computational complexity (Laskey and Mahoney [LM97]), have prompted
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networks are flawed with respect to assumptions made regarding how connectionist
learning models the brain. An extensive survey of applications of neural networks in
industry, business, and science is provided in Widrow, Rumelhart, and Lehr [WRL94].
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references give additional details alluded to as “fancy math tricks” in our text, such
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propose the ARCS system regarding mining multidimensional association rules. It com-
bines ideas from association rule mining, clustering, and image processing, and applies
them to classification. Meretakis and Wiithrich [MW99] propose constructing a naive
Bayesian classifier by mining long itemsets. Veloso, Meira, and Zaki [VMZ06] propose
an association rule-based classification method based on a lazy (noneager) learning
approach, in which the computation is performed on a demand-driven basis.
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Cheng, Yan, Han, and Hsu [CYHHO07] and Cheng, Yan, Han, and Yu [CYHY08]. The
former work establishes a theoretical upper bound on the discriminative power of fre-
quent patterns (based on either information gain [Qui86] or Fisher score [DHS01]),
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researchers in vector quantization and compression. It is outlined in Gersho and Gray
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Rough sets have been used for feature reduction and expert system design in many
applications, including Ziarko [Zia91], Lenarcik and Piasta [LP97], and Swiniarski
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[PY10]. The TrAdaBoost boosting algorithm for transfer learning is given in Dai, Yang,
Xue, and Yu [DYXYO07].



Cluster Analysis: Basic
Concepts and Methods

Imagine that you are the Director of Customer Relationships at AllElectronics, and you have five
managers working for you. You would like to organize all the company’s customers into
five groups so that each group can be assigned to a different manager. Strategically, you
would like that the customers in each group are as similar as possible. Moreover, two
given customers having very different business patterns should not be placed in the same
group. Your intention behind this business strategy is to develop customer relationship
campaigns that specifically target each group, based on common features shared by the
customers per group. What kind of data mining techniques can help you to accomplish
this task?

Unlike in classification, the class label (or group_ID) of each customer is unknown.
You need to discover these groupings. Given a large number of customers and many
attributes describing customer profiles, it can be very costly or even infeasible to have a
human study the data and manually come up with a way to partition the customers into
strategic groups. You need a clustering tool to help.

Clustering is the process of grouping a set of data objects into multiple groups or clus-
ters so that objects within a cluster have high similarity, but are very dissimilar to objects
in other clusters. Dissimilarities and similarities are assessed based on the attribute val-
ues describing the objects and often involve distance measures.! Clustering as a data
mining tool has its roots in many application areas such as biology, security, business
intelligence, and Web search.

This chapter presents the basic concepts and methods of cluster analysis. In
Section 10.1, we introduce the topic and study the requirements of clustering meth-
ods for massive amounts of data and various applications. You will learn several basic
clustering techniques, organized into the following categories: partitioning methods
(Section 10.2), hierarchical methods (Section 10.3), density-based methods (Section 10.4),
and grid-based methods (Section 10.5). In Section 10.6, we briefly discuss how to evaluate

!Data similarity and dissimilarity are discussed in detail in Section 2.4. You may want to refer to that
section for a quick review.

Data Mining: Concepts and Techniques 4 4 3
(© 2012 Elsevier Inc. All rights reserved.
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clustering methods. A discussion of advanced methods of clustering is reserved for
Chapter 11.

Cluster Analysis

This section sets up the groundwork for studying cluster analysis. Section 10.1.1 defines
cluster analysis and presents examples of where it is useful. In Section 10.1.2, you will
learn aspects for comparing clustering methods, as well as requirements for clustering.
An overview of basic clustering techniques is presented in Section 10.1.3.

[0.1.] What Is Cluster Analysis?

Cluster analysis or simply clustering is the process of partitioning a set of data objects
(or observations) into subsets. Each subset is a cluster, such that objects in a cluster
are similar to one another, yet dissimilar to objects in other clusters. The set of clusters
resulting from a cluster analysis can be referred to as a clustering. In this context, dif-
ferent clustering methods may generate different clusterings on the same data set. The
partitioning is not performed by humans, but by the clustering algorithm. Hence, clus-
tering is useful in that it can lead to the discovery of previously unknown groups within
the data.

Cluster analysis has been widely used in many applications such as business intel-
ligence, image pattern recognition, Web search, biology, and security. In business
intelligence, clustering can be used to organize a large number of customers into groups,
where customers within a group share strong similar characteristics. This facilitates the
development of business strategies for enhanced customer relationship management.
Moreover, consider a consultant company with a large number of projects. To improve
project management, clustering can be applied to partition projects into categories based
on similarity so that project auditing and diagnosis (to improve project delivery and
outcomes) can be conducted effectively.

In image recognition, clustering can be used to discover clusters or “subclasses” in
handwritten character recognition systems. Suppose we have a data set of handwritten
digits, where each digit is labeled as either 1, 2, 3, and so on. Note that there can be a
large variance in the way in which people write the same digit. Take the number 2, for
example. Some people may write it with a small circle at the left bottom part, while some
others may not. We can use clustering to determine subclasses for “2,” each of which
represents a variation on the way in which 2 can be written. Using multiple models
based on the subclasses can improve overall recognition accuracy.

Clustering has also found many applications in Web search. For example, a keyword
search may often return a very large number of hits (i.e., pages relevant to the search)
due to the extremely large number of web pages. Clustering can be used to organize the
search results into groups and present the results in a concise and easily accessible way.
Moreover, clustering techniques have been developed to cluster documents into topics,
which are commonly used in information retrieval practice.
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As a data mining function, cluster analysis can be used as a standalone tool to gain
insight into the distribution of data, to observe the characteristics of each cluster, and
to focus on a particular set of clusters for further analysis. Alternatively, it may serve
as a preprocessing step for other algorithms, such as characterization, attribute subset
selection, and classification, which would then operate on the detected clusters and the
selected attributes or features.

Because a cluster is a collection of data objects that are similar to one another within
the cluster and dissimilar to objects in other clusters, a cluster of data objects can be
treated as an implicit class. In this sense, clustering is sometimes called automatic clas-
sification. Again, a critical difference here is that clustering can automatically find the
groupings. This is a distinct advantage of cluster analysis.

Clustering is also called data segmentation in some applications because cluster-
ing partitions large data sets into groups according to their similarity. Clustering can
also be used for outlier detection, where outliers (values that are “far away” from any
cluster) may be more interesting than common cases. Applications of outlier detection
include the detection of credit card fraud and the monitoring of criminal activities in
electronic commerce. For example, exceptional cases in credit card transactions, such
as very expensive and infrequent purchases, may be of interest as possible fraudulent
activities. Outlier detection is the subject of Chapter 12.

Data clustering is under vigorous development. Contributing areas of research
include data mining, statistics, machine learning, spatial database technology, informa-
tion retrieval, Web search, biology, marketing, and many other application areas. Owing
to the huge amounts of data collected in databases, cluster analysis has recently become
a highly active topic in data mining research.

As a branch of statistics, cluster analysis has been extensively studied, with the
main focus on distance-based cluster analysis. Cluster analysis tools based on k-means,
k-medoids, and several other methods also have been built into many statistical analysis
software packages or systems, such as S-Plus, SPSS, and SAS. In machine learning, recall
that classification is known as supervised learning because the class label information is
given, that is, the learning algorithm is supervised in that it is told the class member-
ship of each training tuple. Clustering is known as unsupervised learning because the
class label information is not present. For this reason, clustering is a form of learning
by observation, rather than learning by examples. In data mining, efforts have focused
on finding methods for efficient and effective cluster analysis in large databases. Active
themes of research focus on the scalability of clustering methods, the effectiveness of
methods for clustering complex shapes (e.g., nonconvex) and types of data (e.g., text,
graphs, and images), high-dimensional clustering techniques (e.g., clustering objects
with thousands of features), and methods for clustering mixed numerical and nominal
data in large databases.

Requirements for Cluster Analysis

Clustering is a challenging research field. In this section, you will learn about the require-
ments for clustering as a data mining tool, as well as aspects that can be used for
comparing clustering methods.
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The following are typical requirements of clustering in data mining.

Scalability: Many clustering algorithms work well on small data sets containing fewer
than several hundred data objects; however, a large database may contain millions or
even billions of objects, particularly in Web search scenarios. Clustering on only a
sample of a given large data set may lead to biased results. Therefore, highly scalable
clustering algorithms are needed.

Ability to deal with different types of attributes: Many algorithms are designed to
cluster numeric (interval-based) data. However, applications may require clustering
other data types, such as binary, nominal (categorical), and ordinal data, or mixtures
of these data types. Recently, more and more applications need clustering techniques
for complex data types such as graphs, sequences, images, and documents.

Discovery of clusters with arbitrary shape: Many clustering algorithms determine
clusters based on Euclidean or Manhattan distance measures (Chapter 2). Algorithms
based on such distance measures tend to find spherical clusters with similar size and
density. However, a cluster could be of any shape. Consider sensors, for example,
which are often deployed for environment surveillance. Cluster analysis on sensor
readings can detect interesting phenomena. We may want to use clustering to find
the frontier of a running forest fire, which is often not spherical. It is important to
develop algorithms that can detect clusters of arbitrary shape.

Requirements for domain knowledge to determine input parameters: Many clus-
tering algorithms require users to provide domain knowledge in the form of input
parameters such as the desired number of clusters. Consequently, the clustering
results may be sensitive to such parameters. Parameters are often hard to determine,
especially for high-dimensionality data sets and where users have yet to grasp a deep
understanding of their data. Requiring the specification of domain knowledge not
only burdens users, but also makes the quality of clustering difficult to control.

Ability to deal with noisy data: Most real-world data sets contain outliers and/or
missing, unknown, or erroneous data. Sensor readings, for example, are often
noisy—some readings may be inaccurate due to the sensing mechanisms, and some
readings may be erroneous due to interferences from surrounding transient objects.
Clustering algorithms can be sensitive to such noise and may produce poor-quality
clusters. Therefore, we need clustering methods that are robust to noise.

Incremental clustering and insensitivity to input order: In many applications,
incremental updates (representing newer data) may arrive at any time. Some clus-
tering algorithms cannot incorporate incremental updates into existing clustering
structures and, instead, have to recompute a new clustering from scratch. Cluster-
ing algorithms may also be sensitive to the input data order. That is, given a set
of data objects, clustering algorithms may return dramatically different clusterings
depending on the order in which the objects are presented. Incremental clustering
algorithms and algorithms that are insensitive to the input order are needed.
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Capability of clustering high-dimensionality data: A data set can contain numerous
dimensions or attributes. When clustering documents, for example, each keyword
can be regarded as a dimension, and there are often thousands of keywords. Most
clustering algorithms are good at handling low-dimensional data such as data sets
involving only two or three dimensions. Finding clusters of data objects in a high-
dimensional space is challenging, especially considering that such data can be very
sparse and highly skewed.

Constraint-based clustering: Real-world applications may need to perform clus-
tering under various kinds of constraints. Suppose that your job is to choose the
locations for a given number of new automatic teller machines (ATMs) in a city. To
decide upon this, you may cluster households while considering constraints such as
the city’s rivers and highway networks and the types and number of customers per
cluster. A challenging task is to find data groups with good clustering behavior that
satisfy specified constraints.

Interpretability and usability: Users want clustering results to be interpretable,
comprehensible, and usable. That is, clustering may need to be tied in with spe-
cific semantic interpretations and applications. It is important to study how an
application goal may influence the selection of clustering features and clustering
methods.

The following are orthogonal aspects with which clustering methods can be
compared:

The partitioning criteria: In some methods, all the objects are partitioned so that
no hierarchy exists among the clusters. That is, all the clusters are at the same level
conceptually. Such a method is useful, for example, for partitioning customers into
groups so that each group has its own manager. Alternatively, other methods parti-
tion data objects hierarchically, where clusters can be formed at different semantic
levels. For example, in text mining, we may want to organize a corpus of documents
into multiple general topics, such as “politics” and “sports,” each of which may have
subtopics, For instance, “football,” “basketball,” “baseball,” and “hockey” can exist as
subtopics of “sports.” The latter four subtopics are at a lower level in the hierarchy
than “sports.”

Separation of clusters: Some methods partition data objects into mutually exclusive
clusters. When clustering customers into groups so that each group is taken care of by
one manager, each customer may belong to only one group. In some other situations,
the clusters may not be exclusive, that is, a data object may belong to more than one
cluster. For example, when clustering documents into topics, a document may be
related to multiple topics. Thus, the topics as clusters may not be exclusive.

Similarity measure: Some methods determine the similarity between two objects
by the distance between them. Such a distance can be defined on Euclidean space,
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a road network, a vector space, or any other space. In other methods, the similarity
may be defined by connectivity based on density or contiguity, and may not rely on
the absolute distance between two objects. Similarity measures play a fundamental
role in the design of clustering methods. While distance-based methods can often
take advantage of optimization techniques, density- and continuity-based methods
can often find clusters of arbitrary shape.

Clustering space: Many clustering methods search for clusters within the entire given
data space. These methods are useful for low-dimensionality data sets. With high-
dimensional data, however, there can be many irrelevant attributes, which can make
similarity measurements unreliable. Consequently, clusters found in the full space
are often meaningless. It’s often better to instead search for clusters within different
subspaces of the same data set. Subspace clustering discovers clusters and subspaces
(often of low dimensionality) that manifest object similarity.

To conclude, clustering algorithms have several requirements. These factors include
scalability and the ability to deal with different types of attributes, noisy data, incremen-
tal updates, clusters of arbitrary shape, and constraints. Interpretability and usability are
also important. In addition, clustering methods can differ with respect to the partition-
ing level, whether or not clusters are mutually exclusive, the similarity measures used,
and whether or not subspace clustering is performed.

10.1.3 Overview of Basic Clustering Methods

There are many clustering algorithms in the literature. It is difficult to provide a crisp
categorization of clustering methods because these categories may overlap so that a
method may have features from several categories. Nevertheless, it is useful to present
a relatively organized picture of clustering methods. In general, the major fundamental
clustering methods can be classified into the following categories, which are discussed
in the rest of this chapter.

Partitioning methods: Given a set of n objects, a partitioning method constructs k
partitions of the data, where each partition represents a cluster and k < n. That is, it
divides the data into k groups such that each group must contain at least one object.
In other words, partitioning methods conduct one-level partitioning on data sets.
The basic partitioning methods typically adopt exclusive cluster separation. That is,
each object must belong to exactly one group. This requirement may be relaxed, for
example, in fuzzy partitioning techniques. References to such techniques are given in
the bibliographic notes (Section 10.9).

Most partitioning methods are distance-based. Given k, the number of partitions
to construct, a partitioning method creates an initial partitioning. It then uses an
iterative relocation technique that attempts to improve the partitioning by moving
objects from one group to another. The general criterion of a good partitioning is
that objects in the same cluster are “close” or related to each other, whereas objects
in different clusters are “far apart” or very different. There are various kinds of other
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criteria for judging the quality of partitions. Traditional partitioning methods can
be extended for subspace clustering, rather than searching the full data space. This is
useful when there are many attributes and the data are sparse.

Achieving global optimality in partitioning-based clustering is often computation-
ally prohibitive, potentially requiring an exhaustive enumeration of all the possible
partitions. Instead, most applications adopt popular heuristic methods, such as
greedy approaches like the k-means and the k-medoids algorithms, which progres-
sively improve the clustering quality and approach a local optimum. These heuristic
clustering methods work well for finding spherical-shaped clusters in small- to
medium-size databases. To find clusters with complex shapes and for very large data
sets, partitioning-based methods need to be extended. Partitioning-based clustering
methods are studied in depth in Section 10.2.

Hierarchical methods: A hierarchical method creates a hierarchical decomposition of
the given set of data objects. A hierarchical method can be classified as being either
agglomerative or divisive, based on how the hierarchical decomposition is formed.
The agglomerative approach, also called the bottom-up approach, starts with each
object forming a separate group. It successively merges the objects or groups close
to one another, until all the groups are merged into one (the topmost level of the
hierarchy), or a termination condition holds. The divisive approach, also called the
top-down approach, starts with all the objects in the same cluster. In each successive
iteration, a cluster is split into smaller clusters, until eventually each object is in one
cluster, or a termination condition holds.

Hierarchical clustering methods can be distance-based or density- and continuity-
based. Various extensions of hierarchical methods consider clustering in subspaces
as well.

Hierarchical methods suffer from the fact that once a step (merge or split) is done,
it can never be undone. This rigidity is useful in that it leads to smaller computa-
tion costs by not having to worry about a combinatorial number of different choices.
Such techniques cannot correct erroneous decisions; however, methods for improv-
ing the quality of hierarchical clustering have been proposed. Hierarchical clustering
methods are studied in Section 10.3.

Density-based methods: Most partitioning methods cluster objects based on the dis-
tance between objects. Such methods can find only spherical-shaped clusters and
encounter difficulty in discovering clusters of arbitrary shapes. Other clustering
methods have been developed based on the notion of density. Their general idea
is to continue growing a given cluster as long as the density (number of objects or
data points) in the “neighborhood” exceeds some threshold. For example, for each
data point within a given cluster, the neighborhood of a given radius has to contain
at least a minimum number of points. Such a method can be used to filter out noise
or outliers and discover clusters of arbitrary shape.

Density-based methods can divide a set of objects into multiple exclusive clus-
ters, or a hierarchy of clusters. Typically, density-based methods consider exclusive
clusters only, and do not consider fuzzy clusters. Moreover, density-based methods
can be extended from full space to subspace clustering. Density-based clustering
methods are studied in Section 10.4.
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Grid-based methods: Grid-based methods quantize the object space into a finite
number of cells that form a grid structure. All the clustering operations are per-
formed on the grid structure (i.e., on the quantized space). The main advantage of
this approach is its fast processing time, which is typically independent of the num-
ber of data objects and dependent only on the number of cells in each dimension in
the quantized space.

Using grids is often an efficient approach to many spatial data mining problems,
including clustering. Therefore, grid-based methods can be integrated with other
clustering methods such as density-based methods and hierarchical methods. Grid-
based clustering is studied in Section 10.5.

These methods are briefly summarized in Figure 10.1. Some clustering algorithms
integrate the ideas of several clustering methods, so that it is sometimes difficult to clas-
sify a given algorithm as uniquely belonging to only one clustering method category.
Furthermore, some applications may have clustering criteria that require the integration
of several clustering techniques.

In the following sections, we examine each clustering method in detail. Advanced
clustering methods and related issues are discussed in Chapter 11. In general, the
notation used is as follows. Let D be a data set of # objects to be clustered. An object is
described by d variables, where each variable is also called an attribute or a dimension,

Method General Characteristics
Partitioning — Find mutually exclusive clusters of spherical shape
methods — Distance-based

— May use mean or medoid (etc.) to represent cluster center
— Effective for small- to medium-size data sets

Hierarchical — Clustering is a hierarchical decomposition (i.e., multiple levels)

methods — Cannot correct erroneous merges or splits

— May incorporate other techniques like microclustering or
consider object “linkages”

Density-based — Can find arbitrarily shaped clusters

methods — Clusters are dense regions of objects in space that are
separated by low-density regions

— Cluster density: Each point must have a minimum number of
points within its “neighborhood”

— May filter out outliers
Grid-based — Use a multiresolution grid data structure
methods — Fast processing time (typically independent of the number of

data objects, yet dependent on grid size)

Figure 10.1 Overview of clustering methods discussed in this chapter. Note that some algorithms may
combine various methods.
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and therefore may also be referred to as a point in a d-dimensional object space. Objects
are represented in bold italic font (e.g., p).

Partitioning Methods

The simplest and most fundamental version of cluster analysis is partitioning, which
organizes the objects of a set into several exclusive groups or clusters. To keep the
problem specification concise, we can assume that the number of clusters is given as
background knowledge. This parameter is the starting point for partitioning methods.

Formally, given a data set, D, of n objects, and k, the number of clusters to form, a
partitioning algorithm organizes the objects into k partitions (k < #), where each par-
tition represents a cluster. The clusters are formed to optimize an objective partitioning
criterion, such as a dissimilarity function based on distance, so that the objects within a
cluster are “similar” to one another and “dissimilar” to objects in other clusters in terms
of the data set attributes.

In this section you will learn the most well-known and commonly used partitioning
methods—k-means (Section 10.2.1) and k-medoids (Section 10.2.2). You will also learn
several variations of these classic partitioning methods and how they can be scaled up
to handle large data sets.

[0.2.] k-Means: A Centroid-Based Technique

Suppose a data set, D, contains 1 objects in Euclidean space. Partitioning methods dis-
tribute the objects in D into k clusters, Ci,...,Cy, thatis, C; C D and G;N CG=10 for
(1 <14,j<k). An objective function is used to assess the partitioning quality so that
objects within a cluster are similar to one another but dissimilar to objects in other
clusters. This is, the objective function aims for high intracluster similarity and low
intercluster similarity.

A centroid-based partitioning technique uses the centroid of a cluster, C;, to represent
that cluster. Conceptually, the centroid of a cluster is its center point. The centroid can
be defined in various ways such as by the mean or medoid of the objects (or points)
assigned to the cluster. The difference between an object p € C; and ¢;, the representa-
tive of the cluster, is measured by dist(p,c;), where dist(x,y) is the Euclidean distance
between two points x and y. The quality of cluster C; can be measured by the within-
cluster variation, which is the sum of squared error between all objects in C; and the
centroid c;, defined as

k
E= Z Z dist(p,c;)?, (10.1)

i=1 peC;

where E is the sum of the squared error for all objects in the data set; p is the point in
space representing a given object; and ¢; is the centroid of cluster C; (both p and ¢; are
multidimensional). In other words, for each object in each cluster, the distance from
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the object to its cluster center is squared, and the distances are summed. This objective
function tries to make the resulting k clusters as compact and as separate as possible.

Optimizing the within-cluster variation is computationally challenging. In the worst
case, we would have to enumerate a number of possible partitionings that are exponen-
tial to the number of clusters, and check the within-cluster variation values. It has been
shown that the problem is NP-hard in general Euclidean space even for two clusters (i.e.,
k = 2). Moreover, the problem is NP-hard for a general number of clusters k even in the
2-D Euclidean space. If the number of clusters k and the dimensionality of the space d
are fixed, the problem can be solved in time O(ndk‘H log 1), where n is the number of
objects. To overcome the prohibitive computational cost for the exact solution, greedy
approaches are often used in practice. A prime example is the k-means algorithm, which
is simple and commonly used.

“How does the k-means algorithm work?” The k-means algorithm defines the centroid
of a cluster as the mean value of the points within the cluster. It proceeds as follows. First,
it randomly selects k of the objects in D, each of which initially represents a cluster mean
or center. For each of the remaining objects, an object is assigned to the cluster to which
it is the most similar, based on the Euclidean distance between the object and the cluster
mean. The k-means algorithm then iteratively improves the within-cluster variation.
For each cluster, it computes the new mean using the objects assigned to the cluster in
the previous iteration. All the objects are then reassigned using the updated means as
the new cluster centers. The iterations continue until the assignment is stable, that is,
the clusters formed in the current round are the same as those formed in the previous
round. The k-means procedure is summarized in Figure 10.2.

Algorithm: k-means. The k-means algorithm for partitioning, where each cluster’s center
is represented by the mean value of the objects in the cluster.

Input:

k: the number of clusters,

D: a data set containing # objects.

Output: A set of k clusters.
Method:

(1) arbitrarily choose k objects from D as the initial cluster centers;

(2) repeat

(3) (re)assign each object to the cluster to which the object is the most similar,
based on the mean value of the objects in the cluster;

(4) update the cluster means, that is, calculate the mean value of the objects for
each cluster;

(5) until no change;

Figure 10.2 The k-means partitioning algorithm.
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Figure 10.3 Clustering of a set of objects using the k-means method; for (b) update cluster centers and

Example 10.1

reassign objects accordingly (the mean of each cluster is marked by a +).

Clustering by k-means partitioning. Consider a set of objects located in 2-D space,
as depicted in Figure 10.3(a). Let k = 3, that is, the user would like the objects to be
partitioned into three clusters.

According to the algorithm in Figure 10.2, we arbitrarily choose three objects as
the three initial cluster centers, where cluster centers are marked by a +. Each object
is assigned to a cluster based on the cluster center to which it is the nearest. Such a
distribution forms silhouettes encircled by dotted curves, as shown in Figure 10.3(a).

Next, the cluster centers are updated. That is, the mean value of each cluster is recal-
culated based on the current objects in the cluster. Using the new cluster centers, the
objects are redistributed to the clusters based on which cluster center is the nearest.
Such a redistribution forms new silhouettes encircled by dashed curves, as shown in
Figure 10.3(b).

This process iterates, leading to Figure 10.3(c). The process of iteratively reassigning
objects to clusters to improve the partitioning is referred to as iterative relocation. Even-
tually, no reassignment of the objects in any cluster occurs and so the process terminates.
The resulting clusters are returned by the clustering process. L]

The k-means method is not guaranteed to converge to the global optimum and often
terminates at a local optimum. The results may depend on the initial random selection
of cluster centers. (You will be asked to give an example to show this as an exercise.)
To obtain good results in practice, it is common to run the k-means algorithm multiple
times with different initial cluster centers.

The time complexity of the k-means algorithm is O(nkt), where n is the total number
of objects, k is the number of clusters, and ¢ is the number of iterations. Normally, k < n
and t < n. Therefore, the method is relatively scalable and efficient in processing large
data sets.

There are several variants of the k-means method. These can differ in the selection
of the initial k-means, the calculation of dissimilarity, and the strategies for calculating
cluster means.
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The k-means method can be applied only when the mean of a set of objects is defined.
This may not be the case in some applications such as when data with nominal attributes
are involved. The k-modes method is a variant of k-means, which extends the k-means
paradigm to cluster nominal data by replacing the means of clusters with modes. It uses
new dissimilarity measures to deal with nominal objects and a frequency-based method
to update modes of clusters. The k-means and the k-modes methods can be integrated
to cluster data with mixed numeric and nominal values.

The necessity for users to specify k, the number of clusters, in advance can be seen as a
disadvantage. There have been studies on how to overcome this difficulty, however, such
as by providing an approximate range of k values, and then using an analytical technique
to determine the best k by comparing the clustering results obtained for the different k
values. The k-means method is not suitable for discovering clusters with nonconvex
shapes or clusters of very different size. Moreover, it is sensitive to noise and outlier data
points because a small number of such data can substantially influence the mean value.

“How can we make the k-means algorithm more scalable?” One approach to mak-
ing the k-means method more efficient on large data sets is to use a good-sized set of
samples in clustering. Another is to employ a filtering approach that uses a spatial hier-
archical data index to save costs when computing means. A third approach explores the
microclustering idea, which first groups nearby objects into “microclusters” and then
performs k-means clustering on the microclusters. Microclustering is further discussed
in Section 10.3.

10.2.2 k-Medoids: A Representative Object-Based Technique

Example 10.2

The k-means algorithm is sensitive to outliers because such objects are far away from the
majority of the data, and thus, when assigned to a cluster, they can dramatically distort
the mean value of the cluster. This inadvertently affects the assignment of other objects
to clusters. This effect is particularly exacerbated due to the use of the squared-error
function of Eq. (10.1), as observed in Example 10.2.

A drawback of k-means. Consider six points in 1-D space having the values
1,2,3,8,9,10, and 25, respectively. Intuitively, by visual inspection we may imagine the
points partitioned into the clusters {1,2,3} and {8,9, 10}, where point 25 is excluded
because it appears to be an outlier. How would k-means partition the values? If we
apply k-means using k=2 and Eq. (10.1), the partitioning {{1,2,3},{8,9,10,25}} has
the within-cluster variation

1-2242=-22+B=22+8—-13)>4+(9—13)>+ (10 — 13)> + (25 — 13)> =196,

given that the mean of cluster {1,2,3} is 2 and the mean of {8,9,10,25} is 13. Compare
this to the partitioning {{1,2,3,8},{9,10,25}}, for which k-means computes the within-
cluster variation as

(1=35)%4(2—=3.5)2+(3—13.5)%+ (8 —3.5)% + (9 — 14.67)?
+ (10 — 14.67)> + (25 — 14.67)* = 189.67,
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given that 3.5 is the mean of cluster {1,2,3,8} and 14.67 is the mean of cluster {9, 10,25}.
The latter partitioning has the lowest within-cluster variation; therefore, the k-means
method assigns the value 8 to a cluster different from that containing 9 and 10 due to
the outlier point 25. Moreover, the center of the second cluster, 14.67, is substantially far
from all the members in the cluster. [

“How can we modify the k-means algorithm to diminish such sensitivity to outliers?”
Instead of taking the mean value of the objects in a cluster as a reference point, we can
pick actual objects to represent the clusters, using one representative object per cluster.
Each remaining object is assigned to the cluster of which the representative object is
the most similar. The partitioning method is then performed based on the principle of
minimizing the sum of the dissimilarities between each object p and its corresponding
representative object. That is, an absolute-error criterion is used, defined as

k
E=Y_" dist(p,0i), (10.2)

i=1 peC;

where E is the sum of the absolute error for all objects p in the data set, and o; is the
representative object of C;. This is the basis for the k-medoids method, which groups n
objects into k clusters by minimizing the absolute error (Eq. 10.2).

When k=1, we can find the exact median in O(n?) time. However, when k is a
general positive number, the k-medoid problem is NP-hard.

The Partitioning Around Medoids (PAM) algorithm (see Figure 10.5 later) is a pop-
ular realization of k-medoids clustering. It tackles the problem in an iterative, greedy
way. Like the k-means algorithm, the initial representative objects (called seeds) are
chosen arbitrarily. We consider whether replacing a representative object by a nonrep-
resentative object would improve the clustering quality. All the possible replacements
are tried out. The iterative process of replacing representative objects by other objects
continues until the quality of the resulting clustering cannot be improved by any replace-
ment. This quality is measured by a cost function of the average dissimilarity between
an object and the representative object of its cluster.

Specifically, let o01,. .., 0k be the current set of representative objects (i.e., medoids).
To determine whether a nonrepresentative object, denoted by 0,4ndom- 1s @ good replace-
ment for a current medoid o; (1 <j<k), we calculate the distance from every
object p to the closest object in the set {o1,...,0j_1,0random>0j11,.-.,0k}, and
use the distance to update the cost function. The reassignments of objects to
{01,...,0j-1,0random> 0j+1, . . ., 0k} are simple. Suppose object p is currently assigned to
a cluster represented by medoid o; (Figure 10.4a or b). Do we need to reassign p to a
different cluster if o; is being replaced by 0r4ndom? Object p needs to be reassigned to
either 0454dom Or some other cluster represented by o; (i # j), whichever is the closest.
For example, in Figure 10.4(a), p is closest to o; and therefore is reassigned to o;. In
Figure 10.4(b), however, p is closest t0 0,44dom and so is reassigned to 0,4pdom- What if,
instead, p is currently assigned to a cluster represented by some other object o0;, i # j?
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Four cases of the cost function for k-medoids clustering.

Object o remains assigned to the cluster represented by o; as long as o is still closer to o;
than to 0,44dom (Figure 10.4c). Otherwise, o is reassigned to 04ndom (Figure 10.4d).

Each time a reassignment occurs, a difference in absolute error, E, is contributed to
the cost function. Therefore, the cost function calculates the difference in absolute-error
value if a current representative object is replaced by a nonrepresentative object. The
total cost of swapping is the sum of costs incurred by all nonrepresentative objects. If
the total cost is negative, then o; is replaced or swapped with 0,4440m because the actual
absolute-error E is reduced. If the total cost is positive, the current representative object,
0j, is considered acceptable, and nothing is changed in the iteration.

“Which method is more robust—k-means or k-medoids?” The k-medoids method is
more robust than k-means in the presence of noise and outliers because a medoid is less
influenced by outliers or other extreme values than a mean. However, the complexity
of each iteration in the k-medoids algorithm is O(k(n — k)?). For large values of n
and k, such computation becomes very costly, and much more costly than the k-means
method. Both methods require the user to specify k, the number of clusters.

“How can we scale up the k-medoids method?” A typical k-medoids partitioning algo-
rithm like PAM (Figure 10.5) works effectively for small data sets, but does not scale well
for large data sets. To deal with larger data sets, a sampling-based method called CLARA
(Clustering LARge Applications) can be used. Instead of taking the whole data set into
consideration, CLARA uses a random sample of the data set. The PAM algorithm is then
applied to compute the best medoids from the sample. Ideally, the sample should closely
represent the original data set. In many cases, a large sample works well if it is created so
that each object has equal probability of being selected into the sample. The representa-
tive objects (medoids) chosen will likely be similar to those that would have been chosen
from the whole data set. CLARA builds clusterings from multiple random samples and
returns the best clustering as the output. The complexity of computing the medoids on
a random sample is O(ks®> + k(n — k)), where s is the size of the sample, k is the number
of clusters, and # is the total number of objects. CLARA can deal with larger data sets
than PAM.

The effectiveness of CLARA depends on the sample size. Notice that PAM searches
for the best k-medoids among a given data set, whereas CLARA searches for the best
k-medoids among the selected sample of the data set. CLARA cannot find a good
clustering if any of the best sampled medoids is far from the best k-medoids. If an object
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Algorithm: k-medoids. PAM, a k-medoids algorithm for partitioning based on medoid
or central objects.

Input:

k: the number of clusters,

D: a data set containing # objects.

Output: A set of k clusters.

Method:
(1) arbitrarily choose k objects in D as the initial representative objects or seeds;
(2) repeat
(3) assign each remaining object to the cluster with the nearest representative object;
(4) randomly select a nonrepresentative object, 0,andoms
(5) compute the total cost, S, of swapping representative object, 0j, with 0r4ndom;
(6) if S < 0 then swap 0j with 0,440 to form the new set of k representative objects;

(7) until no change;

Figure 10.5 PAM, a k-medoids partitioning algorithm.

is one of the best k-medoids but is not selected during sampling, CLARA will never find
the best clustering. (You will be asked to provide an example demonstrating this as an
exercise.)

“How might we improve the quality and scalability of CLARA?” Recall that when
searching for better medoids, PAM examines every object in the data set against every
current medoid, whereas CLARA confines the candidate medoids to only a random
sample of the data set. A randomized algorithm called CLARANS (Clustering Large
Applications based upon RANdomized Search) presents a trade-off between the cost
and the effectiveness of using samples to obtain clustering.

First, it randomly selects k objects in the data set as the current medoids. It then
randomly selects a current medoid x and an object y that is not one of the current
medoids. Can replacing x by y improve the absolute-error criterion? If yes, the replace-
ment is made. CLARANS conducts such a randomized search I times. The set of the
current medoids after the [ steps is considered a local optimum. CLARANS repeats this
randomized process m times and returns the best local optimal as the final result.

Hierarchical Methods

While partitioning methods meet the basic clustering requirement of organizing a set of
objects into a number of exclusive groups, in some situations we may want to partition
our data into groups at different levels such as in a hierarchy. A hierarchical clustering
method works by grouping data objects into a hierarchy or “tree” of clusters.
Representing data objects in the form of a hierarchy is useful for data summarization
and visualization. For example, as the manager of human resources at AllElectronics,
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you may organize your employees into major groups such as executives, managers, and
staff. You can further partition these groups into smaller subgroups. For instance, the
general group of staff can be further divided into subgroups of senior officers, officers,
and trainees. All these groups form a hierarchy. We can easily summarize or characterize
the data that are organized into a hierarchy, which can be used to find, say, the average
salary of managers and of officers.

Consider handwritten character recognition as another example. A set of handwrit-
ing samples may be first partitioned into general groups where each group corresponds
to a unique character. Some groups can be further partitioned into subgroups since
a character may be written in multiple substantially different ways. If necessary, the
hierarchical partitioning can be continued recursively until a desired granularity is
reached.

In the previous examples, although we partitioned the data hierarchically, we did not
assume that the data have a hierarchical structure (e.g., managers are at the same level
in our AllElectronics hierarchy as staff). Our use of a hierarchy here is just to summarize
and represent the underlying data in a compressed way. Such a hierarchy is particularly
useful for data visualization.

Alternatively, in some applications we may believe that the data bear an underly-
ing hierarchical structure that we want to discover. For example, hierarchical clustering
may uncover a hierarchy for AllElectronics employees structured on, say, salary. In the
study of evolution, hierarchical clustering may group animals according to their bio-
logical features to uncover evolutionary paths, which are a hierarchy of species. As
another example, grouping configurations of a strategic game (e.g., chess or checkers) in
a hierarchical way may help to develop game strategies that can be used to train players.

In this section, you will study hierarchical clustering methods. Section 10.3.1 begins
with a discussion of agglomerative versus divisive hierarchical clustering, which organize
objects into a hierarchy using a bottom-up or top-down strategy, respectively. Agglo-
merative methods start with individual objects as clusters, which are iteratively merged
to form larger clusters. Conversely, divisive methods initially let all the given objects
form one cluster, which they iteratively split into smaller clusters.

Hierarchical clustering methods can encounter difficulties regarding the selection
of merge or split points. Such a decision is critical, because once a group of objects is
merged or split, the process at the next step will operate on the newly generated clusters.
It will neither undo what was done previously, nor perform object swapping between
clusters. Thus, merge or split decisions, if not well chosen, may lead to low-quality
clusters. Moreover, the methods do not scale well because each decision of merge or
split needs to examine and evaluate many objects or clusters.

A promising direction for improving the clustering quality of hierarchical meth-
ods is to integrate hierarchical clustering with other clustering techniques, resulting in
multiple-phase (or multiphase) clustering. We introduce two such methods, namely
BIRCH and Chameleon. BIRCH (Section 10.3.3) begins by partitioning objects hierar-
chically using tree structures, where the leaf or low-level nonleaf nodes can be
viewed as “microclusters” depending on the resolution scale. It then applies other
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clustering algorithms to perform macroclustering on the microclusters. Chameleon
(Section 10.3.4) explores dynamic modeling in hierarchical clustering.

There are several orthogonal ways to categorize hierarchical clustering methods. For
instance, they may be categorized into algorithmic methods, probabilistic methods, and
Bayesian methods. Agglomerative, divisive, and multiphase methods are algorithmic,
meaning they consider data objects as deterministic and compute clusters according
to the deterministic distances between objects. Probabilistic methods use probabilistic
models to capture clusters and measure the quality of clusters by the fitness of mod-
els. We discuss probabilistic hierarchical clustering in Section 10.3.5. Bayesian methods
compute a distribution of possible clusterings. That is, instead of outputting a single
deterministic clustering over a data set, they return a group of clustering structures and
their probabilities, conditional on the given data. Bayesian methods are considered an
advanced topic and are not discussed in this book.

[0.3.1 Agglomerative versus Divisive Hierarchical Clustering

Example 10.3

A hierarchical clustering method can be either agglomerative or divisive, depending on
whether the hierarchical decomposition is formed in a bottom-up (merging) or top-
down (splitting) fashion. Let’s have a closer look at these strategies.

An agglomerative hierarchical clustering method uses a bottom-up strategy. It typ-
ically starts by letting each object form its own cluster and iteratively merges clusters
into larger and larger clusters, until all the objects are in a single cluster or certain termi-
nation conditions are satisfied. The single cluster becomes the hierarchy’s root. For the
merging step, it finds the two clusters that are closest to each other (according to some
similarity measure), and combines the two to form one cluster. Because two clusters are
merged per iteration, where each cluster contains at least one object, an agglomerative
method requires at most # iterations.

A divisive hierarchical clustering method employs a top-down strategy. It starts by
placing all objects in one cluster, which is the hierarchy’s root. It then divides the root
cluster into several smaller subclusters, and recursively partitions those clusters into
smaller ones. The partitioning process continues until each cluster at the lowest level
is coherent enough—either containing only one object, or the objects within a cluster
are sufficiently similar to each other.

In either agglomerative or divisive hierarchical clustering, a user can specify the
desired number of clusters as a termination condition.

Agglomerative versus divisive hierarchical clustering. Figure 10.6 shows the appli-
cation of AGNES (AGglomerative NESting), an agglomerative hierarchical clustering
method, and DIANA (Dlvisive ANAlysis), a divisive hierarchical clustering method, on
a data set of five objects, {a, b, ¢, d, e}. Initially, AGNES, the agglomerative method, places
each object into a cluster of its own. The clusters are then merged step-by-step according
to some criterion. For example, clusters C; and C, may be merged if an object in C; and
an object in C; form the minimum Euclidean distance between any two objects from
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Figure 10.6 Agglomerative and divisive hierarchical clustering on data objects {a, b, c,d, e}.
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Figure 10.7 Dendrogram representation for hierarchical clustering of data objects {a,b,c,d, e}.

different clusters. This is a single-linkage approach in that each cluster is represented
by all the objects in the cluster, and the similarity between two clusters is measured
by the similarity of the closest pair of data points belonging to different clusters. The
cluster-merging process repeats until all the objects are eventually merged to form one
cluster.

DIANA, the divisive method, proceeds in the contrasting way. All the objects are used
to form one initial cluster. The cluster is split according to some principle such as the
maximum Euclidean distance between the closest neighboring objects in the cluster. The
cluster-splitting process repeats until, eventually, each new cluster contains only a single
object. (]

A tree structure called a dendrogram is commonly used to represent the process of
hierarchical clustering. It shows how objects are grouped together (in an agglomerative
method) or partitioned (in a divisive method) step-by-step. Figure 10.7 shows a den-
drogram for the five objects presented in Figure 10.6, where I = 0 shows the five objects
as singleton clusters at level 0. At ] = 1, objects a and b are grouped together to form the
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first cluster, and they stay together at all subsequent levels. We can also use a vertical axis
to show the similarity scale between clusters. For example, when the similarity of two
groups of objects, {a,b} and {c,d, e}, is roughly 0.16, they are merged together to form a
single cluster.

A challenge with divisive methods is how to partition a large cluster into several
smaller ones. For example, there are 2"~! — 1 possible ways to partition a set of 7 objects
into two exclusive subsets, where 7 is the number of objects. When # is large, it is com-
putationally prohibitive to examine all possibilities. Consequently, a divisive method
typically uses heuristics in partitioning, which can lead to inaccurate results. For the
sake of efficiency, divisive methods typically do not backtrack on partitioning decisions
that have been made. Once a cluster is partitioned, any alternative partitioning of this
cluster will not be considered again. Due to the challenges in divisive methods, there are
many more agglomerative methods than divisive methods.

10.3.2 Distance Measures in Algorithmic Methods

Whether using an agglomerative method or a divisive method, a core need is to measure
the distance between two clusters, where each cluster is generally a set of objects.

Four widely used measures for distance between clusters are as follows, where [p — p’|
is the distance between two objects or points, p and p’; m; is the mean for cluster, Cj;
and n; is the number of objects in C;. They are also known as linkage measures.

Minimum distance:  dist,,;,(C;, C) = migl {lp—2'1} (10.3)
P €Cj

Maximum distance:  dist;;0(C;, Cj) = max {|p—p'l} (10.4)
pECi,p’ECj

Mean distance:  distyean(Ci, Cj) = |m; — m;| (10.5)

. . 1
Average distance:  dist;,, (C;, Cj) = — Z p—7I (10.6)
nln] pEC,',p'ECj

When an algorithm uses the minimum distance, d,,;n(C;, C;), to measure the distance
between clusters, it is sometimes called a nearest-neighbor clustering algorithm. More-
over, if the clustering process is terminated when the distance between nearest clusters
exceeds a user-defined threshold, it is called a single-linkage algorithm. If we view the
data points as nodes of a graph, with edges forming a path between the nodes in a cluster,
then the merging of two clusters, C; and Cj, corresponds to adding an edge between the
nearest pair of nodes in C; and C;. Because edges linking clusters always go between dis-
tinct clusters, the resulting graph will generate a tree. Thus, an agglomerative hierar-
chical clustering algorithm that uses the minimum distance measure is also called a
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Example 10.4

10.3.3

minimal spanning tree algorithm, where a spanning tree of a graph is a tree that
connects all vertices, and a minimal spanning tree is the one with the least sum of edge
weights.

When an algorithm uses the maximum distance, dyqx(Ci, C;), to measure the distance
between clusters, it is sometimes called a farthest-neighbor clustering algorithm. If the
clustering process is terminated when the maximum distance between nearest clusters
exceeds a user-defined threshold, it is called a complete-linkage algorithm. By viewing
data points as nodes of a graph, with edges linking nodes, we can think of each cluster as
a complete subgraph, that is, with edges connecting all the nodes in the clusters. The dis-
tance between two clusters is determined by the most distant nodes in the two clusters.
Farthest-neighbor algorithms tend to minimize the increase in diameter of the clusters
at each iteration. If the true clusters are rather compact and approximately equal size,
the method will produce high-quality clusters. Otherwise, the clusters produced can be
meaningless.

The previous minimum and maximum measures represent two extremes in mea-
suring the distance between clusters. They tend to be overly sensitive to outliers or
noisy data. The use of mean or average distance is a compromise between the mini-
mum and maximum distances and overcomes the outlier sensitivity problem. Whereas
the mean distance is the simplest to compute, the average distance is advantageous in that
it can handle categoric as well as numeric data. The computation of the mean vector for
categoric data can be difficult or impossible to define.

Single versus complete linkages. Let us apply hierarchical clustering to the data set of
Figure 10.8(a). Figure 10.8(b) shows the dendrogram using single linkage. Figure 10.8(c)
shows the case using complete linkage, where the edges between clusters {A, B, ], H} and
{C,D, G, F,E} are omitted for ease of presentation. This example shows that by using
single linkages we can find hierarchical clusters defined by local proximity, whereas
complete linkage tends to find clusters opting for global closeness. (]

There are variations of the four essential linkage measures just discussed. For exam-
ple, we can measure the distance between two clusters by the distance between the
centroids (i.e., the central objects) of the clusters.

BIRCH: Multiphase Hierarchical Clustering
Using Clustering Feature Trees

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is designed for
clustering a large amount of numeric data by integrating hierarchical clustering (at the
initial microclustering stage) and other clustering methods such as iterative partitioning
(at the later macroclustering stage). It overcomes the two difficulties in agglomerative
clustering methods: (1) scalability and (2) the inability to undo what was done in the
previous step.

BIRCH uses the notions of clustering feature to summarize a cluster, and clus-
tering feature tree (CF-tree) to represent a cluster hierarchy. These structures help
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Figure 10.8 Hierarchical clustering using single and complete linkages.

the clustering method achieve good speed and scalability in large or even streaming
databases, and also make it effective for incremental and dynamic clustering of incoming
objects.

Consider a cluster of n d-dimensional data objects or points. The clustering feature
(CF) of the cluster is a 3-D vector summarizing information about clusters of objects. It
is defined as

CF = (1, LS, SS), (10.7)

where LS is the linear sum of the 7 points (i.e., Y ., x;), and SS is the square sum of the
data points (i.e., Y 1_; x;%).

A clustering feature is essentially a summary of the statistics for the given cluster.
Using a clustering feature, we can easily derive many useful statistics of a cluster. For
example, the cluster’s centroid, xy, radius, R, and diameter, D, are

xp = =—, (10.8)
n
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Here, R is the average distance from member objects to the centroid, and D is the aver-
age pairwise distance within a cluster. Both R and D reflect the tightness of the cluster
around the centroid.

Summarizing a cluster using the clustering feature can avoid storing the detailed
information about individual objects or points. Instead, we only need a constant size
of space to store the clustering feature. This is the key to BIRCH efficiency in space.
Moreover, clustering features are additive. That is, for two disjoint clusters, C; and G,
with the clustering features CF; = (n1,LS;,SS1) and CF, = (n,LS;, SS,), respectively,
the clustering feature for the cluster that formed by merging C; and G, is simply

CF, + CF, = (n; + mp, LS; + LS, SS1 + SS3). (10.11)

Clustering feature. Suppose there are three points, (2,5),(3,2), and (4,3), in a cluster,
C;. The clustering feature of C; is

CF; = (3,243 44,5+ 2+3),(22 + 32 + 42,52 + 22 + 32)) = (3, (9, 10), (29, 38)).

Suppose that Cj is disjoint to a second cluster, C,, where CF, = (3, (35,36), (417,440)).
The clustering feature of a new cluster, Cs, that is formed by merging C; and G, is
derived by adding CF; and CF,. That is,

CF3 = (34 3,(9 + 35,10 4 36), (29 + 417, 38 + 440)) = (6, (44,46), (446,478)). m

A CF-tree is a height-balanced tree that stores the clustering features for a hierar-
chical clustering. An example is shown in Figure 10.9. By definition, a nonleaf node in
a tree has descendants or “children.” The nonleaf nodes store sums of the CFs of their
children, and thus summarize clustering information about their children. A CF-tree
has two parameters: branching factor, B, and threshold, T. The branching factor specifies
the maximum number of children per nonleaf node. The threshold parameter specifies
the maximum diameter of subclusters stored at the leaf nodes of the tree. These two
parameters implicitly control the resulting tree’s size.

Given a limited amount of main memory, an important consideration in BIRCH
is to minimize the time required for input/output (I/O). BIRCH applies a multiphase
clustering technique: A single scan of the data set yields a basic, good clustering, and
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Figure 10.9 CF-tree structure.

one or more additional scans can optionally be used to further improve the quality. The
primary phases are

Phase 1: BIRCH scans the database to build an initial in-memory CF-tree, which
can be viewed as a multilevel compression of the data that tries to preserve the data’s
inherent clustering structure.

Phase 2: BIRCH applies a (selected) clustering algorithm to cluster the leaf nodes of
the CF-tree, which removes sparse clusters as outliers and groups dense clusters into
larger ones.

For Phase 1, the CF-tree is built dynamically as objects are inserted. Thus, the method
is incremental. An object is inserted into the closest leaf entry (subcluster). If the dia-
meter of the subcluster stored in the leaf node after insertion is larger than the threshold
value, then the leaf node and possibly other nodes are split. After the insertion of the
new object, information about the object is passed toward the root of the tree. The size
of the CF-tree can be changed by modifying the threshold. If the size of the memory
that is needed for storing the CF-tree is larger than the size of the main memory, then a
larger threshold value can be specified and the CF-tree is rebuilt.

The rebuild process is performed by building a new tree from the leaf nodes of the old
tree. Thus, the process of rebuilding the tree is done without the necessity of rereading
all the objects or points. This is similar to the insertion and node split in the construc-
tion of B+-trees. Therefore, for building the tree, data has to be read just once. Some
heuristics and methods have been introduced to deal with outliers and improve the qual-
ity of CF-trees by additional scans of the data. Once the CF-tree is built, any clustering
algorithm, such as a typical partitioning algorithm, can be used with the CF-tree in
Phase 2.

“How effective is BIRCH?” The time complexity of the algorithm is O(n), where n
is the number of objects to be clustered. Experiments have shown the linear scalability
of the algorithm with respect to the number of objects, and good quality of clustering
of the data. However, since each node in a CF-tree can hold only a limited number of
entries due to its size, a CF-tree node does not always correspond to what a user may
consider a natural cluster. Moreover, if the clusters are not spherical in shape, BIRCH
does not perform well because it uses the notion of radius or diameter to control the
boundary of a cluster.
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The ideas of clustering features and CF-trees have been applied beyond BIRCH. The
ideas have been borrowed by many others to tackle problems of clustering streaming
and dynamic data.

10.3.4 Chameleon: Multiphase Hierarchical Clustering
Using Dynamic Modeling

Chameleon is a hierarchical clustering algorithm that uses dynamic modeling to deter-
mine the similarity between pairs of clusters. In Chameleon, cluster similarity is assessed
based on (1) how well connected objects are within a cluster and (2) the proximity of
clusters. That is, two clusters are merged if their interconnectivity is high and they are
close together. Thus, Chameleon does not depend on a static, user-supplied model and
can automatically adapt to the internal characteristics of the clusters being merged. The
merge process facilitates the discovery of natural and homogeneous clusters and applies
to all data types as long as a similarity function can be specified.

Figure 10.10 illustrates how Chameleon works. Chameleon uses a k-nearest-neighbor
graph approach to construct a sparse graph, where each vertex of the graph represents
a data object, and there exists an edge between two vertices (objects) if one object is
among the k-most similar objects to the other. The edges are weighted to reflect the
similarity between objects. Chameleon uses a graph partitioning algorithm to partition
the k-nearest-neighbor graph into a large number of relatively small subclusters such
that it minimizes the edge cut. That is, a cluster C is partitioned into subclusters C; and
C; so as to minimize the weight of the edges that would be cut should C be bisected into
Ci and C,. It assesses the absolute interconnectivity between clusters C; and C;.

Chameleon then uses an agglomerative hierarchical clustering algorithm that itera-
tively merges subclusters based on their similarity. To determine the pairs of most similar
subclusters, it takes into account both the interconnectivity and the closeness of the clus-
ters. Specifically, Chameleon determines the similarity between each pair of clusters C;
and C; according to their relative interconnectivity, RI(C;, C;), and their relative closeness,
RC(G;, C)).

The relative interconnectivity, RI(C;, Gy, between two clusters, C; and G, is defined
as the absolute interconnectivity between C; and G, normalized with respect to the

k-nearest-neighbor graph Final clusters

Data set Construct

a sparse Partition A g é Merge
graph the graph % 4 partitions
_—>

$v

Figure 10.10 Chameleon: hierarchical clustering based on k-nearest neighbors and dynamic modeling.
Source: Based on Karypis, Han, and Kumar [KHK99].
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internal interconnectivity of the two clusters, C; and C;. That is,

|ECic,,cl

RI(C;, C) = ,
(6) L(ECG| + [EC)

(10.12)

where EC(c;,c;} is the edge cut as previously defined for a cluster containing both C;
and C;. Similarly, ECc; (or ECCJ.) is the minimum sum of the cut edges that partition
C; (or G) into two roughly equal parts.

The relative closeness, RC(C;, C;), between a pair of clusters, C; and C;, is the abso-
lute closeness between C; and Cj, normalized with respect to the internal closeness of
the two clusters, C; and C;. It is defined as

§EC{C,-,CJ-)
RC(C;, C) = , (10.13)
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where EEC‘C_ ¢, 1s the average weight of the edges that connect vertices in C; to vertices
]

in Gj, and EECC,» (or SECCj) is the average weight of the edges that belong to the min-
cut bisector of cluster C; (or G;).

Chameleon has been shown to have greater power at discovering arbitrarily shaped
clusters of high quality than several well-known algorithms such as BIRCH and density-
based DBSCAN (Section 10.4.1). However, the processing cost for high-dimensional
data may require O(r?) time for n objects in the worst case.

10.3.5 Probabilistic Hierarchical Clustering

Algorithmic hierarchical clustering methods using linkage measures tend to be easy to
understand and are often efficient in clustering. They are commonly used in many clus-
tering analysis applications. However, algorithmic hierarchical clustering methods can
suffer from several drawbacks. First, choosing a good distance measure for hierarchical
clustering is often far from trivial. Second, to apply an algorithmic method, the data
objects cannot have any missing attribute values. In the case of data that are partially
observed (i.e., some attribute values of some objects are missing), it is not easy to apply
an algorithmic hierarchical clustering method because the distance computation cannot
be conducted. Third, most of the algorithmic hierarchical clustering methods are heuris-
tic, and at each step locally search for a good merging/splitting decision. Consequently,
the optimization goal of the resulting cluster hierarchy can be unclear.

Probabilistic hierarchical clustering aims to overcome some of these disadvantages
by using probabilistic models to measure distances between clusters.

One way to look at the clustering problem is to regard the set of data objects to be
clustered as a sample of the underlying data generation mechanism to be analyzed or,
formally, the generative model. For example, when we conduct clustering analysis on
a set of marketing surveys, we assume that the surveys collected are a sample of the
opinions of all possible customers. Here, the data generation mechanism is a probability
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distribution of opinions with respect to different customers, which cannot be obtained
directly and completely. The task of clustering is to estimate the generative model as
accurately as possible using the observed data objects to be clustered.

In practice, we can assume that the data generative models adopt common distri-
bution functions, such as Gaussian distribution or Bernoulli distribution, which are
governed by parameters. The task of learning a generative model is then reduced to
finding the parameter values for which the model best fits the observed data set.

Generative model. Suppose we are given a set of 1-D points X = {xj,...,x,} for
clustering analysis. Let us assume that the data points are generated by a Gaussian
distribution,

N o 2= ! (Jﬂyz 10.14
[ —— 20
(/"LI ) 2 e > ( . )

where the parameters are ;4 (the mean) and o2 (the variance).
The probability that a point x; € X is then generated by the model is

_=w?

e 27 (10.15)

P(xilp,0?) =
2w o?

Consequently, the likelihood that X is generated by the model is

LN (1,0 : X) = P(X|11,0%) ﬁ L - (10.16)
1,0%) 1 X) = P(X|u,0%) = e W :
i V2mo?

The task of learning the generative model is to find the parameters 1 and o such
that the likelihood L(N (1,02) : X) is maximized, that is, finding

N (1o,0¢) = argmax{L(N (n,0%) : X)}, (10.17)
where max{L(N (,02) : X)} is called the maximum likelihood. [

Given a set of objects, the quality of a cluster formed by all the objects can be
measured by the maximum likelihood. For a set of objects partitioned into m clusters
Cy,...,Cp, the quality can be measured by

QUCr,...,Cud) = [ [ P(Ch, (10.18)

i=1
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where P() is the maximum likelihood. If we merge two clusters, C; and C,, into a
cluster, C;; U C;,, then, the change in quality of the overall clustering is

QU{Crs-., G} = {C;, G H VLG, U Gy ) — QUG- Cin})

Hl— P(C) p(cjlucjz) -
P(Cj)P(Cp) HP(C)

e P(Cj, UCy) )
; —1). 10.19
1:[ )< Ci)P(Cy,) ( )

When choosing to merge two clusters in hierarchical clustering, [ ]2, P(C;) is constant
for any pair of clusters. Therefore, given clusters C; and C;, the distance between them
can be measured by

P(CUC

dist(C;,C)) = —log 1Y D) (10.20)

P(C1)P(C)
A probabilistic hierarchical clustering method can adopt the agglomerative clustering
framework, but use probabilistic models (Eq. 10.20) to measure the distance between
clusters.

Upon close observation of Eq. (10.19), we see that merging two clusters may not

always lead to an improvement in clustering quality, that is, P((C“)—P(éj_)) may be less
2

than 1. For example, assume that Gaussian distribution functions are used in the model
of Figure 10.11. Although merging clusters C; and G, results in a cluster that better fits a
Gaussian distribution, merging clusters C; and C4 lowers the clustering quality because
no Gaussian functions can fit the merged cluster well.

Based on this observation, a probabilistic hierarchical clustering scheme can start
with one cluster per object, and merge two clusters, C; and G, if the distance between

them is negative. In each iteration, we try to find C; and C; so as to maximize

log % The iteration continues as long as log% > 0, that is, as long as

there is an improvement in clustering quality. The pseudocode is given in Figure 10.12.

Probabilistic hierarchical clustering methods are easy to understand, and generally
have the same efficiency as algorithmic agglomerative hierarchical clustering methods;
in fact, they share the same framework. Probabilistic models are more interpretable, but
sometimes less flexible than distance metrics. Probabilistic models can handle partially
observed data. For example, given a multidimensional data set where some objects have
missing values on some dimensions, we can learn a Gaussian model on each dimen-
sion independently using the observed values on the dimension. The resulting cluster
hierarchy accomplishes the optimization goal of fitting data to the selected probabilistic
models.

A drawback of using probabilistic hierarchical clustering is that it outputs only one
hierarchy with respect to a chosen probabilistic model. It cannot handle the uncer-
tainty of cluster hierarchies. Given a data set, there may exist multiple hierarchies that
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Figure 10.11 Merging clusters in probabilistic hierarchical clustering: (a) Merging clusters C; and C, leads
to an increase in overall cluster quality, but merging clusters (b) C; and (c) Cy does not.

Algorithm: A probabilistic hierarchical clustering algorithm.

Input:
D ={oy,...,04}: a data set containing # objects;

Output: A hierarchy of clusters.
Method:

(1) create a cluster for each object C; = {0;}, 1 <i<m;

(2) fori=1ton
P(Cl'UC]‘)

(3) find pair of clusters C; and C; such that C;, C; = argmax ;log WP(CJ-);
) P(CUC;)

(4) if log Wp(éj) > 0 then merge C; and Cj;

(5) else stop;

Figure 10.12 A probabilistic hierarchical clustering algorithm.

fit the observed data. Neither algorithmic approaches nor probabilistic approaches can
find the distribution of such hierarchies. Recently, Bayesian tree-structured models have
been developed to handle such problems. Bayesian and other sophisticated probabilistic
clustering methods are considered advanced topics and are not covered in this book.
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Density-Based Methods

Partitioning and hierarchical methods are designed to find spherical-shaped clusters.
They have difficulty finding clusters of arbitrary shape such as the “S” shape and oval
clusters in Figure 10.13. Given such data, they would likely inaccurately identify convex
regions, where noise or outliers are included in the clusters.

To find clusters of arbitrary shape, alternatively, we can model clusters as dense
regions in the data space, separated by sparse regions. This is the main strategy behind
density-based clustering methods, which can discover clusters of nonspherical shape.
In this section, you will learn the basic techniques of density-based clustering by
studying three representative methods, namely, DBSCAN (Section 10.4.1), OPTICS
(Section 10.4.2), and DENCLUE (Section 10.4.3).

[0.4.]| DBSCAN: Density-Based Clustering Based on Connected
Regions with High Density

“How can we find dense regions in density-based clustering?” The density of an object o
can be measured by the number of objects close to 0. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) finds core objects, that is, objects that have dense
neighborhoods. It connects core objects and their neighborhoods to form dense regions
as clusters.

“How does DBSCAN quantify the neighborhood of an object?” A user-specified para-
meter € > 0 is used to specify the radius of a neighborhood we consider for every object.
The e-neighborhood of an object o is the space within a radius € centered at o.

Due to the fixed neighborhood size parameterized by ¢, the density of a neighbor-
hood can be measured simply by the number of objects in the neighborhood. To deter-
mine whether a neighborhood is dense or not, DBSCAN uses another user-specified

Figure 10.13 Clusters of arbitrary shape.
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parameter, MinPts, which specifies the density threshold of dense regions. An object is
a core object if the e-neighborhood of the object contains at least MinPts objects. Core
objects are the pillars of dense regions.

Given a set, D, of objects, we can identify all core objects with respect to the given
parameters, € and MinPts. The clustering task is therein reduced to using core objects
and their neighborhoods to form dense regions, where the dense regions are clusters.
For a core object q and an object p, we say that p is directly density-reachable from q
(with respect to € and MinPts) if p is within the e-neighborhood of q. Clearly, an object
p is directly density-reachable from another object q if and only if q is a core object and
p is in the e-neighborhood of q. Using the directly density-reachable relation, a core
object can “bring” all objects from its e-neighborhood into a dense region.

“How can we assemble a large dense region using small dense regions centered by core
objects?” In DBSCAN, p is density-reachable from q (with respect to € and MinPts in
D) if there is a chain of objects p1,.. ., pu, such that py = q, p, = p, and p; | is directly
density-reachable from p; with respect to € and MinPts, for 1 < i < n, p; € D. Note that
density-reachability is not an equivalence relation because it is not symmetric. If both 0y
and o are core objects and 0y is density-reachable from o0, then o0, is density-reachable
from o;. However, if 05 is a core object but 01 is not, then 0; may be density-reachable
from o0,, but not vice versa.

To connect core objects as well as their neighbors in a dense region, DBSCAN uses
the notion of density-connectedness. Two objects p1,p2 € D are density-connected with
respect to € and MinPts if there is an object q € D such that both p; and p; are density-
reachable from q with respect to € and MinPts. Unlike density-reachability, density-
connectedness is an equivalence relation. It is easy to show that, for objects 03, 02, and
03, if 01 and o0, are density-connected, and 0, and o3 are density-connected, then so are
01 and o3.

Density-reachability and density-connectivity. Consider Figure 10.14 for a given €
represented by the radius of the circles, and, say, let MinPts = 3.

Of the labeled points, m, p, 0, are core objects because each is in an €-neighborhood
containing at least three points. Object q is directly density-reachable from m. Object m
is directly density-reachable from p and vice versa.

Object q is (indirectly) density-reachable from p because q is directly density-
reachable from m and m is directly density-reachable from p. However, p is not density-
reachable from q because g is not a core object. Similarly, r and s are density-reachable
from o0 and o is density-reachable from r. Thus, o, r, and s are all density-connected. =

We can use the closure of density-connectedness to find connected dense regions as
clusters. Each closed set is a density-based cluster. A subset C C D is a cluster if (1)
for any two objects 01,02 € C, 01 and 03 are density-connected; and (2) there does not
exist an object 0 € C and another object o’ € (D — C) such that o and o’ are density-
connected.
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Figure 10.14 Density-reachability and density-connectivity in density-based clustering. Source: Based on
Ester, Kriegel, Sander, and Xu [EKSX96].

“How does DBSCAN find clusters?” Initially, all objects in a given data set D are
marked as “unvisited” DBSCAN randomly selects an unvisited object p, marks p as
“visited,” and checks whether the e-neighborhood of p contains at least MinPts objects.
If not, p is marked as a noise point. Otherwise, a new cluster C is created for p, and all
the objects in the e-neighborhood of p are added to a candidate set, N. DBSCAN iter-
atively adds to C those objects in N that do not belong to any cluster. In this process,
for an object p’ in N that carries the label “unvisited,” DBSCAN marks it as “visited” and
checks its e-neighborhood. If the e-neighborhood of p’ has at least MinPts objects, those
objects in the e-neighborhood of p’ are added to N. DBSCAN continues adding objects
to C until C can no longer be expanded, that is, N is empty. At this time, cluster C is
completed, and thus is output.

To find the next cluster, DBSCAN randomly selects an unvisited object from the
remaining ones. The clustering process continues until all objects are visited. The
pseudocode of the DBSCAN algorithm is given in Figure 10.15.

If a spatial index is used, the computational complexity of DBSCAN is O(nlogn),
where 7 is the number of database objects. Otherwise, the complexity is O(r?). With
appropriate settings of the user-defined parameters, ¢ and MinPts, the algorithm is
effective in finding arbitrary-shaped clusters.

10.4.2 OPTICS: Ordering Points to Identify
the Clustering Structure

Although DBSCAN can cluster objects given input parameters such as € (the maxi-
mum radius of a neighborhood) and MinPts (the minimum number of points required
in the neighborhood of a core object), it encumbers users with the responsibility of
selecting parameter values that will lead to the discovery of acceptable clusters. This is
a problem associated with many other clustering algorithms. Such parameter settings
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Algorithm: DBSCAN: a density-based clustering algorithm.
Input:

D: a data set containing # objects,
€: the radius parameter, and

MinPts: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:

(1) mark all objects as unvisited;

(2) do

(3) randomly select an unvisited object p;

(4) mark p as visited;

(5) if the e-neighborhood of p has at least MinPts objects

(6) create a new cluster C, and add p to G;

(7) let N be the set of objects in the €-neighborhood of p;

(8) for each point p’ in N

(9) if p’ is unvisited

(10) mark p’ as visited;

(11) if the e-neighborhood of p’ has at least MinPts points,
add those points to N;

(12) if p’ is not yet a member of any cluster, add p’ to C;

(13) end for

(14) output C;

(15) else mark p as noise;

(16) until no object is unvisited;

Figure 10.15 DBSCAN algorithm.

are usually empirically set and difficult to determine, especially for real-world, high-
dimensional data sets. Most algorithms are sensitive to these parameter values: Slightly
different settings may lead to very different clusterings of the data. Moreover, real-world,
high-dimensional data sets often have very skewed distributions such that their intrin-
sic clustering structure may not be well characterized by a single set of global density
parameters.

Note that density-based clusters are monotonic with respect to the neighborhood
threshold. That is, in DBSCAN, for a fixed MinPts value and two neighborhood thresh-
olds, €1 < €3, a cluster C with respect to €; and MinPts must be a subset of a cluster
C’ with respect to €, and MinPts. This means that if two objects are in a density-based
cluster, they must also be in a cluster with a lower density requirement.

To overcome the difficulty in using one set of global parameters in clustering analy-
sis, a cluster analysis method called OPTICS was proposed. OPTICS does not explicitly
produce a data set clustering. Instead, it outputs a cluster ordering. This is a linear list
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of all objects under analysis and represents the density-based clustering structure of the
data. Objects in a denser cluster are listed closer to each other in the cluster ordering.
This ordering is equivalent to density-based clustering obtained from a wide range of
parameter settings. Thus, OPTICS does not require the user to provide a specific density
threshold. The cluster ordering can be used to extract basic clustering information (e.g.,
cluster centers, or arbitrary-shaped clusters), derive the intrinsic clustering structure, as
well as provide a visualization of the clustering.

To construct the different clusterings simultaneously, the objects are processed in a
specific order. This order selects an object that is density-reachable with respect to the
lowest € value so that clusters with higher density (lower €) will be finished first. Based
on this idea, OPTICS needs two important pieces of information per object:

The core-distance of an object p is the smallest value €' such that the
€’-neighborhood of p has at least MinPts objects. That is, €’ is the minimum dis-
tance threshold that makes p a core object. If p is not a core object with respect to €
and MinPts, the core-distance of p is undefined.

The reachability-distance to object p from q is the minimum radius value that makes
p density-reachable from ¢. According to the definition of density-reachability, q
has to be a core object and p must be in the neighborhood of q. Therefore, the
reachability-distance from g to p is max{core-distance(q), dist(p, q)}. If q is not a
core object with respect to € and MinPts, the reachability-distance to p from g is
undefined.

An object p may be directly reachable from multiple core objects. Therefore, p
may have multiple reachability-distances with respect to different core objects. The
smallest reachability-distance of p is of particular interest because it gives the shortest
path for which p is connected to a dense cluster.

Example 10.8 Core-distance and reachability-distance. Figure 10.16 illustrates the concepts of core-
distance and reachability-distance. Suppose that € = 6 mm and MinPts = 5. The core-
distance of p is the distance, €/, between p and the fourth closest data object from p.
The reachability-distance of q; from p is the core-distance of p (i.e., ¢’ = 3mm) because
this is greater than the Euclidean distance from p to q;. The reachability-distance of g
with respect to p is the Euclidean distance from p to g, because this is greater than the
core-distance of p. L]

OPTICS computes an ordering of all objects in a given database and, for each object
in the database, stores the core-distance and a suitable reachability-distance. OPTICS
maintains a list called OrderSeeds to generate the output ordering. Objects in Order-
Seeds are sorted by the reachability-distance from their respective closest core objects,
that is, by the smallest reachability-distance of each object.

OPTICS begins with an arbitrary object from the input database as the current
object, p. It retrieves the e-neighborhood of p, determines the core-distance, and sets
the reachability-distance to undefined. The current object, p, is then written to output.
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Figure 10.16 OPTICS terminology. Source: Based on Ankerst, Breunig, Kriegel, and Sander [ABKS99].

If p is not a core object, OPTICS simply moves on to the next object in the OrderSeeds
list (or the input database if OrderSeeds is empty). If p is a core object, then for each
object, g, in the e-neighborhood of p, OPTICS updates its reachability-distance from p
and inserts q into OrderSeeds if q has not yet been processed. The iteration continues
until the input is fully consumed and OrderSeeds is empty.

A data set’s cluster ordering can be represented graphically, which helps to visual-
ize and understand the clustering structure in a data set. For example, Figure 10.17 is
the reachability plot for a simple 2-D data set, which presents a general overview of
how the data are structured and clustered. The data objects are plotted in the cluster-
ing order (horizontal axis) together with their respective reachability-distances (vertical
axis). The three Gaussian “bumps” in the plot reflect three clusters in the data set. Meth-
ods have also been developed for viewing clustering structures of high-dimensional data
at various levels of detail.

The structure of the OPTICS algorithm is very similar to that of DBSCAN. Conse-
quently, the two algorithms have the same time complexity. The complexity is O(nlog n)
if a spatial index is used, and O(#?) otherwise, where n is the number of objects.

10.4.3 DENCLUE: Clustering Based on Density

Distribution Functions

Density estimation is a core issue in density-based clustering methods. DENCLUE
(DENsity-based CLUstEring) is a clustering method based on a set of density distribu-
tion functions. We first give some background on density estimation, and then describe
the DENCLUE algorithm.

In probability and statistics, density estimation is the estimation of an unobservable
underlying probability density function based on a set of observed data. In the context
of density-based clustering, the unobservable underlying probability density function
is the true distribution of the population of all possible objects to be analyzed. The
observed data set is regarded as a random sample from that population.
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Figure 10.17 Cluster ordering in OPTICS. Source: Adapted from Ankerst, Breunig, Kriegel, and Sander
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Figure 10.18 The subtlety in density estimation in DBSCAN and OPTICS: Increasing the neighborhood
radius slightly from €, to €, results in a much higher density.

In DBSCAN and OPTICS, density is calculated by counting the number of objects in
a neighborhood defined by a radius parameter, €. Such density estimates can be highly
sensitive to the radius value used. For example, in Figure 10.18, the density changes
significantly as the radius increases by a small amount.

To overcome this problem, kernel density estimation can be used, which is a
nonparametric density estimation approach from statistics. The general idea behind
kernel density estimation is simple. We treat an observed object as an indicator of
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high-probability density in the surrounding region. The probability density at a point
depends on the distances from this point to the observed objects.

Formally, let xj,...,x, be an independent and identically distributed sample of a
random variable f. The kernel density approximation of the probability density function is
i) = — ZH:K . (10.21)
x)=— , .
MY h

where K() is a kernel and F is the bandwidth serving as a smoothing parameter. A ker-
nel can be regarded as a function modeling the influence of a sample point within its
neighborhood. Technically, a kernel K() is a non-negative real-valued integrable func-
tion that should satisfy two requirements: fjoooo K(u)du=1 and K(—u) = K(u) for all
values of u. A frequently used kernel is a standard Gaussian function with a mean of 0
and a variance of 1:

X — X 1 _&x—=xp?
K( ’): e . (10.22)

h 27

DENCLUE uses a Gaussian kernel to estimate density based on the given set of objects
to be clustered. A point x* is called a density attractor if it is a local maximum of the
estimated density function. To avoid trivial local maximum points, DENCLUE uses a
noise threshold, &, and only considers those density attractors x* such that f(x*) >£.
These nontrivial density attractors are the centers of clusters.

Objects under analysis are assigned to clusters through density attractors using a step-
wise hill-climbing procedure. For an object, x, the hill-climbing procedure starts from
x and is guided by the gradient of the estimated density function. That is, the density
attractor for x is computed as

x° =X
. . Vi
oA =x1+8{—(x.), (10.23)
V()]

where § is a parameter to control the speed of convergence, and
1

Vf(x) = .
hit2ny ol K (x - x,-) (xi —x)

(10.24)

The hill-climbing procedure stops at step k > 0 if f(xk+1) < f(xk), and assigns x to the
density attractor x* = xX. An object x is an outlier or noise if it converges in the hill-
climbing procedure to a local maximum x* with jAf (x*) <&.

A cluster in DENCLUE is a set of density attractors X and a set of input objects C
such that each object in C is assigned to a density attractor in X, and there exists a path
between every pair of density attractors where the density is above &. By using multiple
density attractors connected by paths, DENCLUE can find clusters of arbitrary shape.
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DENCLUE has several advantages. It can be regarded as a generalization of several
well-known clustering methods such as single-linkage approaches and DBSCAN. More-
over, DENCLUE is invariant against noise. The kernel density estimation can effectively
reduce the influence of noise by uniformly distributing noise into the input data.

Grid-Based Methods

The clustering methods discussed so far are data-driven—they partition the set of
objects and adapt to the distribution of the objects in the embedding space. Alterna-
tively, a grid-based clustering method takes a space-driven approach by partitioning
the embedding space into cells independent of the distribution of the input objects.

The grid-based clustering approach uses a multiresolution grid data structure. It
quantizes the object space into a finite number of cells that form a grid structure on
which all of the operations for clustering are performed. The main advantage of the
approach is its fast processing time, which is typically independent of the number of data
objects, yet dependent on only the number of cells in each dimension in the quantized
space.

In this section, we illustrate grid-based clustering using two typical examples. STING
(Section 10.5.1) explores statistical information stored in the grid cells. CLIQUE
(Section 10.5.2) represents a grid- and density-based approach for subspace clustering
in a high-dimensional data space.

STING: STatistical INformation Grid

STING is a grid-based multiresolution clustering technique in which the embedding
spatial area of the input objects is divided into rectangular cells. The space can be divided
in a hierarchical and recursive way. Several levels of such rectangular cells correspond to
different levels of resolution and form a hierarchical structure: Each cell at a high level
is partitioned to form a number of cells at the next lower level. Statistical information
regarding the attributes in each grid cell, such as the mean, maximum, and minimum
values, is precomputed and stored as statistical parameters. These statistical parameters
are useful for query processing and for other data analysis tasks.

Figure 10.19 shows a hierarchical structure for STING clustering. The statistical
parameters of higher-level cells can easily be computed from the parameters of the
lower-level cells. These parameters include the following: the attribute-independent
parameter, count; and the attribute-dependent parameters, mean, stdev (standard devia-
tion), min (minimum), max (maximum), and the type of distribution that the attribute
value in the cell follows such as normal, uniform, exponential, or none (if the distribu-
tion is unknown). Here, the attribute is a selected measure for analysis such as price for
house objects. When the data are loaded into the database, the parameters count, mean,
stdev, min, and max of the bottom-level cells are calculated directly from the data. The
value of distribution may either be assigned by the user if the distribution type is known
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Figure 10.19 Hierarchical structure for STING clustering.

beforehand or obtained by hypothesis tests such as the x? test. The type of distribution
of a higher-level cell can be computed based on the majority of distribution types of its
corresponding lower-level cells in conjunction with a threshold filtering process. If the
distributions of the lower-level cells disagree with each other and fail the threshold test,
the distribution type of the high-level cell is set to none.

“How is this statistical information useful for query answering?” The statistical para-
meters can be used in a top-down, grid-based manner as follows. First, a layer within the
hierarchical structure is determined from which the query-answering process is to start.
This layer typically contains a small number of cells. For each cell in the current layer,
we compute the confidence interval (or estimated probability range) reflecting the cell’s
relevancy to the given query. The irrelevant cells are removed from further considera-
tion. Processing of the next lower level examines only the remaining relevant cells. This
process is repeated until the bottom layer is reached. At this time, if the query specifica-
tion is met, the regions of relevant cells that satisfy the query are returned. Otherwise,
the data that fall into the relevant cells are retrieved and further processed until they
meet the query’s requirements.

An interesting property of STING is that it approaches the clustering result of
DBSCAN if the granularity approaches 0 (i.e., toward very low-level data). In other
words, using the count and cell size information, dense clusters can be identified
approximately using STING. Therefore, STING can also be regarded as a density-based
clustering method.

“What advantages does STING offer over other clustering methods?” STING offers
several advantages: (1) the grid-based computation is query-independent because the
statistical information stored in each cell represents the summary information of the
data in the grid cell, independent of the query; (2) the grid structure facilitates parallel
processing and incremental updating; and (3) the method’s efficiency is a major advan-
tage: STING goes through the database once to compute the statistical parameters of the
cells, and hence the time complexity of generating clusters is O(n), where 7 is the total
number of objects. After generating the hierarchical structure, the query processing time
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is O(g), where g is the total number of grid cells at the lowest level, which is usually much
smaller than n.

Because STING uses a multiresolution approach to cluster analysis, the quality of
STING clustering depends on the granularity of the lowest level of the grid structure. If
the granularity is very fine, the cost of processing will increase substantially; however, if
the bottom level of the grid structure is too coarse, it may reduce the quality of cluster
analysis. Moreover, STING does not consider the spatial relationship between the child-
ren and their neighboring cells for construction of a parent cell. As a result, the shapes
of the resulting clusters are isothetic, that is, all the cluster boundaries are either hori-
zontal or vertical, and no diagonal boundary is detected. This may lower the quality and
accuracy of the clusters despite the fast processing time of the technique.

[0.5.2 CLIQUE: An Apriori-like Subspace Clustering Method

A data object often has tens of attributes, many of which may be irrelevant. The val-
ues of attributes may vary considerably. These factors can make it difficult to locate
clusters that span the entire data space. It may be more meaningful to instead search
for clusters within different subspaces of the data. For example, consider a health-
informatics application where patient records contain extensive attributes describing
personal information, numerous symptoms, conditions, and family history.

Finding a nontrivial group of patients for which all or even most of the attributes
strongly agree is unlikely. In bird flu patients, for instance, the age, gender, and job
attributes may vary dramatically within a wide range of values. Thus, it can be difficult
to find such a cluster within the entire data space. Instead, by searching in subspaces, we
may find a cluster of similar patients in a lower-dimensional space (e.g., patients who
are similar to one other with respect to symptoms like high fever, cough but no runny
nose, and aged between 3 and 16).

CLIQUE (CLustering In QUEst) is a simple grid-based method for finding density-
based clusters in subspaces. CLIQUE partitions each dimension into nonoverlapping
intervals, thereby partitioning the entire embedding space of the data objects into cells.
It uses a density threshold to identify dense cells and sparse ones. A cell is dense if the
number of objects mapped to it exceeds the density threshold.

The main strategy behind CLIQUE for identifying a candidate search space uses the
monotonicity of dense cells with respect to dimensionality. This is based on the Apriori
property used in frequent pattern and association rule mining (Chapter 6). In the con-
text of clusters in subspaces, the monotonicity says the following. A k-dimensional cell ¢
(k > 1) can have at least [ points only if every (k — 1)-dimensional projection of ¢, which
is a cell in a (k — 1)-dimensional subspace, has at least ! points. Consider Figure 10.20,
where the embedding data space contains three dimensions: age, salary, and vacation.
A 2-D cell, say in the subspace formed by age and salary, contains I points only if the
projection of this cell in every dimension, that is, age and salary, respectively, contains
at least [ points.

CLIQUE performs clustering in two steps. In the first step, CLIQUE partitions
the d-dimensional data space into nonoverlapping rectangular units, identifying the
dense units among these. CLIQUE finds dense cells in all of the subspaces. To do so,
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Figure 10.20 Dense units found with respect to age for the dimensions salary and vacation are intersected
to provide a candidate search space for dense units of higher dimensionality.
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CLIQUE partitions every dimension into intervals, and identifies intervals containing
at least [ points, where [ is the density threshold. CLIQUE then iteratively joins two
k-dimensional dense cells, ¢ and ¢, in subspaces (Dj,...,D;) and (Dj» ... Dj),
respectively, if D; = Dj,..., Dj_, =Dj_,, and ¢ and ¢, share the same intervals in
those dimensions. The join operation generates a new (k + 1)-dimensional candidate
cell ¢ in space (Dj,;...,D;,_,,Dj,Dj). CLIQUE checks whether the number of points
in ¢ passes the density threshold. The iteration terminates when no candidates can be
generated or no candidate cells are dense.

In the second step, CLIQUE uses the dense cells in each subspace to assemble clusters,
which can be of arbitrary shape. The idea is to apply the Minimum Description Length
(MDL) principle (Chapter 8) to use the maximal regions to cover connected dense cells,
where a maximal region is a hyperrectangle where every cell falling into this region is
dense, and the region cannot be extended further in any dimension in the subspace.
Finding the best description of a cluster in general is NP-Hard. Thus, CLIQUE adopts
a simple greedy approach. It starts with an arbitrary dense cell, finds a maximal region
covering the cell, and then works on the remaining dense cells that have not yet been
covered. The greedy method terminates when all dense cells are covered.

“How effective is CLIQUE?” CLIQUE automatically finds subspaces of the highest
dimensionality such that high-density clusters exist in those subspaces. It is insensitive
to the order of input objects and does not presume any canonical data distribution. It
scales linearly with the size of the input and has good scalability as the number of dimen-
sions in the data is increased. However, obtaining a meaningful clustering is dependent
on proper tuning of the grid size (which is a stable structure here) and the density
threshold. This can be difficult in practice because the grid size and density threshold
are used across all combinations of dimensions in the data set. Thus, the accuracy of the
clustering results may be degraded at the expense of the method’s simplicity. Moreover,
for a given dense region, all projections of the region onto lower-dimensionality sub-
spaces will also be dense. This can result in a large overlap among the reported dense
regions. Furthermore, it is difficult to find clusters of rather different densities within
different dimensional subspaces.

Several extensions to this approach follow a similar philosophy. For example, we can
think of a grid as a set of fixed bins. Instead of using fixed bins for each of the dimensions,
we can use an adaptive, data-driven strategy to dynamically determine the bins for each
dimension based on data distribution statistics. Alternatively, instead of using a den-
sity threshold, we may use entropy (Chapter 8) as a measure of the quality of subspace
clusters.

Evaluation of Clustering

By now you have learned what clustering is and know several popular clustering meth-
ods. You may ask, “When I try out a clustering method on a data set, how can I
evaluate whether the clustering results are good?” In general, cluster evaluation assesses



484 Chapter 10 Cluster Analysis: Basic Concepts and Methods

the feasibility of clustering analysis on a data set and the quality of the results generated
by a clustering method. The major tasks of clustering evaluation include the following:

Assessing clustering tendency. In this task, for a given data set, we assess whether a
nonrandom structure exists in the data. Blindly applying a clustering method on a
data set will return clusters; however, the clusters mined may be misleading. Cluster-
ing analysis on a data set is meaningful only when there is a nonrandom structure in
the data.

Determining the number of clusters in a data set. A few algorithms, such as k-means,
require the number of clusters in a data set as the parameter. Moreover, the number
of clusters can be regarded as an interesting and important summary statistic of a
data set. Therefore, it is desirable to estimate this number even before a clustering
algorithm is used to derive detailed clusters.

Measuring clustering quality. After applying a clustering method on a data set, we
want to assess how good the resulting clusters are. A number of measures can be used.
Some methods measure how well the clusters fit the data set, while others measure
how well the clusters match the ground truth, if such truth is available. There are also
measures that score clusterings and thus can compare two sets of clustering results
on the same data set.

In the rest of this section, we discuss each of these three topics.

10.6.] Assessing Clustering Tendency

Example 10.9

Clustering tendency assessment determines whether a given data set has a non-random
structure, which may lead to meaningful clusters. Consider a data set that does not have
any non-random structure, such as a set of uniformly distributed points in a data space.
Even though a clustering algorithm may return clusters for the data, those clusters are
random and are not meaningful.

Clustering requires nonuniform distribution of data. Figure 10.21 shows a data set
that is uniformly distributed in 2-D data space. Although a clustering algorithm may
still artificially partition the points into groups, the groups will unlikely mean anything
significant to the application due to the uniform distribution of the data. (]

“How can we assess the clustering tendency of a data set?” Intuitively, we can try to
measure the probability that the data set is generated by a uniform data distribution.
This can be achieved using statistical tests for spatial randomness. To illustrate this idea,
let’s look at a simple yet effective statistic called the Hopkins Statistic.

The Hopkins Statistic is a spatial statistic that tests the spatial randomness of a vari-
able as distributed in a space. Given a data set, D, which is regarded as a sample of
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Figure 10.21 A data set that is uniformly distributed in the data space.

a random variable, o, we want to determine how far away o is from being uniformly
distributed in the data space. We calculate the Hopkins Statistic as follows:

Sample n points, pi, ..., Pu, uniformly from D. That is, each point in D has the same
probability of being included in this sample. For each point, p;, we find the nearest
neighbor of p; (1 < i < n) in D, and let x; be the distance between p; and its nearest
neighbor in D. That is,

; = min{dist(p;,v)}. 10.2
Xi rvrlelg{ ist(pi,v)} (10.25)
. Sample n points, qi, ..., gu, uniformly from D. For each q; (1 < i < n), we find the

nearest neighbor of g; in D — {g;}, and let y; be the distance between ¢; and its nearest
neighbor in D —{g;}. That is,

yi= végg;éqi{dlst(qi,V)}. (10.26)

. Calculate the Hopkins Statistic, H, as

Z?:U’i
i xi+ Dy

“What does the Hopkins Statistic tell us about how likely data set D follows a uni-

H=

(10.27)

form distribution in the data space?” If D were uniformly distributed, then )", y; and
Z?:l x; would be close to each other, and thus H would be about 0.5. However, if D were
highly skewed, then Y7, y; would be substantially smaller than )", x; in expectation,
and thus H would be close to 0.
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Our null hypothesis is the homogeneous hypothesis—that D is uniformly distributed
and thus contains no meaningful clusters. The nonhomogeneous hypothesis (i.e., that D
is not uniformly distributed and thus contains clusters) is the alternative hypothesis.
We can conduct the Hopkins Statistic test iteratively, using 0.5 as the threshold to reject
the alternative hypothesis. That is, if H > 0.5, then it is unlikely that D has statistically
significant clusters.

10.6.2 Determining the Number of Clusters

Determining the “right” number of clusters in a data set is important, not only because
some clustering algorithms like k-means require such a parameter, but also because the
appropriate number of clusters controls the proper granularity of cluster analysis. It can
be regarded as finding a good balance between compressibility and accuracy in cluster
analysis. Consider two extreme cases. What if you were to treat the entire data set as a
cluster? This would maximize the compression of the data, but such a cluster analysis
has no value. On the other hand, treating each object in a data set as a cluster gives
the finest clustering resolution (i.e., most accurate due to the zero distance between an
object and the corresponding cluster center). In some methods like k-means, this even
achieves the best cost. However, having one object per cluster does not enable any data
summarization.

Determining the number of clusters is far from easy, often because the “right” num-
ber is ambiguous. Figuring out what the right number of clusters should be often
depends on the distribution’s shape and scale in the data set, as well as the cluster-
ing resolution required by the user. There are many possible ways to estimate the
number of clusters. Here, we briefly introduce a few simple yet popular and effective
methods.

A simple method is to set the number of clusters to about \/g for a data set of n

points. In expectation, each cluster has /27 points.

The elbow method is based on the observation that increasing the number of clusters
can help to reduce the sum of within-cluster variance of each cluster. This is because
having more clusters allows one to capture finer groups of data objects that are more
similar to each other. However, the marginal effect of reducing the sum of within-cluster
variances may drop if too many clusters are formed, because splitting a cohesive cluster
into two gives only a small reduction. Consequently, a heuristic for selecting the right
number of clusters is to use the turning point in the curve of the sum of within-cluster
variances with respect to the number of clusters.

Technically, given a number, k > 0, we can form k clusters on the data set in ques-
tion using a clustering algorithm like k-means, and calculate the sum of within-cluster
variances, var(k). We can then plot the curve of var with respect to k. The first (or most
significant) turning point of the curve suggests the “right” number.

More advanced methods can determine the number of clusters using information
criteria or information theoretic approaches. Please refer to the bibliographic notes for
further information (Section 10.9).



10.6.3

10.6 Evaluation of Clustering 487

The “right” number of clusters in a data set can also be determined by cross-
validation, a technique often used in classification (Chapter 8). First, divide the given
data set, D, into m parts. Next, use m — 1 parts to build a clustering model, and use
the remaining part to test the quality of the clustering. For example, for each point in
the test set, we can find the closest centroid. Consequently, we can use the sum of the
squared distances between all points in the test set and the closest centroids to measure
how well the clustering model fits the test set. For any integer k > 0, we repeat this pro-
cess m times to derive clusterings of k clusters by using each part in turn as the test set.
The average of the quality measure is taken as the overall quality measure. We can then
compare the overall quality measure with respect to different values of k, and find the
number of clusters that best fits the data.

Measuring Clustering Quality

Suppose you have assessed the clustering tendency of a given data set. You may have
also tried to predetermine the number of clusters in the set. You can now apply one
or multiple clustering methods to obtain clusterings of the data set. “How good is the
clustering generated by a method, and how can we compare the clusterings generated by
different methods?”

We have a few methods to choose from for measuring the quality of a clustering.
In general, these methods can be categorized into two groups according to whether
ground truth is available. Here, ground truth is the ideal clustering that is often built
using human experts.

If ground truth is available, it can be used by extrinsic methods, which compare the
clustering against the group truth and measure. If the ground truth is unavailable, we
can use intrinsic methods, which evaluate the goodness of a clustering by considering
how well the clusters are separated. Ground truth can be considered as supervision in the
form of “cluster labels.” Hence, extrinsic methods are also known as supervised methods,
while intrinsic methods are unsupervised methods.

Let’s have a look at simple methods from each category.

Extrinsic Methods

When the ground truth is available, we can compare it with a clustering to assess the
clustering. Thus, the core task in extrinsic methods is to assign a score, Q(C,Cg), to
a clustering, C, given the ground truth, Cg. Whether an extrinsic method is effective
largely depends on the measure, Q, it uses.

In general, a measure Q on clustering quality is effective if it satisfies the following
four essential criteria:

Cluster homogeneity. This requires that the more pure the clusters in a clustering
are, the better the clustering. Suppose that ground truth says that the objects in
a data set, D, can belong to categories Li,...,L,. Consider clustering, C;, wherein
a cluster C € C; contains objects from two categories L;, Lj (1 <i<j=<n). Also
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consider clustering C,, which is identical to C; except that C; is split into two clusters
containing the objects in L; and Lj, respectively. A clustering quality measure, Q,
respecting cluster homogeneity should give a higher score to C, than C;, that is,

Q(CZ>Cg) > Q(Cl)cg)~

Cluster completeness. This is the counterpart of cluster homogeneity. Cluster com-
pleteness requires that for a clustering, if any two objects belong to the same category
according to ground truth, then they should be assigned to the same cluster. Cluster
completeness requires that a clustering should assign objects belonging to the same
category (according to ground truth) to the same cluster. Consider clustering Ci,
which contains clusters C; and GC,, of which the members belong to the same category
according to ground truth. Let clustering C, be identical to C; except that C; and C,
are merged into one cluster in C,. Then, a clustering quality measure, Q, respecting
cluster completeness should give a higher score to Cs, that is, Q(C>,C¢) > Q(C1,Cy).

Rag bag. In many practical scenarios, there is often a “rag bag” category contain-
ing objects that cannot be merged with other objects. Such a category is often called
“miscellaneous,” “other,” and so on. The rag bag criterion states that putting a het-
erogeneous object into a pure cluster should be penalized more than putting it into
a rag bag. Consider a clustering C; and a cluster C € C; such that all objects in C
except for one, denoted by o, belong to the same category according to ground truth.
Consider a clustering C, identical to C; except that o is assigned to a cluster C' # Cin
C; such that C’ contains objects from various categories according to ground truth,
and thus is noisy. In other words, C' in C; is a rag bag. Then, a clustering quality
measure Q respecting the rag bag criterion should give a higher score to C,, that is,

Q(CZ)Cg) > Q(Cl,Cg).

Small cluster preservation. If a small category is split into small pieces in a cluster-
ing, those small pieces may likely become noise and thus the small category cannot
be discovered from the clustering. The small cluster preservation criterion states that
splitting a small category into pieces is more harmful than splitting a large category
into pieces. Consider an extreme case. Let D be a data set of n+ 2 objects such that,
according to ground truth, #n objects, denoted by oy, ..., 0,4, belong to one cate-
gory and the other two objects, denoted by 04+1,04+2, belong to another cate-
gory. Suppose clustering C; has three clusters, C; ={o1,..., 04}, C2 ={04+1}, and
Cs ={0n+2}. Let clustering C, have three clusters, too, namely C; ={o1,..., 0n—1},
Cy ={0y4}, and C3 ={04+1,04+2}. In other words, C; splits the small category and
G, splits the big category. A clustering quality measure Q preserving small clusters
should give a higher score to C3, that is, Q(C2,C¢) > Q(C1,Cy).

Many clustering quality measures satisfy some of these four criteria. Here, we introduce
the BCubed precision and recall metrics, which satisfy all four criteria.

BCubed evaluates the precision and recall for every object in a clustering on a given
data set according to ground truth. The precision of an object indicates how many
other objects in the same cluster belong to the same category as the object. The recall
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of an object reflects how many objects of the same category are assigned to the same
cluster.

Formally, let D={oy, ..., 0n} be a set of objects, and C be a clustering on D. Let L(0;)
(1 < i< n) be the category of o; given by ground truth, and C(o;) be the cluster_ID of o;
in C. Then, for two objects, 0; and 0j, 1 <i,j,<mi##j), the correctness of the relation
between o; and oj in clustering C is given by

1 if L(o;) = L(oj) < C(0;) = C(0))

Correctness(0;,0;) = 10.28
(03,0) 0 otherwise. ( )
BCubed precision is defined as
Z Correctness(0;, 0j)
2 0j:i#),C(0;)=C(0))
~ " I{ojli #j,Coi) = C(op}
Precision BCubed = — (10.29)
n
BCubed recall is defined as
Z Correctness(0;, 05)
X”: 0j:i#),L(0)=L(0j)
£ ojli# j, (o) = Loy
Recall BCubed = — (10.30)

n

Intrinsic Methods

When the ground truth of a data set is not available, we have to use an intrinsic method
to assess the clustering quality. In general, intrinsic methods evaluate a clustering by
examining how well the clusters are separated and how compact the clusters are. Many
intrinsic methods have the advantage of a similarity metric between objects in the
data set.

The silhouette coefficient is such a measure. For a data set, D, of n objects, suppose
D is partitioned into k clusters, Ci,..., Cy. For each object o € D, we calculate a(o) as
the average distance between o and all other objects in the cluster to which o belongs.
Similarly, b(0) is the minimum average distance from o to all clusters to which o does
not belong. Formally, suppose o0 € C; (1 < i < k); then

Zo'ec,-,o;éo’ dist(0,0")
ICil—1

a(0) = (10.31)
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and
> . dist(o,0")
b(o) = min Zoes 7 (10.32)
Cil<j<k,j#i |Gl
The silhouette coefficient of o is then defined as
b(o) —
§(0) = 20— al0) (10.33)

" max{a(o),b(0)}’

The value of the silhouette coefficient is between —1 and 1. The value of a(o) reflects
the compactness of the cluster to which o belongs. The smaller the value, the more com-
pact the cluster. The value of b(0) captures the degree to which o is separated from other
clusters. The larger b(o) is, the more separated o is from other clusters. Therefore, when
the silhouette coefficient value of o approaches 1, the cluster containing o is compact
and o is far away from other clusters, which is the preferable case. However, when the
silhouette coefficient value is negative (i.e., b(0) < a(0)), this means that, in expectation,
o is closer to the objects in another cluster than to the objects in the same cluster as o.
In many cases, this is a bad situation and should be avoided.

To measure a cluster’s fitness within a clustering, we can compute the average silhou-
ette coefficient value of all objects in the cluster. To measure the quality of a clustering,
we can use the average silhouette coefficient value of all objects in the data set. The sil-
houette coefficient and other intrinsic measures can also be used in the elbow method
to heuristically derive the number of clusters in a data set by replacing the sum of
within-cluster variances.

Summary

A cluster is a collection of data objects that are similar to one another within the same
cluster and are dissimilar to the objects in other clusters. The process of grouping a
set of physical or abstract objects into classes of similar objects is called clustering.

Cluster analysis has extensive applications, including business intelligence, image
pattern recognition, Web search, biology, and security. Cluster analysis can be used
as a standalone data mining tool to gain insight into the data distribution, or as
a preprocessing step for other data mining algorithms operating on the detected
clusters.

Clustering is a dynamic field of research in data mining. It is related to unsupervised
learning in machine learning.

Clustering is a challenging field. Typical requirements of it include scalability, the
ability to deal with different types of data and attributes, the discovery of clus-
ters in arbitrary shape, minimal requirements for domain knowledge to determine
input parameters, the ability to deal with noisy data, incremental clustering and
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insensitivity to input order, the capability of clustering high-dimensionality data,
constraint-based clustering, as well as interpretability and usability.

Many clustering algorithms have been developed. These can be categorized from
several orthogonal aspects such as those regarding partitioning criteria, separation
of clusters, similarity measures used, and clustering space. This chapter discusses
major fundamental clustering methods of the following categories: partitioning
methods, hierarchical methods, density-based methods, and grid-based methods. Some
algorithms may belong to more than one category.

A partitioning method first creates an initial set of k partitions, where parame-
ter k is the number of partitions to construct. It then uses an iterative relocation
technique that attempts to improve the partitioning by moving objects from one
group to another. Typical partitioning methods include k-means, k-medoids, and
CLARANS.

A hierarchical method creates a hierarchical decomposition of the given set of data
objects. The method can be classified as being either agglomerative (bottom-up) or
divisive (top-down), based on how the hierarchical decomposition is formed. To
compensate for the rigidity of merge or split, the quality of hierarchical agglome-
ration can be improved by analyzing object linkages at each hierarchical partitioning
(e.g., in Chameleon), or by first performing microclustering (that is, grouping objects
into “microclusters”) and then operating on the microclusters with other clustering
techniques such as iterative relocation (as in BIRCH).

A density-based method clusters objects based on the notion of density. It grows
clusters either according to the density of neighborhood objects (e.g., in DBSCAN)
or according to a density function (e.g., in DENCLUE). OPTICS is a density-based
method that generates an augmented ordering of the data’s clustering structure.

A grid-based method first quantizes the object space into a finite number of cells that
form a grid structure, and then performs clustering on the grid structure. STING is
a typical example of a grid-based method based on statistical information stored in
grid cells. CLIQUE is a grid-based and subspace clustering algorithm.

Clustering evaluation assesses the feasibility of clustering analysis on a data set and
the quality of the results generated by a clustering method. The tasks include assessing
clustering tendency, determining the number of clusters, and measuring clustering
quality.

Exercises

10.1 Briefly describe and give examples of each of the following approaches to cluster-
ing: partitioning methods, hierarchical methods, density-based methods, and grid-based
methods.
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10.3

10.4

10.5
10.6

10.7
10.8

10.9
10.10

10.11

Suppose that the data mining task is to cluster points (with (x, y) representing location)
into three clusters, where the points are

Al (2) 10))A2(2) 5))A3(8)4))B1 (5)8))B2(775)7B3(6)4)) Cl(l)z)’ C2(4)9)

The distance function is Euclidean distance. Suppose initially we assign A;, B, and C;
as the center of each cluster, respectively. Use the k-means algorithm to show only

(a) The three cluster centers after the first round of execution.
(b) The final three clusters.

Use an example to show why the k-means algorithm may not find the global optimum,
that is, optimizing the within-cluster variation.

For the k-means algorithm, it is interesting to note that by choosing the initial cluster
centers carefully, we may be able to not only speed up the algorithm’s convergence, but
also guarantee the quality of the final clustering. The k-means++ algorithm is a vari-
ant of k-means, which chooses the initial centers as follows. First, it selects one center
uniformly at random from the objects in the data set. Iteratively, for each object p other
than the chosen center, it chooses an object as the new center. This object is chosen at
random with probability proportional to dist(p)?, where dist(p) is the distance from p
to the closest center that has already been chosen. The iteration continues until k centers
are selected.

Explain why this method will not only speed up the convergence of the k-means
algorithm, but also guarantee the quality of the final clustering results.

Provide the pseudocode of the object reassignment step of the PAM algorithm.
Both k-means and k-medoids algorithms can perform effective clustering.

(a) Ilustrate the strength and weakness of k-means in comparison with k-medoids.

(b) Mlustrate the strength and weakness of these schemes in comparison with a hierar-
chical clustering scheme (e.g., AGNES).

Prove that in DBSCAN, the density-connectedness is an equivalence relation.

Prove that in DBSCAN, for a fixed MinPts value and two neighborhood thresholds,
€1 < €, a cluster C with respect to €; and MinPts must be a subset of a cluster C" with
respect to € and MinPts.

Provide the pseudocode of the OPTICS algorithm.

Why is it that BIRCH encounters difficulties in finding clusters of arbitrary shape but
OPTICS does not? Propose modifications to BIRCH to help it find clusters of arbitrary
shape.

Provide the pseudocode of the step in CLIQUE that finds dense cells in all subspaces.
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Present conditions under which density-based clustering is more suitable than
partitioning-based clustering and hierarchical clustering. Give application examples to
support your argument.

Give an example of how specific clustering methods can be integrated, for example,
where one clustering algorithm is used as a preprocessing step for another. In addi-
tion, provide reasoning as to why the integration of two methods may sometimes lead
to improved clustering quality and efficiency.

Clustering is recognized as an important data mining task with broad applications. Give
one application example for each of the following cases:

(a) An application that uses clustering as a major data mining function.

(b) An application that uses clustering as a preprocessing tool for data preparation for
other data mining tasks.

Data cubes and multidimensional databases contain nominal, ordinal, and numeric data
in hierarchical or aggregate forms. Based on what you have learned about the clustering
methods, design a clustering method that finds clusters in large data cubes effectively
and efficiently.

Describe each of the following clustering algorithms in terms of the following crite-
ria: (1) shapes of clusters that can be determined; (2) input parameters that must be
specified; and (3) limitations.

(a) k-means

(b) k-medoids

(c) CLARA

(d) BIRCH

(e) CHAMELEON
(f) DBSCAN

Human eyes are fast and effective at judging the quality of clustering methods for
2-D data. Can you design a data visualization method that may help humans visua-
lize data clusters and judge the clustering quality for 3-D data? What about for even
higher-dimensional data?

Suppose that you are to allocate a number of automatic teller machines (ATMs) in a
given region so as to satisfy a number of constraints. Households or workplaces may
be clustered so that typically one ATM is assigned per cluster. The clustering, however,
may be constrained by two factors: (1) obstacle objects (i.e., there are bridges, rivers, and
highways that can affect ATM accessibility), and (2) additional user-specified constraints
such as that each ATM should serve at least 10,000 households. How can a clustering
algorithm such as k-means be modified for quality clustering under both constraints?

For constraint-based clustering, aside from having the minimum number of customers
in each cluster (for ATM allocation) as a constraint, there can be many other kinds of
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10.20

10.21

constraints. For example, a constraint could be in the form of the maximum number
of customers per cluster, average income of customers per cluster, maximum distance
between every two clusters, and so on. Categorize the kinds of constraints that can
be imposed on the clusters produced and discuss how to perform clustering efficiently
under such kinds of constraints.

Design a privacy-preserving clustering method so that a data owner would be able to ask a
third party to mine the data for quality clustering without worrying about the potential
inappropriate disclosure of certain private or sensitive information stored in the data.

Show that BCubed metrics satisfy the four essential requirements for extrinsic clustering
evaluation methods.
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Advanced Cluster Analysis

You learned the fundamentals of cluster analysis in Chapter 10. In this chapter, we discuss
advanced topics of cluster analysis. Specifically, we investigate four major perspectives:

Probabilistic model-based clustering: Section 11.1 introduces a general framework
and a method for deriving clusters where each object is assigned a probability of
belonging to a cluster. Probabilistic model-based clustering is widely used in many
data mining applications such as text mining.

Clustering high-dimensional data: When the dimensionality is high, conventional
distance measures can be dominated by noise. Section 11.2 introduces fundamental
methods for cluster analysis on high-dimensional data.

Clustering graph and network data: Graph and network data are increasingly pop-
ular in applications such as online social networks, the World Wide Web, and digital
libraries. In Section 11.3, you will study the key issues in clustering graph and
network data, including similarity measurement and clustering methods.

Clustering with constraints: In our discussion so far, we do not assume any con-
straints in clustering. In some applications, however, various constraints may exist.
These constraints may rise from background knowledge or spatial distribution of
the objects. You will learn how to conduct cluster analysis with different kinds of
constraints in Section 11.4.

By the end of this chapter, you will have a good grasp of the issues and techniques
regarding advanced cluster analysis.

Probabilistic Model-Based Clustering

In all the cluster analysis methods we have discussed so far, each data object can be
assigned to only one of a number of clusters. This cluster assignment rule is required
in some applications such as assigning customers to marketing managers. However,

Data Mining: Concepts and Techniques 4 9 7
(© 2012 Elsevier Inc. All rights reserved.



498 Chapter 11 Advanced Cluster Analysis

Example 11.1

Example 11.2

in other applications, this rigid requirement may not be desirable. In this section, we
demonstrate the need for fuzzy or flexible cluster assignment in some applications, and
introduce a general method to compute probabilistic clusters and assignments.

“In what situations may a data object belong to more than one cluster?” Consider
Example 11.1.

Clustering product reviews. AllElectronics has an online store, where customers not
only purchase online, but also create reviews of products. Not every product receives
reviews; instead, some products may have many reviews, while many others have none
or only a few. Moreover, a review may involve multiple products. Thus, as the review
editor of AllElectronics, your task is to cluster the reviews.

Ideally, a cluster is about a topic, for example, a group of products, services, or issues
that are highly related. Assigning a review to one cluster exclusively would not work well
for your task. Suppose there is a cluster for “cameras and camcorders” and another for
“computers.” What if a review talks about the compatibility between a camcorder and a
computer? The review relates to both clusters; however, it does not exclusively belong to
either cluster.

You would like to use a clustering method that allows a review to belong to more than
one cluster if the review indeed involves more than one topic. To reflect the strength that
a review belongs to a cluster, you want the assignment of a review to a cluster to carry a
weight representing the partial membership. (]

The scenario where an object may belong to multiple clusters occurs often in many
applications. This is illustrated in Example 11.2.

Clustering to study user search intent. The AllElectronics online store records all cus-
tomer browsing and purchasing behavior in a log. An important data mining task is
to use the log data to categorize and understand user search intent. For example, con-
sider a user session (a short period in which a user interacts with the online store). Is
the user searching for a product, making comparisons among different products, or
looking for customer support information? Clustering analysis helps here because it is
difficult to predefine user behavior patterns thoroughly. A cluster that contains similar
user browsing trajectories may represent similar user behavior.

However, not every session belongs to only one cluster. For example, suppose user
sessions involving the purchase of digital cameras form one cluster, and user sessions
that compare laptop computers form another cluster. What if a user in one session makes
an order for a digital camera, and at the same time compares several laptop computers?
Such a session should belong to both clusters to some extent. (]

In this section, we systematically study the theme of clustering that allows an object
to belong to more than one cluster. We start with the notion of fuzzy clusters in
Section 11.1.1. We then generalize the concept to probabilistic model-based clusters in
Section 11.1.2. In Section 11.1.3, we introduce the expectation-maximization algorithm,
a general framework for mining such clusters.
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Fuzzy Clusters

Given a set of objects, X = {x1,...,x,}, a fuzzy set S is a subset of X that allows each
object in X to have a membership degree between 0 and 1. Formally, a fuzzy set, S, can
be modeled as a function, Fs:X — [0,1].

Fuzzy set. The more digital camera units that are sold, the more popular the camera is.
In AllElectronics, we can use the following formula to compute the degree of popularity
of a digital camera, o, given the sales of o:

1 if 1000 or more units of o are sold
pop@) =1, (1L.1)

Toos i # (i < 1000) units of o are sold.

Function pop() defines a fuzzy set of popular digital cameras. For example, suppose
the sales of digital cameras at AllElectronics are as shown in Table 11.1. The fuzzy
set of popular digital cameras is {A(0.05), B(1), C(0.86), D(0.27)}, where the degrees of
membership are written in parentheses. [

We can apply the fuzzy set idea on clusters. That is, given a set of objects, a cluster is
a fuzzy set of objects. Such a cluster is called a fuzzy cluster. Consequently, a clustering
contains multiple fuzzy clusters.

Formally, given a set of objects, 01,...,04, a fuzzy clustering of k fuzzy clusters,
Ci,...,Ck, can be represented using a partition matrix, M = [wij] 1l<i<nl<
j < k), where wj; is the membership degree of o; in fuzzy cluster C;. The partition matrix
should satisfy the following three requirements:

For each object, 0;, and cluster, Cj, 0 < wj; < 1. This requirement enforces that a fuzzy
cluster is a fuzzy set.
k
For each object, o, Z wjj = 1. This requirement ensures that every object partici-
j=1
pates in the clustering equivalently.

Set of Digital Cameras and Their
Sales at AllElectronics

Camera Sales (units)
A 50

B 1320

C 860

D 270
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n

For each cluster, G, 0 < Z wij < n. This requirement ensures that for every cluster,

1
there is at least one object

i1

for which the membership value is nonzero.

Example | 1.4 Fuzzy clusters. Suppose the AllElectronics online store has six reviews. The keywords
contained in these reviews are listed in Table 11.2.

We can group the reviews into two fuzzy clusters, C; and G,. C is for “digital camera”

and “lens,” and G, is for “computer.” The partition matrix is

O O WIN = =

oS O O

e

Here, we use the keywords “digital camera” and “lens” as the features of cluster C;, and
“computer” as the feature of cluster C;. For review, R;, and cluster, C; (1 <i<6,1 <
J < 2), wjjis defined as

[R; N Cjl

[R; N Cj|

Wi = - .
TTIRN(CQUG)| T |RiN {digital camera, lens, computer}|

In this fuzzy clustering, review Ry belongs to clusters C; and C, with membership
degrees % and %, respectively.

“How can we evaluate how well a fuzzy clustering describes a data set?” Consider a set
of objects, 01, ..., 04, and a fuzzy clustering C of k clusters, Ci,..., Cy. Let M = [w,-j] (1<
i < n,1 <j < k) be the partition matrix. Let ci,.. . ., ¢ be the centers of clusters Cy,. .., Cy,
respectively. Here, a center can be defined either as the mean or the medoid, or in other
ways specific to the application.

As discussed in Chapter 10, the distance or similarity between an object and the cen-
ter of the cluster to which the object is assigned can be used to measure how well the

Table 11.2 Set of Reviews and the Keywords Used

Review_ID

Keywords

R
Ry
R3
Ry
Rs
Re

digital camera, lens

digital camera

lens

digital camera, lens, computer
computer, CPU

computer, computer game
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object belongs to the cluster. This idea can be extended to fuzzy clustering. For any
object, 0;, and cluster, G;, if w;; > 0, then dist(0;, ;) measures how well o; is represented
by ¢j, and thus belongs to cluster C;. Because an object can participate in more than one
cluster, the sum of distances to the corresponding cluster centers weighted by the degrees
of membership captures how well the object fits the clustering.

Formally, for an object o;, the sum of the squared error (SSE) is given by

k
SSE(0;) = ngdist(oi,c]')z, (11.2)
j=1

where the parameter p(p > 1) controls the influence of the degrees of membership.
The larger the value of p, the larger the influence of the degrees of membership.
Orthogonally, the SSE for a cluster, Cj, is

SSE(C)) = ngdist(oi,c]-)z. (11.3)

i=1

Finally, the SSE of the clustering is defined as

n k
SSE(C) =) Y whdist(0;,¢). (11.4)

i=1 j=1

The SSE can be used to measure how well a fuzzy clustering fits a data set.

Fuzzy clustering is also called soft clustering because it allows an object to belong to
more than one cluster. It is easy to see that traditional (rigid) clustering, which enforces
each object to belong to only one cluster exclusively, is a special case of fuzzy clustering.
We defer the discussion of how to compute fuzzy clustering to Section 11.1.3.

Probabilistic Model-Based Clusters

“Fuzzy clusters (Section 11.1.1) provide the flexibility of allowing an object to participate
in multiple clusters. Is there a general framework to specify clusterings where objects may
participate in multiple clusters in a probabilistic way?” In this section, we introduce the
general notion of probabilistic model-based clusters to answer this question.

As discussed in Chapter 10, we conduct cluster analysis on a data set because we
assume that the objects in the data set in fact belong to different inherent categories.
Recall that clustering tendency analysis (Section 10.6.1) can be used to examine whether
a data set contains objects that may lead to meaningful clusters. Here, the inherent cat-
egories hidden in the data are latent, which means they cannot be directly observed.
Instead, we have to infer them using the data observed. For example, the topics hidden
in a set of reviews in the AllElectronics online store are latent because one cannot read
the topics directly. However, the topics can be inferred from the reviews because each
review is about one or multiple topics.
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Figure 11.1

Therefore, the goal of cluster analysis is to find hidden categories. A data set that
is the subject of cluster analysis can be regarded as a sample of the possible instances
of the hidden categories, but without any category labels. The clusters derived from
cluster analysis are inferred using the data set, and are designed to approach the hidden
categories.

Statistically, we can assume that a hidden category is a distribution over the data
space, which can be mathematically represented using a probability density function
(or distribution function). We call such a hidden category a probabilistic cluster. For a
probabilistic cluster, C, its probability density function, f, and a point, o, in the data
space, f (o) is the relative likelihood that an instance of C appears at o.

Probabilistic clusters. Suppose the digital cameras sold by AllElectronics can be divided
into two categories: Cj, a consumer line (e.g., point-and-shoot cameras), and G, a
professional line (e.g., single-lens reflex cameras). Their respective probability density
functions, f; and f,, are shown in Figure 11.1 with respect to the attribute price.

For a price value of, say, $1000, f; (1000) is the relative likelihood that the price of
a consumer-line camera is $1000. Similarly, £,(1000) is the relative likelihood that the
price of a professional-line camera is $1000.

The probability density functions, f; and f,, cannot be observed directly. Instead,
AllElectronics can only infer these distributions by analyzing the prices of the digital
cameras it sells. Moreover, a camera often does not come with a well-determined cate-
gory (e.g., “consumer line” or “professional line”). Instead, such categories are typically
based on user background knowledge and can vary. For example, a camera in the pro-
sumer segment may be regarded at the high end of the consumer line by some customers,
and the low end of the professional line by others.

As an analyst at AllElectronics, you can consider each category as a probabilistic clus-
ter, and conduct cluster analysis on the price of cameras to approach these categories. m

Probability

A Consumer line Professional line

> price

1000

The probability density functions of two probabilistic clusters.
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Suppose we want to find k probabilistic clusters, Ci, ..., Ck, through cluster analysis.
For a data set, D, of n objects, we can regard D as a finite sample of the possible instances
of the clusters. Conceptually, we can assume that D is formed as follows. Each cluster,
G(l=j= k), is associated with a probability, wj, that some instance is sampled from
the cluster. It is often assumed that wy, ...,y are given as part of the problem setting,
and that Z]I«;l w;j =1, which ensures that all objects are generated by the k clusters.
Here, parameter w; captures background knowledge about the relative population of

cluster C;.

We then run the following two steps to generate an object in D. The steps are executed
n times in total to generate n objects, 0y, ...,0,, in D.
I. Choose a cluster, Cis according to probabilities wy, .. ., wy.

2. Choose an instance of Cj according to its probability density function, f;.

The data generation process here is the basic assumption in mixture models. Formally,
a mixture model assumes that a set of observed objects is a mixture of instances from
multiple probabilistic clusters. Conceptually, each observed object is generated indepen-
dently by two steps: first choosing a probabilistic cluster according to the probabilities of
the clusters, and then choosing a sample according to the probability density function
of the chosen cluster.

Given data set, D, and k, the number of clusters required, the task of probabilistic
model-based cluster analysis is to infer a set of k probabilistic clusters that is most likely to
generate D using this data generation process. An important question remaining is how
we can measure the likelihood that a set of k probabilistic clusters and their probabilities
will generate an observed data set.

Consider a set, C, of k probabilistic clusters, Ci,...,Ck, with probability density
functions fi, .. ., fx, respectively, and their probabilities, w;,...,w. For an object, o, the
probability that o is generated by cluster C; (1 <j < k) is given by P(0|Cj) = wjfj(0).
Therefore, the probability that o is generated by the set C of clusters is

k
P(0|C) = Za)]ﬁ(o). (11.5)

J=1

Since the objects are assumed to have been generated independently, for a data set, D =
{o1,...,04}, of n objects, we have

n n k
P(DIC) = [ [ P(oilC) = [D_ wifi(on. (11.6)

i=1 i=1 j=1

Now, it is clear that the task of probabilistic model-based cluster analysis on a data
set, D, is to find a set C of k probabilistic clusters such that P(D|C) is maximized. Maxi-
mizing P(D|C) is often intractable because, in general, the probability density function
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of a cluster can take an arbitrarily complicated form. To make probabilistic model-based
clusters computationally feasible, we often compromise by assuming that the probability
density functions are parameterized distributions.

Formally, let oy,...,0, be the n observed objects, and ®,..., O be the parameters
of the k distributions, denoted by O = {0y,...,0,} and ® = {BO1,...,O}, respectively.
Then, for any object, 0; € O (1 < i < n), Eq. (11.5) can be rewritten as

k
P(0;|®) = ) wjP;(0il®)), (11.7)
j:l

where P;(0;|®;) is the probability that o; is generated from the jth distribution using
parameter ®;. Consequently, Eq. (11.6) can be rewritten as

n k
P(0[©) =[[D_ iP;(0il®)). (11.8)

i=1 j=1

Using the parameterized probability distribution models, the task of probabilistic
model-based cluster analysis is to infer a set of parameters, ©, that maximizes Eq. (11.8).

Univariate Gaussian mixture model. Let’s use univariate Gaussian distributions as an
example. That is, we assume that the probability density function of each cluster follows
a 1-D Gaussian distribution. Suppose there are k clusters. The two parameters for the
probability density function of each cluster are center, , and standard deviation, oj
(1 <j < k). We denote the parameters as ®; = (i1j,07) and ® = {@1,...,0y}. Let the

data setbe O = {oy,..., 04}, where 0; (1 < i < n) is a real number. For any point, o; € O,
we have
1 _ (Oi—ﬂj)z
P(0i|®)) = e 202 | (11.9)

V2T oj

Assuming that each cluster has the same probability, that is w1 =wy =--- =w = %,
and plugging Eq. (11.9) into Eq. (11.7), we have

P(0;|®) = - e 20? , (11.10)
k ‘o V2o
Applying Eq. (11.8), we have
: ]_[ Xk: Qi
P(O|®) = - ——e 27 . (11.11)
k v/ 21 oj

i=1 j=1

The task of probabilistic model-based cluster analysis using a univariate Gaussian
mixture model is to infer ® such that Eq. (11.11) is maximized. n
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[1.1.3 Expectation-Maximization Algorithm

Example 1 1.7

“How can we compute fuzzy clusterings and probabilistic model-based clusterings?” In this
section, we introduce a principled approach. Let’s start with a review of the k-means
clustering problem and the k-means algorithm studied in Chapter 10.

It can easily be shown that k-means clustering is a special case of fuzzy clustering
(Exercise 11.1). The k-means algorithm iterates until the clustering cannot be improved.
Each iteration consists of two steps:

The expectation step (E-step): Given the current cluster centers, each object is assigned
to the cluster with a center that is closest to the object. Here, an object is expected to
belong to the closest cluster.

The maximization step (M-step): Given the cluster assignment, for each cluster, the
algorithm adjusts the center so that the sum of the distances from the objects
assigned to this cluster and the new center is minimized. That is, the similarity of
objects assigned to a cluster is maximized.

We can generalize this two-step method to tackle fuzzy clustering and probabilistic
model-based clustering. In general, an expectation-maximization (EM) algorithm is
a framework that approaches maximum likelihood or maximum a posteriori estimates
of parameters in statistical models. In the context of fuzzy or probabilistic model-based
clustering, an EM algorithm starts with an initial set of parameters and iterates until
the clustering cannot be improved, that is, until the clustering converges or the change
is sufficiently small (less than a preset threshold). Each iteration also consists of two
steps:

The expectation step assigns objects to clusters according to the current fuzzy
clustering or parameters of probabilistic clusters.

The maximization step finds the new clustering or parameters that maximize the SSE
in fuzzy clustering (Eq. 11.4) or the expected likelihood in probabilistic model-based
clustering.

Fuzzy clustering using the EM algorithm. Consider the six points in Figure 11.2, where
the coordinates of the points are also shown. Let’s compute two fuzzy clusters using the
EM algorithm.

We randomly select two points, say ¢; = a and ¢, = b, as the initial centers of the two
clusters. The first iteration conducts the expectation step and the maximization step as
follows.

In the E-step, for each point we calculate its membership degree in each cluster. For
any point, o, we assign o to ¢; and ¢, with membership weights

1
dist(0, c; )2 _ dist(0,c)* . dist(o, ¢1)?
1 4 1 T dist(0,c1)? + dist(0, c)> dist(0, c1)* + dist(0, )%’
dist(o,c1)?  dist(0,¢2)?
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®:0.6 @ /(217
@43
o > X

Figure 1.2 Data set for fuzzy clustering.

Table 11.3 Intermediate Results from the First Three Iterations of Example 11.7’s EM Algorithm

Iteration E-Step M-Step

| T — [1 0 048 042 041 047 o = (8.47, 5.12)
“lo 1 052 058 059 0.53 & = (10.42, 8.99)

, T — (073 049 091 026 033 042 a = (851, 6.11)
T 1027 051 009 074 067 058 & = (14.42, 8.69)

, T — [0.80 076 099 0.02 0.4 023 0 = (6.40, 6.24)
T 1020 024 001 098 086 077 & = (16.55, 8.64)

respectively, where dist(,) is the Euclidean distance. The rationale is that, if o is close to
a1 and dist(o, c1) is small, the membership degree of o with respect to ¢; should be high.
We also normalize the membership degrees so that the sum of degrees for an object is
equal to 1.

For point a, we have w, , =1 and w,, = 0. That is, a exclusively belongs to ¢;. For

point b, we have wy,, = 0 and wj,., = 1. For point ¢, we have w., = & =0.48 and
Wee, = 454% = 0.52. The degrees of membership of the other points are shown in the
partition matrix in Table 11.3. (]

In the M-step, we recalculate the centroids according to the partition matrix,
minimizing the SSE given in Eq. (11.4). The new centroid should be adjusted to

2
E Wo,c; 0

each point o

G=—"-———
] 2
Z Wo,c]'

each point o

> (11.12)

where j =1,2.
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In this example,

12x340>x4+40482 x9+0.422 x 144+ 0.412 x 184+ 0.47% x 21
1 =
! 124+ 02 + 0.482 + 0.422 + 0.412 + 0.472

>

12x340%2x1040.482 x6+0.422 x 8+ 0.412 x 114+0.472 x 7
12 402 +0.482 4+ 0.422 4 0.412 4+ 0.472

= (8.47,5.12)
and

02 x34+1%2x4+0.522 x 9+ 0.582 x 144+ 0.59% x 18 4+ 0.53% x 21
O =
2 02+ 124 0.522 4+ 0.582 + 0.592 + 0.532

>

02 x34+1%2x1040.522 x 6 4+ 0.582 x 8 +0.59% x 11 +0.53% x 7
02 +1240.52%2 +0.582 4 0.592 +0.532

= (10.42,8.99).

We repeat the iterations, where each iteration contains an E-step and an M-step.
Table 11.3 shows the results from the first three iterations. The algorithm stops when
the cluster centers converge or the change is small enough.

“How can we apply the EM algorithm to compute probabilistic model-based clustering?”
Let’s use a univariate Gaussian mixture model (Example 11.6) to illustrate.

Example 1 1.8 Using the EM algorithm for mixture models. Given a set of objects, O = {o01,..., 04},
we want to mine a set of parameters, ® = {®1,...,0}, such that P(O|®) in Eq. (11.11)
is maximized, where ®; = (4,0;) are the mean and standard deviation, respectively, of
the jth univariate Gaussian distribution, (1 <j < k).

We can apply the EM algorithm. We assign random values to parameters © as the
initial values. We then iteratively conduct the E-step and the M-step as follows until the
parameters converge or the change is sufficiently small.

In the E-step, for each object, 0; € O (1 < i < n), we calculate the probability that o;
belongs to each distribution, that is,

P(0il®j)

P(©)]0;,0) = ————.
>k P(oil©))

(11.13)

In the M-step, we adjust the parameters © so that the expected likelihood P(O|®) in
Eq. (11.11) is maximized. This can be achieved by setting

Iy~ PO)10,0) 1YL, 0iP(6410,0)
k=YL PO]lo,0) kXL, P(6)]0,0)

1= (11.14)
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and

(11.15)

o — Y1 P(®jl0;,©)(0; — u))?
! YL P(®il0,0)

In many applications, probabilistic model-based clustering has been shown to be
effective because it is more general than partitioning methods and fuzzy clustering
methods. A distinct advantage is that appropriate statistical models can be used to
capture latent clusters. The EM algorithm is commonly used to handle many learning
problems in data mining and statistics due to its simplicity. Note that, in general, the EM
algorithm may not converge to the optimal solution. It may instead converge to a local
maximum. Many heuristics have been explored to avoid this. For example, we could run
the EM process multiple times using different random initial values. Furthermore, the
EM algorithm can be very costly if the number of distributions is large or the data set
contains very few observed data points.

Clustering High-Dimensional Data

The clustering methods we have studied so far work well when the dimensionality is not
high, that is, having less than 10 attributes. There are, however, important applications
of high dimensionality. “How can we conduct cluster analysis on high-dimensional data?”
In thissection, we studyapproaches to clustering high-dimensional data. Section 11.2.1
starts with an overview of the major challenges and the approaches used. Methods for
high-dimensional data clustering can be divided into two categories: subspace clustering
methods (Section 11.2.2) and dimensionality reduction methods (Section 11.2.3).

Clustering High-Dimensional Data: Problems,
Challenges, and Major Methodologies

Before we present any specific methods for clustering high-dimensional data, let’s first
demonstrate the needs of cluster analysis on high-dimensional data using examples. We
examine the challenges that call for new methods. We then categorize the major meth-
ods according to whether they search for clusters in subspaces of the original space, or
whether they create a new lower-dimensionality space and search for clusters there.

In some applications, a data object may be described by 10 or more attributes. Such
objects are referred to as a high-dimensional data space.

High-dimensional data and clustering. AllElectronics keeps track of the products pur-
chased by every customer. As a customer-relationship manager, you want to cluster
customers into groups according to what they purchased from AllElectronics.
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Table 11.4 Customer Purchase Data

Customer b, P, Ps Py Ps Pg Py Py Py Pio

Ada 1 0 0 0 0 0 0 0 0 0
Bob 0 0 0 0 0 0 0 0 0
Cathy 1 0 0 0 1 0 0 0 0 1

The customer purchase data are of very high dimensionality. AllElectronics carries
tens of thousands of products. Therefore, a customer’s purchase profile, which is a vector
of the products carried by the company, has tens of thousands of dimensions.

“Are the traditional distance measures, which are frequently used in low-dimensional
cluster analysis, also effective on high-dimensional data?” Consider the customers in
Table 11.4, where 10 products, Py, ..., Pjg, are used in demonstration. If a customer
purchases a product, a 1 is set at the corresponding bit; otherwise, a 0 appears. Let’s
calculate the Euclidean distances (Eq. 2.16) among Ada, Bob, and Cathy. It is easy to
see that

dist(Ada, Bob) = dist(Bob, Cathy) = dist(Ada, Cathy) = V2.

According to Euclidean distance, the three customers are equivalently similar (or dis-
similar) to each other. However, a close look tells us that Ada should be more similar to
Cathy than to Bob because Ada and Cathy share one common purchased item, P;. =

As shown in Example 11.9, the traditional distance measures can be ineffective on
high-dimensional data. Such distance measures may be dominated by the noise in many
dimensions. Therefore, clusters in the full, high-dimensional space can be unreliable,
and finding such clusters may not be meaningful.

“Then what kinds of clusters are meaningful on high-dimensional data?” For cluster
analysis of high-dimensional data, we still want to group similar objects together. How-
ever, the data space is often too big and too messy. An additional challenge is that we
need to find not only clusters, but, for each cluster, a set of attributes that manifest the
cluster. In other words, a cluster on high-dimensional data often is defined using a small
set of attributes instead of the full data space. Essentially, clustering high-dimensional
data should return groups of objects as clusters (as conventional cluster analysis does),
in addition to, for each cluster, the set of attributes that characterize the cluster. For
example, in Table 11.4, to characterize the similarity between Ada and Cathy, P; may be
returned as the attribute because Ada and Cathy both purchased P;.

Clustering high-dimensional data is the search for clusters and the space in which
they exist. Thus, there are two major kinds of methods:

Subspace clustering approaches search for clusters existing in subspaces of the given
high-dimensional data space, where a subspace is defined using a subset of attributes
in the full space. Subspace clustering approaches are discussed in Section 11.2.2.
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Dimensionality reduction approaches try to construct a much lower-dimensional
space and search for clusters in such a space. Often, a method may construct new
dimensions by combining some dimensions from the original data. Dimensionality
reduction methods are the topic of Section 11.2.4.

In general, clustering high-dimensional data raises several new challenges in addition
to those of conventional clustering:

A major issue is how to create appropriate models for clusters in high-dimensional
data. Unlike conventional clusters in low-dimensional spaces, clusters hidden in
high-dimensional data are often significantly smaller. For example, when clustering
customer-purchase data, we would not expect many users to have similar purchase
patterns. Searching for such small but meaningful clusters is like finding needles in
a haystack. As shown before, the conventional distance measures can be ineffective.
Instead, we often have to consider various more sophisticated techniques that can
model correlations and consistency among objects in subspaces.

There are typically an exponential number of possible subspaces or dimensionality
reduction options, and thus the optimal solutions are often computationally pro-
hibitive. For example, if the original data space has 1000 dimensions, and we want

1000
to find clusters of dimensionality 10, then there are ( 10 ) =2.63 x 10?* possible

subspaces.

|1.2.2 Subspace Clustering Methods

“How can we find subspace clusters from high-dimensional data?” Many methods have
been proposed. They generally can be categorized into three major groups: subspace
search methods, correlation-based clustering methods, and biclustering methods.

Subspace Search Methods

A subspace search method searches various subspaces for clusters. Here, a cluster is a
subset of objects that are similar to each other in a subspace. The similarity is often cap-
tured by conventional measures such as distance or density. For example, the CLIQUE
algorithm introduced in Section 10.5.2 is a subspace clustering method. It enumerates
subspaces and the clusters in those subspaces in a dimensionality-increasing order, and
applies antimonotonicity to prune subspaces in which no cluster may exist.

A major challenge that subspace search methods face is how to search a series of
subspaces effectively and efficiently. Generally there are two kinds of strategies:

Bottom-up approaches start from low-dimensional subspaces and search higher-
dimensional subspaces only when there may be clusters in those higher-dimensional
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subspaces. Various pruning techniques are explored to reduce the number of higher-
dimensional subspaces that need to be searched. CLIQUE is an example of a
bottom-up approach.

Top-down approaches start from the full space and search smaller and smaller sub-
spaces recursively. Top-down approaches are effective only if the locality assumption
holds, which require that the subspace of a cluster can be determined by the local
neighborhood.

Example 11.10 PROCLUS, a top-down subspace approach. PROCLUS is a k-medoid-like method

Example 1 1.11

that first generates k potential cluster centers for a high-dimensional data set using a
sample of the data set. It then refines the subspace clusters iteratively. In each itera-
tion, for each of the current k-medoids, PROCLUS considers the local neighborhood
of the medoid in the whole data set, and identifies a subspace for the cluster by mini-
mizing the standard deviation of the distances of the points in the neighborhood to
the medoid on each dimension. Once all the subspaces for the medoids are deter-
mined, each point in the data set is assigned to the closest medoid according to the
corresponding subspace. Clusters and possible outliers are identified. In the next iter-
ation, new medoids replace existing ones if doing so improves the clustering quality.

L]

Correlation-Based Clustering Methods

While subspace search methods search for clusters with a similarity that is measured
using conventional metrics like distance or density, correlation-based approaches can
further discover clusters that are defined by advanced correlation models.

A correlation-based approach using PCA. As an example, a PCA-based approach first
applies PCA (Principal Components Analysis; see Chapter 3) to derive a set of new,
uncorrelated dimensions, and then mine clusters in the new space or its subspaces. In
addition to PCA, other space transformations may be used, such as the Hough transform
or fractal dimensions. L]

For additional details on subspace search methods and correlation-based clustering
methods, please refer to the bibliographic notes (Section 11.7).

Biclustering Methods

In some applications, we want to cluster both objects and attributes simultaneously.
The resulting clusters are known as biclusters and meet four requirements: (1) only a
small set of objects participate in a cluster; (2) a cluster only involves a small number of
attributes; (3) an object may participate in multiple clusters, or does not participate in
any cluster; and (4) an attribute may be involved in multiple clusters, or is not involved
in any cluster. Section 11.2.3 discusses biclustering in detail.
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11.2.3 Biclustering

In the cluster analysis discussed so far, we cluster objects according to their attribute
values. Objects and attributes are not treated in the same way. However, in some applica-
tions, objects and attributes are defined in a symmetric way, where data analysis involves
searching data matrices for submatrices that show unique patterns as clusters. This kind
of clustering technique belongs to the category of biclustering.

This section first introduces two motivating application examples of biclustering—
gene expression and recommender systems. You will then learn about the different types
of biclusters. Last, we present biclustering methods.

Application Examples

Biclustering techniques were first proposed to address the needs for analyzing gene
expression data. A gene is a unit of the passing-on of traits from a living organism to
its offspring. Typically, a gene resides on a segment of DNA. Genes are critical for all
living things because they specify all proteins and functional RNA chains. They hold the
information to build and maintain a living organism’s cells and pass genetic traits to
offspring. Synthesis of a functional gene product, either RNA or protein, relies on the
process of gene expression. A genotype is the genetic makeup of a cell, an organism, or
an individual. Phenotypes are observable characteristics of an organism. Gene expression
is the most fundamental level in genetics in that genotypes cause phenotypes.

Using DNA chips (also known as DNA miicroarrays) and other biological engineer-
ing techniques, we can measure the expression level of a large number (possibly all) of
an organism’s genes, in a number of different experimental conditions. Such conditions
may correspond to different time points in an experiment or samples from different
organs. Roughly speaking, the gene expression data or DNA microarray data are concep-
tually a gene-sample/condition matrix, where each row corresponds to one gene, and
each column corresponds to one sample or condition. Each element in the matrix is
a real number and records the expression level of a gene under a specific condition.
Figure 11.3 shows an illustration.

From the clustering viewpoint, an interesting issue is that a gene expression data
matrix can be analyzed in two dimensions—the gene dimension and the sample/
condition dimension.

When analyzing in the gene dimension, we treat each gene as an object and treat the
samples/conditions as attributes. By mining in the gene dimension, we may find pat-
terns shared by multiple genes, or cluster genes into groups. For example, we may
find a group of genes that express themselves similarly, which is highly interesting in
bioinformatics, such as in finding pathways.

When analyzing in the sample/condition dimension, we treat each sample/condition
as an object and treat the genes as attributes. In this way, we may find patterns of
samples/conditions, or cluster samples/conditions into groups. For example, we may
find the differences in gene expression by comparing a group of tumor samples and
nontumor samples.
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Figure 11.3 Microarrary data matrix.

Example | 1.12 Gene expression. Gene expression matrices are popular in bioinformatics research and
development. For example, an important task is to classify a new gene using the expres-
sion data of the gene and that of other genes in known classes. Symmetrically, we may
classify a new sample (e.g., a new patient) using the expression data of the sample and
that of samples in known classes (e.g., tumor and nontumor). Such tasks are invaluable
in understanding the mechanisms of diseases and in clinical treatment. (]

As can be seen, many gene expression data mining problems are highly related to
cluster analysis. However, a challenge here is that, instead of clustering in one dimension
(e.g., gene or sample/condition), in many cases we need to cluster in two dimensions
simultaneously (e.g., both gene and sample/condition). Moreover, unlike the clustering
models we have discussed so far, a cluster in a gene expression data matrix is a submatrix
and usually has the following characteristics:

Only a small set of genes participate in the cluster.
The cluster involves only a small subset of samples/conditions.
A gene may participate in multiple clusters, or may not participate in any cluster.

A sample/condition may be involved in multiple clusters, or may not be involved in
any cluster.

To find clusters in gene-sample/condition matrices, we need new clustering tech-
niques that meet the following requirements for biclustering:

A cluster of genes is defined using only a subset of samples/conditions.

A cluster of samples/conditions is defined using only a subset of genes.
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The clusters are neither exclusive (e.g., where one gene can participate in multiple
clusters) nor exhaustive (e.g., where a gene may not participate in any cluster).

Biclustering is useful not only in bioinformatics, but also in other applications as well.
Consider recommender systems as an example.

Using biclustering for a recommender system. AllElectronics collects data from cus-
tomers’ evaluations of products and uses the data to recommend products to customers.
The data can be modeled as a customer-product matrix, where each row represents a
customer, and each column represents a product. Each element in the matrix represents
a customer’s evaluation of a product, which may be a score (e.g., like, like somewhat,
not like) or purchase behavior (e.g., buy or not). Figure 11.4 illustrates the structure.

The customer-product matrix can be analyzed in two dimensions: the customer
dimension and the product dimension. Treating each customer as an object and products
as attributes, AllElectronics can find customer groups that have similar preferences or
purchase patterns. Using products as objects and customers as attributes, AllElectronics
can mine product groups that are similar in customer interest.

Moreover, AllElectronics can mine clusters in both customers and products simulta-
neously. Such a cluster contains a subset of customers and involves a subset of products.
For example, AllElectronics is highly interested in finding a group of customers who all
like the same group of products. Such a cluster is a submatrix in the customer-product
matrix, where all elements have a high value. Using such a cluster, AllElectronics can
make recommendations in two directions. First, the company can recommend products
to new customers who are similar to the customers in the cluster. Second, the company
can recommend to customers new products that are similar to those involved in the
cluster. (]

As with biclusters in a gene expression data matrix, the biclusters in a customer-
product matrix usually have the following characteristics:

Only a small set of customers participate in a cluster.

A cluster involves only a small subset of products.

A customer can participate in multiple clusters, or may not participate in any
cluster.

Products
wir Wi o Wi
Customers Wy Wy -+ Wim
Wnl W2 o - Wnm

Figure 11.4 Customer—product matrix.
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A product may be involved in multiple clusters, or may not be involved in any
cluster.

Biclustering can be applied to customer-product matrices to mine clusters satisfying
these requirements.

Types of Biclusters

“How can we model biclusters and mine them?” Let’s start with some basic notation. For
the sake of simplicity, we will use “genes” and “conditions” to refer to the two dimen-
sions in our discussion. Our discussion can easily be extended to other applications. For
example, we can simply replace “genes” and “conditions” by “customers” and “products”
to tackle the customer-product biclustering problem.

Let A={ai,...,a,} be a set of genes and B= {by,..., by} be a set of conditions. Let
E = [e;j] be a gene expression data matrix, that is, a gene-condition matrix, where 1 <
i<mnand 1 <j < m. Asubmatrix I x ] is defined by a subset I C A of genes and a subset
J € B of conditions. For example, in the matrix shown in Figure 11.5, {a;, as3, ase} X
{bs, b12, b3g, bog} is a submatrix.

A bicluster is a submatrix where genes and conditions follow consistent patterns. We
can define different types of biclusters based on such patterns.

As the simplest case, a submatrix I x J (I C A,] C B) is a bicluster with constant val-
uesifforanyie Iandje€ ], ej = ¢, where c is a constant. For example, the submatrix
{a1,a33,as6} X {bs, b12, b3s, boo} in Figure 11.5 is a bicluster with constant values.

A bicluster is interesting if each row has a constant value, though different rows may
have different values. A bicluster with constant values on rows is a submatrix I x J
such that foranyie Iandje ], ejj = c+aj, where ¢; is the adjustment for row i. For
example, Figure 11.6 shows a bicluster with constant values on rows.

Symmetrically, a bicluster with constant values on columns is a submatrix
I x ] such that for any i€ I and j € ], ¢;; = c+ B}, where §; is the adjustment for

column j.

be -+ by -~ by -~ bog--
a |-~ 60 - 60 .-+ 60 .- 60---
a3 | -+ 60 .- 60 - 60 -0 60---
age | -+ 60 -+ 60 - 60 - 60---

Figure 11.5 Gene-condition matrix, a submatrix, and a bicluster.
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More generally, a bicluster is interesting if the rows change in a synchronized way with
respect to the columns and vice versa. Mathematically, a bicluster with coherent
values (also known as a pattern-based cluster) is a submatrix I x J such that for
anyielandje], ej = c+oi+ B where «; and Bj are the adjustment for row i
and column j, respectively. For example, Figure 11.7 shows a bicluster with coherent
values.

It can be shown that I x J is a bicluster with coherent values if and only if for
any i1,i € I and ji, 2 € J, then ¢ j, — e;,j, = ej,j, — ej,j,- Moreover, instead of using
addition, we can define a bicluster with coherent values using multiplication, that
is, ejj=c- (ai . ,Bj). Clearly, biclusters with constant values on rows or columns are
special cases of biclusters with coherent values.

In some applications, we may only be interested in the up- or down-regulated
changes across genes or conditions without constraining the exact values. A biclus-
ter with coherent evolutions on rows is a submatrix I x J such that for any 71,4, € I
and ji,j2 € ], (e;,j, — €ij,)(eij, — €ij,) > 0. For example, Figure 11.8 shows a biclus-
ter with coherent evolutions on rows. Symmetrically, we can define biclusters with
coherent evolutions on columns.

Next, we study how to mine biclusters.

10 10 10 10 10
20 20 20 20 20
50 50 50 50 50

0 0 0 0 0

Figure 11.6 Bicluster with constant values on rows.

10 50 30 70 20

20 60 40 80 30

50 9 70 110 60
0 40 20 60 10

Figure 11.7 Bicluster with coherent values.

10 50 30 70 20
20 100 50 1000 30
50 100 90 120 80

0 80 20 100 10

Figure 11.8 Bicluster with coherent evolutions on rows.
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Biclustering Methods

The previous specification of the types of biclusters only considers ideal cases. In real
data sets, such perfect biclusters rarely exist. When they do exist, they are usually very
small. Instead, random noise can affect the readings of ejj and thus prevent a bicluster in
nature from appearing in a perfect shape.

There are two major types of methods for discovering biclusters in data that may
come with noise. Optimization-based methods conduct an iterative search. At each
iteration, the submatrix with the highest significance score is identified as a bicluster.
The process terminates when a user-specified condition is met. Due to cost concerns
in computation, greedy search is often employed to find local optimal biclusters. Enu-
meration methods use a tolerance threshold to specify the degree of noise allowed in
the biclusters to be mined, and then tries to enumerate all submatrices of biclusters that
satisfy the requirements. We use the §-Cluster and MaPle algorithms as examples to
illustrate these ideas.

Optimization Using the §-Cluster Algorithm
For a submatrix, I x J, the mean of the ith row is
1
ey =—>Yej. (11.16)
|71
jel
Symmetrically, the mean of the jth column is
1
aj=—> ej. (11.17)
|I| iel

The mean of all elements in the submatrix is
1 1
e = —— Z ejj = Z ey = Zel] (11.18)
1 2=, = 1™ T 4

The quality of the submatrix as a bicluster can be measured by the mean-squared residue
value as

H(Ix J) = IIIIII D (ejj— ey — e+ ep)’. (11.19)

iel,je]

Submatrix I x J is a §-bicluster if H(I x J) < 8, where § > 0 is a threshold. When
8 =0, I x ] is a perfect bicluster with coherent values. By setting § > 0, a user can
specify the tolerance of average noise per element against a perfect bicluster, because
in Eq. (11.19) the residue on each element is

residue(e;j) = ejj — ey — egj + eyy. (11.20)

A maximal §-bicluster is a §-bicluster I x J such that there does not exist another
d-bicluster I’ x J', and IC I', J C J, and at least one inequality holds. Finding the
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maximal §-bicluster of the largest size is computationally costly. Therefore, we can use
a heuristic greedy search method to obtain a local optimal cluster. The algorithm works
in two phases.

In the deletion phase, we start from the whole matrix. While the mean-squared
residue of the matrix is over §, we iteratively remove rows and columns. At each
iteration, for each row i, we compute the mean-squared residue as

. 1
d(i) = mZ(eij_ei]—€Ij+€I])2. (11.21)
je7
Moreover, for each column j, we compute the mean-squared residue as
) 1
i) =1 > (e — ey — e+ ep). (11.22)
iel

We remove the row or column of the largest mean-squared residue. At the end of this
phase, we obtain a submatrix I x J that is a §-bicluster. However, the submatrix may
not be maximal.

In the addition phase, we iteratively expand the §-bicluster I x J obtained in the dele-
tion phase as long as the §-bicluster requirement is maintained. At each iteration, we
consider rows and columns that are not involved in the current bicluster I x J by cal-
culating their mean-squared residues. A row or column of the smallest mean-squared
residue is added into the current §-bicluster.

This greedy algorithm can find one §-bicluster only. To find multiple biclusters that
do not have heavy overlaps, we can run the algorithm multiple times. After each execu-
tion where a §-bicluster is output, we can replace the elements in the output bicluster
by random numbers. Although the greedy algorithm may find neither the optimal
biclusters nor all biclusters, it is very fast even on large matrices.

Enumerating All Biclusters Using MaPle

As mentioned, a submatrix I x ] is a bicluster with coherent values if and only if for any
i, € Iand ji, 2 €], €;j; — €;,j; = €, — €jyj, For any 2 x 2 submatrix of I x J, we can

define a p-score as

: (eiljl eilJé)_ e Y (e — i
p-score = |(eij, — eij;) — (eij, — epp)l- (11.23)
Coji  Chj

A submatrix I x J is a §-pCluster (for pattern-based cluster) if the p-score of every
2 x 2 submatrix of I X J is at most 8, where § > 0 is a threshold specifying a user’s
tolerance of noise against a perfect bicluster. Here, the p-score controls the noise on
every element in a bicluster, while the mean-squared residue captures the average noise.

An interesting property of §-pCluster is that if I x J is a §-pCluster, then every
x Xy (x,y>2) submatrix of I x J is also a §-pCluster. This monotonicity enables
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us to obtain a succinct representation of nonredundant §-pClusters. A §-pCluster is
maximal if no more rows or columns can be added into the cluster while maintaining the
3-pCluster property. To avoid redundancy, instead of finding all §-pClusters, we only
need to compute all maximal §-pClusters.

MaPle is an algorithm that enumerates all maximal §-pClusters. It systematically
enumerates every combination of conditions using a set enumeration tree and a depth-
first search. This enumeration framework is the same as the pattern-growth methods
for frequent pattern mining (Chapter 6). Consider gene expression data. For each con-
dition combination, J, MaPle finds the maximal subsets of genes, I, such that I x J is
a §-pCluster. If I x ] is not a submatrix of another §-pCluster, then I x J is a maximal
8-pCluster.

There may be a huge number of condition combinations. MaPle prunes many
unfruitful combinations using the monotonicity of §-pClusters. For a condition com-
bination, J, if there does not exist a set of genes, I, such that I x J is a §-pCluster, then
we do not need to consider any superset of J. Moreover, we should consider I x ] as a
candidate of a §-pCluster only if for every (|J| — 1)-subset J' of J, I x J' is a §-pCluster.
MaPle also employs several pruning techniques to speed up the search while retaining
the completeness of returning all maximal §-pClusters. For example, when examining a
current §-pCluster, I x J, MaPle collects all the genes and conditions that may be added
to expand the cluster. If these candidate genes and conditions together with I and J form
a submatrix of a §-pCluster that has already been found, then the search of I x J and any
superset of J can be pruned. Interested readers may refer to the bibliographic notes for
additional information on the MaPle algorithm (Section 11.7).

An interesting observation here is that the search for maximal §-pClusters in MaPle is
somewhat similar to mining frequent closed itemsets. Consequently, MaPle borrows the
depth-first search framework and ideas from the pruning techniques of pattern-growth
methods for frequent pattern mining. This is an example where frequent pattern mining
and cluster analysis may share similar techniques and ideas.

An advantage of MaPle and the other algorithms that enumerate all biclusters is that
they guarantee the completeness of the results and do not miss any overlapping biclus-
ters. However, a challenge for such enumeration algorithms is that they may become very
time consuming if a matrix becomes very large, such as a customer-purchase matrix of
hundreds of thousands of customers and millions of products.

I 1.2.4 Dimensionality Reduction Methods and Spectral

Example 1 1.14

Clustering

Subspace clustering methods try to find clusters in subspaces of the original data
space. In some situations, it is more effective to construct a new space instead of using
subspaces of the original data. This is the motivation behind dimensionality reduction
methods for clustering high-dimensional data.

Clustering in a derived space. Consider the three clusters of points in Figure 11.9. It is
not possible to cluster these points in any subspace of the original space, X x Y, because
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Figure 11.9 Clustering in a derived space may be more effective.

all three clusters would end up being projected onto overlapping areas in the x and y

axes. What if, instead, we construct a new dimension, — ‘/TEx + ‘/72 ¥ (shown as a dashed
line in the figure)? By projecting the points onto this new dimension, the three clusters
become apparent. [

Although Example 11.14 involves only two dimensions, the idea of constructing a
new space (so that any clustering structure that is hidden in the data becomes well man-
ifested) can be extended to high-dimensional data. Preferably, the newly constructed
space should have low dimensionality.

There are many dimensionality reduction methods. A straightforward approach is to
apply feature selection and extraction methods to the data set such as those discussed
in Chapter 3. However, such methods may not be able to detect the clustering structure.
Therefore, methods that combine feature extraction and clustering are preferred. In this
section, we introduce spectral clustering, a group of methods that are effective in high-
dimensional data applications.

Figure 11.10 shows the general framework for spectral clustering approaches. The
Ng-Jordan-Weiss algorithm is a spectral clustering method. Let’s have a look at each
step of the framework. In doing so, we also note special conditions that apply to the
Ng-Jordan-Weiss algorithm as an example.

Given a set of objects, 01, ..., 0y, the distance between each pair of objects, dist(o;, 0;)
(1 <1,j < n), and the desired number k of clusters, a spectral clustering approach works
as follows.

I. Using the distance measure, calculate an affinity matrix, W, such that

B dist(o,',aj)

Wi=e o,

where o is a scaling parameter that controls how fast the affinity W;; decreases as
dist(0;, 0) increases. In the Ng-Jordan-Weiss algorithm, Wj; is set to 0.
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Compute leading Project back

k eigenvectors Clustering in to cluster the

Data Affinity matrix of A the new space original data
— (W] — Av=Av —

Figure 11.10 The framework of spectral clustering approaches. Source: Adapted from Slide 8 at http://
videolectures.net/micued08_azran_mcl/.

2. Using the affinity matrix W, derive a matrix A = f(W). The way in which this is done
can vary. The Ng-Jordan-Weiss algorithm defines a matrix, D, as a diagonal matrix
such that Dj; is the sum of the ith row of W, that is,

n
D= Wj. (11.24)
j=1
A is then set to
A=D"IWD" 1. (11.25)

3. Find the k leading eigenvectors of A. Recall that the eigenvectors of a square matrix
are the nonzero vectors that remain proportional to the original vector after being
multiplied by the matrix. Mathematically, a vector v is an eigenvector of matrix A
if Av = Av, where A is called the corresponding eigenvalue. This step derives k new
dimensions from A, which are based on the affinity matrix W. Typically, k should be
much smaller than the dimensionality of the original data.

The Ng-Jordan-Weiss algorithm computes the k eigenvectors with the largest
eigenvalues xj, ..., x; of A.

4. Using the k leading eigenvectors, project the original data into the new space defined
by the k leading eigenvectors, and run a clustering algorithm such as k-means to find
k clusters.
The Ng-Jordan-Weiss algorithm stacks the k largest eigenvectors in columns
to form a matrix X = [x1x---x;] € R™k. The algorithm forms a matrix Y by
renormalizing each row in X to have unit length, that is,

Xii
- .
AY; Zj:l Xz?

The algorithm then treats each row in Y as a point in the k-dimensional space R¥, and
runs k-means (or any other algorithm serving the partitioning purpose) to cluster the
points into k clusters.

Y= (11.26)
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The new dimensions and the clustering results of the Ng-Jordan-Weiss algorithm. Source:
Adapted from Slide 9 at http://videolectures.net/micued08_azran_mcl/.

5. Assign the original data points to clusters according to how the transformed points
are assigned in the clusters obtained in step 4.

In the Ng-Jordan-Weiss algorithm, the original object o; is assigned to the jth

cluster if and only if matrix Y’s row i is assigned to the jth cluster as a result of step 4.

In spectral clustering methods, the dimensionality of the new space is set to the
desired number of clusters. This setting expects that each new dimension should be able
to manifest a cluster.

The Ng-Jordan-Weiss algorithm. Consider the set of points in Figure 11.11. The
data set, the affinity matrix, the three largest eigenvectors, and the normalized vec-
tors are shown. Note that with the three new dimensions (formed by the three largest
eigenvectors), the clusters are easily detected. (]

Spectral clustering is effective in high-dimensional applications such as image pro-
cessing. Theoretically, it works well when certain conditions apply. Scalability, however,
is a challenge. Computing eigenvectors on a large matrix is costly. Spectral clustering can
be combined with other clustering methods, such as biclustering. Additional informa-
tion on other dimensionality reduction clustering methods, such as kernel PCA, can be
found in the bibliographic notes (Section 11.7).

Clustering Graph and Network Data

Cluster analysis on graph and network data extracts valuable knowledge and informa-
tion. Such data are increasingly popular in many applications. We discuss applications
and challenges of clustering graph and network data in Section 11.3.1. Similarity mea-
sures for this form of clustering are given in Section 11.3.2. You will learn about graph
clustering methods in Section 11.3.3.

In general, the terms graph and network can be used interchangeably. In the rest of
this section, we mainly use the term graph.
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[1.3.1 Applications and Challenges

Example I 1.16

Example 1 1.17

Figure 11.12

As a customer relationship manager at AllElectronics, you notice that a lot of data relating
to customers and their purchase behavior can be preferably modeled using graphs.

Bipartite graph. The customer purchase behavior at AllElectronics can be represented in
a bipartite graph. In a bipartite graph, vertices can be divided into two disjoint sets so that
each edge connects a vertex in one set to a vertex in the other set. For the AllElectronics
customer purchase data, one set of vertices represents customers, with one customer per
vertex. The other set represents products, with one product per vertex. An edge connects
a customer to a product, representing the purchase of the product by the customer.
Figure 11.12 shows an illustration.

“What kind of knowledge can we obtain by a cluster analysis of the customer-product
bipartite graph?” By clustering the customers such that those customers buying similar
sets of products are placed into one group, a customer relationship manager can make
product recommendations. For example, suppose Ada belongs to a customer cluster in
which most of the customers purchased a digital camera in the last 12 months, but Ada
has yet to purchase one. As manager, you decide to recommend a digital camera to her.

Alternatively, we can cluster products such that those products purchased by similar
sets of customers are grouped together. This clustering information can also be used
for product recommendations. For example, if a digital camera and a high-speed flash
memory card belong to the same product cluster, then when a customer purchases a
digital camera, we can recommend the high-speed flash memory card. (]

Bipartite graphs are widely used in many applications. Consider another example.
Web search engines. In web search engines, search logs are archived to record user
queries and the corresponding click-through information. (The click-through informa-

tion tells us on which pages, given as a result of a search, the user clicked.) The query and
click-through information can be represented using a bipartite graph, where the two sets

Customers Products

Bipartite graph representing customer-purchase data.
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Example 11.18

of vertices correspond to queries and web pages, respectively. An edge links a query to a
web page if a user clicks the web page when asking the query. Valuable information can
be obtained by cluster analyses on the query—web page bipartite graph. For instance, we
may identify queries posed in different languages, but that mean the same thing, if the
click-through information for each query is similar.

As another example, all the web pages on the Web form a directed graph, also known
as the web graph, where each web page is a vertex, and each hyperlink is an edge pointing
from a source page to a destination page. Cluster analysis on the web graph can disclose
communities, find hubs and authoritative web pages, and detect web spams. n

In addition to bipartite graphs, cluster analysis can also be applied to other types of
graphs, including general graphs, as elaborated Example 11.18.

Social network. A social network is a social structure. It can be represented as a graph,
where the vertices are individuals or organizations, and the links are interdependencies
between the vertices, representing friendship, common interests, or collaborative activi-
ties. AllElectronics’ customers form a social network, where each customer is a vertex,
and an edge links two customers if they know each other.

As customer relationship manager, you are interested in finding useful information
that can be derived from AllElectronics’ social network through cluster analysis. You
obtain clusters from the network, where customers in a cluster know each other or
have friends in common. Customers within a cluster may influence one another regard-
ing purchase decision making. Moreover, communication channels can be designed to
inform the “heads” of clusters (i.e., the “best” connected people in the clusters), so
that promotional information can be spread out quickly. Thus, you may use customer
clustering to promote sales at AllElectronics.

As another example, the authors of scientific publications form a social network,
where the authors are vertices and two authors are connected by an edge if they co-
authored a publication. The network is, in general, a weighted graph because an edge
between two authors can carry a weight representing the strength of the collaboration
such as how many publications the two authors (as the end vertices) coauthored. Clus-
tering the coauthor network provides insight as to communities of authors and patterns
of collaboration. (]

“Are there any challenges specific to cluster analysis on graph and network data?” In
most of the clustering methods discussed so far, objects are represented using a set of
attributes. A unique feature of graph and network data is that only objects (as vertices)
and relationships between them (as edges) are given. No dimensions or attributes are
explicitly defined. To conduct cluster analysis on graph and network data, there are two
major new challenges.

“How can we measure the similarity between two objects on a graph accordingly?”
Typically, we cannot use conventional distance measures, such as Euclidean dis-
tance. Instead, we need to develop new measures to quantify the similarity. Such
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measures often are not metric, and thus raise new challenges regarding the develop-
ment of efficient clustering methods. Similarity measures for graphs are discussed in
Section 11.3.2.

“How can we design clustering models and methods that are effective on graph and
network data?” Graph and network data are often complicated, carrying topological
structures that are more sophisticated than traditional cluster analysis applications.
Many graph data sets are large, such as the web graph containing at least tens of
billions of web pages in the publicly indexable Web. Graphs can also be sparse where,
on average, a vertex is connected to only a small number of other vertices in the
graph. To discover accurate and useful knowledge hidden deep in the data, a good
clustering method has to accommodate these factors. Clustering methods for graph
and network data are introduced in Section 11.3.3.

[1.3.2 Similarity Measures

“How can we measure the similarity or distance between two vertices in a graph?” In our
discussion, we examine two types of measures: geodesic distance and distance based on
random walk.

Geodesic Distance

A simple measure of the distance between two vertices in a graph is the shortest path
between the vertices. Formally, the geodesic distance between two vertices is the length
in terms of the number of edges of the shortest path between the vertices. For two
vertices that are not connected in a graph, the geodesic distance is defined as infinite.

Using geodesic distance, we can define several other useful measurements for graph
analysis and clustering. Given a graph G = (V, E), where V is the set of vertices and E is
the set of edges, we define the following:

For a vertext v € V, the eccentricity of v, denoted eccen(v), is the largest geodesic
distance between v and any other vertex u € V — {v}. The eccentricity of v captures
how far away v is from its remotest vertex in the graph.

The radius of graph G is the minimum eccentricity of all vertices. That is,
r = min eccen(v). (11.27)
veV

The radius captures the distance between the “most central point” and the “farthest
border” of the graph.

The diameter of graph G is the maximum eccentricity of all vertices. That is,

d = max eccen(v). (11.28)
veV

The diameter represents the largest distance between any pair of vertices.

A peripheral vertex is a vertex that achieves the diameter.
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Figure 11.13

Example 11.19

Example 11.20

A graph, G, where vertices ¢, d, and e are peripheral.

Measurements based on geodesic distance. Consider graph G in Figure 11.13. The
eccentricity of a is 2, that is, eccen(a) =2, eccen(b) =2, and eccen(c) = eccen(d) =
eccen(e) = 3. Thus, the radius of G is 2, and the diameter is 3. Note that it is not necessary
that d = 2 x r. Vertices ¢, d, and e are peripheral vertices. n

SimRank: Similarity Based on Random Walk
and Structural Context

For some applications, geodesic distance may be inappropriate in measuring the simi-
larity between vertices in a graph. Here we introduce SimRank, a similarity measure
based on random walk and on the structural context of the graph. In mathematics, a
random walk is a trajectory that consists of taking successive random steps.

Similarity between people in a social network. Let’s consider measuring the similarity
between two vertices in the AllElectronics customer social network of Example 11.18.
Here, similarity can be explained as the closeness between two participants in the net-
work, that is, how close two people are in terms of the relationship represented by the
social network.

“How well can the geodesic distance measure similarity and closeness in such a network?”
Suppose Ada and Bob are two customers in the network, and the network is undirected.
The geodesic distance (i.e., the length of the shortest path between Ada and Bob) is the
shortest path that a message can be passed from Ada to Bob and vice versa. However, this
information is not useful for AllElectronics’ customer relationship management because
the company typically does not want to send a specific message from one customer to
another. Therefore, geodesic distance does not suit the application.

“What does similarity mean in a social network?” We consider two ways to define
similarity:

Two customers are considered similar to one another if they have similar neighbors
in the social network. This heuristic is intuitive because, in practice, two people
receiving recommendations from a good number of common friends often make
similar decisions. This kind of similarity is based on the local structure (i.e., the
neighborhoods) of the vertices, and thus is called structural context—based similarity.
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Suppose AllElectronics sends promotional information to both Ada and Bob in the
social network. Ada and Bob may randomly forward such information to their
friends (or neighbors) in the network. The closeness between Ada and Bob can then
be measured by the likelihood that other customers simultaneously receive the pro-
motional information that was originally sent to Ada and Bob. This kind of similarity
is based on the random walk reachability over the network, and thus is referred to as
similarity based on random walk. (]

Let’s have a closer look at what is meant by similarity based on structural context, and
similarity based on random walk.

The intuition behind similarity based on structural context is that two vertices in a
graph are similar if they are connected to similar vertices. To measure such similarity, we
need to define the notion of individual neighborhood. In a directed graph G = (V, E),
where V is the set of vertices and E C V x V is the set of edges, for a vertex v € V, the
individual in-neighborhood of v is defined as

I(v) = {ul(u,v) € E}. (11.29)
Symmetrically, we define the individual out-neighborhood of v as
O(v) = {w|(v,w) € E}. (11.30)

Following the intuition illustrated in Example 11.20, we define SimRank, a
structural-context similarity, with a value that is between 0 and 1 for any pair of ver-
tices. For any vertex, v € V, the similarity between the vertex and itself is s(v,v) =1
because the neighborhoods are identical. For vertices u, v € V such that u # v, we can
define

C
S 7) = T ) stuy), (11.31)

xel(u) yel(v)

where C is a constant between 0 and 1. A vertex may not have any in-neighbors. Thus,
we define Eq. (11.31) to be 0 when either I(u) or I(v) is @J. Parameter C specifies the rate
of decay as similarity is propagated across edges.

“How can we compute SimRank?” A straightforward method iteratively evaluates
Eq. (11.31) until a fixed point is reached. Let s;(u,v) be the SimRank score calculated
at the ith round. To begin, we set

if
so(u,v) = 0 1 uFtv (11.32)
1 ifu=w.
We use Eq. (11.31) to compute s; 4 from s; as
S = Y3 s, (11.33)
[I()|[T(v)]

xel(u) yel(v)
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It can be shown that lim s;(u,v) = s(u,v). Additional methods for approximating
11— 00

SimRank are given in the bibliographic notes (Section 11.7).

Now, let’s consider similarity based on random walk. A directed graph is strongly
connected if, for any two nodes u and v, there is a path from u to v and another path
from v to u. In a strongly connected graph, G = (V, E), for any two vertices, u,v € V,
we can define the expected distance from u to v as

d(uw,v) = Y P[t]l(®), (11.34)

tiu~~>v

where u ~~ v is a path starting from u and ending at v that may contain cycles but does
not reach v until the end. For a traveling tour, t = w; — wy, — --- — wj, its length is
I(t) = k — 1. The probability of the tour is defined as

[T oty 1) >0 (1139)
0 ifI(t) =0.

Plt] =

To measure the probability that a vertex w receives a message that originated simulta-

neously from u and v, we extend the expected distance to the notion of expected meeting
distance, that is,

muv)= > Plt]l(t), (11.36)

t:(u, )~ (x,x)

where (u,v) ~» (x,x) is a pair of tours u ~> x and v ~~ x of the same length. Using a
constant C between 0 and 1, we define the expected meeting probability as

pwvy = Y Pl]C, (11.37)

t:(1,v) ~ (x,x)

which is a similarity measure based on random walk. Here, the parameter C specifies
the probability of continuing the walk at each step of the trajectory.

It has been shown that s(u, v) = p(u, v) for any two vertices, # and v. That is, SimRank
is based on both structural context and random walk.

[1.3.3 Graph Clustering Methods

Let’s consider how to conduct clustering on a graph. We first describe the intuition
behind graph clustering. We then discuss two general categories of graph clustering
methods.

To find clusters in a graph, imagine cutting the graph into pieces, each piece being
a cluster, such that the vertices within a cluster are well connected and the vertices in
different clusters are connected in a much weaker way. Formally, for a graph, G = (V, E),
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acut, C= (S, T), is a partitioning of the set of vertices V in G, thatis, V. =SU T and
SN T =@. The cut set of a cut is the set of edges, {(#,v) € E|lu € S,v € T}. The size of
the cut is the number of edges in the cut set. For weighted graphs, the size of a cut is the
sum of the weights of the edges in the cut set.

“What kinds of cuts are good for deriving clusters in graphs?” In graph theory and some
network applications, a minimum cut is of importance. A cut is minimum if the cut’s size
is not greater than any other cut’s size. There are polynomial time algorithms to compute
minimum cuts of graphs. Can we use these algorithms in graph clustering?

Example 11.21 Cuts and clusters. Consider graph G in Figure 11.14. The graph has two clusters:
{a,b,c,d, e, f} and {g, h,1,j, k}, and one outlier vertex, I.

Consider cut Cy = ({a,b,¢,d, e,f, g, h, 1,7, k}, {I}). Only one edge, namely, (e, ), crosses
the two partitions created by C;. Therefore, the cut set of C; is {(e, 1)} and the size of C
is 1. (Note that the size of any cut in a connected graph cannot be smaller than 1.) As a
minimum cut, C; does not lead to a good clustering because it only separates the outlier
vertex, I, from the rest of the graph.

Cut G, = ({a,b,¢,d, e,f,1},{g, h, 1,5, k}) leads to a much better clustering than C;. The
edges in the cut set of C, are those connecting the two “natural clusters” in the graph.
Specifically, for edges (d, h) and (e, k) that are in the cut set, most of the edges connecting
d, h, e, and k belong to one cluster. n

Example 11.21 indicates that using a minimum cut is unlikely to lead to a good clus-
tering. We are better off choosing a cut where, for each vertex u that is involved in an
edge in the cut set, most of the edges connecting to u belong to one cluster. Formally, let
deg(u) be the degree of , that is, the number of edges connecting to u. The sparsity of a
cut C = (S, T) is defined as

cut size

=—. 11.38
min{|S|, T} (1139

Sparsest cut C,

Figure 11.14 A graph G and two cuts.
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A cut is sparsest if its sparsity is not greater than the sparsity of any other cut. There may
be more than one sparsest cut.

In Example 11.21 and Figure 11.14, G, is a sparsest cut. Using sparsity as the objective
function, a sparsest cut tries to minimize the number of edges crossing the partitions and
balance the partitions in size.

Consider a clustering on a graph G = (V, E) that partitions the graph into k clusters.
The modularity of a clustering assesses the quality of the clustering and is defined as

Q—k (Y (11.39)
= \E <ﬁ> ’ '

1=

where /; is the number of edges between vertices in the ith cluster, and d; is the sum of
the degrees of the vertices in the ith cluster. The modularity of a clustering of a graph is
the difference between the fraction of all edges that fall into individual clusters and the
fraction that would do so if the graph vertices were randomly connected. The optimal
clustering of graphs maximizes the modularity.

Theoretically, many graph clustering problems can be regarded as finding good cuts,
such as the sparsest cuts, on the graph. In practice, however, a number of challenges
exist:

High computational cost: Many graph cut problems are computationally expen-
sive. The sparsest cut problem, for example, is NP-hard. Therefore, finding the
optimal solutions on large graphs is often impossible. A good trade-off between
efficiency/scalability and quality has to be achieved.

Sophisticated graphs: Graphs can be more sophisticated than the ones described
here, involving weights and/or cycles.

High dimensionality: A graph can have many vertices. In a similarity matrix, a vertex
is represented as a vector (a row in the matrix) with a dimensionality that is the
number of vertices in the graph. Therefore, graph clustering methods must handle
high dimensionality.

Sparsity: A large graph is often sparse, meaning each vertex on average connects to
only a small number of other vertices. A similarity matrix from a large sparse graph
can also be sparse.

There are two kinds of methods for clustering graph data, which address these
challenges. One uses clustering methods for high-dimensional data, while the other is
designed specifically for clustering graphs.

The first group of methods is based on generic clustering methods for high-
dimensional data. They extract a similarity matrix from a graph using a similarity
measure such as those discussed in Section 11.3.2. A generic clustering method can
then be applied on the similarity matrix to discover clusters. Clustering methods for
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high-dimensional data are typically employed. For example, in many scenarios, once
a similarity matrix is obtained, spectral clustering methods (Section 11.2.4) can be
applied. Spectral clustering can approximate optimal graph cut solutions. For additional
information, please refer to the bibliographic notes (Section 11.7).

The second group of methods is specific to graphs. They search the graph to find
well-connected components as clusters. Let’s look at a method called SCAN (Structural
Clustering Algorithm for Networks) as an example.

Given an undirected graph, G = (V,E), for a vertex, u € V, the neighborhood of
uis T'(u) = {v|(u,v) € E}U{u}. Using the idea of structural-context similarity, SCAN
measures the similarity between two vertices, u,v € V, by the normalized common
neighborhood size, that is,

o vy = ILWOLO)
T VITWIT M

The larger the value computed, the more similar the two vertices. SCAN uses a similarity
threshold ¢ to define the cluster membership. For a vertex, u € V, the e-neighborhood
of uis defined as N (1) = {v € I'(u)|o (1, v) > €}. The e-neighborhood of u contains all
neighbors of u with a structural-context similarity to u that is at least €.

In SCAN, a core vertex is a vertex inside of a cluster. That is, u € V is a core ver-
tex if |Ng(u)| > p, where u is a popularity threshold. SCAN grows clusters from core
vertices. If a vertex v is in the e-neighborhood of a core u, then v is assigned to the
same cluster as u. This process of growing clusters continues until no cluster can be
further grown. The process is similar to the density-based clustering method, DBSCAN
(Chapter 10).

Formally, a vertex v can be directly reached from a core u if v € N¢(u). Transitively, a
vertex v can be reached from a core u if there exist vertices wy, ..., w, such that w; can
be reached from u, w; can be reached from w;_; for 1 < i < n, and v can be reached
from w,,. Moreover, two vertices, u,v € V, which may or may not be cores, are said to
be connected if there exists a core w such that both u and v can be reached from w. All
vertices in a cluster are connected. A cluster is a maximum set of vertices such that every
pair in the set is connected.

Some vertices may not belong to any cluster. Such a vertex u is a hub if the neighbor-
hood I' (1) of u contains vertices from more than one cluster. If a vertex does not belong
to any cluster, and is not a hub, it is an outlier.

The SCAN algorithm is shown in Figure 11.15. The search framework closely resem-
bles the cluster-finding process in DBSCAN. SCAN finds a cut of the graph, where
each cluster is a set of vertices that are connected based on the transitive similarity in
a structural context.

An advantage of SCAN is that its time complexity is linear with respect to the number
of edges. In very large and sparse graphs, the number of edges is in the same scale of the
number of vertices. Therefore, SCAN is expected to have good scalability on clustering
large graphs.

(11.40)



532 Chapter 11 Advanced Cluster Analysis

Algorithm: SCAN for clusters on graph data.
Input: a graph G = (V, E), a similarity threshold ¢, and a
population threshold p
Output: a set of clusters
Method: set all vertices in V unlabeled
for all unlabeled vertex u do
if uis a core then
generate a new cluster-id ¢
insert all v € N, (1) into a queue Q
while Q # do
w < the first vertex in Q
R < the set of vertices that can be directly reached from w
forall s€ Rdo
if s is not unlabeled or labeled as nonmember then
assign the current cluster-id c to s
endif
if s is unlabeled then
insert s into queue Q
endif
endfor
remove w from Q
end while
else
label u as nonmember
endif
endfor
for all vertex u labeled nonmember do
if 3x,y € I'(u) : x and y have different cluster-ids then
label uas hub
else
label u as outlier
endif
endfor

Figure 11.15 SCAN algorithm for cluster analysis on graph data.

Clustering with Constraints

Users often have background knowledge that they want to integrate into cluster analysis.
There may also be application-specific requirements. Such information can be mod-
eled as clustering constraints. We approach the topic of clustering with constraints in
two steps. Section 11.4.1 categorizes the types of constraints for clustering graph data.
Methods for clustering with constraints are introduced in Section 11.4.2.
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[1.4.] Categorization of Constraints

This section studies how to categorize the constraints used in cluster analysis. Specifi-
cally, we can categorize constraints according to the subjects on which they are set, or
on how strongly the constraints are to be enforced.

As discussed in Chapter 10, cluster analysis involves three essential aspects: objects
as instances of clusters, clusters as groups of objects, and the similarity among objects.
Therefore, the first method we discuss categorizes constraints according to what they are
applied to. We thus have three types: constraints on instances, constraints on clusters, and
constraints on similarity measurement.

Constraints on instances: A constraint on instances specifies how a pair or a set of
instances should be grouped in the cluster analysis. Two common types of con-
straints from this category include:

Must-link constraints. If a must-link constraint is specified on two objects x and
¥, then x and y should be grouped into one cluster in the output of the cluster
analysis. These must-link constraints are transitive. That is, if must-link(x, y) and
must-link(y, z), then must-link(x, z).

Cannot-link constraints. Cannot-link constraints are the opposite of must-link
constraints. If a cannot-link constraint is specified on two objects, x and y,
then in the output of the cluster analysis, x and y should belong to different
clusters. Cannot-link constraints can be entailed. That is, if cannot-link(x, y),
must-link(x, x), and must-link(y, y), then cannot-link(x’, ).

A constraint on instances can be defined using specific instances. Alternatively, it
can also be defined using instance variables or attributes of instances. For example, a
constraint,

Constraint(x, y) : must-link(x, y) if dist(x,y) <¢,

uses the distance between objects to specify a must-link constraint.

Constraints on clusters: A constraint on clusters specifies a requirement on the clusters,
possibly using attributes of the clusters. For example, a constraint may specify the
minimum number of objects in a cluster, the maximum diameter of a cluster, or the
shape of a cluster (e.g., a convex). The number of clusters specified for partitioning
clustering methods can be regarded as a constraint on clusters.

Constraints on similarity measurement: Often, a similarity measure, such as Eucli-
dean distance, is used to measure the similarity between objects in a cluster anal-
ysis. In some applications, exceptions apply. A constraint on similarity measurement
specifies a requirement that the similarity calculation must respect. For example, to
cluster people as moving objects in a plaza, while Euclidean distance is used to give
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Example 11.22

Example 11.23

the walking distance between two points, a constraint on similarity measurement is
that the trajectory implementing the shortest distance cannot cross a wall.

There can be more than one way to express a constraint, depending on the category.
For example, we can specify a constraint on clusters as

Constraint,: the diameter of a cluster cannot be larger than d.
The requirement can also be expressed using a constraint on instances as

Constraint|: cannot-link(x, y) if dist(x,y) > d. (11.41)

Constraints on instances, clusters, and similarity measurement. AllElectronics clusters
its customers so that each group of customers can be assigned to a customer relationship
manager. Suppose we want to specify that all customers at the same address are to be
placed in the same group, which would allow more comprehensive service to families.
This can be expressed using a must-link constraint on instances:

Constraintpmii, (x, y) : must-link(x, y) if x.address = y.address.

AllElectronics has eight customer relationship managers. To ensure that they each
have a similar workload, we place a constraint on clusters such that there should be
eight clusters, and each cluster should have at least 10% of the customers and no more
than 15% of the customers. We can calculate the spatial distance between two customers
using the driving distance between the two. However, if two customers live in different
countries, we have to use the flight distance instead. This is a constraint on similarity
measurement. L]

Another way to categorize clustering constraints considers how firmly the constraints
have to be respected. A constraint is hard if a clustering that violates the constraint
is unacceptable. A constraint is soft if a clustering that violates the constraint is not
preferable but acceptable when no better solution can be found. Soft constraints are also
called preferences.

Hard and soft constraints. For AllElectronics, Constraintg,y,;;, in Example 11.22 is a hard
constraint because splitting a family into different clusters could prevent the company
from providing comprehensive services to the family, leading to poor customer satisfac-
tion. The constraint on the number of clusters (which corresponds to the number of
customer relationship managers in the company) is also hard. Example 11.22 also has
a constraint to balance the size of clusters. While satisfying this constraint is strongly
preferred, the company is flexible in that it is willing to assign a senior and more capa-
ble customer relationship manager to oversee a larger cluster. Therefore, the constraint
is soft. (]

Ideally, for a specific data set and a set of constraints, all clusterings satisfy the con-
straints. However, it is possible that there may be no clustering of the data set that
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satisfies all the constraints. Trivially, if two constraints in the set conflict, then no
clustering can satisfy them at the same time.

Conflicting constraints. Consider these constraints:

must-link(x, y) if dist(x,y) <5
cannot-link(x, y) if dist(x,y) > 3.

If a data set has two objects, x, , such that dist(x, y) = 4, then no clustering can satisfy
both constraints simultaneously.
Consider these two constraints:

must-link(x, y) if dist(x,y) <5
must-link(x, y) if dist(x, y) < 3.

The second constraint is redundant given the first. Moreover, for a data set where the
distance between any two objects is at least 5, every possible clustering of the objects
satisfies the constraints. n

“How can we measure the quality and the usefulness of a set of constraints?” In gene-
ral, we consider either their informativeness, or their coherence. The informativeness
is the amount of information carried by the constraints that is beyond the clustering
model. Given a data set, D, a clustering method, A, and a set of constraints, C, the
informativeness of C with respect to .4 on D can be measured by the fraction of con-
straints in C that are unsatisfied by the clustering computed by .A on D. The higher the
informativeness, the more specific the requirements and background knowledge that
the constraints carry. The coherence of a set of constraints is the degree of agreement
among the constraints themselves, which can be measured by the redundancy among
the constraints.

Methods for Clustering with Constraints

Although we can categorize clustering constraints, applications may have very different
constraints of specific forms. Consequently, various techniques are needed to handle
specific constraints. In this section, we discuss the general principles of handling hard
and soft constraints.

Handling Hard Constraints

A general strategy for handling hard constraints is to strictly respect the constraints in
the cluster assignment process. To illustrate this idea, we will use partitioning clustering
as an example.
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Given a data set and a set of constraints on instances (i.e., must-link or cannot-link
constraints), how can we extend the k-means method to satisfy such constraints? The
COP-k-means algorithm works as follows:

I. Generate superinstances for must-link constraints. Compute the transitive clo-
sure of the must-link constraints. Here, all must-link constraints are treated as an
equivalence relation. The closure gives one or multiple subsets of objects where all
objects in a subset must be assigned to one cluster. To represent such a subset, we
replace all those objects in the subset by the mean. The superinstance also carries a
weight, which is the number of objects it represents.

After this step, the must-link constraints are always satisfied.

2. Conduct modified k-means clustering. Recall that, in k-means, an object is assigned
to the closest center. What if a nearest-center assignment violates a cannot-link con-
straint? To respect cannot-link constraints, we modify the center assignment process
in k-means to a nearest feasible center assignment. That is, when the objects are
assigned to centers in sequence, at each step we make sure the assignments so far
do not violate any cannot-link constraints. An object is assigned to the nearest center
so that the assignment respects all cannot-link constraints.

Because COP-k-means ensures that no constraints are violated at every step, it does
not require any backtracking. It is a greedy algorithm for generating a clustering that
satisfies all constraints, provided that no conflicts exist among the constraints.

Handling Soft Constraints

Clustering with soft constraints is an optimization problem. When a clustering violates a
soft constraint, a penalty is imposed on the clustering. Therefore, the optimization goal
of the clustering contains two parts: optimizing the clustering quality and minimizing
the constraint violation penalty. The overall objective function is a combination of the
clustering quality score and the penalty score.

To illustrate, we again use partitioning clustering as an example. Given a data set
and a set of soft constraints on instances, the CVQE (Constrained Vector Quanti-
zation Error) algorithm conducts k-means clustering while enforcing constraint vio-
lation penalties. The objective function used in CVQE is the sum of the distance used
in k-means, adjusted by the constraint violation penalties, which are calculated as
follows.

Penalty of a must-link violation. If there is a must-link constraint on objects x and
, but they are assigned to two different centers, c; and ¢, respectively, then the con-
straint is violated. As a result, dist(c;, ¢z), the distance between ¢; and ¢, is added to
the objective function as the penalty.

Penalty of a cannot-link violation. If there is a cannot-link constraint on objects x
and y, but they are assigned to a common center, ¢, then the constraint is violated.
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The distance, dist(c,c’), between ¢ and ¢’ is added to the objective function as the
penalty.

Speeding up Constrained Clustering

Constraints, such as on similarity measurements, can lead to heavy costs in cluster-
ing. Consider the following clustering with obstacles problem: To cluster people as
moving objects in a plaza, Euclidean distance is used to measure the walking distance
between two points. However, a constraint on similarity measurement is that the tra-
jectory implementing the shortest distance cannot cross a wall (Section 11.4.1). Because
obstacles may occur between objects, the distance between two objects may have to be
derived by geometric computations (e.g., involving triangulation). The computational
cost is high if a large number of objects and obstacles are involved.

The clustering with obstacles problem can be represented using a graphical notation.
First, a point, p, is visible from another point, ¢, in the region R if the straight line
joining p and q does not intersect any obstacles. A visibility graph is the graph, VG =
(V, E), such that each vertex of the obstacles has a corresponding node in V and two
nodes, v; and v, in V are joined by an edge in E if and only if the corresponding vertices
they represent are visible to each other. Let VG' = (V’, E’) be a visibility graph created
from VG by adding two additional points, p and ¢, in V’. E’ contains an edge joining
two points in V’ if the two points are mutually visible. The shortest path between two
points, p and g, will be a subpath of VG, as shown in Figure 11.16(a). We see that it
begins with an edge from p to either vy, v2, or v3, goes through a path in VG, and then
ends with an edge from either v4 or vs to q.

To reduce the cost of distance computation between any two pairs of objects or
points, several preprocessing and optimization techniques can be used. One method
groups points that are close together into microclusters. This can be done by first tri-
angulating the region R into triangles, and then grouping nearby points in the same
triangle into microclusters, using a method similar to BIRCH or DBSCAN, as shown
in Figure 11.16(b). By processing microclusters rather than individual points, the over-
all computation is reduced. After that, precomputation can be performed to build two

Figure 11.16 Clustering with obstacle objects (0; and 0,): (a) a visibility graph and (b) triangulation of
regions with microclusters. Source: Adapted from Tung, Hou, and Han [THHO1].
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kinds of join indices based on the computation of the shortest paths: (1) VV indices,
for any pair of obstacle vertices, and (2) MV indices, for any pair of microcluster and
obstacle vertex. Use of the indices helps further optimize the overall performance.

Using such precomputation and optimization strategies, the distance between any
two points (at the granularity level of a microcluster) can be computed efficiently.
Thus, the clustering process can be performed in a manner similar to a typical efficient
k-medoids algorithm, such as CLARANS, and achieve good clustering quality for large
data sets.

Summary

In conventional cluster analysis, an object is assigned to one cluster exclusively. How-
ever, in some applications, there is a need to assign an object to one or more clusters
in a fuzzy or probabilistic way. Fuzzy clustering and probabilistic model-based clus-
tering allow an object to belong to one or more clusters. A partition matrix records
the membership degree of objects belonging to clusters.

Probabilistic model-based clustering assumes that a cluster is a parameterized dis-
tribution. Using the data to be clustered as the observed samples, we can estimate the
parameters of the clusters.

A mixture model assumes that a set of observed objects is a mixture of instances from
multiple probabilistic clusters. Conceptually, each observed object is generated inde-
pendently by first choosing a probabilistic cluster according to the probabilities of the
clusters, and then choosing a sample according to the probability density function of
the chosen cluster.

An expectation-maximization algorithm is a framework for approaching maximum
likelihood or maximum a posteriori estimates of parameters in statistical models.
Expectation-maximization algorithms can be used to compute fuzzy clustering and
probabilistic model-based clustering.

High-dimensional data pose several challenges for cluster analysis, including how to
model high-dimensional clusters and how to search for such clusters.

There are two major categories of clustering methods for high-dimensional data:
subspace clustering methods and dimensionality reduction methods. Subspace
clustering methods search for clusters in subspaces of the original space. Exam-
ples include subspace search methods, correlation-based clustering methods, and
biclustering methods. Dimensionality reduction methods create a new space of
lower dimensionality and search for clusters there.

Biclustering methods cluster objects and attributes simultaneously. Types of biclus-
ters include biclusters with constant values, constant values on rows/columns,
coherent values, and coherent evolutions on rows/columns. Two major types of
biclustering methods are optimization-based methods and enumeration methods.
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Spectral clustering is a dimensionality reduction method. The general idea is to
construct new dimensions using an affinity matrix.

Clustering graph and network data has many applications such as social network
analysis. Challenges include how to measure the similarity between objects in a
graph, and how to design clustering models and methods for graph and network
data.

Geodesic distance is the number of edges between two vertices on a graph. It can be
used to measure similarity. Alternatively, similarity in graphs, such as social networks,
can be measured using structural context and random walk. SimRank is a similarity
measure that is based on both structural context and random walk.

Graph clustering can be modeled as computing graph cuts. A sparsest cut may lead
to a good clustering, while modularity can be used to measure the clustering quality.

SCAN is a graph clustering algorithm that searches graphs to identify well-connected
components as clusters.

Constraints can be used to express application-specific requirements or background
knowledge for cluster analysis. Constraints for clustering can be categorized as con-
straints on instances, on clusters, or on similarity measurement. Constraints on
instances include must-link and cannot-link constraints. A constraint can be hard
or soft.

Hard constraints for clustering can be enforced by strictly respecting the constraints
in the cluster assignment process. Clustering with soft constraints can be considered
an optimization problem. Heuristics can be used to speed up constrained clustering.

Exercises

Traditional clustering methods are rigid in that they require each object to belong exclu-
sively to only one cluster. Explain why this is a special case of fuzzy clustering. You may
use k-means as an example.

AllElectronics carries 1000 products, Py, ..., Pigoo. Consider customers Ada, Bob, and
Cathy such that Ada and Bob purchase three products in common, P;, P;, and Ps. For
the other 997 products, Ada and Bob independently purchase seven of them randomly.
Cathy purchases 10 products, randomly selected from the 1000 products. In Euclidean
distance, what is the probability that dist(Ada, Bob) > dist(Ada, Cathy)? What if Jaccard
similarity (Chapter 2) is used? What can you learn from this example?

Show that I x ] is a bicluster with coherent values if and only if, for any 71,7, € I and
Joj2 € eijy = €ijy = €irjy = Ciy-
Compare the MaPle algorithm (Section 11.2.3) with the frequent closed itemset mining

algorithm, CLOSET (Pei, Han, and Mao [PHMO00]). What are the major similarities and
differences?
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11.5

11.6

11.7

11.8

SimRank is a similarity measure for clustering graph and network data.
(a) Prove lim s;j(u,v) = s(u,v) for SimRank computation.

1— 00
(b) Show s(u,v) = p(u,v) for SimRank.

In a large sparse graph where on average each node has a low degree, is the similarity
matrix using SimRank still sparse? If so, in what sense? If not, why? Deliberate on your
answer.

Compare the SCAN algorithm (Section 11.3.3) with DBSCAN (Section 10.4.1). What
are their similarities and differences?

Consider partitioning clustering and the following constraint on clusters: The number
of objects in each cluster must be between %(1 —38) and %(1 + &), where n is the total
number of objects in the data set, k is the number of clusters desired, and § in [0,1)
is a parameter. Can you extend the k-means method to handle this constraint? Discuss
situations where the constraint is hard and soft.
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presented a framework for constraint-based clustering based on user-specified con-
straints. An efficient method for constraint-based spatial clustering in the existence of
physical obstacle constraints was proposed by Tung, Hou, and Han [THHO1].
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Outlier Detection

Imagine that you are a transaction auditor in a credit card company. To protect your customers
from credit card fraud, you pay special attention to card usages that are rather different
from typical cases. For example, if a purchase amount is much bigger than usual for
a card owner, and if the purchase occurs far from the owner’s resident city, then the
purchase is suspicious. You want to detect such transactions as soon as they occur and
contact the card owner for verification. This is common practice in many credit card
companies. What data mining techniques can help detect suspicious transactions?

Most credit card transactions are normal. However, if a credit card is stolen, its
transaction pattern usually changes dramatically—the locations of purchases and the
items purchased are often very different from those of the authentic card owner and
other customers. An essential idea behind credit card fraud detection is to identify those
transactions that are very different from the norm.

Outlier detection (also known as anomaly detection) is the process of finding data
objects with behaviors that are very different from expectation. Such objects are called
outliers or anomalies. Outlier detection is important in many applications in addition
to fraud detection such as medical care, public safety and security, industry damage
detection, image processing, sensor/video network surveillance, and intrusion detection.

Outlier detection and clustering analysis are two highly related tasks. Clustering finds
the majority patterns in a data set and organizes the data accordingly, whereas out-
lier detection tries to capture those exceptional cases that deviate substantially from the
majority patterns. Outlier detection and clustering analysis serve different purposes.

In this chapter, we study outlier detection techniques. Section 12.1 defines the differ-
ent types of outliers. Section 12.2 presents an overview of outlier detection methods. In
the rest of the chapter, you will learn about outlier detection methods in detail. These
approaches, organized here by category, are statistical (Section 12.3), proximity-based
(Section 12.4), clustering-based (Section 12.5), and classification-based (Section 12.6).
In addition, you will learn about mining contextual and collective outliers (Section 12.7)
and outlier detection in high-dimensional data (Section 12.8).

Data Mining: Concepts and Techniques 5 4 3
(© 2012 Elsevier Inc. All rights reserved.
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Outliers and Outlier Analysis

Let us first define what outliers are, categorize the different types of outliers, and then
discuss the challenges in outlier detection at a general level.

[2.1.] What Are Outliers?

Example 12.1

Figure 12.1

Assume that a given statistical process is used to generate a set of data objects. An outlier
is a data object that deviates significantly from the rest of the objects, as if it were gen-
erated by a different mechanism. For ease of presentation within this chapter, we may
refer to data objects that are not outliers as “normal” or expected data. Similarly, we may
refer to outliers as “abnormal” data.

Outliers. In Figure 12.1, most objects follow a roughly Gaussian distribution. However,
the objects in region R are significantly different. It is unlikely that they follow the same
distribution as the other objects in the data set. Thus, the objects in R are outliers in the
data set. (]

Outliers are different from noisy data. As mentioned in Chapter 3, noise is a ran-
dom error or variance in a measured variable. In general, noise is not interesting in
data analysis, including outlier detection. For example, in credit card fraud detection,
a customer’s purchase behavior can be modeled as a random variable. A customer may
generate some “noise transactions” that may seem like “random errors” or “variance,”
such as by buying a bigger lunch one day, or having one more cup of coffee than usual.
Such transactions should not be treated as outliers; otherwise, the credit card company
would incur heavy costs from verifying that many transactions. The company may also
lose customers by bothering them with multiple false alarms. As in many other data
analysis and data mining tasks, noise should be removed before outlier detection.

Outliers are interesting because they are suspected of not being generated by the same
mechanisms as the rest of the data. Therefore, in outlier detection, it is important to
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The objects in region R are outliers.
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justify why the outliers detected are generated by some other mechanisms. This is often
achieved by making various assumptions on the rest of the data and showing that the
outliers detected violate those assumptions significantly.

Outlier detection is also related to novelty detection in evolving data sets. For example,
by monitoring a social media web site where new content is incoming, novelty detection
may identify new topics and trends in a timely manner. Novel topics may initially appear
as outliers. To this extent, outlier detection and novelty detection share some similarity
in modeling and detection methods. However, a critical difference between the two is
that in novelty detection, once new topics are confirmed, they are usually incorporated
into the model of normal behavior so that follow-up instances are not treated as outliers
anymore.

[2.1.2 Types of Outliers

Example 12.2

In general, outliers can be classified into three categories, namely global outliers, con-
textual (or conditional) outliers, and collective outliers. Let’s examine each of these
categories.

Global Outliers

In a given data set, a data object is a global outlier if it deviates significantly from the rest
of the data set. Global outliers are sometimes called point anomalies, and are the simplest
type of outliers. Most outlier detection methods are aimed at finding global outliers.

Global outliers. Consider the points in Figure 12.1 again. The points in region R signifi-
cantly deviate from the rest of the data set, and hence are examples of global outliers. m

To detect global outliers, a critical issue is to find an appropriate measurement of
deviation with respect to the application in question. Various measurements are pro-
posed, and, based on these, outlier detection methods are partitioned into different
categories. We will come to this issue in detail later.

Global outlier detection is important in many applications. Consider intrusion detec-
tion in computer networks, for example. If the communication behavior of a computer
is very different from the normal patterns (e.g., a large number of packages is broad-
cast in a short time), this behavior may be considered as a global outlier and the
corresponding computer is a suspected victim of hacking. As another example, in trad-
ing transaction auditing systems, transactions that do not follow the regulations are
considered as global outliers and should be held for further examination.

Contextual Outliers

“The temperature today is 28°C. Is it exceptional (i.e., an outlier)?” It depends, for exam-
ple, on the time and location! If it is in winter in Toronto, yes, it is an outlier. If it is a
summer day in Toronto, then it is normal. Unlike global outlier detection, in this case,
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Example 12.3

whether or not today’s temperature value is an outlier depends on the context—the date,
the location, and possibly some other factors.

In a given data set, a data object is a contextual outlier if it deviates significantly
with respect to a specific context of the object. Contextual outliers are also known as
conditional outliers because they are conditional on the selected context. Therefore, in
contextual outlier detection, the context has to be specified as part of the problem defi-
nition. Generally, in contextual outlier detection, the attributes of the data objects in
question are divided into two groups:

Contextual attributes: The contextual attributes of a data object define the object’s
context. In the temperature example, the contextual attributes may be date and
location.

Behavioral attributes: These define the object’s characteristics, and are used to eval-
uate whether the object is an outlier in the context to which it belongs. In the
temperature example, the behavioral attributes may be the temperature, humidity,
and pressure.

Unlike global outlier detection, in contextual outlier detection, whether a data object
is an outlier depends on not only the behavioral attributes but also the contextual
attributes. A configuration of behavioral attribute values may be considered an outlier in
one context (e.g., 28°C is an outlier for a Toronto winter), but not an outlier in another
context (e.g., 28°C is not an outlier for a Toronto summer).

Contextual outliers are a generalization of local outliers, a notion introduced in
density-based outlier analysis approaches. An object in a data set is a local outlier if
its density significantly deviates from the local area in which it occurs. We will discuss
local outlier analysis in greater detail in Section 12.4.3.

Global outlier detection can be regarded as a special case of contextual outlier detec-
tion where the set of contextual attributes is empty. In other words, global outlier
detection uses the whole data set as the context. Contextual outlier analysis provides
flexibility to users in that one can examine outliers in different contexts, which can be
highly desirable in many applications.

Contextual outliers. In credit card fraud detection, in addition to global outliers, an
analyst may consider outliers in different contexts. Consider customers who use more
than 90% of their credit limit. If one such customer is viewed as belonging to a group of
customers with low credit limits, then such behavior may not be considered an outlier.
However, similar behavior of customers from a high-income group may be considered
outliers if their balance often exceeds their credit limit. Such outliers may lead to busi-
ness opportunities—raising credit limits for such customers can bring in new revenue.

L]
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Figure 12.2
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The quality of contextual outlier detection in an application depends on the
meaningfulness of the contextual attributes, in addition to the measurement of the devi-
ation of an object to the majority in the space of behavioral attributes. More often
than not, the contextual attributes should be determined by domain experts, which
can be regarded as part of the input background knowledge. In many applications, nei-
ther obtaining sufficient information to determine contextual attributes nor collecting
high-quality contextual attribute data is easy.

“How can we formulate meaningful contexts in contextual outlier detection?” A
straightforward method simply uses group-bys of the contextual attributes as contexts.
This may not be effective, however, because many group-bys may have insufficient data
and/or noise. A more general method uses the proximity of data objects in the space of
contextual attributes. We discuss this approach in detail in Section 12.4.

Collective Outliers

Suppose you are a supply-chain manager of AllElectronics. You handle thousands of
orders and shipments every day. If the shipment of an order is delayed, it may not be
considered an outlier because, statistically, delays occur from time to time. However,
you have to pay attention if 100 orders are delayed on a single day. Those 100 orders
as a whole form an outlier, although each of them may not be regarded as an outlier if
considered individually. You may have to take a close look at those orders collectively to
understand the shipment problem.

Given a data set, a subset of data objects forms a collective outlier if the objects as
a whole deviate significantly from the entire data set. Importantly, the individual data
objects may not be outliers.

Collective outliers. In Figure 12.2, the black objects as a whole form a collective outlier

because the density of those objects is much higher than the rest in the data set. However,
every black object individually is not an outlier with respect to the whole data set.
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Collective outlier detection has many important applications. For example, in
intrusion detection, a denial-of-service package from one computer to another is con-
sidered normal, and not an outlier at all. However, if several computers keep sending
denial-of-service packages to each other, they as a whole should be considered as a col-
lective outlier. The computers involved may be suspected of being compromised by an
attack. As another example, a stock transaction between two parties is considered nor-
mal. However, a large set of transactions of the same stock among a small party in a short
period are collective outliers because they may be evidence of some people manipulating
the market.

Unlike global or contextual outlier detection, in collective outlier detection we have
to consider not only the behavior of individual objects, but also that of groups of
objects. Therefore, to detect collective outliers, we need background knowledge of the
relationship among data objects such as distance or similarity measurements between
objects.

In summary, a data set can have multiple types of outliers. Moreover, an object may
belong to more than one type of outlier. In business, different outliers may be used in
various applications or for different purposes. Global outlier detection is the simplest.
Context outlier detection requires background information to determine contextual
attributes and contexts. Collective outlier detection requires background information
to model the relationship among objects to find groups of outliers.

12.1.3 Challenges of Outlier Detection

Outlier detection is useful in many applications yet faces many challenges such as the
following:

Modeling normal objects and outliers effectively. Outlier detection quality highly
depends on the modeling of normal (nonoutlier) objects and outliers. Often, build-
ing a comprehensive model for data normality is very challenging, if not impossible.
This is partly because it is hard to enumerate all possible normal behaviors in an
application.

The border between data normality and abnormality (outliers) is often not clear
cut. Instead, there can be a wide range of gray area. Consequently, while some out-
lier detection methods assign to each object in the input data set a label of either
“normal” or “outlier,” other methods assign to each object a score measuring the
“outlier-ness” of the object.

Application-specific outlier detection. Technically, choosing the similarity/distance
measure and the relationship model to describe data objects is critical in outlier
detection. Unfortunately, such choices are often application-dependent. Different
applications may have very different requirements. For example, in clinic data anal-
ysis, a small deviation may be important enough to justify an outlier. In contrast, in
marketing analysis, objects are often subject to larger fluctuations, and consequently
a substantially larger deviation is needed to justify an outlier. Outlier detection’s high
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dependency on the application type makes it impossible to develop a universally
applicable outlier detection method. Instead, individual outlier detection methods
that are dedicated to specific applications must be developed.

Handling noise in outlier detection. As mentioned earlier, outliers are different from
noise. It is also well known that the quality of real data sets tends to be poor. Noise
often unavoidably exists in data collected in many applications. Noise may be present
as deviations in attribute values or even as missing values. Low data quality and
the presence of noise bring a huge challenge to outlier detection. They can distort
the data, blurring the distinction between normal objects and outliers. Moreover,
noise and missing data may “hide” outliers and reduce the effectiveness of out-
lier detection—an outlier may appear “disguised” as a noise point, and an outlier
detection method may mistakenly identify a noise point as an outlier.

Understandability. In some application scenarios, a user may want to not only
detect outliers, but also understand why the detected objects are outliers. To meet
the understandability requirement, an outlier detection method has to provide some
justification of the detection. For example, a statistical method can be used to jus-
tify the degree to which an object may be an outlier based on the likelihood that the
object was generated by the same mechanism that generated the majority of the data.
The smaller the likelihood, the more unlikely the object was generated by the same
mechanism, and the more likely the object is an outlier.

The rest of this chapter discusses approaches to outlier detection.

Outlier Detection Methods

There are many outlier detection methods in the literature and in practice. Here, we
present two orthogonal ways to categorize outlier detection methods. First, we catego-
rize outlier detection methods according to whether the sample of data for analysis is
given with domain expert—provided labels that can be used to build an outlier detection
model. Second, we divide methods into groups according to their assumptions regarding
normal objects versus outliers.

Supervised, Semi-Supervised, and Unsupervised Methods

If expert-labeled examples of normal and/or outlier objects can be obtained, they can be
used to build outlier detection models. The methods used can be divided into supervised
methods, semi-supervised methods, and unsupervised methods.

Supervised Methods

Supervised methods model data normality and abnormality. Domain experts examine
and label a sample of the underlying data. Outlier detection can then be modeled as
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a classification problem (Chapters 8 and 9). The task is to learn a classifier that can
recognize outliers. The sample is used for training and testing. In some applications, the
experts may label just the normal objects, and any other objects not matching the model
of normal objects are reported as outliers. Other methods model the outliers and treat
objects not matching the model of outliers as normal.

Although many classification methods can be applied, challenges to supervised
outlier detection include the following:

The two classes (i.e., normal objects versus outliers) are imbalanced. That is, the pop-
ulation of outliers is typically much smaller than that of normal objects. Therefore,
methods for handling imbalanced classes (Section 8.6.5) may be used, such as over-
sampling (i.e., replicating) outliers to increase their distribution in the training set
used to construct the classifier. Due to the small population of outliers in data, the
sample data examined by domain experts and used in training may not even suffi-
ciently represent the outlier distribution. The lack of outlier samples can limit the
capability of classifiers built as such. To tackle these problems, some methods “make
up” artificial outliers.

In many outlier detection applications, catching as many outliers as possible (i.e., the
sensitivity or recall of outlier detection) is far more important than not mislabeling
normal objects as outliers. Consequently, when a classification method is used for
supervised outlier detection, it has to be interpreted appropriately so as to consider
the application interest on recall.

In summary, supervised methods of outlier detection must be careful in how they
train and how they interpret classification rates due to the fact that outliers are rare in
comparison to the other data samples.

Unsupervised Methods

In some application scenarios, objects labeled as “normal” or “outlier” are not available.
Thus, an unsupervised learning method has to be used.

Unsupervised outlier detection methods make an implicit assumption: The normal
objects are somewhat “clustered.” In other words, an unsupervised outlier detection
method expects that normal objects follow a pattern far more frequently than outliers.
Normal objects do not have to fall into one group sharing high similarity. Instead, they
can form multiple groups, where each group has distinct features. However, an outlier is
expected to occur far away in feature space from any of those groups of normal objects.

This assumption may not be true all the time. For example, in Figure 12.2, the normal
objects do not share any strong patterns. Instead, they are uniformly distributed. The
collective outliers, however, share high similarity in a small area. Unsupervised methods
cannot detect such outliers effectively. In some applications, normal objects are diversely
distributed, and many such objects do not follow strong patterns. For instance, in some
intrusion detection and computer virus detection problems, normal activities are very
diverse and many do not fall into high-quality clusters. In such scenarios, unsupervised
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methods may have a high false positive rate—they may mislabel many normal objects
as outliers (intrusions or viruses in these applications), and let many actual outliers go
undetected. Due to the high similarity between intrusions and viruses (i.e., they have to
attack key resources in the target systems), modeling outliers using supervised methods
may be far more effective.

Many clustering methods can be adapted to act as unsupervised outlier detection
methods. The central idea is to find clusters first, and then the data objects not belong-
ing to any cluster are detected as outliers. However, such methods suffer from two issues.
First, a data object not belonging to any cluster may be noise instead of an outlier. Sec-
ond, it is often costly to find clusters first and then find outliers. It is usually assumed
that there are far fewer outliers than normal objects. Having to process a large popu-
lation of nontarget data entries (i.e., the normal objects) before one can touch the real
meat (i.e., the outliers) can be unappealing. The latest unsupervised outlier detection
methods develop various smart ideas to tackle outliers directly without explicitly and
completely finding clusters. You will learn more about these techniques in Sections 12.4
and 12.5 on proximity-based and clustering-based methods, respectively.

Semi-Supervised Methods

In many applications, although obtaining some labeled examples is feasible, the number
of such labeled examples is often small. We may encounter cases where only a small set
of the normal and/or outlier objects are labeled, but most of the data are unlabeled.
Semi-supervised outlier detection methods were developed to tackle such scenarios.

Semi-supervised outlier detection methods can be regarded as applications of semi-
supervised learning methods (Section 9.7.2). For example, when some labeled normal
objects are available, we can use them, together with unlabeled objects that are close by,
to train a model for normal objects. The model of normal objects then can be used to
detect outliers—those objects not fitting the model of normal objects are classified as
outliers.

If only some labeled outliers are available, semi-supervised outlier detection is trick-
ier. A small number of labeled outliers are unlikely to represent all the possible outliers.
Therefore, building a model for outliers based on only a few labeled outliers is unlikely
to be effective. To improve the quality of outlier detection, we can get help from models
for normal objects learned from unsupervised methods.

For additional information on semi-supervised methods, interested readers are
referred to the bibliographic notes at the end of this chapter (Section 12.11).

[2.2.2 Statistical Methods, Proximity-Based Methods,
and Clustering-Based Methods

As discussed in Section 12.1, outlier detection methods make assumptions about outliers
versus the rest of the data. According to the assumptions made, we can categorize outlier
detection methods into three types: statistical methods, proximity-based methods, and
clustering-based methods.
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Example 12.5

Example 12.6

Statistical Methods

Statistical methods (also known as model-based methods) make assumptions of
data normality. They assume that normal data objects are generated by a statistical
(stochastic) model, and that data not following the model are outliers.

Detecting outliers using a statistical (Gaussian) model. In Figure 12.1, the data points
except for those in region R fit a Gaussian distribution gp, where for a location x in the
data space, gn(x) gives the probability density at x. Thus, the Gaussian distribution gp
can be used to model the normal data, that is, most of the data points in the data set. For
each object y in region, R, we can estimate gp(y), the probability that this point fits the
Gaussian distribution. Because gp(y) is very low, y is unlikely generated by the Gaussian
model, and thus is an outlier. n

The effectiveness of statistical methods highly depends on whether the assumptions
made for the statistical model hold true for the given data. There are many kinds of
statistical models. For example, the statistic models used in the methods may be para-
metric or nonparametric. Statistical methods for outlier detection are discussed in detail
in Section 12.3.

Proximity-Based Methods

Proximity-based methods assume that an object is an outlier if the nearest neighbors
of the object are far away in feature space, that is, the proximity of the object to its
neighbors significantly deviates from the proximity of most of the other objects to their
neighbors in the same data set.

Detecting outliers using proximity. Consider the objects in Figure 12.1 again. If we
model the proximity of an object using its three nearest neighbors, then the objects
in region R are substantially different from other objects in the data set. For the two
objects in R, their second and third nearest neighbors are dramatically more remote
than those of any other objects. Therefore, we can label the objects in R as outliers based
on proximity. [

The effectiveness of proximity-based methods relies heavily on the proximity (or dis-
tance) measure used. In some applications, such measures cannot be easily obtained.
Moreover, proximity-based methods often have difficulty in detecting a group of outliers
if the outliers are close to one another.

There are two major types of proximity-based outlier detection, namely distance-
based and density-based outlier detection. Proximity-based outlier detection is discussed
in Section 12.4.

Clustering-Based Methods

Clustering-based methods assume that the normal data objects belong to large and
dense clusters, whereas outliers belong to small or sparse clusters, or do not belong to
any clusters.
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Example 12.7 Detecting outliers using clustering. In Figure 12.1, there are two clusters. Cluster C

123.1

contains all the points in the data set except for those in region R. Cluster G, is tiny,
containing just two points in R. Cluster C; is large in comparison to C,. Therefore, a
clustering-based method asserts that the two objects in R are outliers. (]

There are many clustering methods, as discussed in Chapters 10 and 11. There-
fore, there are many clustering-based outlier detection methods as well. Clustering is an
expensive data mining operation. A straightforward adaptation of a clustering method
for outlier detection can be very costly, and thus does not scale up well for large data
sets. Clustering-based outlier detection methods are discussed in detail in Section 12.5.

Statistical Approaches

As with statistical methods for clustering, statistical methods for outlier detection make
assumptions about data normality. They assume that the normal objects in a data set are
generated by a stochastic process (a generative model). Consequently, normal objects
occur in regions of high probability for the stochastic model, and objects in the regions
of low probability are outliers.

The general idea behind statistical methods for outlier detection is to learn a gener-
ative model fitting the given data set, and then identify those objects in low-probability
regions of the model as outliers. However, there are many different ways to learn genera-
tive models. In general, statistical methods for outlier detection can be divided into two
major categories: parametric methods and nonparametric methods, according to how the
models are specified and learned.

A parametric method assumes that the normal data objects are generated by a para-
metric distribution with parameter ®. The probability density function of the parametric
distribution f(x,®) gives the probability that object x is generated by the distribution.
The smaller this value, the more likely x is an outlier.

A nonparametric method does not assume an a priori statistical model. Instead, a
nonparametric method tries to determine the model from the input data. Note that
most nonparametric methods do not assume that the model is completely parameter-
free. (Such an assumption would make learning the model from data almost mission
impossible.) Instead, nonparametric methods often take the position that the num-
ber and nature of the parameters are flexible and not fixed in advance. Examples of
nonparametric methods include histogram and kernel density estimation.

Parametric Methods

In this subsection, we introduce several simple yet practical parametric methods for
outlier detection. We first discuss methods for univariate data based on normal dis-
tribution. We then discuss how to handle multivariate data using multiple parametric
distributions.
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Detection of Univariate Outliers Based
on Normal Distribution

Data involving only one attribute or variable are called univariate data. For simplicity,
we often choose to assume that data are generated from a normal distribution. We can
then learn the parameters of the normal distribution from the input data, and identify
the points with low probability as outliers.

Let’s start with univariate data. We will try to detect outliers by assuming the data
follow a normal distribution.

Example 12.8 Univariate outlier detection using maximum likelihood. Suppose a city’s average tem-
perature values in July in the last 10 years are, in value-ascending order, 24.0°C, 28.9°C,
28.9°C, 29.0°C, 29.1°C, 29.1°C, 29.2°C, 29.2°C, 29.3°C, and 29.4°C. Let’s assume that
the average temperature follows a normal distribution, which is determined by two
parameters: the mean, i, and the standard deviation, o.

We can use the maximum likelihood method to estimate the parameters ¢ and 0. That
is, we maximize the log-likelihood function

InL(p,02) = Zlnf(xi|(u,c72)) =— gln(Zn) — glnoz — % Z(xi —w?, (12.1)
i=1

i=1

where 7 is the total number of samples, which is 10 in this example.
Taking derivatives with respect to 1 and 0% and solving the resulting system of first-
order conditions leads to the following maximum likelihood estimates:

p=x=-Y x (12.2)
n
=1
1 n
62=2-Y (x,— %> (12.3)
n-
=1
In this example, we have
. 24.0428.94289+29.0429.14+29.1+29.2429.2+29.3429.4 2861
/,L = = .

10
6% = ((24.1 —28.61)% + (28.9 — 28.61)% 4 (28.9 — 28.61)? + (29.0 — 28.61)*

+(29.1 —28.61)% + (29.1 — 28.61)% + (29.2 — 28.61)* + (29.2 — 28.61)?
+(29.3 —28.61)% + (29.4 — 28.61)%)/10 == 2.29.
Accordingly, we have 6 = 4/2.29 = 1.51.

The most deviating value, 24.0°C, is 4.61°C away from the estimated mean. We
know that the pu + 30 region contains 99.7% data under the assumption of normal
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distribution. Because % = 3.04 > 3, the probability that the value 24.0°C is generated

by the normal distribution is less than 0.15%, and thus can be identified as an outlier. m

Example 12.8 elaborates a simple yet practical outlier detection method. It simply
labels any object as an outlier if it is more than 30 away from the mean of the estimated
distribution, where o is the standard deviation.

Such straightforward methods for statistical outlier detection can also be used in
visualization. For example, the boxplot method (described in Chapter 2) plots the uni-
variate input data using a five-number summary (Figure 12.3): the smallest nonoutlier
value (Min), the lower quartile (Q1), the median (Q2), the upper quartile (Q3), and
the largest nonoutlier value (Max). The interquantile range (IQR) is defined as Q3 — Q1.
Any object that is more than 1.5 x IQR smaller than Q1 or 1.5 x IQR larger than Q3 is
treated as an outlier because the region between Q1 — 1.5 X IQR and Q3 + 1.5 x IQR
contains 99.3% of the objects. The rationale is similar to using 3o as the threshold for
normal distribution.

Another simple statistical method for univariate outlier detection using normal dis-
tribution is the Grubb’s test (also known as the maximum normed residual test). For each
object x in a data set, we define a z-score as

|x — X|

z= > (12.4)
s

where x is the mean, and s is the standard deviation of the input data. An object x is an
outlier if

2
z N-1 L) (2N),N=2
i 2 bl
N N_2+ta/(2N),N—2

(12.5)

where tozl JQN),N—2 is the value taken by a ¢-distribution at a significance level of o/ (2N),
and N is the number of objects in the data set.
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Example 12.9

Example 12.10

Detection of Multivariate Outliers

Data involving two or more attributes or variables are multivariate data. Many univariate
outlier detection methods can be extended to handle multivariate data. The central idea
is to transform the multivariate outlier detection task into a univariate outlier detection
problem. Here, we use two examples to illustrate this idea.

Multivariate outlier detection using the Mahalanobis distance. For a multivariate
data set, let 0 be the mean vector. For an object, o, in the data set, the Mahalanobis
distance from o to 0 is

MDist(0,0) = (0 — 0) 'S (0 — 0), (12.6)

where S is the covariance matrix.

MDist(0,0) is a univariate variable, and thus Grubb’s test can be applied to this
measure. Therefore, we can transform the multivariate outlier detection tasks as
follows:

I. Calculate the mean vector from the multivariate data set.
2. For each object o, calculate MDist (o, 0), the Mahalanobis distance from o to o.
3. Detect outliers in the transformed univariate data set, { MDist(0,0)|o € D}.

4. 1If MDist(o0,0) is determined to be an outlier, then o is regarded as an outlier as well.
n

Our second example uses the y2-statistic to measure the distance between an object
to the mean of the input data set.

Multivariate outlier detection using the y 2-statistic. The x2-statistic can also be used
to capture multivariate outliers under the assumption of normal distribution. For an
object, o, the x2-statistic is

n

2 (0i — Ej)?
=5, 12.7
X 2T, (12.7)

where o; is the value of o on the ith dimension, E; is the mean of the i-dimension
among all objects, and # is the dimensionality. If the x2-statistic is large, the object
is an outlier. [

Using a Mixture of Parametric Distributions

If we assume that the data were generated by a normal distribution, this works well in
many situations. However, this assumption may be overly simplified when the actual
data distribution is complex. In such cases, we instead assume that the data were
generated by a mixture of parametric distributions.
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A complex data set.

Multivariate outlier detection using multiple parametric distributions. Consider the
data set in Figure 12.4. There are two big clusters, C; and C,. To assume that the data
are generated by a normal distribution would not work well here. The estimated mean
is located between the two clusters and not inside any cluster. The objects between the
two clusters cannot be detected as outliers since they are close to the mean. (]

To overcome this problem, we can instead assume that the normal data objects are
generated by multiple normal distributions, two in this case. That is, we assume two
normal distributions, ®;(u1,01) and ®,(u;,07). For any object, o, in the data set, the
probability that o is generated by the mixture of the two distributions is given by

Pr(0|®1,02) = fo, (0) + fo,(0),

where fg, and fg, are the probability density functions of ®; and ®;, respectively. We
can use the expectation-maximization (EM) algorithm (Chapter 11) to learn the param-
eters (L1,01, (42,07 from the data, as we do in mixture models for clustering. Fach cluster
is represented by a learned normal distribution. An object, o, is detected as an outlier if
it does not belong to any cluster, that is, the probability is very low that it was generated
by the combination of the two distributions.

Multivariate outlier detection using multiple clusters. Most of the data objects shown
in Figure 12.4 are in either C; or G,. Other objects, representing noise, are uniformly
distributed in the data space. A small cluster, Cs, is highly suspicious because it is not
close to either of the two major clusters, C; and C,. The objects in C; should therefore
be detected as outliers.

Note that identifying the objects in Cs as outliers is difficult, whether or not we
assume that the given data follow a normal distribution or a mixture of multiple dis-
tributions. This is because the probability of the objects in C; will be higher than some
of the noise objects, like o in Figure 12.4, due to a higher local density in C;. (]
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To tackle the problem demonstrated in Example 12.12, we can assume that the nor-
mal data objects are generated by a normal distribution, or a mixture of normal distri-
butions, whereas the outliers are generated by another distribution. Heuristically, we can
add constraints on the distribution that is generating outliers. For example, it is reason-
able to assume that this distribution has a larger variance if the outliers are distributed in
a larger area. Technically, we can assign o,,;.r = ko, where k is a user-specified param-
eter and o is the standard deviation of the normal distribution generating the normal
data. Again, the EM algorithm can be used to learn the parameters.

12.3.2 Nonparametric Methods

In nonparametric methods for outlier detection, the model of “normal data” is learned
from the input data, rather than assuming one a priori. Nonparametric methods often
make fewer assumptions about the data, and thus can be applicable in more scenarios.

Example 12.13 Outlier detection using a histogram. AllElectronics records the purchase amount
for every customer transaction. Figure 12.5 uses a histogram (refer to Chapters 2 and
3) to graph these amounts as percentages, given all transactions. For example, 60% of
the transaction amounts are between $0.00 and $1000.

We can use the histogram as a nonparametric statistical model to capture outliers. For
example, a transaction in the amount of $7500 can be regarded as an outlier because
only 1 — (60% +20% + 10% + 6.7% + 3.1%) = 0.2% of transactions have an amount
higher than $5000. On the other hand, a transaction amount of $385 can be treated as
normal because it falls into the bin (or bucket) holding 60% of the transactions.

60%

20%

10%
6.7%

0 > x $1000
0-1 1-2 2-3 3-4 4-5
Amount per transaction

Figure 12.5 Histogram of purchase amounts in transactions.
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As illustrated in the previous example, the histogram is a frequently used nonpara-
metric statistical model that can be used to detect outliers. The procedure involves the
following two steps.

Step 1: Histogram construction. In this step, we construct a histogram using the input
data (training data). The histogram may be univariate as in Example 12.13, or
multivariate if the input data are multidimensional.

Note that although nonparametric methods do not assume any a priori statis-
tical model, they often do require user-specified parameters to learn models from
data. For example, to construct a good histogram, a user has to specify the type of
histogram (e.g., equal width or equal depth) and other parameters (e.g., the number
of bins in the histogram or the size of each bin). Unlike parametric methods, these
parameters do not specify types of data distribution (e.g., Gaussian).

Step 2: Outlier detection. To determine whether an object, o, is an outlier, we can check
it against the histogram. In the simplest approach, if the object falls in one of the
histogram’s bins, the object is regarded as normal. Otherwise, it is considered an
outlier.

For a more sophisticated approach, we can use the histogram to assign an out-
lier score to the object. In Example 12.13, we can let an object’s outlier score be the
inverse of the volume of the bin in which the object falls. For example, the outlier
score for a transaction amount of $7500 is m =500, and that for a transaction
amount of $385 is ﬁ = 1.67. The scores indicate that the transaction amount of
$7500 is much more likely to be an outlier than that of $385.

A drawback to using histograms as a nonparametric model for outlier detection is
that it is hard to choose an appropriate bin size. On the one hand, if the bin size is set too
small, many normal objects may end up in empty or rare bins, and thus be misidentified
as outliers. This leads to a high false positive rate and low precision. On the other hand,
if the bin size is set too high, outlier objects may infiltrate into some frequent bins and
thus be “disguised” as normal. This leads to a high false negative rate and low recall.

To overcome this problem, we can adopt kernel density estimation to estimate the
probability density distribution of the data. We treat an observed object as an indica-
tor of high probability density in the surrounding region. The probability density at a
point depends on the distances from this point to the observed objects. We use a kernel
function to model the influence of a sample point within its neighborhood. A kernel
K() is a non-negative real-valued integrable function that satisfies the following two
conditions:

fj;o K(u)du=1.
K(—u) = K(u) for all values of u.

A frequently used kernel is a standard Gaussian function with mean 0 and variance 1:

K(x—x,') 1 _(x;:z,-ﬁ (12.8)
frd e . .
Vo

2
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Let x1,...,x, be an independent and identically distributed sample of a random
variable f. The kernel density approximation of the probability density function is

N 1 <& X — Xi
fh(x)z%;K( ; ) (12.9)

where K() is a kernel and h is the bandwidth serving as a smoothing parameter.
Once the probability density function of a data set is approximated through kernel

density estimation, we can use the estimated density function ]A‘ to detect outliers. For an
object, o, f (o) gives the estimated probability that the object is generated by the stochas-

tic process. If ]A‘(o) is high, then the object is likely normal. Otherwise, o is likely an
outlier. This step is often similar to the corresponding step in parametric methods.

In summary, statistical methods for outlier detection learn models from data to dis-
tinguish normal data objects from outliers. An advantage of using statistical methods is
that the outlier detection may be statistically justifiable. Of course, this is true only if the
statistical assumption made about the underlying data meets the constraints in reality.

The data distribution of high-dimensional data is often complicated and hard
to fully understand. Consequently, statistical methods for outlier detection on high-
dimensional data remain a big challenge. Outlier detection for high-dimensional data
is further addressed in Section 12.8.

The computational cost of statistical methods depends on the models. When simple
parametric models are used (e.g., a Gaussian), fitting the parameters typically takes lin-
ear time. When more sophisticated models are used (e.g., mixture models, where the
EM algorithm is used in learning), approximating the best parameter values often takes
several iterations. Each iteration, however, is typically linear with respect to the data set’s
size. For kernel density estimation, the model learning cost can be up to quadratic. Once
the model is learned, the outlier detection cost is often very small per object.

Proximity-Based Approaches

Given a set of objects in feature space, a distance measure can be used to quantify the
similarity between objects. Intuitively, objects that are far from others can be regarded
as outliers. Proximity-based approaches assume that the proximity of an outlier object
to its nearest neighbors significantly deviates from the proximity of the object to most
of the other objects in the data set.

There are two types of proximity-based outlier detection methods: distance-based
and density-based methods. A distance-based outlier detection method consults the
neighborhood of an object, which is defined by a given radius. An object is then consid-
ered an outlier if its neighborhood does not have enough other points. A density-based
outlier detection method investigates the density of an object and that of its neighbors.
Here, an object is identified as an outlier if its density is relatively much lower than that
of its neighbors.

Let’s start with distance-based outliers.
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[2.4.] Distance-Based Outlier Detection and a Nested
Loop Method

A representative method of proximity-based outlier detection uses the concept of
distance-based outliers. For a set, D, of data objects to be analyzed, a user can spec-
ify a distance threshold, r, to define a reasonable neighborhood of an object. For each
object, 0, we can examine the number of other objects in the r-neighborhood of o. If
most of the objects in D are far from o, that is, not in the r-neighborhood of o, then o
can be regarded as an outlier.

Formally, let » (r > 0) be a distance threshold and @ (0 <m <1) be a fraction
threshold. An object, o, is a DB(r,)-outlier if

{0’ |dist(0,0") < r}|
DIl B

T, (12.10)

where dist(-,-) is a distance measure.

Equivalently, we can determine whether an object, o, is a DB(r, w)-outlier by checking
the distance between o and its k-nearest neighbor, o, where k = [ || D||]. Object 0 is an
outlier if dist(0,0x) > r, because in such a case, there are fewer than k objects except for
o that are in the r-neighborhood of o.

“How can we compute DB(r, ) -outliers?” A straightforward approach is to use nested
loops to check the r-neighborhood for every object, as shown in Figure 12.6. For any
object, 0; (1 < i< n), we calculate the distance between o0; and the other object, and
count the number of other objects in the r-neighborhood of 0;. Once we find 7 - n other

Algorithm: Distance-based outlier detection.

Input:
a set of objects D = {01,...,04}, threshold r (r > 0) and 7 (0 <7 < 1);

Output: DB(r,7) outliers in D.
Method:

fori=1tondo
count <0
forj=1tondo
if i # j and dist(0;,0;) < r then
count <— count + 1
if count > 7 - n then
exit {0; cannot be a DB(r, ) outlier}
endif
endif
endfor
print o; {o; is a DB(r,7) outlier according to (Eq. 12.10)}
endfor;

Figure 12.6 Nested loop algorithm for DB(r,)-outlier detection.
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objects within a distance r from o;, the inner loop can be terminated because o; already
violates (Eq. 12.10), and thus is not a DB(r,)-outlier. On the other hand, if the inner
loop completes for o;, this means that o; has less than 7 - n neighbors in a radius of r,
and thus is a DB(r,)-outlier.

The straightforward nested loop approach takes O(n?) time. Surprisingly, the actual
CPU runtime is often linear with respect to the data set size. For most nonoutlier objects,
the inner loop terminates early when the number of outliers in the data set is small,
which should be the case most of the time. Correspondingly, only a small fraction of the
data set is examined.

When mining large data sets where the complete set of objects cannot be held in
main memory, the nested loop approach is still costly. Suppose the main memory has
m pages for the mining. Instead of conducting the inner loop object by object, in such
a case, the outer loop uses m — 1 pages to hold as many objects as possible and uses the
remaining one page to run the inner loop. The inner loop cannot stop until all objects
in the m — 1 pages are identified as not being outliers, which is very unlikely to happen.
Correspondingly, it is likely that the algorithm has to incur O((%)z) input/output (I/O)
cost, where b is the number of objects that can be held in one page.

The major cost in the nested loop method comes from two aspects. First, to check
whether an object is an outlier, the nested loop method tests the object against the
whole data set. To improve, we need to explore how to determine the outlierness of an
object from the neighbors that are close to the object. Second, the nested loop method
checks objects one by one. To improve, we should try to group objects according to
their proximity, and check the outlierness of objects group by group most of the time.
Section 12.4.2 introduces how to implement the preceding ideas.

[2.4.2 A Grid-Based Method

CELL is a grid-based method for distance-based outlier detection. In this method, the
data space is partitioned into a multidimensional grid, where each cell is a hypercube
that has a diagonal of length %, where r is a distance threshold parameter. In other words,
if there are I dimensions, the length of each edge of a cell is ﬁ

Consider a 2-D data set, for example. Figure 12.7 shows part of the grid. The length
of each edge of a cell is ﬁi

Consider the cell C in Figure 12.7. The neighboring cells of C can be divided into
two groups. The cells immediately next to C constitute the level-1 cells (labeled “1”
in the figure), and the cells one or two cells away from C in any direction constitute
the level-2 cells (labeled “2” in the figure). The two levels of cells have the following

properties:
Level-1 cell property: Given any possible point, x of C, and any possible point, y, in
alevel-1 cell, then dist(x,y) <.

Level-2 cell property: Given any possible point, x of C, and any point, y, such that
dist(x,y) > r, then y is in a level-2 cell.
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Figure 12.7 Grids in the CELL method.

Let a be the number of objects in cell C, b; be the total number of objects in the
level-1 cells, and b, be the total number of objects in the level-2 cells. We can apply the
following rules.

Level-1 cell pruning rule: Based on the level-1 cell property, if a+ by > [7#], then
every object o in C is not a DB(r,m)-outlier because all those objects in C and
the level-1 cells are in the r-neighborhood of o, and there are at least [7n] such
neighbors.

Level-2 cell pruning rule: Based on the level-2 cell property, if a+ b + by <
[tn]+1, then all objects in C are DB(r,m)-outliers because each of their r-
neighborhoods has less than [ 1] other objects.

Using the preceding two rules, the CELL method organizes objects into groups using
a grid—all objects in a cell form a group. For groups satisfying one of the two rules, we
can determine that either all objects in a cell are outliers or nonoutliers, and thus do not
need to check those objects one by one. Moreover, to apply the two rules, we need only
check a limited number of cells close to a target cell instead of the whole data set.

Using the previous two rules, many objects can be determined as being either
nonoutliers or outliers. We only need to check the objects that cannot be pruned using
the two rules. Even for such an object, 0, we need only compute the distance between
o0 and the objects in the level-2 cells with respect to o. This is because all objects in the
level-1 cells have a distance of at most r to o, and all objects not in a level-1 or level-2
cell must have a distance of more than r from o, and thus cannot be in the r-neighbor-
hood of o.

When the data set is very large so that most of the data are stored on disk, the CELL
method may incur many random accesses to disk, which is costly. An alternative method
was proposed, which uses a very small amount of main memory (around 1% of the data
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1243

Example 12.14

Figure 12.8

set) to mine all outliers by scanning the data set three times. First, a sample, S, is created
of the given data set, D, using sampling by replacement. Each object in S is considered
the centroid of a partition. The objects in D are assigned to the partitions based on
distance. The preceding steps are completed in one scan of D. Candidate outliers are
identified in a second scan of D. After a third scan, all DB(r, 7r)-outliers have been found.

Density-Based Outlier Detection

Distance-based outliers, such as DB(r,)-outliers, are just one type of outlier. Specifi-
cally, distance-based outlier detection takes a global view of the data set. Such outliers
can be regarded as “global outliers” for two reasons:

A DB(r,m)-outlier, for example, is far (as quantified by parameter r) from at least
(1 —1) x 100% of the objects in the data set. In other words, an outlier as such is
remote from the majority of the data.

To detect distance-based outliers, we need two global parameters, r and 7, which are
applied to every outlier object.

Many real-world data sets demonstrate a more complex structure, where objects
may be considered outliers with respect to their local neighborhoods, rather than with
respect to the global data distribution. Let’s look at an example.

Local proximity-based outliers. Consider the data points in Figure 12.8. There are two
clusters: C; is dense, and C; is sparse. Object 03 can be detected as a distance-based
outlier because it is far from the majority of the data set.

Now, let’s consider objects 0; and 0;. Are they outliers? On the one hand, the distance
from 0; and o, to the objects in the dense cluster, Cj, is smaller than the average dis-
tance between an object in cluster C, and its nearest neighbor. Thus, 0; and o0, are not
distance-based outliers. In fact, if we were to categorize 0, and o, as DB(r,)-outliers,
we would have to classify all the objects in clusters C, as DB(r,)-outliers.

On the other hand, 0; and o0, can be identified as outliers when they are considered
locally with respect to cluster C; because 01 and 0, deviate significantly from the objects
in C;. Moreover, 01 and o, are also far from the objects in C,.

04 ! .Cl
° ° o 0%
° ° ° A
° ° °
. ° ° ° ° )
e G *
. e o ® 0
° . o ° .3
° ° L

Global outliers and local outliers.
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To summarize, distance-based outlier detection methods cannot capture local out-
liers like 0; and 0;. Note that the distance between object 04 and its nearest neighbors is
much greater than the distance between 0; and its nearest neighbors. However, because
04 is local to cluster C, (which is sparse), 04 is not considered a local outlier. n

“How can we formulate the local outliers as illustrated in Example 12.14?” The critical
idea here is that we need to compare the density around an object with the density
around its local neighbors. The basic assumption of density-based outlier detection
methods is that the density around a nonoutlier object is similar to the density around
its neighbors, while the density around an outlier object is significantly different from
the density around its neighbors.

Based on the preceding, density-based outlier detection methods use the relative den-
sity of an object against its neighbors to indicate the degree to which an object is an
outlier.

Now, let’s consider how to measure the relative density of an object, o, given a set of
objects, D. The k-distance of o, denoted by disty(0), is the distance, dist(o, p), between o
and another object, p € D, such that

There are at least k objects o’ € D—{o} such that dist(o, 0’) < dist(o, p).

There are at most k — 1 objects 0” € D—{o} such that dist(o, 0”) < dist(o, p).

In other words, disti(0) is the distance between o and its k-nearest neighbor. Conse-
quently, the k-distance neighborhood of o contains all objects of which the distance to o
is not greater than disty(0), the k-distance of 0, denoted by

Ni(o) ={0'|0’ € D, dist(0,0") < dist;(0)}. (12.11)

Note that Ni(0) may contain more than k objects because multiple objects may each be
the same distance away from o.

We can use the average distance from the objects in Ni (o) to o as the measure of the
local density of 0. However, such a straightforward measure has a problem: If o has very
close neighbors o’ such that dist(o, 0’) is very small, the statistical fluctuations of the
distance measure can be undesirably high. To overcome this problem, we can switch to
the following reachability distance measure by adding a smoothing effect.

For two objects, 0 and o, the reachability distance from o’ to o is dist(o < 0’) if dist
(0, 0') > disti(0), and dist;(0) otherwise. That is,

reachdisti(o < o’) = max{dist(0), dist(0,0’)}. (12.12)

Here, k is a user-specified parameter that controls the smoothing effect. Essentially, k
specifies the minimum neighborhood to be examined to determine the local density
of an object. Importantly, reachability distance is not symmetric, that is, in general,
reachdisti.(0 < 0’) # reachdist;(0’ < o).
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Now, we can define the local reachability density of an object, o, as

[Nk (o)l

lrdi(0) = .
rdi(0) reachdisti (o' < o)

(12.13)
0’ eNy(0)

There is a critical difference between the density measure here for outlier detection
and that in density-based clustering (Section 12.5). In density-based clustering, to deter-
mine whether an object can be considered a core object in a density-based cluster, we use
two parameters: a radius parameter, r, to specify the range of the neighborhood, and the
minimum number of points in the r-neighborhood. Both parameters are global and are
applied to every object. In contrast, as motivated by the observation that relative density
is the key to finding local outliers, we use the parameter k to quantify the neighborhood
and do not need to specify the minimum number of objects in the neighborhood as a
requirement of density. We instead calculate the local reachability density for an object
and compare it with that of its neighbors to quantify the degree to which the object is
considered an outlier.

Specifically, we define the local outlier factor of an object o as

Ird(0")
Zo’ eNy(0) Trdi(0)

[Nk (o)l

LOF;(0) = Z Irdi(0') - Z reachdisty(0' < 0). (12.14)

0’ eN(0) 0’ eN(0)

In other words, the local outlier factor is the average of the ratio of the local reachability
density of 0 and those of 0’s k-nearest neighbors. The lower the local reachability density
of o (i.e., the smaller the item ) o/ N,(0) reachdist (o’ < 0)) and the higher the local
reachability densities of the k-nearest neighbors of o, the higher the LOF value is. This
exactly captures a local outlier of which the local density is relatively low compared to
the local densities of its k-nearest neighbors.

The local outlier factor has some nice properties. First, for an object deep within a
consistent cluster, such as the points in the center of cluster C; in Figure 12.8, the local
outlier factor is close to 1. This property ensures that objects inside clusters, no matter
whether the cluster is dense or sparse, will not be mislabeled as outliers.

Second, for an object o0, the meaning of LOF(o) is easy to understand. Consider the
objects in Figure 12.9, for example. For object o, let

direct,;in(0) = min{reachdist; (0’ < 0)|0’ € Ni(0)} (12.15)

be the minimum reachability distance from o to its k-nearest neighbors. Similarly, we
can define

direct,ax(0) = max{reachdist;(o’ < 0)|0’ € Nx(0)}. (12.16)
We also consider the neighbors of 0’s k-nearest neighbors. Let

indirect,,;;(0) = min{reachdist;(0” < 0")|0’ € Ni(0) and 0” € Ni(0")} (12.17)
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indirect,,;,

Figure 12.9 A property of LOF(o0).

and
indirect,u(0) = max{reachdist,(o” < 0')|0’ € Ni(0) and 0o” € Ni(0")}.  (12.18)
Then, it can be shown that LOF (o) is bounded as

directy,in(0) < LOF(o) < directyqx(0)

_— 12.19
indirectyax(0) — indirect,,in(0) ( )

This result clearly shows that LOF captures the relative density of an object.

Clustering-Based Approaches

The notion of outliers is highly related to that of clusters. Clustering-based approaches
detect outliers by examining the relationship between objects and clusters. Intuitively,
an outlier is an object that belongs to a small and remote cluster, or does not belong to
any cluster.

This leads to three general approaches to clustering-based outlier detection. Consider
an object.

Does the object belong to any cluster? If not, then it is identified as an outlier.

Is there a large distance between the object and the cluster to which it is closest? If
yes, it is an outlier.

Is the object part of a small or sparse cluster? If yes, then all the objects in that cluster
are outliers.
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Example 12.15

Example 12.16

Figure 12.10

Figure 12.11

Let’s look at examples of each of these approaches.

Detecting outliers as objects that do not belong to any cluster. Gregarious animals
(e.g., goats and deer) live and move in flocks. Using outlier detection, we can iden-
tify outliers as animals that are not part of a flock. Such animals may be either lost or
wounded.

In Figure 12.10, each point represents an animal living in a group. Using a density-
based clustering method, such as DBSCAN, we note that the black points belong to
clusters. The white point, a, does not belong to any cluster, and thus is declared an
outlier. (]

The second approach to clustering-based outlier detection considers the distance
between an object and the cluster to which it is closest. If the distance is large, then
the object is likely an outlier with respect to the cluster. Thus, this approach detects
individual outliers with respect to clusters.

Clustering-based outlier detection using distance to the closest cluster. Using the
k-means clustering method, we can partition the data points shown in Figure 12.11 into
three clusters, as shown using different symbols. The center of each cluster is marked
with a +.

For each object, o, we can assign an outlier score to the object according to the dis-
tance between the object and the center that is closest to the object. Suppose the closest
center to o is c,; then the distance between o and ¢, is dist(o, ¢,), and the average
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Object a is an outlier because it does not belong to any cluster.
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+ Cluster centers

Outliers (a, b, ¢) are far from the clusters to which they are closest (with respect to the cluster
centers).
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dist(0,C
M measures how

distance between ¢, and the objects assigned to o is I¢,,. The ratio
o

dist(o, ¢,) stands out from the average. The larger the ratio, the farther away o is relative
from the center, and the more likely o is an outlier. In Figure 12.11, points a, b, and ¢
are relatively far away from their corresponding centers, and thus are suspected of being
outliers. n

This approach can also be used for intrusion detection, as described in Example 12.17.

Intrusion detection by clustering-based outlier detection. A bootstrap method was
developed to detect intrusions in TCP connection data by considering the similarity
between data points and the clusters in a training data set. The method consists of three
steps.

I. A training data set is used to find patterns of normal data. Specifically, the TCP con-
nection data are segmented according to, say, dates. Frequent itemsets are found
in each segment. The frequent itemsets that are in a majority of the segments are
considered patterns of normal data and are referred to as “base connections.”

2. Connections in the training data that contain base connections are treated as attack-
free. Such connections are clustered into groups.

3. The data points in the original data set are compared with the clusters mined in
step 2. Any point that is deemed an outlier with respect to the clusters is declared as

a possible attack. .

Note that each of the approaches we have seen so far detects only individual objects
as outliers because they compare objects one at a time against clusters in the data set.
However, in a large data set, some outliers may be similar and form a small cluster. In
intrusion detection, for example, hackers who use similar tactics to attack a system may
form a cluster. The approaches discussed so far may be deceived by such outliers.

To overcome this problem, a third approach to cluster-based outlier detection identi-
fies small or sparse clusters and declares the objects in those clusters to be outliers as well.
An example of this approach is the FindCBLOF algorithm, which works as follows.

I. Find clusters in a data set, and sort them according to decreasing size. The algo-
rithm assumes that most of the data points are not outliers. It uses a parameter
o (0 <o <1) to distinguish large from small clusters. Any cluster that contains at
least a percentage « (e.g., @ = 90%) of the data set is considered a “large cluster.” The
remaining clusters are referred to as “small clusters.”

2. To each data point, assign a cluster-based local outlier factor (CBLOF). For a point
belonging to a large cluster, its CBLOF is the product of the cluster’s size and the
similarity between the point and the cluster. For a point belonging to a small cluster,
its CBLOF is calculated as the product of the size of the small cluster and the similarity
between the point and the closest large cluster.
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CBLOF defines the similarity between a point and a cluster in a statistical way that
represents the probability that the point belongs to the cluster. The larger the value, the
more similar the point and the cluster are. The CBLOF score can detect outlier points
that are far from any clusters. In addition, small clusters that are far from any large
cluster are considered to consist of outliers. The points with the lowest CBLOF scores
are suspected outliers.

Detecting outliers in small clusters. The data points in Figure 12.12 form three clusters:
large clusters, C; and C,, and a small cluster, Cs. Object o does not belong to any cluster.

Using CBLOE, FindCBLOF can identify o as well as the points in cluster C;s as outliers.
For o, the closest large cluster is C;. The CBLOF is simply the similarity between o and
Cy, which is small. For the points in Cs, the closest large cluster is C,. Although there
are three points in cluster Cs, the similarity between those points and cluster C; is low,
and | G3| = 3 is small; thus, the CBLOF scores of points in Cs are small. n

Clustering-based approaches may incur high computational costs if they have to find
clusters before detecting outliers. Several techniques have been developed for improved
efficiency. For example, fixed-width clustering is a linear-time technique that is used in
some outlier detection methods. The idea is simple yet efficient. A point is assigned to
a cluster if the center of the cluster is within a predefined distance threshold from the
point. If a point cannot be assigned to any existing cluster, a new cluster is created. The
distance threshold may be learned from the training data under certain conditions.

Clustering-based outlier detection methods have the following advantages. First, they
can detect outliers without requiring any labeled data, that is, in an unsupervised way.
They work for many data types. Clusters can be regarded as summaries of the data.
Once the clusters are obtained, clustering-based methods need only compare any object
against the clusters to determine whether the object is an outlier. This process is typically

fast because the number of clusters is usually small compared to the total number of
objects.

0
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Figure 12.12 Outliers in small clusters.
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A weakness of clustering-based outlier detection is its effectiveness, which depends
highly on the clustering method used. Such methods may not be optimized for outlier
detection. Clustering methods are often costly for large data sets, which can serve as a
bottleneck.

Classification-Based Approaches

Outlier detection can be treated as a classification problem if a training data set with class
labels is available. The general idea of classification-based outlier detection methods is
to train a classification model that can distinguish normal data from outliers.

Consider a training set that contains samples labeled as “normal” and others labeled
as “outlier.” A classifier can then be constructed based on the training set. Any classi-
fication method can be used (Chapters 8 and 9). This kind of brute-force approach,
however, does not work well for outlier detection because the training set is typically
heavily biased. That is, the number of normal samples likely far exceeds the number of
outlier samples. This imbalance, where the number of outlier samples may be insuffi-
cient, can prevent us from building an accurate classifier. Consider intrusion detection
in a system, for example. Because most system accesses are normal, it is easy to obtain
a good representation of the normal events. However, it is infeasible to enumerate all
potential intrusions, as new and unexpected attempts occur from time to time. Hence,
we are left with an insufficient representation of the outlier (or intrusion) samples.

To overcome this challenge, classification-based outlier detection methods often use a
one-class model. That is, a classifier is built to describe only the normal class. Any samples
that do not belong to the normal class are regarded as outliers.

Outlier detection using a one-class model. Consider the training set shown in
Figure 12.13, where white points are samples labeled as “normal” and black points
are samples labeled as “outlier.” To build a model for outlier detection, we can learn
the decision boundary of the normal class using classification methods such as SVM
(Chapter 9), as illustrated. Given a new object, if the object is within the decision bound-
ary of the normal class, it is treated as a normal case. If the object is outside the decision
boundary, it is declared an outlier.

An advantage of using only the model of the normal class to detect outliers is that
the model can detect new outliers that may not appear close to any outlier objects in the
training set. This occurs as long as such new outliers fall outside the decision boundary
of the normal class. L]

The idea of using the decision boundary of the normal class can be extended to
handle situations where the normal objects may belong to multiple classes such as in
fuzzy clustering (Chapter 11). For example, AllElectronics accepts returned items. Cus-
tomers can return items for a number of reasons (corresponding to class categories)
such as “product design defects” and “product damaged during shipment.” Each such
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O Objects with label “normal” @ Objects with label “outlier” O Objects without label

Detecting outliers by semi-supervised learning.

class is regarded as normal. To detect outlier cases, AllElectronics can learn a model for
each normal class. To determine whether a case is an outlier, we can run each model on
the case. If the case does not fit any of the models, then it is declared an outlier.

Classification-based methods and clustering-based methods can be combined to
detect outliers in a semi-supervised learning way.

Outlier detection by semi-supervised learning. Consider Figure 12.14, where objects
are labeled as either “normal” or “outlier,” or have no label at all. Using a clustering-
based approach, we find a large cluster, C, and a small cluster, C;. Because some objects
in C carry the label “normal,” we can treat all objects in this cluster (including those
without labels) as normal objects. We use the one-class model of this cluster to identify
normal objects in outlier detection. Similarly, because some objects in cluster C; carry
the label “outlier,” we declare all objects in C; as outliers. Any object that does not fall
into the model for C (e.g., a) is considered an outlier as well. n
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Classification-based methods can incorporate human domain knowledge into the
detection process by learning from the labeled samples. Once the classification model is
constructed, the outlier detection process is fast. It only needs to compare the objects
to be examined against the model learned from the training data. The quality of
classification-based methods heavily depends on the availability and quality of the train-
ing set. In many applications, it is difficult to obtain representative and high-quality
training data, which limits the applicability of classification-based methods.

Mining Contextual and Collective Outliers

An object in a given data set is a contextual outlier (or conditional outlier) if it devi-
ates significantly with respect to a specific context of the object (Section 12.1). The
context is defined using contextual attributes. These depend heavily on the applica-
tion, and are often provided by users as part of the contextual outlier detection task.
Contextual attributes can include spatial attributes, time, network locations, and sophis-
ticated structured attributes. In addition, behavioral attributes define characteristics of
the object, and are used to evaluate whether the object is an outlier in the context to
which it belongs.

Contextual outliers. To determine whether the temperature of a location is exceptional
(i.e., an outlier), the attributes specifying information about the location can serve as
contextual attributes. These attributes may be spatial attributes (e.g., longitude and lati-
tude) or location attributes in a graph or network. The attribute time can also be used.
In customer-relationship management, whether a customer is an outlier may depend
on other customers with similar profiles. Here, the attributes defining customer profiles
provide the context for outlier detection. (]

In comparison to outlier detection in general, identifying contextual outliers requires
analyzing the corresponding contextual information. Contextual outlier detection
methods can be divided into two categories according to whether the contexts can be
clearly identified.

Transforming Contextual Outlier Detection
to Conventional Outlier Detection

This category of methods is for situations where the contexts can be clearly identified.
The idea is to transform the contextual outlier detection problem into a typical outlier
detection problem. Specifically, for a given data object, we can evaluate whether the
object is an outlier in two steps. In the first step, we identify the context of the object
using the contextual attributes. In the second step, we calculate the outlier score for the
object in the context using a conventional outlier detection method.
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Example 12.22 Contextual outlier detection when the context can be clearly identified. In customer-
relationship management, we can detect outlier customers in the context of customer
groups. Suppose AllElectronics maintains customer information on four attributes,
namely age_group (i.e., under 25, 25-45, 45-65, and over 65), postal_code, number_of-
transactions_per_year, and annual_total_transaction_amount. The attributes age_group
and postal_code serve as contextual attributes, and the attributes number_of-
transactions_per_year and annual_total_transaction_amount are behavioral attributes. m

To detect contextual outliers in this setting, for a customer, ¢, we can first locate the
context of ¢ using the attributes age_group and postal_code. We can then compare ¢ with
the other customers in the same group, and use a conventional outlier detection method,
such as some of the ones discussed earlier, to determine whether ¢ is an outlier.

Contexts may be specified at different levels of granularity. Suppose AllElectronics
maintains customer information at a more detailed level for the attributes age,
postal_code, number_of_transactions_per_year, and annual_total_transaction_amount. We
can still group customers on age and postal_code, and then mine outliers in each group.
What if the number of customers falling into a group is very small or even zero? For a
customer, ¢, if the corresponding context contains very few or even no other customers,
the evaluation of whether ¢ is an outlier using the exact context is unreliable or even
impossible.

To overcome this challenge, we can assume that customers of similar age and who
live within the same area should have similar normal behavior. This assumption can
help to generalize contexts and makes for more effective outlier detection. For example,
using a set of training data, we may learn a mixture model, U, of the data on the con-
textual attributes, and another mixture model, V, of the data on the behavior attributes.
A mapping p(V;|Uj) is also learned to capture the probability that a data object 0 belong-
ing to cluster U; on the contextual attributes is generated by cluster V; on the behavior
attributes. The outlier score can then be calculated as

S) =) ploe Up) D ploe Vip(Vi|Uj. (12.20)

U vi

Thus, the contextual outlier problem is transformed into outlier detection using mix-
ture models.

12.7.2 Modeling Normal Behavior with Respect to Contexts

In some applications, it is inconvenient or infeasible to clearly partition the data into
contexts. For example, consider the situation where the online store of AllElectronics
records customer browsing behavior in a search log. For each customer, the data log con-
tains the sequence of products searched for and browsed by the customer. AllElectronics
is interested in contextual outlier behavior, such as if a customer suddenly purchased a
product that is unrelated to those she recently browsed. However, in this application,
contexts cannot be easily specified because it is unclear how many products browsed
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earlier should be considered as the context, and this number will likely differ for each
product.

This second category of contextual outlier detection methods models the normal
behavior with respect to contexts. Using a training data set, such a method trains a
model that predicts the expected behavior attribute values with respect to the contextual
attribute values. To determine whether a data object is a contextual outlier, we can then
apply the model to the contextual attributes of the object. If the behavior attribute val-
ues of the object significantly deviate from the values predicted by the model, then the
object can be declared a contextual outlier.

By using a prediction model that links the contexts and behavior, these methods
avoid the explicit identification of specific contexts. A number of classification and
prediction techniques can be used to build such models such as regression, Markov
models, and finite state automaton. Interested readers are referred to Chapters 8 and
9 on classification and the bibliographic notes for further details (Section 12.11).

In summary, contextual outlier detection enhances conventional outlier detection
by considering contexts, which are important in many applications. We may be able
to detect outliers that cannot be detected otherwise. Consider a credit card user
whose income level is low but whose expenditure patterns are similar to those of
millionaires. This user can be detected as a contextual outlier if the income level
is used to define context. Such a user may not be detected as an outlier without
contextual information because she does share expenditure patterns with many mil-
lionaires. Considering contexts in outlier detection can also help to avoid false alarms.
Without considering the context, a millionaire’s purchase transaction may be falsely
detected as an outlier if the majority of customers in the training set are not mil-
lionaires. This can be corrected by incorporating contextual information in outlier
detection.

Mining Collective Outliers

A group of data objects forms a collective outlier if the objects as a whole deviate sig-
nificantly from the entire data set, even though each individual object in the group may
not be an outlier (Section 12.1). To detect collective outliers, we have to examine the
structure of the data set, that is, the relationships between multiple data objects. This
makes the problem more difficult than conventional and contextual outlier detection.

“How can we explore the data set structure?” This typically depends on the nature
of the data. For outlier detection in temporal data (e.g., time series and sequences), we
explore the structures formed by time, which occur in segments of the time series or sub-
sequences. To detect collective outliers in spatial data, we explore local areas. Similarly,
in graph and network data, we explore subgraphs. Each of these structures is inherent to
its respective data type.

Contextual outlier detection and collective outlier detection are similar in that they
both explore structures. In contextual outlier detection, the structures are the contexts,
as specified by the contextual attributes explicitly. The critical difference in collective
outlier detection is that the structures are often not explicitly defined, and have to be
discovered as part of the outlier detection process.
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As with contextual outlier detection, collective outlier detection methods can also be
divided into two categories. The first category consists of methods that reduce the prob-
lem to conventional outlier detection. Its strategy is to identify structure units, treat each
structure unit (e.g., a subsequence, a time-series segment, a local area, or a subgraph)
as a data object, and extract features. The problem of collective outlier detection is thus
transformed into outlier detection on the set of “structured objects” constructed as such
using the extracted features. A structure unit, which represents a group of objects in the
original data set, is a collective outlier if the structure unit deviates significantly from the
expected trend in the space of the extracted features.

Collective outlier detection on graph data. Let’s see how we can detect collective out-
liers in AllElectronics’ online social network of customers. Suppose we treat the social
network as an unlabeled graph. We then treat each possible subgraph of the network as
a structure unit. For each subgraph, S, let | S| be the number of vertices in S, and freq(S)
be the frequency of S in the network. That is, freq(S) is the number of different subgraphs
in the network that are isomorphic to S. We can use these two features to detect outlier
subgraphs. An outlier subgraph is a collective outlier that contains multiple vertices.

In general, a small subgraph (e.g., a single vertex or a pair of vertices connected by
an edge) is expected to be frequent, and a large subgraph is expected to be infrequent.
Using the preceding simple method, we can detect small subgraphs that are of very low
frequency or large subgraphs that are surprisingly frequent. These are outlier structures
in the social network. (]

Predefining the structure units for collective outlier detection can be difficult or
impossible. Consequently, the second category of methods models the expected behav-
ior of structure units directly. For example, to detect collective outliers in temporal
sequences, one method is to learn a Markov model from the sequences. A subsequence
can then be declared as a collective outlier if it significantly deviates from the model.

In summary, collective outlier detection is subtle due to the challenge of explor-
ing the structures in data. The exploration typically uses heuristics, and thus may be
application-dependent. The computational cost is often high due to the sophisticated
mining process. While highly useful in practice, collective outlier detection remains a
challenging direction that calls for further research and development.

Outlier Detection in High-Dimensional Data

In some applications, we may need to detect outliers in high-dimensional data. The
dimensionality curse poses huge challenges for effective outlier detection. As the dimen-
sionality increases, the distance between objects may be heavily dominated by noise.
That is, the distance and similarity between two points in a high-dimensional space
may not reflect the real relationship between the points. Consequently, conventional
outlier detection methods, which mainly use proximity or density to identify outliers,
deteriorate as dimensionality increases.
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Ideally, outlier detection methods for high-dimensional data should meet the chal-
lenges that follow.

Interpretation of outliers: They should be able to not only detect outliers, but also
provide an interpretation of the outliers. Because many features (or dimensions) are
involved in a high-dimensional data set, detecting outliers without providing any
interpretation as to why they are outliers is not very useful. The interpretation of
outliers may come from, for example, specific subspaces that manifest the outliers
or an assessment regarding the “outlier-ness” of the objects. Such interpretation can
help users to understand the possible meaning and significance of the outliers.

Data sparsity: The methods should be capable of handling sparsity in high-
dimensional spaces. The distance between objects becomes heavily dominated by
noise as the dimensionality increases. Therefore, data in high-dimensional spaces are
often sparse.

Data subspaces: They should model outliers appropriately, for example, adaptive
to the subspaces signifying the outliers and capturing the local behavior of data.
Using a fixed-distance threshold against all subspaces to detect outliers is not a
good idea because the distance between two objects monotonically increases as the
dimensionality increases.

Scalability with respect to dimensionality: As the dimensionality increases, the
number of subspaces increases exponentially. An exhaustive combinatorial explo-
ration of the search space, which contains all possible subspaces, is not a scalable
choice.

Outlier detection methods for high-dimensional data can be divided into three main
approaches. These include extending conventional outlier detection (Section 12.8.1),
finding outliers in subspaces (Section 12.8.2), and modeling high-dimensional outliers
(Section 12.8.3).

Extending Conventional Outlier Detection

One approach for outlier detection in high-dimensional data extends conventional out-
lier detection methods. It uses the conventional proximity-based models of outliers.
However, to overcome the deterioration of proximity measures in high-dimensional
spaces, it uses alternative measures or constructs subspaces and detects outliers there.

The HilOut algorithm is an example of this approach. HilOut finds distance-based
outliers, but uses the ranks of distance instead of the absolute distance in outlier detec-
tion. Specifically, for each object, o, HilOut finds the k-nearest neighbors of o, denoted
by nny(0),...,nni(e), where k is an application-dependent parameter. The weight of
object o is defined as

k
w(o) = Z dist(0, nn;(0)). (12.21)

=1
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All objects are ranked in weight-descending order. The top-1 objects in weight are output
as outliers, where [ is another user-specified parameter.

Computing the k-nearest neighbors for every object is costly and does not scale up
when the dimensionality is high and the database is large. To address the scalability issue,
HilOut employs space-filling curves to achieve an approximation algorithm, which is
scalable in both running time and space with respect to database size and dimensionality.

While some methods like HilOut detect outliers in the full space despite the high
dimensionality, other methods reduce the high-dimensional outlier detection prob-
lem to a lower-dimensional one by dimensionality reduction (Chapter 3). The idea
is to reduce the high-dimensional space to a lower-dimensional space where normal
instances can still be distinguished from outliers. If such a lower-dimensional space can
be found, then conventional outlier detection methods can be applied.

To reduce dimensionality, general feature selection and extraction methods may be
used or extended for outlier detection. For example, principal components analysis
(PCA) can be used to extract a lower-dimensional space. Heuristically, the principal
components with low variance are preferred because, on such dimensions, normal
objects are likely close to each other and outliers often deviate from the majority.

By extending conventional outlier detection methods, we can reuse much of the expe-
rience gained from research in the field. These new methods, however, are limited. First,
they cannot detect outliers with respect to subspaces and thus have limited interpretabil-
ity. Second, dimensionality reduction is feasible only if there exists a lower-dimensional
space where normal objects and outliers are well separated. This assumption may not
hold true.

12.8.2 Finding Outliers in Subspaces

Example 12.24

Another approach for outlier detection in high-dimensional data is to search for outliers
in various subspaces. A unique advantage is that, if an object is found to be an outlier
in a subspace of much lower dimensionality, the subspace provides critical information
for interpreting why and to what extent the object is an outlier. This insight is highly
valuable in applications with high-dimensional data due to the overwhelming number
of dimensions.

Outliers in subspaces. As a customer-relationship manager at AllElectronics, you are
interested in finding outlier customers. AllElectronics maintains an extensive customer
information database, which contains many attributes and the transaction history of
customers. The database is high dimensional.

Suppose you find that a customer, Alice, is an outlier in a lower-dimensional sub-
space that contains the dimensions average_transaction_amount and purchase_frequency,
such that her average transaction amount is substantially larger than the majority of
the customers, and her purchase frequency is dramatically lower. The subspace itself
speaks for why and to what extent Alice is an outlier. Using this information, you strate-
gically decide to approach Alice by suggesting options that could improve her purchase
frequency at AllElectronics. L]



12.8 Outlier Detection in High-Dimensional Data 579

“How can we detect outliers in subspaces?” We use a grid-based subspace outlier
detection method to illustrate. The major ideas are as follows. We consider projections of
the data onto various subspaces. If, in a subspace, we find an area that has a density that
is much lower than average, then the area may contain outliers. To find such projections,
we first discretize the data into a grid in an equal-depth way. That is, each dimension is
partitioned into ¢ equal-depth ranges, where each range contains a fraction, f, of the

objects (f = %) Equal-depth partitioning is used because data along different dimen-

sions may have different localities. An equal-width partitioning of the space may not be
able to reflect such differences in locality.

Next, we search for regions defined by ranges in subspaces that are signifi-
cantly sparse. To quantify what we mean by “significantly sparse,” let’s consider a
k-dimensional cube formed by k ranges on k dimensions. Suppose the data set con-
tains n objects. If the objects are independently distributed, the expected number of

k
objects falling into a k-dimensional region is (%) #n = f*n. The standard deviation of

the number of points in a k-dimensional region is /f¥(1 — fk)n. Suppose a specific
k-dimensional cube C has n(C) objects. We can define the sparsity coefficient of C as

n(C) — fkn
If S(C) < 0, then C contains fewer objects than expected. The smaller the value of S(C)
(i.e., the more negative), the sparser C is and the more likely the objects in C are outliers
in the subspace.

By assuming S(C) follows a normal distribution, we can use normal distribution
tables to determine the probabilistic significance level for an object that deviates dra-
matically from the average for an a priori assumption of the data following a uniform
distribution. In general, the assumption of uniform distribution does not hold. How-
ever, the sparsity coefficient still provides an intuitive measure of the “outlier-ness” of a
region.

To find cubes of significantly small sparsity coefficient values, a brute-force approach
is to search every cube in every possible subspace. The cost of this, however, is
immediately exponential. An evolutionary search can be conducted, which improves effi-
ciency at the expense of accuracy. For details, please refer to the bibliographic notes
(Section 12.11). The objects contained by cubes of very small sparsity coefficient values
are output as outliers.

In summary, searching for outliers in subspaces is advantageous in that the outliers
found tend to be better understood, owing to the context provided by the subspaces.
Challenges include making the search efficient and scalable.

S(C) = (12.22)

[2.8.3 Modeling High-Dimensional Outliers

An alternative approach for outlier detection methods in high-dimensional data tries to
develop new models for high-dimensional outliers directly. Such models typically avoid
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Figure 12.15

proximity measures and instead adopt new heuristics to detect outliers, which do not
deteriorate in high-dimensional data.
Let’s examine angle-based outlier detection (ABOD) as an example.

Angle-based outliers. Figure 12.15 contains a set of points forming a cluster, with the
exception of ¢, which is an outlier. For each point 0, we examine the angle Zxoy for every
pair of points x, y such that x # o, y # 0. The figure shows angle Zdae as an example.
Note that for a point in the center of a cluster (e.g., a), the angles formed as such
differ widely. For a point that is at the border of a cluster (e.g., b), the angle variation is
smaller. For a point that is an outlier (e.g., ¢), the angle variable is substantially smaller.
This observation suggests that we can use the variance of angles for a point to determine
whether a point is an outlier. (]

We can combine angles and distance to model outliers. Mathematically, for each
point o, we use the distance-weighted angle variance as the outlier score. That is, given a
set of points, D, for a point, 0 € D, we define the angle-based outlier factor (ABOF) as

(0%, 0p)
dist(0,x)2dist(0,y)%’

ABOF(O) = VARX,)/GD,X#O,)/yéO (1223)

where (,) is the scalar product operator, and dist(,) is a norm distance.

Clearly, the farther away a point is from clusters and the smaller the variance of the
angles of a point, the smaller the ABOF. The ABOD computes the ABOF for each point,
and outputs a list of the points in the data set in ABOF-ascending order.

Computing the exact ABOF for every point in a database is costly, requiring a time
complexity of O(n’), where n is the number of points in the database. Obviously, this
exact algorithm does not scale up for large data sets. Approximation methods have been
developed to speed up the computation. The angle-based outlier detection idea has been
generalized to handle arbitrary data types. For additional details, see the bibliographic
notes (Section 12.11).

Developing native models for high-dimensional outliers can lead to effective meth-
ods. However, finding good heuristics for detecting high-dimensional outliers is dif-
ficult. Efficiency and scalability on large and high-dimensional data sets are major
challenges.

[ ]
4
o

Angle-based outliers.
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Summary

Assume that a given statistical process is used to generate a set of data objects. An
outlier is a data object that deviates significantly from the rest of the objects, as if it
were generated by a different mechanism.

Types of outliers include global outliers, contextual outliers, and collective outliers.
An object may be more than one type of outlier.

Global outliers are the simplest form of outlier and the easiest to detect. A contextual
outlier deviates significantly with respect to a specific context of the object (e.g., a
Toronto temperature value of 28°C is an outlier if it occurs in the context of winter).
A subset of data objects forms a collective outlier if the objects as a whole deviate
significantly from the entire data set, even though the individual data objects may not
be outliers. Collective outlier detection requires background information to model
the relationships among objects to find outlier groups.

Challenges in outlier detection include finding appropriate data models, the depen-
dence of outlier detection systems on the application involved, finding ways to
distinguish outliers from noise, and providing justification for identifying outliers
as such.

Outlier detection methods can be categorized according to whether the sample
of data for analysis is given with expert-provided labels that can be used to build
an outlier detection model. In this case, the detection methods are supervised,
semi-supervised, or unsupervised. Alternatively, outlier detection methods may be
organized according to their assumptions regarding normal objects versus out-
liers. This categorization includes statistical methods, proximity-based methods, and
clustering-based methods.

Statistical outlier detection methods (or model-based methods) assume that the
normal data objects follow a statistical model, where data not following the model
are considered outliers. Such methods may be parametric (they assume that the data
are generated by a parametric distribution) or nonparametric (they learn a model for
the data, rather than assuming one a priori). Parametric methods for multivariate
data may employ the Mahalanobis distance, the Xz—statistic, or a mixture of mul-
tiple parametric models. Histograms and kernel density estimation are examples of
nonparametric methods.

Proximity-based outlier detection methods assume that an object is an outlier
if the proximity of the object to its nearest neighbors significantly deviates from
the proximity of most of the other objects to their neighbors in the same data
set. Distance-based outlier detection methods consult the neighborhood of an object,
defined by a given radius. An object is an outlier if its neighborhood does not have
enough other points. In density-based outlier detection methods, an object is an outlier
if its density is relatively much lower than that of its neighbors.
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Clustering-based outlier detection methods assume that the normal data objects
belong to large and dense clusters, whereas outliers belong to small or sparse clusters,
or do not belong to any clusters.

Classification-based outlier detection methods often use a one-class model. That is,
a classifier is built to describe only the normal class. Any samples that do not belong
to the normal class are regarded as outliers.

Contextual outlier detection and collective outlier detection explore structures in
the data. In contextual outlier detection, the structures are defined as contexts using
contextual attributes. In collective outlier detection, the structures are implicit and
are explored as part of the mining process. To detect such outliers, one approach
transforms the problem into one of conventional outlier detection. Another
approach models the structures directly.

Outlier detection methods for high-dimensional data can be divided into three
main approaches. These include extending conventional outlier detection, finding
outliers in subspaces, and modeling high-dimensional outliers.

Exercises

Give an application example where global outliers, contextual outliers, and collective
outliers are all interesting. What are the attributes, and what are the contextual and
behavioral attributes? How is the relationship among objects modeled in collective
outlier detection?

Give an application example of where the border between normal objects and outliers is
often unclear, so that the degree to which an object is an outlier has to be well estimated.

Adapt a simple semi-supervised method for outlier detection. Discuss the scenario
where you have (a) only some labeled examples of normal objects, and (b) only some
labeled examples of outliers.

Using an equal-depth histogram, design a way to assign an object an outlier score.

Consider the nested loop approach to mining distance-based outliers (Figure 12.6). Sup-
pose the objects in a data set are arranged randomly, that is, each object has the same
probability to appear in a position. Show that when the number of outlier objects is
small with respect to the total number of objects in the whole data set, the expected
number of distance calculations is linear to the number of objects.

In the density-based outlier detection method of Section 12.4.3, the definition of local
reachability density has a potential problem: Irdy(0) = oo may occur. Explain why this
may occur and propose a fix to the issue.

Because clusters may form a hierarchy, outliers may belong to different granularity
levels. Propose a clustering-based outlier detection method that can find outliers at
different levels.
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In outlier detection by semi-supervised learning, what is the advantage of using objects
without labels in the training data set?

To understand why angle-based outlier detection is a heuristic method, give an example
where it does not work well. Can you come up with a method to overcome this issue?
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Data Mining Trends
and Research Frontiers

As a young research field, data mining has made significant progress and covered a broad spec-
trum of applications since the 1980s. Today, data mining is used in a vast array of
areas. Numerous commercial data mining systems and services are available. Many chal-
lenges, however, still remain. In this final chapter, we introduce the mining of complex
data types as a prelude to further in-depth study readers may choose to do. In addi-
tion, we focus on trends and research frontiers in data mining. Section 13.1 presents an
overview of methodologies for mining complex data types, which extend the concepts
and tasks introduced in this book. Such mining includes mining time-series, sequential
patterns, and biological sequences; graphs and networks; spatiotemporal data, including
geospatial data, moving-object data, and cyber-physical system data; multimedia data;
text data; web data; and data streams. Section 13.2 briefly introduces other approaches
to data mining, including statistical methods, theoretical foundations, and visual and
audio data mining.

In Section 13.3, you will learn more about data mining applications in business and
in science, including the financial retail, and telecommunication industries, science and
engineering, and recommender systems. The social impacts of data mining are discussed
in Section 13.4, including ubiquitous and invisible data mining, and privacy-preserving
data mining. Finally, in Section 13.5 we speculate on current and expected data mining
trends that arise in response to new challenges in the field.

Mining Complex Data Types

In this section, we outline the major developments and research efforts in mining com-
plex data types. Complex data types are summarized in Figure 13.1. Section 13.1.1
covers mining sequence data such as time-series, symbolic sequences, and biological
sequences. Section 13.1.2 discusses mining graphs and social and information networks.
Section 13.1.3 addresses mining other kinds of data, including spatial data, spatiotem-
poral data, moving-object data, cyber-physical system data, multimedia data, text data,

Data Mining: Concepts and Techniques 5 8 5
(© 2012 Elsevier Inc. All rights reserved.



586

Chapter 13 Data Mining Trends and Research Frontiers

Figure 13.1
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Complex data types for mining.

web data, and data streams. Due to the broad scope of these themes, this section presents
only a high-level overview; these topics are not discussed in-depth in this book.

Mining Sequence Data: Time-Series, Symbolic
Sequences, and Biological Sequences

A sequence is an ordered list of events. Sequences may be categorized into three groups,
based on the characteristics of the events they describe: (1) time-series data, (2) symbolic
sequence data, and (3) biological sequences. Let’s consider each type.

In time-series data, sequence data consist of long sequences of numeric data,
recorded at equal time intervals (e.g., per minute, per hour, or per day). Time-series
data can be generated by many natural and economic processes such as stock markets,
and scientific, medical, or natural observations.

Symbolic sequence data consist of long sequences of event or nominal data, which
typically are not observed at equal time intervals. For many such sequences, gaps (i.e.,
lapses between recorded events) do not matter much. Examples include customer shop-
ping sequences and web click streams, as well as sequences of events in science and
engineering and in natural and social developments.

Biological sequences include DNA and protein sequences. Such sequences are typi-
cally very long, and carry important, complicated, but hidden semantic meaning. Here,
gaps are usually important.

Let’s look into data mining for each of these sequence data types.
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Similarity Search in Time-Series Data

A time-series data set consists of sequences of numeric values obtained over repeated
measurements of time. The values are typically measured at equal time intervals (e.g.,
every minute, hour, or day). Time-series databases are popular in many applications
such as stock market analysis, economic and sales forecasting, budgetary analysis, util-
ity studies, inventory studies, yield projections, workload projections, and process and
quality control. They are also useful for studying natural phenomena (e.g., atmosphere,
temperature, wind, earthquake), scientific and engineering experiments, and medical
treatments.

Unlike normal database queries, which find data that match a given query exactly,
a similarity search finds data sequences that differ only slightly from the given query
sequence. Many time-series similarity queries require subsequence matching, that is,
finding a set of sequences that contain subsequences that are similar to a given query
sequence.

For similarity search, it is often necessary to first perform data or dimensionality
reduction and transformation of time-series data. Typical dimensionality reduction tech-
niques include (1) the discrete Fourier transform (DFT), (2) discrete wavelet transforms
(DWT), and (3) singular value decomposition (SVD) based on principle components anal-
ysis (PCA). Because we touched on these concepts in Chapter 3, and because a thorough
explanation is beyond the scope of this book, we will not go into great detail here. With
such techniques, the data or signal is mapped to a signal in a transformed space. A small
subset of the “strongest” transformed coefficients are saved as features.

These features form a feature space, which is a projection of the transformed space.
Indices can be constructed on the original or transformed time-series data to speed
up a search. For a query-based similarity search, techniques include normalization
transformation, atomic matching (i.e., finding pairs of gap-free windows of a small
length that are similar), window stitching (i.e., stitching similar windows to form pairs
of large similar subsequences, allowing gaps between atomic matches), and subse-
quence ordering (i.e., linearly ordering the subsequence matches to determine whether
enough similar pieces exist). Numerous software packages exist for a similarity search in
time-series data.

Recently, researchers have proposed transforming time-series data into piecewise
aggregate approximations so that the data can be viewed as a sequence of symbolic rep-
resentations. The problem of similarity search is then transformed into one of matching
subsequences in symbolic sequence data. We can identify motifs (i.e., frequently occur-
ring sequential patterns) and build index or hashing mechanisms for an efficient search
based on such motifs. Experiments show this approach is fast and simple, and has
comparable search quality to that of DFT, DWT, and other dimensionality reduction
methods.

Regression and Trend Analysis in Time-Series Data

Regression analysis of time-series data has been studied substantially in the fields of
statistics and signal analysis. However, one may often need to go beyond pure regression
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Figure 13.2
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Time-series data for the stock price of AllElectronics over time. The trend is shown with a
dashed curve, calculated by a moving average.

analysis and perform trend analysis for many practical applications. Trend analysis
builds an integrated model using the following four major components or movements
to characterize time-series data:

I. Trend or long-term movements: These indicate the general direction in which a
time-series graph is moving over time, for example, using weighted moving average
and the least squares methods to find trend curves such as the dashed curve indicated
in Figure 13.2.

2. Cyclic movements: These are the long-term oscillations about a trend line or curve.

Seasonal variations: These are nearly identical patterns that a time series appears
to follow during corresponding seasons of successive years such as holiday shopping
seasons. For effective trend analysis, the data often need to be “deseasonalized” based
on a seasonal index computed by autocorrelation.

4. Random movements: These characterize sporadic changes due to chance events such
as labor disputes or announced personnel changes within companies.

Trend analysis can also be used for time-series forecasting, that is, finding a math-
ematical function that will approximately generate the historic patterns in a time
series, and using it to make long-term or short-term predictions of future values.
ARIMA (auto-regressive integrated moving average), long-memory time-series modeling,
and autoregression are popular methods for such analysis.

Sequential Pattern Mining in Symbolic Sequences

A symbolic sequence consists of an ordered set of elements or events, recorded with
or without a concrete notion of time. There are many applications involving data of
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symbolic sequences such as customer shopping sequences, web click streams, program
execution sequences, biological sequences, and sequences of events in science and
engineering and in natural and social developments. Because biological sequences carry
very complicated semantic meaning and pose many challenging research issues, most
investigations are conducted in the field of bioinformatics.

Sequential pattern mining has focused extensively on mining symbolic sequences.
A sequential pattern is a frequent subsequence existing in a single sequence or a
set of sequences. A sequence o = (aja,---ay) is a subsequence of another sequence
B = (b1by---by,) if there exist integers 1 <ji <j <--- <j, < m such that a; C b;,
a C bj,,...,a, C bj,. For example, if o = ({ab},d) and B = ({abc}, {be}, {de}, a), where
a,b,¢,d, and e are items, then « is a subsequence of . Mining of sequential patterns
consists of mining the set of subsequences that are frequent in one sequence or a set of
sequences. Many scalable algorithms have been developed as a result of extensive stud-
ies in this area. Alternatively, we can mine only the set of closed sequential patterns,
where a sequential pattern s is closed if there exists no sequential pattern s’, where s
is a proper subsequence of s, and s’ has the same (frequency) support as s. Similar to
its frequent pattern mining counterpart, there are also studies on efficient mining of
multidimensional, multilevel sequential patterns.

As with constraint-based frequent pattern mining, user-specified constraints can be
used to reduce the search space in sequential pattern mining and derive only the patterns
that are of interest to the user. This is referred to as constraint-based sequential pattern
mining. Moreover, we may relax constraints or enforce additional constraints on the
problem of sequential pattern mining to derive different kinds of patterns from sequence
data. For example, we can enforce gap constraints so that the patterns derived con-
tain only consecutive subsequences or subsequences with very small gaps. Alternatively,
we may derive periodic sequential patterns by folding events into proper-size windows
and finding recurring subsequences in these windows. Another approach derives partial
order patterns by relaxing the requirement of strict sequential ordering in the mining of
subsequence patterns. Besides mining partial order patterns, sequential pattern mining
methodology can also be extended to mining trees, lattices, episodes, and some other
ordered patterns.

Sequence Classification

Most classification methods perform model construction based on feature vectors.
However, sequences do not have explicit features. Even with sophisticated feature selec-
tion techniques, the dimensionality of potential features can still be very high and the
sequential nature of features is difficult to capture. This makes sequence classification a
challenging task.

Sequence classification methods can be organized into three categories: (1) feature-
based classification, which transforms a sequence into a feature vector and then applies
conventional classification methods; (2) sequence distance—based classification, where
the distance function that measures the similarity between sequences determines the
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quality of the classification significantly; and (3) model-based classification such as using
hidden Markov model (HMM) or other statistical models to classify sequences.

For time-series or other numeric-valued data, the feature selection techniques for
symbolic sequences cannot be easily applied to time-series data without discretization.
However, discretization can cause information loss. A recently proposed time-series
shapelets method uses the time-series subsequences that can maximally represent a class
as the features. It achieves quality classification results.

Alignment of Biological Sequences

Biological sequences generally refer to sequences of nucleotides or amino acids. Biolog-
ical sequence analysis compares, aligns, indexes, and analyzes biological sequences and
thus plays a crucial role in bioinformatics and modern biology.

Sequence alignment is based on the fact that all living organisms are related by evo-
lution. This implies that the nucleotide (DNA, RNA) and protein sequences of species
that are closer to each other in evolution should exhibit more similarities. An alignment
is the process of lining up sequences to achieve a maximal identity level, which also
expresses the degree of similarity between sequences. Two sequences are homologous
if they share a common ancestor. The degree of similarity obtained by sequence align-
ment can be useful in determining the possibility of homology between two sequences.
Such an alignment also helps determine the relative positions of multiple species in an
evolution tree, which is called a phylogenetic tree.

The problem of alignment of biological sequences can be described as follows: Given
two or more input biological sequences, identify similar sequences with long conserved sub-
sequences. If the number of sequences to be aligned is exactly two, the problem is known
as pairwise sequence alignment; otherwise, it is multiple sequence alignment. The
sequences to be compared and aligned can be either nucleotides (DNA/RNA) or amino
acids (proteins). For nucleotides, two symbols align if they are identical. However, for
amino acids, two symbols align if they are identical, or if one can be derived from the
other by substitutions that are likely to occur in nature. There are two kinds of align-
ments: local alignments and global alignments. The former means that only portions of
the sequences are aligned, whereas the latter requires alignment over the entire length of
the sequences.

For either nucleotides or amino acids, insertions, deletions, and substitutions occur
in nature with different probabilities. Substitution matrices are used to represent the
probabilities of substitutions of nucleotides or amino acids and probabilities of inser-
tions and deletions. Usually, we use the gap character, —, to indicate positions where
it is preferable not to align two symbols. To evaluate the quality of alignments, a scor-
ing mechanism is typically defined, which usually counts identical or similar symbols as
positive scores and gaps as negative ones. The algebraic sum of the scores is taken as the
alignment measure. The goal of alignment is to achieve the maximal score among all the
possible alignments. However, it is very expensive (more exactly, an NP-hard problem)
to find optimal alignment. Therefore, various heuristic methods have been developed to
find suboptimal alignments.
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The dynamic programming approach is commonly used for sequence alignments.
Among many available analysis packages, BLAST (Basic Local Alignment Search Tool)
is one of the most popular tools in biosequence analysis.

Hidden Markov Model for Biological Sequence Analysis

Given a biological sequence, biologists would like to analyze what that sequence repre-
sents. To represent the structure or statistical regularities of sequence classes, biologists
construct various probabilistic models such as Markov chains and hidden Markov
models. In both models, the probability of a state depends only on that of the previous
state; therefore, they are particularly useful for the analysis of biological sequence data.
The most common methods for constructing hidden Markov models are the forward
algorithm, the Viterbi algorithm, and the Baum-Welch algorithm. Given a sequence of
symbols, x, the forward algorithm finds the probability of obtaining x in the model; the
Viterbi algorithm finds the most probable path (corresponding to x) through the model,
whereas the Baum-Welch algorithm learns or adjusts the model parameters so as to best
explain a set of training sequences.

13.1.2 Mining Graphs and Networks

Graphs represents a more general class of structures than sets, sequences, lattices, and
trees. There is a broad range of graph applications on the Web and in social networks,
information networks, biological networks, bioinformatics, chemical informatics, com-
puter vision, and multimedia and text retrieval. Hence, graph and network mining
have become increasingly important and heavily researched. We overview the follow-
ing major themes: (1) graph pattern mining; (2) statistical modeling of networks;
(3) data cleaning, integration, and validation by network analysis; (4) clustering and
classification of graphs and homogeneous networks; (5) clustering, ranking, and classifi-
cation of heterogeneous networks; (6) role discovery and link prediction in information
networks; (7) similarity search and OLAP in information networks; and (8) evolution
of information networks.

Graph Pattern Mining

Graph pattern mining is the mining of frequent subgraphs (also called (sub)graph pat-
terns) in one or a set of graphs. Methods for mining graph patterns can be categorized
into Apriori-based and pattern growth-based approaches. Alternatively, we can mine
the set of closed graphs where a graph g is closed if there exists no proper supergraph
¢ that carries the same support count as g. Moreover, there are many variant graph
patterns, including approximate frequent graphs, coherent graphs, and dense graphs.
User-specified constraints can be pushed deep into the graph pattern mining process to
improve mining efficiency.

Graph pattern mining has many interesting applications. For example, it can be
used to generate compact and effective graph index structures based on the concept of
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frequent and discriminative graph patterns. Approximate structure similarity search can
be achieved by exploring graph index structures and multiple graph features. More-
over, classification of graphs can also be performed effectively using frequent and
discriminative subgraphs as features.

Statistical Modeling of Networks

A network consists of a set of nodes, each corresponding to an object associated with a set
of properties, and a set of edges (or links) connecting those nodes, representing relation-
ships between objects. A network is homogeneous if all the nodes and links are of the
same type, such as a friend network, a coauthor network, or a web page network. A net-
work is heterogeneous if the nodes and links are of different types, such as publication
networks (linking together authors, conferences, papers, and contents), and health-care
networks (linking together doctors, nurses, patients, diseases, and treatments).

Researchers have proposed multiple statistical models for modeling homogeneous
networks. The most well-known generative models are the random graph model (i.e.,
the Erdos-Rényi model), the Watts-Strogatz model, and the scale-free model. The scale-
free model assumes that the network follows the power law distribution (also known
as the Pareto distribution or the heavy-tailed distribution). In most large-scale social
networks, a small-world phenomenon is observed, that is, the network can be char-
acterized as having a high degree of local clustering for a small fraction of the nodes
(i.e., these nodes are interconnected with one another), while being no more than a few
degrees of separation from the remaining nodes.

Social networks exhibit certain evolutionary characteristics. They tend to follow the
densification power law, which states that networks become increasingly dense over
time. Shrinking diameter is another characteristic, where the effective diameter often
decreases as the network grows. Node out-degrees and in-degrees typically follow a heavy-
tailed distribution.

Data Cleaning, Integration, and Validation
by Information Network Analysis

Real-world data are often incomplete, noisy, uncertain, and unreliable. Information
redundancy may exist among the multiple pieces of data that are interconnected in a
large network. Information redundancy can be explored in such networks to perform
quality data cleaning, data integration, information validation, and trustability analy-
sis by network analysis. For example, we can distinguish authors who share the same
names by examining the networked connections with other heterogeneous objects such
as coauthors, publication venues, and terms. In addition, we can identify inaccurate
author information presented by booksellers by exploring a network built based on
author information provided by multiple booksellers.

Sophisticated information network analysis methods have been developed in this
direction, and in many cases, portions of the data serve as the “training set.” That
is, relatively clean and reliable data or a consensus of data from multiple information
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providers can be used to help consolidate the remaining, unreliable portions of the data.
This reduces the costly efforts of labeling the data by hand and of training on massive,
dynamic, real-world data sets.

Clustering and Classification of Graphs
and Homogeneous Networks

Large graphs and networks have cohesive structures, which are often hidden among
their massive, interconnected nodes and links. Cluster analysis methods have been devel-
oped on large networks to uncover network structures, discover hidden communities,
hubs, and outliers based on network topological structures and their associated prop-
erties. Various kinds of network clustering methods have been developed and can be
categorized as either partitioning, hierarchical, or density-based algorithms. Moreover,
given human-labeled training data, the discovery of network structures can be guided
by human-specified heuristic constraints. Supervised classification and semi-supervised
classification of networks are recent hot topics in the data mining research community.

Clustering, Ranking, and Classification
of Heterogeneous Networks

A heterogeneous network contains interconnected nodes and links of different types.
Such interconnected structures contain rich information, which can be used to mutu-
ally enhance nodes and links, and propagate knowledge from one type to another.
Clustering and ranking of such heterogeneous networks can be performed hand-in-
hand in the context that highly ranked nodes/links in a cluster may contribute more
than their lower-ranked counterparts in the evaluation of the cohesiveness of a cluster.
Clustering may help consolidate the high ranking of objects/links dedicated to the clus-
ter. Such mutual enhancement of ranking and clustering prompted the development
of an algorithm called RankClus. Moreover, users may specify different ranking rules
or present labeled nodes/links for certain data types. Knowledge of one type can be
propagated to other types. Such propagation reaches the nodes/links of the same type
via heterogeneous-type connections. Algorithms have been developed for supervised
learning and semi-supervised learning in heterogeneous networks.

Role Discovery and Link Prediction
in Information Networks

There exist many hidden roles or relationships among different nodes/links in a hetero-
geneous network. Examples include advisor—advisee and leader—follower relationships
in a research publication network. To discover such hidden roles or relationships, experts
can specify constraints based on their background knowledge. Enforcing such con-
straints may help cross-checking and validation in large interconnected networks.
Information redundancy in a network can often be used to help weed out objects/links
that do not follow such constraints.
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Similarly, link prediction can be performed based on the assessment of the rank-
ing of the expected relationships among the candidate nodes/links. For example, we
may predict which papers an author may write, read, or cite, based on the author’s
recent publication history and the trend of research on similar topics. Such studies often
require analyzing the proximity of network nodes/links and the trends and connections
of their similar neighbors. Roughly speaking, people refer to link prediction as link
mining; however, link mining covers additional tasks including link-based object classifi-
cation, object type prediction, link type prediction, link existence prediction, link cardinality
estimation, and object reconciliation (which predicts whether two objects are, in fact, the
same). It also includes group detection (which clusters objects), as well as subgraph iden-
tification (which finds characteristic subgraphs within networks) and metadata mining
(which uncovers schema-type information regarding unstructured data).

Similarity Search and OLAP in Information Networks

Similarity search is a primitive operation in database and web search engines. A hetero-
geneous information network consists of multityped, interconnected objects. Examples
include bibliographic networks and social media networks, where two objects are con-
sidered similar if they are linked in a similar way with multityped objects. In general,
object similarity within a network can be determined based on network structures
and object properties, and with similarity measures. Moreover, network clusters and
hierarchical network structures help organize objects in a network and identify subcom-
munities, as well as facilitate similarity search. Furthermore, similarity can be defined
differently per user. By considering different linkage paths, we can derive various
similarity semantics in a network, which is known as path-based similarity.

By organizing networks based on the notion of similarity and clusters, we can gen-
erate multiple hierarchies within a network. Online analytical processing (OLAP) can
then be performed. For example, we can drill down or dice information networks based
on different levels of abstraction and different angles of views. OLAP operations may
generate multiple, interrelated networks. The relationships among such networks may
disclose interesting hidden semantics.

Evolution of Social and Information Networks

Networks are dynamic and constantly evolving. Detecting evolving communities and
evolving regularities or anomalies in homogeneous or heterogeneous networks can help
people better understand the structural evolution of networks and predict trends and
irregularities in evolving networks. For homogeneous networks, the evolving commu-
nities discovered are subnetworks consisting of objects of the same type such as a set of
friends or coauthors. However, for heterogeneous networks, the communities discov-
ered are subnetworks consisting of objects of different types, such as a connected set
of papers, authors, venues, and terms, from which we can also derive a set of evolving
objects for each type, like evolving authors and themes.
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[3.1.3 Mining Other Kinds of Data

In addition to sequences and graphs, there are many other kinds of semi-structured
or unstructured data, such as spatiotemporal, multimedia, and hypertext data, which
have interesting applications. Such data carry various kinds of semantics, are either
stored in or dynamically streamed through a system, and call for specialized data mining
methodologies. Thus, mining multiple kinds of data, including spatial data, spatiotem-
poral data, cyber-physical system data, multimedia data, text data, web data, and data
streams, are increasingly important tasks in data mining. In this subsection, we overview
the methodologies for mining these kinds of data.

Mining Spatial Data

Spatial data mining discovers patterns and knowledge from spatial data. Spatial data,
in many cases, refer to geospace-related data stored in geospatial data repositories. The
data can be in “vector” or “raster” formats, or in the form of imagery and geo-referenced
multimedia. Recently, large geographic data warehouses have been constructed by inte-
grating thematic and geographically referenced data from multiple sources. From these,
we can construct spatial data cubes that contain spatial dimensions and measures, and
support spatial OLAP for multidimensional spatial data analysis. Spatial data mining can
be performed on spatial data warehouses, spatial databases, and other geospatial data
repositories. Popular topics on geographic knowledge discovery and spatial data min-
ing include mining spatial associations and co-location patterns, spatial clustering, spatial
classification, spatial modeling, and spatial trend and outlier analysis.

Mining Spatiotemporal Data and Moving Objects

Spatiotemporal data are data that relate to both space and time. Spatiotemporal data
mining refers to the process of discovering patterns and knowledge from spatiotemporal
data. Typical examples of spatiotemporal data mining include discovering the evolution-
ary history of cities and lands, uncovering weather patterns, predicting earthquakes and
hurricanes, and determining global warming trends. Spatiotemporal data mining has
become increasingly important and has far-reaching implications, given the popular-
ity of mobile phones, GPS devices, Internet-based map services, weather services, and
digital Earth, as well as satellite, RFID, sensor, wireless, and video technologies.

Among many kinds of spatiotemporal data, moving-object data (i.e., data about mov-
ing objects) are especially important. For example, animal scientists attach telemetry
equipment on wildlife to analyze ecological behavior, mobility managers embed GPS
in cars to better monitor and guide vehicles, and meteorologists use weather satel-
lites and radars to observe hurricanes. Massive-scale moving-object data are becoming
rich, complex, and ubiquitous. Examples of moving-object data mining include mining
movement patterns of multiple moving objects (i.e., the discovery of relationships among
multiple moving objects such as moving clusters, leaders and followers, merge, convoy,
swarm, and pincer, as well as other collective movement patterns). Other examples of
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moving-object data mining include mining periodic patterns for one or a set of moving
objects, and mining trajectory patterns, clusters, models, and outliers.

Mining Cyber-Physical System Data

A cyber-physical system (CPS) typically consists of a large number of interacting
physical and information components. CPS systems may be interconnected so as to
form large heterogeneous cyber-physical networks. Examples of cyber-physical networks
include a patient care system that links a patient monitoring system with a network
of patient/medical information and an emergency handling system; a transportation
system that links a transportation monitoring network, consisting of many sensors and
video cameras, with a traffic information and control system; and a battlefield comman-
der system that links a sensor/reconnaissance network with a battlefield information
analysis system. Clearly, cyber-physical systems and networks will be ubiquitous and
form a critical component of modern information infrastructure.

Data generated in cyber-physical systems are dynamic, volatile, noisy, inconsistent,
and interdependent, containing rich spatiotemporal information, and they are critically
important for real-time decision making. In comparison with typical spatiotemporal
data mining, mining cyber-physical data requires linking the current situation with
a large information base, performing real-time calculations, and returning prompt
responses. Research in the area includes rare-event detection and anomaly analysis in
cyber-physical data streams, reliability and trustworthiness in cyber-physical data analy-
sis, effective spatiotemporal data analysis in cyber-physical networks, and the integration
of stream data mining with real-time automated control processes.

Mining Multimedia Data

Multimedia data mining is the discovery of interesting patterns from multimedia
databases that store and manage large collections of multimedia objects, including image
data, video data, audio data, as well as sequence data and hypertext data containing
text, text markups, and linkages. Multimedia data mining is an interdisciplinary field
that integrates image processing and understanding, computer vision, data mining, and
pattern recognition. Issues in multimedia data mining include content-based retrieval
and similarity search, and generalization and multidimensional analysis. Multimedia
data cubes contain additional dimensions and measures for multimedia information.
Other topics in multimedia mining include classification and prediction analysis, mining
associations, and video and audio data mining (Section 13.2.3).

Mining Text Data

Text mining is an interdisciplinary field that draws on information retrieval, data min-
ing, machine learning, statistics, and computational linguistics. A substantial portion
of information is stored as text such as news articles, technical papers, books, digital
libraries, email messages, blogs, and web pages. Hence, research in text mining has been
very active. An important goal is to derive high-quality information from text. This is
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typically done through the discovery of patterns and trends by means such as statistical
pattern learning, topic modeling, and statistical language modeling. Text mining usu-
ally requires structuring the input text (e.g., parsing, along with the addition of some
derived linguistic features and the removal of others, and subsequent insertion into a
database). This is followed by deriving patterns within the structured data, and evalua-
tion and interpretation of the output. “High quality” in text mining usually refers to a
combination of relevance, novelty, and interestingness.

Typical text mining tasks include text categorization, text clustering, concept/entity
extraction, production of granular taxonomies, sentiment analysis, document summa-
rization, and entity-relation modeling (i.e., learning relations between named entities).
Other examples include multilingual data mining, multidimensional text analysis, con-
textual text mining, and trust and evolution analysis in text data, as well as text mining
applications in security, biomedical literature analysis, online media analysis, and ana-
lytical customer relationship management. Various kinds of text mining and analysis
software and tools are available in academic institutions, open-source forums, and
industry. Text mining often also uses WordNet, Sematic Web, Wikipedia, and other
information sources to enhance the understanding and mining of text data.

Mining Web Data

The World Wide Web serves as a huge, widely distributed, global information center for
news, advertisements, consumer information, financial management, education, gov-
ernment, and e-commerce. It contains a rich and dynamic collection of information
about web page contents with hypertext structures and multimedia, hyperlink informa-
tion, and access and usage information, providing fertile sources for data mining. Web
mining is the application of data mining techniques to discover patterns, structures, and
knowledge from the Web. According to analysis targets, web mining can be organized
into three main areas: web content mining, web structure mining, and web usage mining.

Web content mining analyzes web content such as text, multimedia data, and struc-
tured data (within web pages or linked across web pages). This is done to understand the
content of web pages, provide scalable and informative keyword-based page indexing,
entity/concept resolution, web page relevance and ranking, web page content sum-
maries, and other valuable information related to web search and analysis. Web pages
can reside either on the surface web or on the deep Web. The surface web is that por-
tion of the Web that is indexed by typical search engines. The deep Web (or hidden Web)
refers to web content that is not part of the surface web. Its contents are provided by
underlying database engines.

Web content mining has been studied extensively by researchers, search engines, and
other web service companies. Web content mining can build links across multiple web
pages for individuals; therefore, it has the potential to inappropriately disclose personal
information. Studies on privacy-preserving data mining address this concern through
the development of techniques to protect personal privacy on the Web.

Web structure mining is the process of using graph and network mining theory
and methods to analyze the nodes and connection structures on the Web. It extracts
patterns from hyperlinks, where a hyperlink is a structural component that connects a
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web page to another location. It can also mine the document structure within a page
(e.g., analyze the treelike structure of page structures to describe HTML or XML tag
usage). Both kinds of web structure mining help us understand web contents and may
also help transform web contents into relatively structured data sets.

Web usage mining is the process of extracting useful information (e.g., user click
streams) from server logs. It finds patterns related to general or particular groups of
users; understands users’ search patterns, trends, and associations; and predicts what
users are looking for on the Internet. It helps improve search efficiency and effectiveness,
as well as promotes products or related information to different groups of users at the
right time. Web search companies routinely conduct web usage mining to improve their
quality of service.

Mining Data Streams

Stream data refer to data that flow into a system in vast volumes, change dynamically,
are possibly infinite, and contain multidimensional features. Such data cannot be stored
in traditional database systems. Moreover, most systems may only be able to read the
stream once in sequential order. This poses great challenges for the effective mining
of stream data. Substantial research has led to progress in the development of effi-
cient methods for mining data streams, in the areas of mining frequent and sequential
patterns, multidimensional analysis (e.g., the construction of stream cubes), classifica-
tion, clustering, outlier analysis, and the online detection of rare events in data streams.
The general philosophy is to develop single-scan or a-few-scan algorithms using limited
computing and storage capabilities.

This includes collecting information about stream data in sliding windows or tilted
time windows (where the most recent data are registered at the finest granularity and
the more distant data are registered at a coarser granularity), and exploring techniques
like microclustering, limited aggregation, and approximation. Many applications of
stream data mining can be explored—for example, real-time detection of anomalies in
computer network traffic, botnets, text streams, video streams, power-grid flows, web
searches, sensor networks, and cyber-physical systems.

Other Methodologies of Data Mining

Due to the broad scope of data mining and the large variety of data mining method-
ologies, not all methodologies of data mining can be thoroughly covered in this book.
In this section, we briefly discuss several interesting methodologies that were not fully
addressed in the previous chapters. These methodologies are listed in Figure 13.3.

13.2.] Statistical Data Mining

The data mining techniques described in this book are primarily drawn from computer
science disciplines, including data mining, machine learning, data warehousing, and
algorithms. They are designed for the efficient handling of huge amounts of data that are
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Figure 13.3 Other data mining methodologies.

typically multidimensional and possibly of various complex types. There are, however,
many well-established statistical techniques for data analysis, particularly for numeric
data. These techniques have been applied extensively to scientific data (e.g., data from
experiments in physics, engineering, manufacturing, psychology, and medicine), as well
as to data from economics and the social sciences. Some of these techniques, such as
principal components analysis (Chapter 3) and clustering (Chapters 10 and 11), have
already been addressed in this book. A thorough discussion of major statistical methods
for data analysis is beyond the scope of this book; however, several methods are men-
tioned here for the sake of completeness. Pointers to these techniques are provided in
the bibliographic notes (Section 13.8).

Regression: In general, these methods are used to predict the value of a response
(dependent) variable from one or more predictor (independent) variables, where the
variables are numeric. There are various forms of regression, such as linear, multi-
ple, weighted, polynomial, nonparametric, and robust (robust methods are useful
when errors fail to satisfy normalcy conditions or when the data contain significant
outliers).

Generalized linear models: These models, and their generalization (generalized addi-
tive models), allow a categorical (nominal) response variable (or some transformation
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of it) to be related to a set of predictor variables in a manner similar to the model-
ing of a numeric response variable using linear regression. Generalized linear models
include logistic regression and Poisson regression.

Analysis of variance: These techniques analyze experimental data for two or more
populations described by a numeric response variable and one or more categorical
variables (factors). In general, an ANOVA (single-factor analysis of variance) problem
involves a comparison of k population or treatment means to determine if at least two
of the means are different. More complex ANOVA problems also exist.

Mixed-effect models: These models are for analyzing grouped data—data that can
be classified according to one or more grouping variables. They typically describe
relationships between a response variable and some covariates in data grouped
according to one or more factors. Common areas of application include multilevel
data, repeated measures data, block designs, and longitudinal data.

Factor analysis: This method is used to determine which variables are combined to
generate a given factor. For example, for many psychiatric data, it is not possible to
measure a certain factor of interest directly (e.g., intelligence); however, it is often
possible to measure other quantities (e.g., student test scores) that reflect the factor
of interest. Here, none of the variables is designated as dependent.

Discriminant analysis: This technique is used to predict a categorical response vari-
able. Unlike generalized linear models, it assumes that the independent variables
follow a multivariate normal distribution. The procedure attempts to determine
several discriminant functions (linear combinations of the independent variables)
that discriminate among the groups defined by the response variable. Discriminant
analysis is commonly used in social sciences.

Survival analysis: Several well-established statistical techniques exist for survival
analysis. These techniques originally were designed to predict the probability that
a patient undergoing a medical treatment would survive at least to time ¢. Methods
for survival analysis, however, are also commonly applied to manufacturing settings
to estimate the life span of industrial equipment. Popular methods include Kaplan-
Meier estimates of survival, Cox proportional hazards regression models, and their
extensions.

Quality control: Various statistics can be used to prepare charts for quality control,
such as Shewhart charts and CUSUM charts (both of which display group sum-
mary statistics). These statistics include the mean, standard deviation, range, count,
moving average, moving standard deviation, and moving range.

13.2.2 Views on Data Mining Foundations

Research on the theoretical foundations of data mining has yet to mature. A solid and
systematic theoretical foundation is important because it can help provide a coherent
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framework for the development, evaluation, and practice of data mining technology.
Several theories for the basis of data mining include the following:

Data reduction: In this theory, the basis of data mining is to reduce the data rep-
resentation. Data reduction trades accuracy for speed in response to the need to
obtain quick approximate answers to queries on very large databases. Data reduc-
tion techniques include singular value decomposition (the driving element behind
principal components analysis), wavelets, regression, log-linear models, histograms,
clustering, sampling, and the construction of index trees.

Data compression: According to this theory, the basis of data mining is to compress
the given data by encoding in terms of bits, association rules, decision trees, clusters,
and so on. Encoding based on the minimum description length principle states that
the “best” theory to infer from a data set is the one that minimizes the length of the
theory and of the data when encoded, using the theory as a predictor for the data.
This encoding is typically in bits.

Probability and statistical theory: According to this theory, the basis of data min-
ing is to discover joint probability distributions of random variables, for example,
Bayesian belief networks or hierarchical Bayesian models.

Microeconomic view: The microeconomic view considers data mining as the task
of finding patterns that are interesting only to the extent that they can be used in
the decision-making process of some enterprise (e.g., regarding marketing strategies
and production plans). This view is one of utility, in which patterns are considered
interesting if they can be acted on. Enterprises are regarded as facing optimization
problems, where the object is to maximize the utility or value of a decision. In this
theory, data mining becomes a nonlinear optimization problem.

Pattern discovery and inductive databases: In this theory, the basis of data mining
is to discover patterns occurring in the data such as associations, classification mod-
els, sequential patterns, and so on. Areas such as machine learning, neural network,
association mining, sequential pattern mining, clustering, and several other subfields
contribute to this theory. A knowledge base can be viewed as a database consisting
of data and patterns. A user interacts with the system by querying the data and the
theory (i.e., patterns) in the knowledge base. Here, the knowledge base is actually an
inductive database.

These theories are not mutually exclusive. For example, pattern discovery can also
be seen as a form of data reduction or data compression. Ideally, a theoretical frame-
work should be able to model typical data mining tasks (e.g., association, classification,
and clustering), have a probabilistic nature, be able to handle different forms of data,
and consider the iterative and interactive essence of data mining. Further efforts are
required to establish a well-defined framework for data mining that satisfies these
requirements.
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13.2.3 Visual and Audio Data Mining

Visual data mining discovers implicit and useful knowledge from large data sets using
data and/or knowledge visualization techniques. The human visual system is controlled
by the eyes and brain, the latter of which can be thought of as a powerful, highly parallel
processing and reasoning engine containing a large knowledge base. Visual data mining
essentially combines the power of these components, making it a highly attractive and
effective tool for the comprehension of data distributions, patterns, clusters, and outliers
in data.

Visual data mining can be viewed as an integration of two disciplines: data visualiza-
tion and data mining. It is also closely related to computer graphics, multimedia systems,
human—computer interaction, pattern recognition, and high-performance computing.
In general, data visualization and data mining can be integrated in the following ways:

Data visualization: Data in a database or data warehouse can be viewed at differ-
ent granularity or abstraction levels, or as different combinations of attributes or
dimensions. Data can be presented in various visual forms, such as boxplots, 3-D
cubes, data distribution charts, curves, surfaces, and link graphs, as shown in the
data visualization section of Chapter 2. Figures 13.4 and 13.5 from StatSoft show
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Figure 13.4 Boxplots showing multiple variable combinations in StatSoft. Source: www.statsoft.com.
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Figure 13.5 Multidimensional data distribution analysis in StatSoft. Source: www.statsoft.com.

data distributions in multidimensional space. Visual display can help give users a
clear impression and overview of the data characteristics in a large data set.

Data mining result visualization: Visualization of data mining results is the presen-
tation of the results or knowledge obtained from data mining in visual forms. Such
forms may include scatter plots and boxplots (Chapter 2), as well as decision trees,
association rules, clusters, outliers, and generalized rules. For example, scatter plots
are shown in Figure 13.6 from SAS Enterprise Miner. Figure 13.7, from MineSet,
uses a plane associated with a set of pillars to describe a set of association rules mined
from a database. Figure 13.8, also from MineSet, presents a decision tree. Figure 13.9,
from IBM Intelligent Miner, presents a set of clusters and the properties associated
with them.

Data mining process visualization: This type of visualization presents the various
processes of data mining in visual forms so that users can see how the data are
extracted and from which database or data warehouse they are extracted, as well as
how the selected data are cleaned, integrated, preprocessed, and mined. Moreover, it
may also show which method is selected for data mining, where the results are stored,
and how they may be viewed. Figure 13.10 shows a visual presentation of data mining
processes by the Clementine data mining system.
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Figure 13.6 Visualization of data mining results in SAS Enterprise Miner.

Interactive visual data mining: In (interactive) visual data mining, visualization
tools can be used in the data mining process to help users make smart data mining
decisions. For example, the data distribution in a set of attributes can be displayed
using colored sectors (where the whole space is represented by a circle). This dis-
play helps users determine which sector should first be selected for classification
and where a good split point for this sector may be. An example of this is shown in
Figure 13.11, which is the output of a perception-based classification (PBC) system
developed at the University of Munich.

Audio data mining uses audio signals to indicate the patterns of data or the features
of data mining results. Although visual data mining may disclose interesting patterns
using graphical displays, it requires users to concentrate on watching patterns and iden-
tifying interesting or novel features within them. This can sometimes be quite tiresome.
If patterns can be transformed into sound and music, then instead of watching pic-
tures, we can listen to pitchs, rhythm, tune, and melody to identify anything interesting
or unusual. This may relieve some of the burden of visual concentration and be more
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Figure 13.8 Visualization of a decision tree in MineSet.
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Figure 13.9 Visualization of cluster groupings in IBM Intelligent Miner.
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Figure 13.10 Visualization of data mining processes by Clementine.
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Perception-based classification, an interactive visual mining approach.

relaxing than visual mining. Therefore, audio data mining is an interesting complement
to visual mining.

Data Mining Applications

In this book, we have studied principles and methods for mining relational data, data
warehouses, and complex data types. Because data mining is a relatively young discipline
with wide and diverse applications, there is still a nontrivial gap between general princi-
ples of data mining and application-specific, effective data mining tools. In this section,
we examine several application domains, as listed in Figure 13.12. We discuss how
customized data mining methods and tools should be developed for such applications.

Data Mining for Financial Data Analysis

Most banks and financial institutions offer a wide variety of banking, investment, and
credit services (the latter include business, mortgage, and automobile loans and credit
cards). Some also offer insurance and stock investment services.
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Figure 13.12 Common data mining application domains.

Financial data collected in the banking and financial industry are often relatively

complete, reliable, and of high quality, which facilitates systematic data analysis and data
mining. Here we present a few typical cases.

Design and construction of data warehouses for multidimensional data analysis
and data mining: Like many other applications, data warehouses need to be con-
structed for banking and financial data. Multidimensional data analysis methods
should be used to analyze the general properties of such data. For example, a com-
pany’s financial officer may want to view the debt and revenue changes by month,
region, and sector, and other factors, along with maximum, minimum, total, aver-
age, trend, deviation, and other statistical information. Data warehouses, data cubes
(including advanced data cube concepts such as multifeature, discovery-driven,
regression, and prediction data cubes), characterization and class comparisons, clus-
tering, and outlier analysis will all play important roles in financial data analysis and
mining.

Loan payment prediction and customer credit policy analysis: Loan payment pre-
diction and customer credit analysis are critical to the business of a bank. Many
factors can strongly or weakly influence loan payment performance and customer
credit rating. Data mining methods, such as attribute selection and attribute rele-
vance ranking, may help identify important factors and eliminate irrelevant ones.
For example, factors related to the risk of loan payments include loan-to-value ratio,
term of the loan, debt ratio (total amount of monthly debt versus total monthly
income), payment-to-income ratio, customer income level, education level, resi-
dence region, and credit history. Analysis of the customer payment history may find
that, say, payment-to-income ratio is a dominant factor, while education level and
debt ratio are not. The bank may then decide to adjust its loan-granting policy so



13.3 Data Mining Applications 609

as to grant loans to those customers whose applications were previously denied but
whose profiles show relatively low risks according to the critical factor analysis.

Classification and clustering of customers for targeted marketing: Classification
and clustering methods can be used for customer group identification and targeted
marketing. For example, we can use classification to identify the most crucial factors
that may influence a customer’s decision regarding banking. Customers with similar
behaviors regarding loan payments may be identified by multidimensional clustering
techniques. These can help identify customer groups, associate a new customer with
an appropriate customer group, and facilitate targeted marketing.

Detection of money laundering and other financial crimes: To detect money laun-
dering and other financial crimes, it is important to integrate information from
multiple, heterogeneous databases (e.g., bank transaction databases and federal or
state crime history databases), as long as they are potentially related to the study.
Multiple data analysis tools can then be used to detect unusual patterns, such as large
amounts of cash flow at certain periods, by certain groups of customers. Useful tools
include data visualization tools (to display transaction activities using graphs by time
and by groups of customers), linkage and information network analysis tools (to
identify links among different customers and activities), classification tools (to fil-
ter unrelated attributes and rank the highly related ones), clustering tools (to group
different cases), outlier analysis tools (to detect unusual amounts of fund transfers
or other activities), and sequential pattern analysis tools (to characterize unusual
access sequences). These tools may identify important relationships and patterns
of activities and help investigators focus on suspicious cases for further detailed
examination.

13.3.2 Data Mining for Retail and Telecommunication Industries

The retail industry is a well-fit application area for data mining, since it collects huge
amounts of data on sales, customer shopping history, goods transportation, consump-
tion, and service. The quantity of data collected continues to expand rapidly, especially
due to the increasing availability, ease, and popularity of business conducted on the Web,
or e-commerce. Today, most major chain stores also have web sites where customers
can make purchases online. Some businesses, such as Amazon.com (www.amazon.com),
exist solely online, without any brick-and-mortar (i.e., physical) store locations. Retail
data provide a rich source for data mining.

Retail data mining can help identify customer buying behaviors, discover customer
shopping patterns and trends, improve the quality of customer service, achieve better
customer retention and satisfaction, enhance goods consumption ratios, design more
effective goods transportation and distribution policies, and reduce the cost of business.

A few examples of data mining in the retail industry are outlined as follows:

Design and construction of data warehouses: Because retail data cover a wide spec-
trum (including sales, customers, employees, goods transportation, consumption,
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and services), there can be many ways to design a data warehouse for this industry.
The levels of detail to include can vary substantially. The outcome of preliminary
data mining exercises can be used to help guide the design and development of data
warehouse structures. This involves deciding which dimensions and levels to include
and what preprocessing to perform to facilitate effective data mining.

Multidimensional analysis of sales, customers, products, time, and region: The
retail industry requires timely information regarding customer needs, product sales,
trends, and fashions, as well as the quality, cost, profit, and service of commodities.
It is therefore important to provide powerful multidimensional analysis and visual-
ization tools, including the construction of sophisticated data cubes according to the
needs of data analysis. The advanced data cube structures introduced in Chapter 5
are useful in retail data analysis because they facilitate analysis on multidimensional
aggregates with complex conditions.

Analysis of the effectiveness of sales campaigns: The retail industry conducts sales
campaigns using advertisements, coupons, and various kinds of discounts and
bonuses to promote products and attract customers. Careful analysis of the effec-
tiveness of sales campaigns can help improve company profits. Multidimensional
analysis can be used for this purpose by comparing the amount of sales and the num-
ber of transactions containing the sales items during the sales period versus those
containing the same items before or after the sales campaign. Moreover, association
analysis may disclose which items are likely to be purchased together with the items
on sale, especially in comparison with the sales before or after the campaign.

Customer retention—analysis of customer loyalty: We can use customer loyalty
card information to register sequences of purchases of particular customers. Cus-
tomer loyalty and purchase trends can be analyzed systematically. Goods purchased
at different periods by the same customers can be grouped into sequences. Sequential
pattern mining can then be used to investigate changes in customer consumption or
loyalty and suggest adjustments on the pricing and variety of goods to help retain
customers and attract new ones.

Product recommendation and cross-referencing of items: By mining associations
from sales records, we may discover that a customer who buys a digital camera is
likely to buy another set of items. Such information can be used to form product
recommendations. Collaborative recommender systems (Section 13.3.5) use data min-
ing techniques to make personalized product recommendations during live customer
transactions, based on the opinions of other customers. Product recommendations
can also be advertised on sales receipts, in weekly flyers, or on the Web to help
improve customer service, aid customers in selecting items, and increase sales. Simi-
larly, information, such as “hot items this week” or attractive deals, can be displayed
together with the associative information to promote sales.

Fraudulent analysis and the identification of unusual patterns: Fraudulent activity
costs the retail industry millions of dollars per year. It is important to (1) identify
potentially fraudulent users and their atypical usage patterns; (2) detect attempts
to gain fraudulent entry or unauthorized access to individual and organizational
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accounts; and (3) discover unusual patterns that may need special attention. Many of
these patterns can be discovered by multidimensional analysis, cluster analysis, and
outlier analysis.

As another industry that handles huge amounts of data, the telecommunication
industry has quickly evolved from offering local and long-distance telephone services
to providing many other comprehensive communication services. These include cellu-
lar phone, smart phone, Internet access, email, text messages, images, computer and web
data transmissions, and other data traffic. The integration of telecommunication, com-
puter network, Internet, and numerous other means of communication and computing
has been under way, changing the face of telecommunications and computing. This has
created a great demand for data mining to help understand business dynamics, identify
telecommunication patterns, catch fraudulent activities, make better use of resources,
and improve service quality.

Data mining tasks in telecommunications share many similarities with those in
the retail industry. Common tasks include constructing large-scale data warehouses,
performing multidimensional visualization, OLAP, and in-depth analysis of trends,
customer patterns, and sequential patterns. Such tasks contribute to business improve-
ments, cost reduction, customer retention, fraud analysis, and sharpening the edges
of competition. There are many data mining tasks for which customized data mining
tools for telecommunication have been flourishing and are expected to play increasingly
important roles in business.

Data mining has been popularly used in many other industries, such as insurance,
manufacturing, and health care, as well as for the analysis of governmental and insti-
tutional administration data. Although each industry has its own characteristic data
sets and application demands, they share many common principles and methodolo-
gies. Therefore, through effective mining in one industry, we may gain experience and
methodologies that can be transferred to other industrial applications.

Data Mining in Science and Engineering

In the past, many scientific data analysis tasks tended to handle relatively small and
homogeneous data sets. Such data were typically analyzed using a “formulate hypothesis,
build model, and evaluate results” paradigm. In these cases, statistical techniques were
typically employed for their analysis (see Section 13.2.1). Massive data collection and
storage technologies have recently changed the landscape of scientific data analy-
sis. Today, scientific data can be amassed at much higher speeds and lower costs.
This has resulted in the accumulation of huge volumes of high-dimensional data,
stream data, and heterogenous data, containing rich spatial and temporal informa-
tion. Consequently, scientific applications are shifting from the “hypothesize-and-test”
paradigm toward a “collect and store data, mine for new hypotheses, confirm with data or
experimentation” process. This shift brings about new challenges for data mining.

Vast amounts of data have been collected from scientific domains (including geo-
sciences, astronomy, meteorology, geology, and biological sciences) using sophisticated
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telescopes, multispectral high-resolution remote satellite sensors, global positioning sys-
tems, and new generations of biological data collection and analysis technologies. Large
data sets are also being generated due to fast numeric simulations in various fields such
as climate and ecosystem modeling, chemical engineering, fluid dynamics, and struc-
tural mechanics. Here we look at some of the challenges brought about by emerging
scientific applications of data mining.

Data warehouses and data preprocessing: Data preprocessing and data warehouses
are critical for information exchange and data mining. Creating a warehouse often
requires finding means for resolving inconsistent or incompatible data collected
in multiple environments and at different time periods. This requires reconcil-
ing semantics, referencing systems, geometry, measurements, accuracy, and preci-
sion. Methods are needed for integrating data from heterogeneous sources and for
identifying events.

For instance, consider climate and ecosystem data, which are spatial and tempo-
ral and require cross-referencing geospatial data. A major problem in analyzing such
data is that there are too many events in the spatial domain but too few in the tem-
poral domain. For example, El Nino events occur only every four to seven years, and
previous data on them might not have been collected as systematically as they are
today. Methods are also needed for the efficient computation of sophisticated spatial
aggregates and the handling of spatial-related data streams.

Mining complex data types: Scientific data sets are heterogeneous in nature. They
typically involve semi-structured and unstructured data, such as multimedia data
and georeferenced stream data, as well as data with sophisticated, deeply hidden
semantics (e.g., genomic and proteomic data). Robust and dedicated analysis meth-
ods are needed for handling spatiotemporal data, biological data, related concept
hierarchies, and complex semantic relationships. For example, in bioinformatics,
a research problem is to identify regulatory influences on genes. Gene regulation
refers to how genes in a cell are switched on (or off) to determine the cell’s func-
tions. Different biological processes involve different sets of genes acting together
in precisely regulated patterns. Thus, to understand a biological process we need to
identify the participating genes and their regulators. This requires the development
of sophisticated data mining methods to analyze large biological data sets for clues
about regulatory influences on specific genes, by finding DNA segments (“regulatory
sequences”) mediating such influence.

Graph-based and network-based mining: It is often difficult or impossible to
model several physical phenomena and processes due to limitations of existing
modeling approaches. Alternatively, labeled graphs and networks may be used to
capture many of the spatial, topological, geometric, biological, and other relational
characteristics present in scientific data sets. In graph or network modeling, each
object to be mined is represented by a vertex in a graph, and edges between ver-
tices represent relationships between objects. For example, graphs can be used to
model chemical structures, biological pathways, and data generated by numeric
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simulations such as fluid-flow simulations. The success of graph or network mod-
eling, however, depends on improvements in the scalability and efficiency of many
graph-based data mining tasks such as classification, frequent pattern mining, and
clustering.

Visualization tools and domain-specific knowledge: High-level graphical user
interfaces and visualization tools are required for scientific data mining systems.
These should be integrated with existing domain-specific data and information sys-
tems to guide researchers and general users in searching for patterns, interpreting
and visualizing discovered patterns, and using discovered knowledge in their decision
making.

Data mining in engineering shares many similarities with data mining in science.
Both practices often collect massive amounts of data, and require data preprocessing,
data warehousing, and scalable mining of complex types of data. Both typically use
visualization and make good use of graphs and networks. Moreover, many engineer-
ing processes need real-time responses, and so mining data streams in real time often
becomes a critical component.

Massive amounts of human communication data pour into our daily life. Such com-
munication exists in many forms, including news, blogs, articles, web pages, online
discussions, product reviews, twitters, messages, advertisements, and communications,
both on the Web and in various kinds of social networks. Hence, data mining in social
science and social studies has become increasingly popular. Moreover, user or reader
feedback regarding products, speeches, and articles can be analyzed to deduce general
opinions and sentiments on the views of those in society. The analysis results can be
used to predict trends, improve work, and help in decision making.

Computer science generates unique kinds of data. For example, computer programs
can be long, and their execution often generates huge-size traces. Computer networks
can have complex structures and the network flows can be dynamic and massive. Sensor
networks may generate large amounts of data with varied reliability. Computer systems
and databases can suffer from various kinds of attacks, and their system/data accessing
may raise security and privacy concerns. These unique kinds of data provide fertile land
for data mining.

Data mining in computer science can be used to help monitor system status,
improve system performance, isolate software bugs, detect software plagiarism, analyze
computer system faults, uncover network intrusions, and recognize system malfunc-
tions. Data mining for software and system engineering can operate on static or dynamic
(i.e., stream-based) data, depending on whether the system dumps traces beforehand for
postanalysis or if it must react in real time to handle online data.

Various methods have been developed in this domain, which integrate and extend
methods from machine learning, data mining, software/system engineering, pattern
recognition, and statistics. Data mining in computer science is an active and rich domain
for data miners because of its unique challenges. It requires the further development
of sophisticated, scalable, and real-time data mining and software/system engineering
methods.
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13.3.4 Data Mining for Intrusion Detection and Prevention

The security of our computer systems and data is at continual risk. The extensive growth
of the Internet and the increasing availability of tools and tricks for intruding and
attacking networks have prompted intrusion detection and prevention to become a
critical component of networked systems. An intrusion can be defined as any set of
actions that threaten the integrity, confidentiality, or availability of a network resource
(e.g., user accounts, file systems, system kernels, and so on). Intrusion detection sys-
tems and intrusion prevention systems both monitor network traffic and/or system
executions for malicious activities. However, the former produces reports whereas the
latter is placed in-line and is able to actively prevent/block intrusions that are detected.
The main functions of an intrusion prevention system are to identify malicious activ-
ity, log information about said activity, attempt to block/stop activity, and report
activity.

The majority of intrusion detection and prevention systems use either signature-
based detection or anomaly-based detection.

Signature-based detection: This method of detection utilizes signatures, which
are attack patterns that are preconfigured and predetermined by domain experts.
A signature-based intrusion prevention system monitors the network traffic for
matches to these signatures. Once a match is found, the intrusion detection sys-
tem will report the anomaly and an intrusion prevention system will take additional
appropriate actions. Note that since the systems are usually quite dynamic, the sig-
natures need to be updated laboriously whenever new software versions arrive or
changes in network configuration or other situations occur. Another drawback is
that such a detection mechanism can only identify cases that match the signatures.
That is, it is unable to detect new or previously unknown intrusion tricks.

Anomaly-based detection: This method builds models of normal network behavior
(called profiles) that are then used to detect new patterns that significantly deviate
from the profiles. Such deviations may represent actual intrusions or simply be new
behaviors that need to be added to the profiles. The main advantage of anomaly
detection is that it may detect novel intrusions that have not yet been observed. Typ-
ically, a human analyst must sort through the deviations to ascertain which represent
real intrusions. A limiting factor of anomaly detection is the high percentage of false
positives. New patterns of intrusion can be added to the set of signatures to enhance
signature-based detection.

Data mining methods can help an intrusion detection and prevention system to
enhance its performance in various ways as follows.

New data mining algorithms for intrusion detection: Data mining algorithms can
be used for both signature-based and anomaly-based detection. In signature-based
detection, training data are labeled as either “normal” or “intrusion.” A classi-
fier can then be derived to detect known intrusions. Research in this area has
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included the application of classification algorithms, association rule mining, and
cost-sensitive modeling. Anomaly-based detection builds models of normal beha-
vior and automatically detects significant deviations from it. Methods include the
application of clustering, outlier analysis, and classification algorithms and statisti-
cal approaches. The techniques used must be efficient and scalable, and capable of
handling network data of high volume, dimensionality, and heterogeneity.

Association, correlation, and discriminative pattern analyses help select and build
discriminative classifiers: Association, correlation, and discriminative pattern min-
ing can be applied to find relationships between system attributes describing the
network data. Such information can provide insight regarding the selection of useful
attributes for intrusion detection. New attributes derived from aggregated data may
also be helpful such as summary counts of traffic matching a particular pattern.

Analysis of stream data: Due to the transient and dynamic nature of intrusions
and malicious attacks, it is crucial to perform intrusion detection in the data stream
environment. Moreover, an event may be normal on its own, but considered mali-
cious if viewed as part of a sequence of events. Thus, it is necessary to study what
sequences of events are frequently encountered together, find sequential patterns, and
identify outliers. Other data mining methods for finding evolving clusters and build-
ing dynamic classification models in data streams are also necessary for real-time
intrusion detection.

Distributed data mining: Intrusions can be launched from several different loca-
tions and targeted to many different destinations. Distributed data mining methods
may be used to analyze network data from several network locations to detect these
distributed attacks.

Visualization and querying tools: Visualization tools should be available for view-
ing any anomalous patterns detected. Such tools may include features for viewing
associations, discriminative patterns, clusters, and outliers. Intrusion detection sys-
tems should also have a graphical user interface that allows security analysts to pose
queries regarding the network data or intrusion detection results.

In summary, computer systems are at continual risk of breaks in security. Data mining
technology can be used to develop strong intrusion detection and prevention systems,
which may employ signature-based or anomaly-based detection.

13.3.5 Data Mining and Recommender Systems

Today’s consumers are faced with millions of goods and services when shopping online.
Recommender systems help consumers by making product recommendations that are
likely to be of interest to the user such as books, CDs, movies, restaurants, online
news articles, and other services. Recommender systems may use either a content-
based approach, a collaborative approach, or a hybrid approach that combines both
content-based and collaborative methods.
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Example 13.1

The content-based approach recommends items that are similar to items the
user preferred or queried in the past. It relies on product features and textual item
descriptions. The collaborative approach (or collaborative filtering approach) may
consider a user’s social environment. It recommends items based on the opinions of
other customers who have similar tastes or preferences as the user. Recommender sys-
tems use a broad range of techniques from information retrieval, statistics, machine
learning, and data mining to search for similarities among items and customer prefer-
ences. Consider Example 13.1.

Scenarios of using a recommender system. Suppose that you visit the web site of an
online bookstore (e.g., Amazon) with the intention of purchasing a book that you have
been wanting to read. You type in the name of the book. This is not the first time you
have visited the web site. You have browsed through it before and even made purchases
from it last Christmas. The web store remembers your previous visits, having stored click
stream information and information regarding your past purchases. The system displays
the description and price of the book you have just specified. It compares your interests
with other customers having similar interests and recommends additional book titles,
saying “Customers who bought the book you have specified also bought these other titles as
well.” From surveying the list, you see another title that sparks your interest and decide
to purchase that one as well.

Now suppose you go to another online store with the intention of purchasing a digital
camera. The system suggests additional items to consider based on previously mined
sequential patterns, such as “Customers who buy this kind of digital camera are likely to
buy a particular brand of printer, memory card, or photo editing software within three
months.” You decide to buy just the camera, without any additional items. A week later,
you receive coupons from the store regarding the additional items. (]

An advantage of recommender systems is that they provide personalization for cus-
tomers of e-commerce, promoting one-to-one marketing. Amazon, a pioneer in the use
of collaborative recommender systems, offers “a personalized store for every customer”
as part of their marketing strategy. Personalization can benefit both consumers and the
company involved. By having more accurate models of their customers, companies gain
a better understanding of customer needs. Serving these needs can result in greater suc-
cess regarding cross-selling of related products, upselling, product affinities, one-to-one
promotions, larger baskets, and customer retention.

The recommendation problem considers a set, C, of users and a set, S, of items. Let u
be a utility function that measures the usefulness of an item, s, to a user, c. The utility is
commonly represented by a rating and is initially defined only for items previously rated
by users. For example, when joining a movie recommendation system, users are typically
asked to rate several movies. The space C x S of all possible users and items is huge. The
recommendation system should be able to extrapolate from known to unknown ratings
so as to predict item—user combinations. Items with the highest predicted rating/utility
for a user are recommended to that user.
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“How 1is the utility of an item estimated for a user?” In content-based methods, it
is estimated based on the utilities assigned by the same user to other items that are
similar. Many such systems focus on recommending items containing textual infor-
mation, such as web sites, articles, and news messages. They look for commonalities
among items. For movies, they may look for similar genres, directors, or actors. For
articles, they may look for similar terms. Content-based methods are rooted in infor-
mation theory. They make use of keywords (describing the items) and user profiles
that contain information about users’ tastes and needs. Such profiles may be obtained
explicitly (e.g., through questionnaires) or learned from users’ transactional behavior
over time.

A collaborative recommender system tries to predict the utility of items for a user,
u, based on items previously rated by other users who are similar to u. For example,
when recommending books, a collaborative recommender system tries to find other
users who have a history of agreeing with u (e.g., they tend to buy similar books, or give
similar ratings for books). Collaborative recommender systems can be either memory
(or heuristic) based or model based.

Memory-based methods essentially use heuristics to make rating predictions based
on the entire collection of items previously rated by users. That is, the unknown rating
of an item—user combination can be estimated as an aggregate of ratings of the most
similar users for the same item. Typically, a k-nearest-neighbor approach is used, that is,
we find the k other users (or neighbors) that are most similar to our target user, u. Vari-
ous approaches can be used to compute the similarity between users. The most popular
approaches use either Pearson’s correlation coefficient (Section 3.3.2) or cosine simi-
larity (Section 2.4.7). A weighted aggregate can be used, which adjusts for the fact that
different users may use the rating scale differently. Model-based collaborative recom-
mender systems use a collection of ratings to learn a model, which is then used to make
rating predictions. For example, probabilistic models, clustering (which finds clusters
of like-minded customers), Bayesian networks, and other machine learning techniques
have been used.

Recommender systems face major challenges such as scalability and ensuring qual-
ity recommendations to the consumer. For example, regarding scalability, collaborative
recommender systems must be able to search through millions of potential neighbors
in real time. If the site is using browsing patterns as indications of product prefer-
ence, it may have thousands of data points for some of its customers. Ensuring quality
recommendations is essential to gain consumers’ trust. If consumers follow a system
recommendation but then do not end up liking the product, they are less likely to use
the recommender system again.

As with classification systems, recommender systems can make two types of errors:
false negatives and false positives. Here, false negatives are products that the system
fails to recommend, although the consumer would like them. False positives are prod-
ucts that are recommended, but which the consumer does not like. False positives
are less desirable because they can annoy or anger consumers. Content-based recom-
mender systems are limited by the features used to describe the items they recommend.
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13.4.1

Another challenge for both content-based and collaborative recommender systems is
how to deal with new users for which a buying history is not yet available.

Hybrid approaches integrate both content-based and collaborative methods to
achieve further improved recommendations. The Netflix Prize was an open competi-
tion held by an online DVD-rental service, with a payout of $1,000,000 for the best
recommender algorithm to predict user ratings for films, based on previous ratings.
The competition and other studies have shown that the predictive accuracy of a rec-
ommender system can be substantially improved when blending multiple predictors,
especially by using an ensemble of many substantially different methods, rather than
refining a single technique.

Collaborative recommender systems are a form of intelligent query answering,
which consists of analyzing the intent of a query and providing generalized, neighbor-
hood, or associated information relevant to the query. For example, rather than simply
returning the book description and price in response to a customer’s query, returning
additional information that is related to the query but that was not explicitly asked for
(e.g., book evaluation comments, recommendations of other books, or sales statistics)
provides an intelligent answer to the same query.

Data Mining and Society

For most of us, data mining is part of our daily lives, although we may often be unaware
of its presence. Section 13.4.1 looks at several examples of “ubiquitous and invisible”
data mining, affecting everyday things from the products stocked at our local super-
market, to the ads we see while surfing the Internet, to crime prevention. Data mining
can offer the individual many benefits by improving customer service and satisfaction
as well as lifestyle, in general. However, it also has serious implications regarding one’s
right to privacy and data security. These issues are the topic of Section 13.4.2.

Ubiquitous and Invisible Data Mining

Data mining is present in many aspects of our daily lives, whether we realize it or not.
It affects how we shop, work, and search for information, and can even influence our
leisure time, health, and well-being. In this section, we look at examples of such ubiq-
uitous (or ever-present) data mining. Several of these examples also represent invisible
data mining, in which “smart” software, such as search engines, customer-adaptive web
services (e.g., using recommender algorithms), “intelligent” database systems, email
managers, ticket masters, and so on, incorporates data mining into its functional
components, often unbeknownst to the user.

From grocery stores that print personalized coupons on customer receipts to online
stores that recommend additional items based on customer interests, data mining has
innovatively influenced what we buy, the way we shop, and our experience while shop-
ping. One example is Wal-Mart, which has hundreds of millions of customers visiting
its tens of thousands of stores every week. Wal-Mart allows suppliers to access data on
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their products and perform analyses using data mining software. This allows suppliers
to identify customer buying patterns at different stores, control inventory and prod-
uct placement, and identify new merchandizing opportunities. All of these affect which
items (and how many) end up on the stores’ shelves—something to think about the next
time you wander through the aisles at Wal-Mart.

Data mining has shaped the online shopping experience. Many shoppers routinely
turn to online stores to purchase books, music, movies, and toys. Recommender sys-
tems, discussed in Section 13.3.5, offer personalized product recommendations based
on the opinions of other customers. Amazon.com was at the forefront of using such a
personalized, data mining—based approach as a marketing strategy. It has observed that
in traditional brick-and-mortar stores, the hardest part is getting the customer into the
store. Once the customer is there, he or she is likely to buy something, since the cost
of going to another store is high. Therefore, the marketing for brick-and-mortar stores
tends to emphasize drawing customers in, rather than the actual in-store customer expe-
rience. This is in contrast to online stores, where customers can “walk out” and enter
another online store with just a click of the mouse. Amazon.com capitalized on this dif-
ference, offering a “personalized store for every customer.” They use several data mining
techniques to identify customer’s likes and make reliable recommendations.

While we are on the topic of shopping, suppose you have been doing a lot of buying
with your credit cards. Nowadays, it is not unusual to receive a phone call from one’s
credit card company regarding suspicious or unusual patterns of spending. Credit card
companies use data mining to detect fraudulent usage, saving billions of dollars a year.

Many companies increasingly use data mining for customer relationship man-
agement (CRM), which helps provide more customized, personal service addressing
individual customer’s needs, in lieu of mass marketing. By studying browsing and pur-
chasing patterns on web stores, companies can tailor advertisements and promotions
to customer profiles, so that customers are less likely to be annoyed with unwanted
mass mailings or junk mail. These actions can result in substantial cost savings for
companies. The customers further benefit in that they are more likely to be notified
of offers that are actually of interest, resulting in less waste of personal time and greater
satisfaction.

Data mining has greatly influenced the ways in which people use computers, search
for information, and work. Once you get on the Internet, for example, you decide to
check your email. Unbeknownst to you, several annoying emails have already been
deleted, thanks to a spam filter that uses classification algorithms to recognize spam.
After processing your email, you go to Google (www.google.com), which provides access
to information from billions of web pages indexed on its server. Google is one of the
most popular and widely used Internet search engines. Using Google to search for
information has become a way of life for many people.

Google is so popular that it has even become a new verb in the English language,
meaning “to search for (something) on the Internet using the Google search engine or,
by extension, any comprehensive search engine.”! You decide to type in some keywords

Lhttp://open-dictionary.com.
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for a topic of interest. Google returns a list of web sites on your topic, mined, indexed,
and organized by a set of data mining algorithms including PageRank. Moreover, if you
type “Boston New York,” Google will show you bus and train schedules from Boston to
New York; however, a minor change to “Boston Paris” will lead to flight schedules from
Boston to Paris. Such smart offerings of information or services are likely based on the
frequent patterns mined from the click streams of many previous queries.

While you are viewing the results of your Google query, various ads pop up relating
to your query. Google’s strategy of tailoring advertising to match the user’s interests is
one of the typical services being explored by every Internet search provider. This also
makes you happier, because you are less likely to be pestered with irrelevant ads.

Data mining is omnipresent, as can be seen from these daily-encountered examples.
We could go on and on with such scenarios. In many cases, data mining is invisible,
as users may be unaware that they are examining results returned by data mining or
that their clicks are actually fed as new data into some data mining functions. For data
mining to become further improved and accepted as a technology, continuing research
and development are needed in the many areas mentioned as challenges throughout this
book. These include efficiency and scalability, increased user interaction, incorporation
of background knowledge and visualization techniques, effective methods for finding
interesting patterns, improved handling of complex data types and stream data, real-
time data mining, web mining, and so on. In addition, the integration of data mining
into existing business and scientific technologies, to provide domain-specific data min-
ing tools, will further contribute to the advancement of the technology. The success of
data mining solutions tailored for e-commerce applications, as opposed to generic data
mining systems, is an example.

13.4.2 Privacy, Security, and Social Impacts of Data Mining

With more and more information accessible in electronic forms and available on the
Web, and with increasingly powerful data mining tools being developed and put into
use, there are increasing concerns that data mining may pose a threat to our privacy
and data security. However, it is important to note that many data mining applications
do not even touch personal data. Prominent examples include applications involving
natural resources, the prediction of floods and droughts, meteorology, astronomy, geog-
raphy, geology, biology, and other scientific and engineering data. Furthermore, most
studies in data mining research focus on the development of scalable algorithms and do
not involve personal data.

The focus of data mining technology is on the discovery of general or statistically
significant patterns, not on specific information regarding individuals. In this sense,
we believe that the real privacy concerns are with unconstrained access to individual
records, especially access to privacy-sensitive information such as credit card transaction
records, health-care records, personal financial records, biological traits, criminal/justice
investigations, and ethnicity. For the data mining applications that do involve personal
data, in many cases, simple methods such as removing sensitive IDs from data may
protect the privacy of most individuals. Nevertheless, privacy concerns exist wherever
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personally identifiable information is collected and stored in digital form, and data
mining programs are able to access such data, even during data preparation.

Improper or nonexistent disclosure control can be the root cause of privacy issues.
To handle such concerns, numerous data security-enhancing techniques have been
developed. In addition, there has been a great deal of recent effort on developing privacy-
preserving data mining methods. In this section, we look at some of the advances in
protecting privacy and data security in data mining.

“What can we do to secure the privacy of individuals while collecting and mining data?”
Many data security—enhancing techniques have been developed to help protect data.
Databases can employ a multilevel security model to classify and restrict data according
to various security levels, with users permitted access to only their authorized level. It has
been shown, however, that users executing specific queries at their authorized security
level can still infer more sensitive information, and that a similar possibility can occur
through data mining. Encryption is another technique in which individual data items
may be encoded. This may involve blind signatures (which build on public key encryp-
tion), biometric encryption (e.g., where the image of a person’s iris or fingerprint is used
to encode his or her personal information), and anonymous databases (which permit the
consolidation of various databases but limit access to personal information only to those
who need to know; personal information is encrypted and stored at different locations).
Intrusion detection is another active area of research that helps protect the privacy of
personal data.

Privacy-preserving data mining is an area of data mining research in response
to privacy protection in data mining. It is also known as privacy-enhanced or privacy-
sensitive data mining. It deals with obtaining valid data mining results without disclosing
the underlying sensitive data values. Most privacy-preserving data mining methods use
some form of transformation on the data to perform privacy preservation. Typically, such
methods reduce the granularity of representation to preserve privacy. For example, they
may generalize the data from individual customers to customer groups. This reduction
in granularity causes loss of information and possibly of the usefulness of the data
mining results. This is the natural trade-off between information loss and privacy.
Privacy-preserving data mining methods can be classified into the following categories.

Randomization methods: These methods add noise to the data to mask some
attribute values of records. The noise added should be sufficiently large so that
individual record values, especially sensitive ones, cannot be recovered. However,
it should be added skillfully so that the final results of data mining are basically
preserved. Techniques are designed to derive aggregate distributions from the per-
turbed data. Subsequently, data mining techniques can be developed to work with
these aggregate distributions.

The k-anonymity and I-diversity methods: Both of these methods alter individual
records so that they cannot be uniquely identified. In the k-anonymity method, the
granularity of data representation is reduced sufficiently so that any given record
maps onto at least k other records in the data. It uses techniques like generalization
and suppression. The k-anonymity method is weak in that, if there is a homogeneity
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of sensitive values within a group, then those values may be inferred for the altered
records. The [-diversity model was designed to handle this weakness by enforcing
intragroup diversity of sensitive values to ensure anonymization. The goal is to make
it sufficiently difficult for adversaries to use combinations of record attributes to
exactly identify individual records.

Distributed privacy preservation: Large data sets could be partitioned and dis-
tributed either horizontally (i.e., the data sets are partitioned into different subsets
of records and distributed across multiple sites) or vertically (i.e., the data sets are
partitioned and distributed by their attributes), or even in a combination of both.
While the individual sites may not want to share their entire data sets, they may
consent to limited information sharing with the use of a variety of protocols. The
overall effect of such methods is to maintain privacy for each individual object, while
deriving aggregate results over all of the data.

Downgrading the effectiveness of data mining results: In many cases, even though
the data may not be available, the output of data mining (e.g, association rules and
classification models) may result in violations of privacy. The solution could be to
downgrade the effectiveness of data mining by either modifying data or mining results,
such as hiding some association rules or slightly distorting some classification models.

Recently, researchers proposed new ideas in privacy-preserving data mining such as
the notion of differential privacy. The general idea is that, for any two data sets that
are close to one another (i.e., that differ only on a tiny data set such as a single ele-
ment), a given differentially private algorithm will behave approximately the same on
both data sets. This definition gives a strong guarantee that the presence or absence of a
tiny data set (e.g., representing an individual) will not affect the final output of the query
significantly. Based on this notion, a set of differential privacy-preserving data mining
algorithms have been developed. Research in this direction is ongoing. We expect more
powerful privacy-preserving data publishing and data mining algorithms in the near
future.

Like any other technology, data mining can be misused. However, we must not lose
sight of all the benefits that data mining research can bring, ranging from insights
gained from medical and scientific applications to increased customer satisfaction by
helping companies better suit their clients’ needs. We expect that computer scientists,
policy experts, and counterterrorism experts will continue to work with social scientists,
lawyers, companies, and consumers to take responsibility in building solutions to ensure
data privacy protection and security. In this way, we may continue to reap the benefits of
data mining in terms of time and money savings and the discovery of new knowledge.

Data Mining Trends

The diversity of data, data mining tasks, and data mining approaches poses many chal-
lenging research issues in data mining. The development of efficient and effective data
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mining methods, systems and services, and interactive and integrated data mining envi-
ronments is a key area of study. The use of data mining techniques to solve large or
sophisticated application problems is an important task for data mining researchers
and data mining system and application developers. This section describes some of the
trends in data mining that reflect the pursuit of these challenges.

Application exploration: Farly data mining applications put a lot of effort into help-
ing businesses gain a competitive edge. The exploration of data mining for businesses
continues to expand as e-commerce and e-marketing have become mainstream in the
retail industry. Data mining is increasingly used for the exploration of applications
in other areas such as web and text analysis, financial analysis, industry, govern-
ment, biomedicine, and science. Emerging application areas include data mining for
counterterrorism and mobile (wireless) data mining. Because generic data mining
systems may have limitations in dealing with application-specific problems, we may
see a trend toward the development of more application-specific data mining sys-
tems and tools, as well as invisible data mining functions embedded in various kinds
of services.

Scalable and interactive data mining methods: In contrast with traditional data
analysis methods, data mining must be able to handle huge amounts of data effi-
ciently and, if possible, interactively. Because the amount of data being collected
continues to increase rapidly, scalable algorithms for individual and integrated
data mining functions become essential. One important direction toward improv-
ing the overall efficiency of the mining process while increasing user interaction is
constraint-based mining. This provides users with added control by allowing the
specification and use of constraints to guide data mining systems in their search for
interesting patterns and knowledge.

Integration of data mining with search engines, database systems, data warehouse
systems, and cloud computing systems: Search engines, database systems, data
warehouse systems, and cloud computing systems are mainstream information pro-
cessing and computing systems. It is important to ensure that data mining serves
as an essential data analysis component that can be smoothly integrated into such
an information processing environment. A data mining subsystem/service should be
tightly coupled with such systems as a seamless, unified framework or as an invisible
function. This will ensure data availability, data mining portability, scalability, high
performance, and an integrated information processing environment for multi-
dimensional data analysis and exploration.

Mining social and information networks: Mining social and information net-
works and link analysis are critical tasks because such networks are ubiquitous and
complex. The development of scalable and effective knowledge discovery meth-
ods and applications for large numbers of network data is essential, as outlined in
Section 13.1.2.

Mining spatiotemporal, moving-objects, and cyber-physical systems: Cyber-
physical systems as well as spatiotemporal data are mounting rapidly due to the
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popular use of cellular phones, GPS, sensors, and other wireless equipment. As
outlined in Section 13.1.3, there are many challenging research issues realizing
real-time and effective knowledge discovery with such data.

Mining multimedia, text, and web data: As outlined in Section 13.1.3, mining such
kinds of data is a recent focus in data mining research. Great progress has been made,
yet there are still many open issues to be solved.

Mining biological and biomedical data: The unique combination of complexity,
richness, size, and importance of biological and biomedical data warrants spe-
cial attention in data mining. Mining DNA and protein sequences, mining high-
dimensional microarray data, and biological pathway and network analysis are just
a few topics in this field. Other areas of biological data mining research include
mining biomedical literature, link analysis across heterogeneous biological data, and
information integration of biological data by data mining.

Data mining with software engineering and system engineering: Software pro-
grams and large computer systems have become increasingly bulky in size
sophisticated in complexity, and tend to originate from the integration of multiple
components developed by different implementation teams. This trend has made it
an increasingly challenging task to ensure software robustness and reliability. The
analysis of the executions of a buggy software program is essentially a data mining
process—tracing the data generated during program executions may disclose impor-
tant patterns and outliers that could lead to the eventual automated discovery of
software bugs. We expect that the further development of data mining methodolo-
gies for software/system debugging will enhance software robustness and bring new
vigor to software/system engineering.

Visual and audio data mining: Visual and audio data mining is an effective way
to integrate with humans’ visual and audio systems and discover knowledge from
huge amounts of data. A systematic development of such techniques will facilitate
the promotion of human participation for effective and efficient data analysis.

Distributed data mining and real-time data stream mining: Traditional data min-
ing methods, designed to work at a centralized location, do not work well in
many of the distributed computing environments present today (e.g., the Inter-
net, intranets, local area networks, high-speed wireless networks, sensor networks,
and cloud computing). Advances in distributed data mining methods are expected.
Moreover, many applications involving stream data (e.g., e-commerce, Web mining,
stock analysis, intrusion detection, mobile data mining, and data mining for coun-
terterrorism) require dynamic data mining models to be built in real time. Additional
research is needed in this direction.

Privacy protection and information security in data mining: An abundance of
personal or confidential information available in electronic forms, coupled with
increasingly powerful data mining tools, poses a threat to data privacy and security.
Growing interest in data mining for counterterrorism also adds to the concern.
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Further development of privacy-preserving data mining methods is foreseen. The
collaboration of technologists, social scientists, law experts, governments, and
companies is needed to produce a rigorous privacy and security protection mech-
anism for data publishing and data mining.

With confidence, we look forward to the next generation of data mining technology
and the further benefits that it will bring.

Summary

Mining complex data types poses challenging issues, for which there are many dedi-
cated lines of research and development. This chapter presents a high-level overview
of mining complex data types, which includes mining sequence data such as time
series, symbolic sequences, and biological sequences; mining graphs and networks;
and mining other kinds of data, including spatiotemporal and cyber-physical system
data, multimedia, text and Web data, and data streams.

Several well-established statistical methods have been proposed for data analysis
such as regression, generalized linear models, analysis of variance, mixed-effect mod-
els, factor analysis, discriminant analysis, survival analysis, and quality control. Full
coverage of statistical data analysis methods is beyond the scope of this book. Inter-
ested readers are referred to the statistical literature cited in the bibliographic notes
(Section 13.8).

Researchers have been striving to build theoretical foundations for data mining. Sev-
eral interesting proposals have appeared, based on data reduction, data compression,
probability and statistics theory, microeconomic theory, and pattern discovery—based
inductive databases.

Visual data mining integrates data mining and data visualization to discover implicit
and useful knowledge from large data sets. Visual data mining includes data visu-
alization, data mining result visualization, data mining process visualization, and
interactive visual data mining. Audio data mining uses audio signals to indicate data
patterns or features of data mining results.

Many customized data mining tools have been developed for domain-specific
applications, including finance, the retail and telecommunication industries, science
and engineering, intrusion detection and prevention, and recommender systems.
Such application domain-based studies integrate domain-specific knowledge with
data analysis techniques and provide mission-specific data mining solutions.

Ubiquitous data mining is the constant presence of data mining in many aspects
of our daily lives. It can influence how we shop, work, search for information, and
use a computer, as well as our leisure time, health, and well-being. In invisible data
mining, “smart” software, such as search engines, customer-adaptive web services
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13.3

13.4

13.5

(e.g., using recommender algorithms), email managers, and so on, incorporates data
mining into its functional components, often unbeknownst to the user.

A major social concern of data mining is the issue of privacy and data security.
Privacy-preserving data mining deals with obtaining valid data mining results with-
out disclosing underlying sensitive values. Its goal is to ensure privacy protection and
security while preserving the overall quality of data mining results.

Data mining trends include further efforts toward the exploration of new applica-
tion areas; improved scalable, interactive, and constraint-based mining methods; the
integration of data mining with web service, database, warehousing, and cloud com-
puting systems; and mining social and information networks. Other trends include
the mining of spatiotemporal and cyber-physical system data, biological data, soft-
ware/system engineering data, and multimedia and text data, in addition to web
mining, distributed and real-time data stream mining, visual and audio mining, and
privacy and security in data mining.

Exercises

Sequence data are ubiquitous and have diverse applications. This chapter presented a
general overview of sequential pattern mining, sequence classification, sequence sim-
ilarity search, trend analysis, biological sequence alignment, and modeling. However,
we have not covered sequence clustering. Present an overview of methods for sequence
clustering.

This chapter presented an overview of sequence pattern mining and graph pattern
mining methods. Mining tree patterns and partial order patterns is also studied in
research. Summarize the methods for mining structured patterns, including sequences,
trees, graphs, and partial order relationships. Examine what kinds of structural pattern
mining have not been covered in research. Propose applications that can be created for
such new mining problems.

Many studies analyze homogeneous information networks (e.g., social networks con-
sisting of friends linked with friends). However, many other applications involve het-
erogeneous information networks (i.e., networks linking multiple types of object such
as research papers, conference, authors, and topics). What are the major differences
between methodologies for mining heterogeneous information networks and methods
for their homogeneous counterparts?

Research and describe a data mining application that was not presented in this chapter.
Discuss how different forms of data mining can be used in the application.

Why is the establishment of theoretical foundations important for data mining? Name
and describe the main theoretical foundations that have been proposed for data min-
ing. Comment on how they each satisfy (or fail to satisfy) the requirements of an ideal
theoretical framework for data mining.
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(Research project) Building a theory of data mining requires setting up a theoretical
framework so that the major data mining functions can be explained under this
framework. Take one theory as an example (e.g., data compression theory) and examine
how the major data mining functions fit into this framework. If some functions do not
fit well into the current theoretical framework, can you propose a way to extend the
framework to explain these functions?

There is a strong linkage between statistical data analysis and data mining. Some people
think of data mining as automated and scalable methods for statistical data analysis.
Do you agree or disagree with this perception? Present one statistical analysis method
that can be automated and/or scaled up nicely by integration with current data mining
methodology.

What are the differences between visual data mining and data visualization? Data visu-
alization may suffer from the data abundance problem. For example, it is not easy to
visually discover interesting properties of network connections if a social network is
huge, with complex and dense connections. Propose a visualization method that may
help people see through the network topology to the interesting features of a social
network.

Propose a few implementation methods for audio data mining. Can we integrate audio
and visual data mining to bring fun and power to data mining? Is it possible to develop
some video data mining methods? State some scenarios and your solutions to make such
integrated audiovisual mining effective.

General-purpose computers and domain-independent relational database systems have
become alarge market in the last several decades. However, many people feel that generic
data mining systems will not prevail in the data mining market. What do you think? For
data mining, should we focus our efforts on developing domain-independent data mining
tools or on developing domain-specific data mining solutions? Present your reasoning.

What is a recommender system? In what ways does it differ from a customer or product-
based clustering system? How does it differ from a typical classification or predictive
modeling system? Outline one method of collaborative filtering. Discuss why it works
and what its limitations are in practice.

Suppose that your local bank has a data mining system. The bank has been studying
your debit card usage patterns. Noticing that you make many transactions at home
renovation stores, the bank decides to contact you, offering information regarding their
special loans for home improvements.

(a) Discuss how this may conflict with your right to privacy.

(b) Describe another situation in which you feel that data mining can infringe on your
privacy.

(c) Describe a privacy-preserving data mining method that may allow the bank to per-
form customer pattern analysis without infringing on its customers’ right to privacy.

(d) What are some examples where data mining could be used to help society? Can you
think of ways it could be used that may be detrimental to society?
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What are the major challenges faced in bringing data mining research to market? Illus-
trate one data mining research issue that, in your view, may have a strong impact on the
market and on society. Discuss how to approach such a research issue.

Based on your view, what is the most challenging research problem in data mining? If
you were given a number of years and a good number of researchers and implementors,
what would your plan be to make good progress toward an effective solution to such a
problem?

Based on your experience and knowledge, suggest a new frontier in data mining that was
not mentioned in this chapter.

Bibliographic Notes

For mining complex data types, there are many research papers and books covering
various themes. We list here some recent books and well-cited survey or research articles
for references.

Time-series analysis has been studied in statistics and computer science commu-
nities for decades, with many textbooks such as Box, Jenkins, and Reinsel [BJR08];
Brockwell and Davis [BD02]; Chatfield [Cha03b]; Hamilton [Ham94]; and Shumway
and Stoffer [SS05]. A fast subsequence matching method in time-series databases
was presented by Faloutsos, Ranganathan, and Manolopoulos [FRM94]. Agrawal, Lin,
Sawhney, and Shim [ALSS95] developed a method for fast similarity search in the pres-
ence of noise, scaling, and translation in time-series databases. Shasha and Zhu present
an overview of the methods for high-performance discovery in time series [SZ04].

Sequential pattern mining methods have been studied by many researchers,
including Agrawal and Srikant [AS95]; Zaki [Zak01]; Pei, Han, Mortazavi-Asl, et al.
[PHM-A"04]; and Yan, Han, and Afshar [YHAO03]. The study on sequence classifica-
tion includes Ji, Bailey, and Dong [JBD05] and Ye and Keogh [YK09], with a survey by
Xing, Pei, and Keogh [XPK10]. Dong and Pei [DP07] provide an overview on sequence
data mining methods.

Methods for analysis of biological sequences including Markov chains and hidden
Markov models are introduced in many books or tutorials such as Waterman [Wat95];
Setubal and Meidanis [SM97]; Durbin, Eddy, Krogh, and Mitchison [DEKM98];
Baldi and Brunak [BBO01]; Krane and Raymer [KRO03]; Rabiner [Rab89]; Jones and
Pevzner [JP04]; and Baxevanis and Ouellette [BO04]. Information about BLAST
(see also Korf, Yandell, and Bedell [KYB03]) can be found at the NCBI web site
www.ncbi.nlm.nih.gov/BLAST/.

Graph pattern mining has been studied extensively, including Holder, Cook, and
Djoko [HCD94]; Inokuchi, Washio, and Motoda [IWM98]; Kuramochi and Karypis
[KKO1]; Yan and Han [YHO02, YHO3a]; Borgelt and Berthold [BB02]; Huan, Wang,
Bandyopadhyay, et al. [HWB*04]; and the Gaston tool by Nijssen and Kok [NK04].
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There has been a great deal of research on social and information network analysis,
including Newman [Newl10]; Easley and Kleinberg [EK10]; Yu, Han, and Faloutsos
[YHF10]; Wasserman and Faust [WF94]; Watts [Wat03]; and Newman, Barabasi,
and Watts [NBWO6]. Statistical modeling of networks is studied popularly such
as Albert and Barbasi [AB99]; Watts [Wat03]; Faloutsos, Faloutsos, and Faloutsos
[FFF99]; Kumar, Raghavan, Rajagopalan, et al. [KRR*00]; and Leskovec, Kleinberg, and
Faloutsos [LKF05]. Data cleaning, integration, and validation by information net-
work analysis was studied by many, including Bhattacharya and Getoor [BG04] and
Yin, Han, and Yu [YHYO07, YHYO08].

Clustering, ranking, and classification in networks has been studied extensively,
including in Brin and Page [BP98]; Chakrabarti, Dom, and Indyk [CDI98]; Klein-
berg [Kle99]; Getoor, Friedman, Koller, and Taskar [GFKTO01]; Newman and M. Girvan
[NGO4]; Yin, Han, Yang, and Yu [YHYYO04]; Yin, Han, and Yu [YHYO05]; Xu, Yuruk,
Feng, and Schweiger [XYFS07]; Kulis, Basu, Dhillon, and Mooney [KBDMO09]; Sun,
Han, Zhao, et al. [SHZ109]; Neville, Gallaher, and Eliassi-Rad [NGE-R09]; and Ji, Sun,
Danilevsky et al. [JSD*10]. Role discovery and link prediction in information net-
works have been studied extensively as well, such as by Krebs [Kre02]; Kubica, Moore,
and Schneider [KMS03]; Liben-Nowell and Kleinberg [L-NK03]; and Wang, Han, Jia,
etal. [WHJT10].

Similarity search and OLAP in information networks has been studied by many,
including Tian, Hankins, and Patel [THP08] and Chen, Yan, Zhu, et al. [CYZT08].
Evolution of social and information networks has been studied by many researchers,
such as Chakrabarti, Kumar, and Tomkins [CKT06]; Chi, Song, Zhou, et al. [CSZT07];
Tang, Liu, Zhang, and Nazeri [TLZNO08]; Xu, Zhang, Yu, and Long [XZYL08]; Kim and
Han [KH09]; and Sun, Tang, and Han [STH™ 10].

Spatial and spatiotemporal data mining has been studied extensively, with a col-
lection of papers by Miller and Han [MHO09], and was introduced in some textbooks,
such as Shekhar and Chawla [SC03] and Hsu, Lee, and Wang [HLWO07]. Spatial clus-
tering algorithms have been studied extensively in Chapters 10 and 11 of this book.
Research has been conducted on spatial warehouses and OLAP, such as by Stefanovic,
Han, and Koperski [SHK00], and spatial and spatiotemporal data mining, such as by
Koperski and Han [KH95]; Mamoulis, Cao, Kollios, Hadjieleftheriou, et al. [MCK™04];
Tsoukatos and Gunopulos [TGO01]; and Hadjieleftheriou, Kollios, Gunopulos, and
Tsotras [HKGTO03]. Mining moving-object data has been studied by many, such as
Vlachos, Gunopulos, and Kollios [VGKO02]; Tao, Faloutsos, Papadias, and Liu [TFPL04];
Li, Han, Kim, and Gonzalez [LHKGO07]; Lee, Han, and Whang [LHWO07]; and Li, Ding,
Han, et al. [LDH"10]. For the bibliography of temporal, spatial, and spatiotemporal
data mining research, see a collection by Roddick, Hornsby, and Spiliopoulou [RHS01].

Multimedia data mining has deep roots in image processing and pattern recogni-
tion, which have been studied extensively in many textbooks, including Gonzalez and
Woods [GWO07]; Russ [Rus06]; Duda, Hart, and Stork [DHSO01]; and Z. Zhang and
R. Zhang [ZZ09]. Searching and mining of multimedia data has been studied by many
(see, e.g., Fayyad and Smyth [FS93]; Faloutsos and Lin [FL95]; Natsev, Rastogi, and
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Shim [NRS99]; and Zaiane, Han, and Zhu [ZHZ00]). An overview of image mining
methods is given by Hsu, Lee, and Zhang [HLZ02].

Text data analysis has been studied extensively in information retrieval, with
many textbooks and survey articles such as Croft, Metzler, and Strohman [CMS09];
S. Buttcher, C. Clarke, G. Cormack [BCCI10]; Manning, Raghavan, and Schutze
[MRS08]; Grossman and Frieder [GR04]; Baeza-Yates and Riberio-Neto [BYRNI11];
Zhai [Zha08]; Feldman and Sanger [FS06]; Berry [Ber03]; and Weiss, Indurkhya, Zhang,
and Damerau [WIZD04]. Text mining is a fast-developing field with numerous papers
published in recent years, covering many topics such as topic models (e.g., Blei and
Lafferty [BL09]); sentiment analysis (e.g., Pang and Lee [PL07]); and contextual text
mining (e.g., Mei and Zhai [MZ06]).

Web mining is another focused theme, with books like Chakrabarti [Cha03a], Liu
[Liu06], and Berry [Ber03]. Web mining has substantially improved search engines with
a few influential milestone works, such as Brin and Page [BP98]; Kleinberg [Kle99];
Chakrabarti, Dom, Kumar, et al. [CDK199]; and Kleinberg and Tomkins [KT99].
Numerous results have been generated since then, such as search log mining (e.g.,
Silvestri [Sil10]); blog mining (e.g., Mei, Liu, Su, and Zhai [MLSZ06]); and mining
online forums (e.g., Cong, Wang, Lin, et al. [CWLT08]).

Books and surveys on stream data systems and stream data processing include Babu
and Widom [BWO01]; Babcock, Babu, Datar, et al. [BBD02]; Muthukrishnan [Mut05];
and Aggarwal [Agg06].

Stream data mining research covers stream cube models (e.g., Chen, Dong, Han,
etal. [CDH™02]), stream frequent pattern mining (e.g., Manku and Motwani [MMO02]
and Karp, Papadimitriou and Shenker [KPS03]), stream classification (e.g., Domingos
and Hulten [DHO00]; Wang, Fan, Yu, and Han [WFYHO03]; Aggarwal, Han, Wang, and
Yu [AHWY04b]), and stream clustering (e.g., Guha, Mishra, Motwani, and O’Callaghan
[GMMOO00] and Aggarwal, Han, Wang, and Yu [AHWYO03]).

There are many books that discuss data mining applications. For financial data
analysis and financial modeling, see, for example, Benninga [Ben08] and Higgins
[Hig08]. For retail data mining and customer relationship management, see, for exam-
ple, books by Berry and Linoff [BL04] and Berson, Smith, and Thearling [BST99]. For
telecommunication-related data mining, see, for example, Horak [Hor08]. There are
also books on scientific data analysis, such as Grossman, Kamath, Kegelmeyer, et al.
[GKK™01] and Kamath [Kam09].

Issues in the theoretical foundations of data mining have been addressed by many
researchers. For example, Mannila presents a summary of studies on the foundations of
data mining in [Man00]. The data reduction view of data mining is summarized in The
New Jersey Data Reduction Report by Barbara, DuMouchel, Faloutos, et al. [BDFT97].
The data compression view can be found in studies on the minimum description length
principle, such as Grunwald and Rissanen [GR07].

The pattern discovery point of view of data mining is addressed in numerous
machine learning and data mining studies, ranging from association mining, to deci-
sion tree induction, sequential pattern mining, clustering, and so on. The probability
theory point of view is popular in the statistics and machine learning literature, such
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as Bayesian networks and hierarchical Bayesian models in Chapter 9, and probabilis-
tic graph models (e.g., Koller and Friedman [KF09]). Kleinberg, Papadimitriou, and
Raghavan [KPR98] present a microeconomic view, treating data mining as an optimiza-
tion problem. Studies on the inductive database view include Imielinski and Mannila
[IM96] and de Raedt, Guns, and Nijssen [RGN10].

Statistical methods for data analysis are described in many books, such as
Hastie, Tibshirani, Friedman [HTF09]; Freedman, Pisani, and Purves [FPP07]; Devore
[Dev03]; Kutner, Nachtsheim, Neter, and Li [KNNL04]; Dobson [Dob01]; Breiman,
Friedman, Olshen, and Stone [BFOS84]; Pinheiro and Bates [PB00]; Johnson and
Wichern [JW02b]; Huberty [Hub94]; Shumway and Stoffer [SS05]; and Miller [Mil98].

For visual data mining, popular books on the visual display of data and information
include those by Tufte [Tuf90, Tuf97, Tuf01]. A summary of techniques for visualizing
data is presented in Cleveland [Cle93]. A dedicated visual data mining book, Visual
Data Mining: Techniques and Tools for Data Visualization and Mining, is by Soukup and
Davidson [SD02]. The book Information Visualization in Data Mining and Knowledge
Discovery, edited by Fayyad, Grinstein, and Wierse [FGWO01], contains a collection of
articles on visual data mining methods.

Ubiquitous and invisible data mining has been discussed in many texts including
John [Joh99], and some articles in a book edited by Kargupta, Joshi, Sivakumar, and
Yesha [KJSY04]. The book Business @ the Speed of Thought: Succeeding in the Digital
Economy by Gates [Gat00] discusses e-commerce and customer relationship manage-
ment, and provides an interesting perspective on data mining in the future. Mena
[Men03] has an informative book on the use of data mining to detect and prevent
crime. It covers many forms of criminal activities, ranging from fraud detection, money
laundering, insurance crimes, identity crimes, and intrusion detection.

Data mining issues regarding privacy and data security are addressed popularly
in literature. Books on privacy and security in data mining include Thuraisingham
[Thu04]; Aggarwal and Yu [AYO08]; Vaidya, Clifton, and Zhu [VCZ10]; and Fung,
Wang, Fu, and Yu [FWFY10]. Research articles include Agrawal and Srikant [AS00];
Evfimievski, Srikant, Agrawal, and Gehrke [ESAG02]; and Vaidya and Clifton [VCO03].
Differential privacy was introduced by Dwork [Dwo06] and studied by many such as
Hay, Rastogi, Miklau, and Suciu [HRMS10].

There have been many discussions on trends and research directions of data min-
ing in various forums. Several books are collections of articles on these issues such as
Kargupta, Han, Yu, et al. [KHY108].
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Numbers and Symbols

.632 bootstrap, 371

8-bicluster algorithm, 517-518
8-pCluster, 518-519

A

absolute-error criterion, 455
absolute support, 246
abstraction levels, 281
accuracy
attribute construction and, 105
boosting, 382
with bootstrap, 371
classification, 377-385
classifier, 330, 366
with cross-validation, 370-371
data, 84
with holdout method, 370
measures, 369
random forests, 383
with random subsampling, 370
rule selection based on, 361
activation function, 402
active learning, 25, 430, 437
ad hoc data mining, 31
AdaBoost, 380-382
algorithm illustration, 382
TrAdaBoost, 436
adaptive probabilistic networks, 397
advanced data analysis, 3, 4
advanced database systems, 4
affinity matrix, 520, 521
agglomerative hierarchical method, 459
AGNES, 459, 460
divisive hierarchical clustering versus,
459-460
Agglomerative Nesting (AGNES), 459, 460
aggregate cells, 189

Index

aggregation, 112
bootstrap, 379
complex data types and, 166
cube computation and, 193
data cube, 110-111
at multiple granularities, 230-231
multiway array, 195-199
simultaneous, 193, 195
AGNES. See Agglomerative Nesting
algebraic measures, 145
algorithms. See specific algorithms
all_confidence measure, 268, 272
all-versus-all (AVA), 430-431
analysis of variance (ANOVA), 600
analytical processing, 153
ancestor cells, 189
angle-based outlier detection (ABOD), 580
angle-based outlier factor (ABOF), 580
anomalies. See outliers
anomaly mining. See outlier analysis
anomaly-based detection, 614
antimonotonic constraints, 298, 301
antimonotonic measures, 194
antimonotonicity, 249
apex cuboids, 111, 138, 158
application domain-specific semantics, 282
applications, 33, 607-618
business intelligence, 27
computer science, 613
domain-specific, 625
engineering, 613, 624
exploration, 623
financial data analysis, 607609
intrusion detection/prevention, 614-615
recommender systems, 615-618
retail industry, 609—611
science, 611-613
social science and social studies, 613
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applications (Continued)
targeted, 27-28
telecommunications industry, 611
Web search engines, 28
application-specific outlier detection, 548-549
approximate patterns, 281
mining, 307-312
Apriori algorithm, 248-253, 272
dynamic itemset counting, 256
efficiency, improving, 254-256
example, 250-252
hash-based technique, 255
join step, 249
partitioning, 255-256
prune step, 249-250
pseudocde, 253
sampling, 256
transaction reduction, 255
Apriori property, 194, 201, 249
antimonotonicity, 249
in Apriori algorithm, 298
Apriori pruning method, 194
arrays
3-D for dimensions, 196
sparse compression, 198—-199
association analysis, 17-18
association rules, 245
approximate, 281
Boolean, 281
compressed, 281
confidence, 21, 245, 246, 416
constraint-based, 281
constraints, 296297
correlation, 265, 272
discarded, 17
fittest, 426
frequent patterns and, 280
generation from frequent itemsets, 253, 254
hybrid-dimensional, 288
interdimensional, 288
intradimensional, 287
metarule-guided mining of, 295-296
minimum confidence threshold, 18, 245
minimum support threshold, 245
mining, 272
multidimensional, 17, 287-289, 320
multilevel, 281, 283-287, 320
near-match, 281
objective measures, 21
offspring, 426
quantitative, 281, 289, 320
redundancy-aware top-k, 281

single-dimensional, 17, 287
spatial, 595
strong, 264-265, 272
support, 21, 245, 246, 417
top-k, 281
types of values in, 281
associative classification, 415, 416-419, 437
CBA, 417
CMAR, 417-418
CPAR, 418-419
rule confidence, 416
rule support, 417
steps, 417
asymmetric binary dissimilarity, 71
asymmetric binary similarity, 71
attribute construction, 112
accuracy and, 105
multivariate splits, 344
attribute selection measures, 331, 336344
CHAID, 343
gain ratio, 340-341
Gini index, 341-343
information gain, 336-340
Minimum Description Length (MDL),
343-344
multivariate splits, 343—-344
attribute subset selection, 100, 103—-105
decision tree induction, 105
forward selection/backward elimination
combination, 105
greedy methods, 104-105
stepwise backward elimination, 105
stepwise forward selection, 105
attribute vectors, 40, 328

attribute-oriented induction (AOI), 166—178, 180

algorithm, 173

for class comparisons, 175-178

for data characterization, 167-172

data generalization by, 166-178

generalized relation, 172

implementation of, 172-174
attributes, 9, 40

abstraction level differences, 99

behavioral, 546, 573

binary, 41-42, 79

Boolean, 41

categorical, 41

class label, 328

contextual, 546, 573

continuous, 44

correlated, 54-56

dimension correspondence, 10



discrete, 44
generalization, 169-170
generalization control, 170
generalization threshold control, 170
grouping, 231
interval-scaled, 43, 79
of mixed type, 75-77
nominal, 41, 79
numeric, 43-44, 79
ordered, 103
ordinal, 41, 79
qualitative, 41
ratio-scaled, 43-44, 79
reducts of, 427
removal, 169
repetition, 346
set of, 118
splitting, 333
terminology for, 40
type determination, 41
types of, 39
unordered, 103
audio data mining, 604-607, 624
automatic classification, 445
AVA. See all-versus-all
AVC-group, 347
AVC-set, 347
average(), 215

B
background knowledge, 30-31
backpropagation, 393, 398—408, 437
activation function, 402
algorithm illustration, 401
biases, 402, 404
case updating, 404
efficiency, 404
epoch updating, 404
error, 403
functioning of, 400-403
hidden layers, 399
input layers, 399
input propagation, 401-402
interpretability and, 406408
learning, 400
learning rate, 403—404
logistic function, 402
multilayer feed-forward neural network,
398-399
network pruning, 406407
neural network topology definition, 400
output layers, 399
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sample learning calculations, 404-406
sensitivity analysis, 408
sigmoid function, 402
squashing function, 403
terminating conditions, 404
unknown tuple classification, 406
weights initialization, 401
See also classification
bagging, 379-380
algorithm illustration, 380
boosting versus, 381-382
in building random forests, 383
bar charts, 54
base cells, 189
base cuboids, 111, 137-138, 158
Basic Local Alignment Search Tool (BLAST), 591
Baum-Welch algorithm, 591
Bayes’ theorem, 350-351
Bayesian belief networks, 393-397, 436
algorithms, 396
components of, 394
conditional probability table (CPT),
394, 395
directed acyclic graph, 394-395
gradient descent strategy, 396-397
illustrated, 394
mechanisms, 394-396
problem modeling, 395-396
topology, 396
training, 396-397
See also classification
Bayesian classification
basis, 350
Bayes’ theorem, 350-351
class conditional independence, 350
naive, 351-355, 385
posterior probability, 351
prior probability, 351
BCubed precision metric, 488, 489
BCubed recall metric, 489
behavioral attributes, 546, 573
believability, data, 85
BI (business intelligence), 27
biases, 402, 404
biclustering, 512-519, 538
application examples, 512-515
enumeration methods, 517, 518-519
gene expression example, 513-514
methods, 517-518
optimization-based methods, 517-518
recommender system example, 514-515
types of, 538
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biclusters, 511 AdaBoost, 380-382
with coherent values, 516 bagging versus, 381-382
with coherent values on rows, 516 weight assignment, 381
with constant values, 515 bootstrap method, 371, 386
with constant values on columns, 515 bottom-up design approach, 133, 151-152
with constant values on rows, 515 bottom-up subspace search, 510-511
as submatrix, 515 boxplots, 49
types of, 515-516 computation, 50
bimodal, 47 example, 50
bin boundaries, 89 five-number summary, 49
binary attributes, 41, 79 illustrated, 50
asymmetric, 42, 70 in outlier visualization, 555
as Boolean, 41 BUC, 200-204, 235
contingency table for, 70 for 3-D data cube computation, 200
dissimilarity between, 71-72 algorithm, 202
example, 41-42 Apriori property, 201
proximity measures, 70—72 bottom-up construction, 201
symmetric, 42, 70-71 iceberg cube construction, 201
See also attributes partitioning snapshot, 203
binning performance, 204
discretization by, 115 top-down processing order, 200, 201
equal-frequency, 89 business intelligence (BI), 27
smoothing by bin boundaries, 89 business metadata, 135
smoothing by bin means, 89 business query view, 151

smoothing by bin medians, 89
biological sequences, 586, 624

alignment of, 590-591 C
analysis, 590 C4.5, 332, 385
BLAST, 590 class-based ordering, 358
hidden Markov model, 591 gain ratio use, 340
as mining trend, 624 greedy approach, 332
multiple sequence alignment, 590 pessimistic pruning, 345
pairwise alignment, 590 rule extraction, 358
phylogenetic tree, 590 See also decision tree induction
substitution matrices, 590 cannot-link constraints, 533
bipartite graphs, 523 CART, 332, 385
BIRCH, 458, 462—466 cost complexity pruning algorithm, 345
CF-trees, 462—463, 464, 465-466 Gini index use, 341
clustering feature, 462, 463, 464 greedy approach, 332
effectiveness, 465 See also decision tree induction
multiphase clustering technique, 464-465 case updating, 404
See also hierarchical methods case-based reasoning (CBR), 425-426
bitmap indexing, 160-161, 179 challenges, 426
bitmapped join indexing, 163, 179 categorical attributes, 41
bivariate distribution, 40 CBA. See Classification Based on Associations
BLAST. See Basic Local Alignment Search Tool CBLOE. See cluster-based local outlier factor
BOAT. See Bootstrapped Optimistic Algorithm for CELL method, 562, 563
Tree construction cells, 10-11
Boolean association rules, 281 aggregate, 189
Boolean attributes, 41 ancestor, 189
boosting, 380 base, 189

accuracy, 382 descendant, 189



dimensional, 189
exceptions, 231
residual value, 234
central tendency measures, 39, 44, 45-47
mean, 45-46
median, 4647
midrange, 47
for missing values, 88
models, 47
centroid distance, 108
CF-trees, 462—463, 464
nodes, 465
parameters, 464
structure illustration, 464
CHAID, 343
Chameleon, 459, 466—467
clustering illustration, 466
relative closeness, 467
relative interconnectivity, 466—467
See also hierarchical methods
Chernoff faces, 60
asymmetrical, 61
illustrated, 62
ChiMerge, 117
chi-square test, 95
chunking, 195
chunks, 195
2-D, 197
3-D, 197
computation of, 198
scanning order, 197

CLARA. See Clustering Large Applications
CLARANS. See Clustering Large Applications

based upon Randomized Search
class comparisons, 166, 175, 180
attribute-oriented induction for,
175-178
mining, 176
presentation of, 175-176
procedure, 175-176
class conditional independence, 350
class imbalance problem, 384-385, 386
ensemble methods for, 385
on multiclass tasks, 385
oversampling, 384-385, 386
threshold-moving approach, 385
undersampling, 384385, 386
class label attributes, 328
class-based ordering, 357
class/concept descriptions, 15
classes, 15, 166
contrasting, 15

Index

equivalence, 427
target, 15

classification, 18, 327-328, 385

accuracy, 330
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accuracy improvement techniques, 377-385

active learning, 433—-434

advanced methods, 393-442
applications, 327

associative, 415, 416-419, 437
automatic, 445

backpropagation, 393, 398—408, 437
bagging, 379-380

basic concepts, 327-330

Bayes methods, 350-355

Bayesian belief networks, 393-397, 436
boosting, 380-382

case-based reasoning, 425-426

of class-imbalanced data, 383-385
confusion matrix, 365-366, 386
costs and benefits, 373-374
decision tree induction, 330-350

discriminative frequent pattern-based, 437

document, 430

ensemble methods, 378-379
evaluation metrics, 364—370
example, 19

frequent pattern-based, 393, 415-422, 437
fuzzy set approaches, 428-429, 437
general approach to, 328

genetic algorithms, 426-427, 437
heterogeneous networks, 593
homogeneous networks, 593
IF-THEN rules for, 355-357
interpretability, 369
k-nearest-neighbor, 423-425

lazy learners, 393, 422-426
learning step, 328

model representation, 18

model selection, 364, 370-377
multiclass, 430-432, 437

in multimedia data mining, 596
neural networks for, 19, 398-408
pattern-based, 282, 318
perception-based, 348-350
precision measure, 368—369

as prediction problem, 328
process, 328

process illustration, 329

random forests, 382—383

recall measure, 368-369
robustness, 369

rough set approach, 427-428, 437



classification (Continued)
rule-based, 355363, 386
scalability, 369
semi-supervised, 432433, 437
sentiment, 434
spatial, 595
speed, 369
support vector machines (SVMs), 393,
408-415, 437
transfer learning, 434-436
tree pruning, 344-347, 385
web-document, 435
Classification Based on Associations (CBA), 417
Classification based on Multiple Association Rules
(CMAR), 417418
Classification based on Predictive Association Rules
(CPAR), 418-419
classification-based outlier detection, 571-573, 582
one-class model, 571-572
semi-supervised learning, 572
See also outlier detection
classifiers, 328
accuracy, 330, 366
bagged, 379-380
Bayesian, 350, 353
case-based reasoning, 425-426
comparing with ROC curves, 373-377
comparison aspects, 369
decision tree, 331
error rate, 367
k-nearest-neighbor, 423—425
Naive Bayesian, 351-352
overfitting data, 330
performance evaluation metrics, 364—370
recognition rate, 366—367
rule-based, 355
Clementine, 603, 606
CLIQUE, 481-483
clustering steps, 481-482
effectiveness, 483
strategy, 481
See also cluster analysis; grid-based methods
closed data cubes, 192
closed frequent itemsets, 247, 308
example, 248
mining, 262-264
shortcomings for compression, 308-309
closed graphs, 591
closed patterns, 280
top-k most frequent, 307
closure checking, 263-264
cloud computing, 31

cluster analysis, 19-20, 443-495

advanced, 497541

agglomerative hierarchical clustering,
459-461

applications, 444, 490

attribute types and, 446

as automatic classification, 445

biclustering, 511, 512-519

BIRCH, 458, 462—-466

Chameleon, 458, 466—467

CLIQUE, 481-483

clustering quality measurement, 484, 487—490

clustering tendency assessment, 484—486

constraint-based, 447, 497, 532-538

correlation-based, 511

as data redundancy technique, 108

as data segmentation, 445

DBSCAN, 471-473

DENCLUE, 476-479

density-based methods, 449, 471-479, 491

in derived space, 519-520

dimensionality reduction methods, 519-522

discretization by, 116

distance measures, 461-462

distance-based, 445

divisive hierarchical clustering, 459-461

evaluation, 483-490, 491

example, 20

expectation-maximization (EM) algorithm,
505-508

graph and network data, 497, 522-532

grid-based methods, 450, 479-483, 491

heterogeneous networks, 593

hierarchical methods, 449, 457-470, 491

high-dimensional data, 447, 497, 508-522

homogeneous networks, 593

in image recognition, 444

incremental, 446

interpretability, 447

k-means, 451-454

k-medoids, 454—457

k-modes, 454

in large databases, 445

as learning by observation, 445

low-dimensional, 509

methods, 448451

multiple-phase, 458-459

number of clusters determination, 484, 486—487

OPTICS, 473-476

orthogonal aspects, 491

for outlier detection, 445

outlier detection and, 543



partitioning methods, 448, 451-457, 491
pattern, 282, 308-310
probabilistic hierarchical clustering, 467-470
probability model-based, 497-508
PROCLUS, 511
requirements, 445—448, 490-491
scalability, 446
in search results organization, 444
spatial, 595
spectral, 519-522
as standalone tool, 445
STING, 479-481
subspace, 318-319, 448
subspace search methods, 510-511
taxonomy formation, 20
techniques, 443, 444
as unsupervised learning, 445
usability, 447
use of, 444
cluster computing, 31
cluster samples, 108—109
cluster-based local outlier factor (CBLOF), 569-570
clustering. See cluster analysis
clustering features, 462, 463, 464
Clustering Large Applications based upon
Randomized Search (CLARANS), 457
Clustering Large Applications (CLARA), 456—457
clustering quality measurement, 484t, 487-490
cluster completeness, 488
cluster homogeneity, 487-488
extrinsic methods, 487-489
intrinsic methods, 487, 489—490
rag bag, 488
silhouette coefficient, 489-490
small cluster preservation, 488
clustering space, 448
clustering tendency assessment, 484—486
homogeneous hypothesis, 486
Hopkins statistic, 484—485
nonhomogeneous hypothesis, 486
nonuniform distribution of data, 484
See also cluster analysis
clustering with obstacles problem, 537
clustering-based methods, 552, 567-571
example, 553
See also outlier detection
clustering-based outlier detection, 567-571, 582
approaches, 567
distance to closest cluster, 568—569
fixed-width clustering, 570
intrusion detection by, 569-570
objects not belonging to a cluster, 568

Index

in small clusters, 570-571
weakness of, 571
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clustering-based quantitative associations, 290-291

clusters, 66, 443, 444, 490
arbitrary shape, discovery of, 446
assignment rule, 497-498
completeness, 488
constraints on, 533
cuts and, 529-530
density-based, 472
determining number of, 484, 486487
discovery of, 318
fuzzy, 499-501
graph clusters, finding, 528-529
on high-dimensional data, 509
homogeneity, 487-488
merging, 469, 470
ordering, 474-475, 477
pattern-based, 516
probabilistic, 502-503
separation of, 447
shapes, 471
small, preservation, 488

CMAR. See Classification based on Multiple

Association Rules
CN2, 359, 363

collaborative recommender systems, 610, 617, 618

collective outlier detection, 548, 582

categories of, 576

contextual outlier detection versus, 575

on graph data, 576

structure discovery, 575
collective outliers, 575, 581

mining, 575-576
co-location patterns, 319, 595
colossal patterns, 302, 320

core descendants, 305, 306

core patterns, 304-305

illustrated, 303

mining challenge, 302-303

Pattern-Fusion mining, 302-307
combined significance, 312
complete-linkage algorithm, 462
completeness

data, 84-85

data mining algorithm, 22
complex data types, 166

biological sequence data, 586, 590-591

graph patterns, 591-592

mining, 585-598, 625

networks, 591-592

in science applications, 612
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complex data types (Continued)
summary, 586
symbolic sequence data, 586, 588-590
time-series data, 586, 587-588
composite join indices, 162
compressed patterns, 281
mining, 307-312
mining by pattern clustering, 308-310
compression, 100, 120
lossless, 100
lossy, 100
theory, 601
computer science applications, 613
concept characterization, 180
concept comparison, 180
concept description, 166, 180
concept hierarchies, 142, 179
for generalizing data, 150
illustrated, 143, 144
implicit, 143
manual provision, 144
multilevel association rule mining with, 285
multiple, 144
for nominal attributes, 284
for specializing data, 150
concept hierarchy generation, 112, 113, 120
based on number of distinct values, 118
illustrated, 112
methods, 117-119
for nominal data, 117-119
with prespecified semantic connections, 119
schema, 119
conditional probability table (CPT), 394, 395-396
confidence, 21
association rule, 21
interval, 219-220
limits, 373
rule, 245, 246
conflict resolution strategy, 356
confusion matrix, 365-366, 386
illustrated, 366
connectionist learning, 398
consecutive rules, 92
Constrained Vector Quantization Error (CVQE)
algorithm, 536
constraint-based clustering, 447, 497, 532-538, 539
categorization of constraints and, 533-535
hard constraints, 535-536
methods, 535-538
soft constraints, 536-537
speeding up, 537-538
See also cluster analysis

constraint-based mining, 294-301, 320
interactive exploratory mining/analysis, 295
as mining trend, 623
constraint-based patterns/rules, 281
constraint-based sequential pattern mining, 589
constraint-guided mining, 30
constraints
antimonotonic, 298, 301
association rule, 296-297
cannot-link, 533
on clusters, 533
coherence, 535
conflicting, 535
convertible, 299-300
data, 294
data-antimonotonic, 300
data-pruning, 300-301, 320
data-succinct, 300
dimension/level, 294, 297
hard, 534, 535-536, 539
inconvertible, 300
on instances, 533, 539
interestingness, 294, 297
knowledge type, 294
monotonic, 298
must-link, 533, 536
pattern-pruning, 297-300, 320
rules for, 294
on similarity measures, 533-534
soft, 534, 536-537, 539
succinct, 298-299
content-based retrieval, 596
context indicators, 314
context modeling, 316
context units, 314
contextual attributes, 546, 573
contextual outlier detection, 546-547, 582
with identified context, 574
normal behavior modeling, 574-575
structures as contexts, 575
summary, 575
transformation to conventional outlier
detection, 573574
contextual outliers, 545-547, 573, 581
example, 546, 573
mining, 573-575
contingency tables, 95
continuous attributes, 44
contrasting classes, 15, 180
initial working relations, 177
prime relation, 175, 177
convertible constraints, 299-300



COP k-means algorithm, 536
core descendants, 305
colossal patterns, 306
merging of core patterns, 306
core patterns, 304-305
core ratio, 305
correlation analysis, 94
discretization by, 117
interestingness measures, 264
with lift, 266-267
nominal data, 95-96
numeric data, 96-97
redundancy and, 94-98
correlation coefficient, 94, 96
numeric data, 96-97
correlation rules, 265, 272
correlation-based clustering methods, 511
correlations, 18
cosine measure, 268
cosine similarity, 77
between two term-frequency vectors, 78
cost complexity pruning algorithm, 345
cotraining, 432-433
covariance, 94, 97
numeric data, 97-98
CPAR. See Classification based on Predictive
Association Rules
credit policy analysis, 608-609
CRM. See customer relationship management
crossover operation, 426
cross-validation, 370-371, 386
k-fold, 370
leave-one-out, 371
in number of clusters determination, 487
stratified, 371
cube gradient analysis, 321
cube shells, 192, 211
computing, 211
cube space
discovery-driven exploration, 231-234
multidimensional data analysis in, 227-234
prediction mining in, 227
subspaces, 228-229
cuboid trees, 205
cuboids, 137
apex, 111, 138, 158
base, 111, 137-138, 158
child, 193
individual, 190
lattice of, 139, 156, 179, 188-189,
234, 290
sparse, 190
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subset selection, 160
See also data cubes
curse of dimensionality, 158, 179
customer relationship management (CRM),
619
customer retention analysis, 610

CVQE. See Constrained Vector Quantization Error

algorithm
cyber-physical systems (CPS), 596, 623-624

D

data
antimonotonicity, 300
archeology, 6
biological sequence, 586, 590591
complexity, 32
conversion to knowledge, 2
cyber-physical system, 596
for data mining, 8
data warehouse, 13-15
database, 9-10
discrimination, 16
dredging, 6
generalizing, 150
graph, 14
growth, 2
linearly inseparable, 413—415
linearly separated, 409
multimedia, 14, 596
multiple sources, 15, 32
multivariate, 556
networked, 14
overfitting, 330
relational, 10
sample, 219
similarity and dissimilarity measures, 65-78
skewed, 47, 271
spatial, 14, 595
spatiotemporal, 595-596
specializing, 150
statistical descriptions, 44-56
streams, 598
symbolic sequence, 586, 588-589
temporal, 14
text, 14, 596-597
time-series, 586, 587
“tombs,” 5
training, 18
transactional, 13—14
types of, 33
web, 597-598

data auditing tools, 92



data characterization, 15, 166
attribute-oriented induction, 167-172
data mining query, 167-168
example, 16
methods, 16
output, 16

data classification. See classification

data cleaning, 6, 85, 88-93, 120
in back-end tools/utilities, 134
binning, 89-90
discrepancy detection, 91-93
by information network analysis, 592-593
missing values, 88—89
noisy data, 89
outlier analysis, 90
pattern mining for, 318
as process, 91-93
regression, 90
See also data preprocessing

data constraints, 294
antimonotonic, 300
pruning data space with, 300-301
succinct, 300
See also constraints

data cube aggregation, 110-111

data cube computation, 156-160, 214-215
aggregation and, 193
average(), 215
BUC, 200-204, 235
cube operator, 157-159
cube shells, 211
full, 189-190, 195-199
general strategies for, 192-194
iceberg, 160, 193-194
memory allocation, 199
methods, 194-218, 235
multiway array aggregation, 195-199
one-pass, 198
preliminary concepts, 188—194
shell fragments, 210-218, 235
Star-Cubing, 204-210, 235

data cubes, 10, 136, 178, 188
3-D, 138
4-D, 138, 139
apex cuboid, 111, 138, 158
base cuboid, 111, 137-138, 158
closed, 192
cube shell, 192
cuboids, 137
curse of dimensionality, 158
discovery-driven exploration, 231-234
example, 11-13

full, 189-190, 196-197
gradient analysis, 321
iceberg, 160, 190-191, 201, 235
lattice of cuboids, 157, 234, 290
materialization, 159-160, 179, 234
measures, 145
multidimensional, 12, 136-139
multidimensional data mining and, 26
multifeature, 227, 230-231, 235
multimedia, 596
prediction, 227-230, 235
qualitative association mining, 289-290
queries, 230
query processing, 218-227
ranking, 225-227, 235
sampling, 218-220, 235
shell, 160, 211
shell fragments, 192, 210-218, 235
sparse, 190
spatial, 595
technology, 187-242
data discretization. See discretization
data dispersion, 44, 48-51
boxplots, 49-50
five-number summary, 49
quartiles, 48—49
standard deviation, 5051
variance, 50-51
data extraction, in back-end tools/utilities, 134
data focusing, 168
data generalization, 179-180
by attribute-oriented induction, 166-178
data integration, 6, 85-86, 93-99, 120
correlation analysis, 94-98
detection/resolution of data value conflicts,
99
entity identification problem, 94
by information network analysis, 592-593
object matching, 94
redundancy and, 94-98
schema, 94
tuple duplication, 98-99
See also data preprocessing
data marts, 132, 142
data warehouses versus, 142
dependent, 132
distributed, 134
implementation, 132
independent, 132
data matrix, 67-68
dissimilarity matrix versus, 67—68
relational table, 67—68



rows and columns, 68
as two-mode matrix, 68

data migration tools, 93
data mining, 5-8, 33, 598, 623

ad hoc, 31

applications, 607-618

biological data, 624

complex data types, 585-598, 625

cyber-physical system data, 596

data streams, 598

data types for, 8

data warehouses for, 154

database types and, 32

descriptive, 15

distributed, 615, 624

efficiency, 31

foundations, views on, 600-601

functionalities, 15-23, 34

graphs and networks, 591-594

incremental, 31

as information technology evolution, 2-5

integration, 623

interactive, 30

as interdisciplinary effort, 29-30

invisible, 33, 618620, 625

issues in, 29-33, 34

in knowledge discovery, 7

as knowledge search through data, 6

machine learning similarities, 26

methodologies, 29-30, 585-607

motivation for, 1-5

multidimensional, 11-13, 26, 33-34, 155-156,
179, 227-230

multimedia data, 596

OLAP and, 154

as pattern/knowledge discovery process, 8

predictive, 15

presentation/visualization of results, 31

privacy-preserving, 32, 621-622, 624625, 626

query languages, 31

relational databases, 10

scalability, 31

sequence data, 586

social impacts, 32

society and, 618—622

spatial data, 595

spatiotemporal data and moving objects,
595-596, 623-624

statistical, 598

text data, 596-597, 624

trends, 622—-625, 626

ubiquitous, 618-620, 625

Index

user interaction and, 30-31
visual and audio, 602—607, 624, 625
Web data, 597-598, 624
data mining systems, 10
data models
entity-relationship (ER), 9, 139
multidimensional, 135-146
data objects, 40, 79
similarity, 40
terminology for, 40
data preprocessing, 83—124
cleaning, 88-93
forms illustration, 87
integration, 93-99
overview, 84—87
quality, 84-85
reduction, 99-111
in science applications, 612
summary, 87
tasks in, 85-87
transformation, 111-119
data quality, 84, 120
accuracy, 84
believability, 85
completeness, 84-85
consistency, 85
interpretability, 85
timeliness, 85
data reduction, 86, 99-111, 120
attribute subset selection, 103—105
clustering, 108
compression, 100, 120
data cube aggregation, 110-111
dimensionality, 86, 99-100, 120
histograms, 106-108
numerosity, 86, 100, 120
parametric, 105-106
principle components analysis, 102—-103
sampling, 108
strategies, 99—100
theory, 601
wavelet transforms, 100102
See also data preprocessing
data rich but information poor, 5
data scrubbing tools, 92
data security-enhancing techniques, 621
data segmentation, 445
data selection, 8
data source view, 151
data streams, 14, 598, 624
data transformation, 8, 87, 111-119, 120
aggregation, 112

683



data transformation (Continued)

attribute construction, 112

in back-end tools/utilities, 134
concept hierarchy generation, 112, 120
discretization, 111, 112, 120
normalization, 112, 113-115, 120
smoothing, 112

strategies, 112-113

See also data preprocessing

data types

complex, 166
complex, mining, 585-598
for data mining, 8

data validation, 592-593
data visualization, 56—65, 79, 602—-603

complex data and relations, 64—65
geometric projection techniques, 58—60
hierarchical techniques, 63-64
icon-based techniques, 60-63
mining process, 603

mining result, 603, 605
pixel-oriented techniques, 57-58
in science applications, 613
summary, 65

tag clouds, 64, 66

techniques, 39-40

data warehouses, 10-13, 26, 33, 125-185

analytical processing, 153
back-end tools/utilities, 134, 178
basic concepts, 125-135

bottom-up design approach, 133, 151-152

business analysis framework for, 150
business query view, 151
combined design approach, 152
data mart, 132, 142

data mining, 154

data source view, 151

design process, 151
development approach, 133
development tools, 153
dimensions, 10

enterprise, 132

extractors, 151

fact constellation, 141-142
for financial data, 608
framework illustration, 11
front-end client layer, 132
gateways, 131

geographic, 595
implementation, 156-165
information processing, 153
integrated, 126

metadata, 134-135

modeling, 10, 135-150

models, 132-134

multitier, 134

multitiered architecture, 130-132
nonvolatile, 127

OLAP server, 132

operational database systems versus, 128—-129

planning and analysis tools, 153

retail industry, 609—-610

in science applications, 612

snowflake schema, 140-141

star schema, 139-140

subject-oriented, 126

three-tier architecture, 131, 178

time-variant, 127

tools, 11

top-down design approach, 133, 151

top-down view, 151

update-driven approach, 128

usage for information processing, 153

view, 151

virtual, 133

warehouse database server, 131
database management systems (DBMSs), 9
database queries. See queries
databases, 9

inductive, 601

relational. See relational databases

research, 26

statistical, 148—149

technology evolution, 3

transactional, 13—-15

types of, 32

web-based, 4
data/pattern analysis. See data mining
DBSCAN, 471-473

algorithm illustration, 474

core objects, 472

density estimation, 477

density-based cluster, 472

density-connected, 472, 473

density-reachable, 472, 473

directly density-reachable, 472

neighborhood density, 471

See also cluster analysis; density-based methods

DDPMine, 422

decimal scaling, normalization by, 115

decision tree analysis, discretization by, 116

decision tree induction, 330-350, 385
algorithm differences, 336
algorithm illustration, 333



attribute selection measures, 336-344
attribute subset selection, 105
C4.5, 332
CART, 332
CHAID, 343
gain ratio, 340-341
Gini index, 332, 341-343
1D3, 332
incremental versions, 336
information gain, 336-340
multivariate splits, 344
parameters, 332
scalability and, 347-348
splitting criterion, 333
from training tuples, 332-333
tree pruning, 344-347, 385
visual mining for, 348-350
decision trees, 18, 330
branches, 330
illustrated, 331
internal nodes, 330
leaf nodes, 330
pruning, 331, 344-347
root node, 330
rule extraction from, 357359
deep web, 597
default rules, 357
DENCLUE, 476-479
advantages, 479
clusters, 478
density attractor, 478
density estimation, 476
kernel density estimation, 477-478
kernels, 478

See also cluster analysis; density-based methods

dendrograms, 460
densification power law, 592
density estimation, 476
DENCLUE, 477-478
kernel function, 477-478
density-based methods, 449, 471-479, 491
DBSCAN, 471-473
DENCLUE, 476-479
object division, 449
OPTICS, 473-476
STING as, 480
See also cluster analysis
density-based outlier detection, 564-567
local outlier factor, 566—567
local proximity, 564
local reachability density, 566
relative density, 565

Index

descendant cells, 189
descriptive mining tasks, 15
DIANA (Divisive Analysis), 459, 460
dice operation, 148
differential privacy, 622
dimension tables, 136
dimensional cells, 189
dimensionality reduction, 86, 99-100, 120
dimensionality reduction methods, 510,
519-522, 538
list of, 587
spectral clustering, 520-522
dimension/level
application of, 297
constraints, 294
dimensions, 10, 136
association rule, 281
cardinality of, 159
concept hierarchies and, 142-144
in multidimensional view, 33
ordering of, 210
pattern, 281
ranking, 225
relevance analysis, 175
selection, 225
shared, 204
See also data warehouses
direct discriminative pattern mining, 422
directed acyclic graphs, 394-395
discernibility matrix, 427
discovery-driven exploration, 231-234, 235
discrepancy detection, 91-93
discrete attributes, 44
discrete Fourier transform (DFT), 101, 587
discrete wavelet transform (DWT), 100-102,
587
discretization, 112, 120
by binning, 115
by clustering, 116
by correlation analysis, 117
by decision tree analysis, 116
by histogram analysis, 115-116
techniques, 113
discriminant analysis, 600
discriminant rules, 16

685

discriminative frequent pattern-based classification,

416, 419-422, 437
basis for, 419
feature generation, 420
feature selection, 420-421
framework, 420421
learning of classification model, 421
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Index

dispersion of data, 44, 48-51
dissimilarity
asymmetric binary, 71
between attributes of mixed type, 7677
between binary attributes, 71-72
measuring, 65-78, 79
between nominal attributes, 69
on numeric data, 72-74
between ordinal attributes, 75
symmetric binary, 70-71
dissimilarity matrix, 67, 68
data matrix versus, 67—68
n-by-n table representation, 68
as one-mode matrix, 68
distance measures, 461-462
Euclidean, 72-73
Manhattan, 72-73
Minkowski, 73
supremum, 73-74
types of, 72
distance-based cluster analysis, 445
distance-based outlier detection, 561-562
nested loop algorithm, 561, 562
See also outlier detection
distributed data mining, 615, 624
distributed privacy preservation, 622
distributions
boxplots for visualizing, 49-50
five-number summary, 49
distributive measures, 145
Divisive Analysis (DIANA), 459, 460
divisive hierarchical method, 459
agglomerative hierarchical clustering versus,
459-460
DIANA, 459, 460
DNA chips, 512
document classification, 430
documents
language model, 26
topic model, 26-27
drill-across operation, 148
drill-down operation, 11, 146-147
drill-through operation, 148
dynamic itemset counting, 256

eager learners, 423, 437

Eclat (Equivalence Class Transformation) algorithm,
260, 272

e-commerce, 609

editing method, 425

efficiency
Apriori algorithm, 255-256
backpropagation, 404
data mining algorithms, 31
elbow method, 486
email spam filtering, 435
engineering applications, 613
ensemble methods, 378-379, 386
bagging, 379-380
boosting, 380-382
for class imbalance problem, 385
random forests, 382—-383
types of, 378, 386
enterprise warehouses, 132
entity identification problem, 94
entity-relationship (ER) data model, 9, 139
epoch updating, 404
equal-frequency histograms, 107, 116
equal-width histograms, 107, 116
equivalence classes, 427
error rates, 367
error-correcting codes, 431-432
Euclidean distance, 72
mathematical properties, 72-73
weighted, 74
See also distance measures
evaluation metrics, 364—370
evolution, of database system technology, 3-5
evolutionary searches, 579
exception-based, discovery-driven exploration,
231-234, 235
exceptions, 231
exhaustive rules, 358
expectation-maximization (EM) algorithm,
505-508, 538
expectation step (E-step), 505
fuzzy clustering with, 505-507
maximization step (M-step), 505
for mixture models, 507-508
for probabilistic model-based clustering,
507-508
steps, 505
See also probabilistic model-based clustering
expected values, 97
cell, 234
exploratory data mining. See multidimensional data
mining
extraction
data, 134
rule, from decision tree, 357—359
extraction/transformation/loading (ETL) tools, 93
extractors, 151



F

fact constellation, 141
example, 141-142
illustrated, 142

fact tables, 136
summary, 165

factor analysis, 600

facts, 136

false negatives, 365

false positives, 365

farthest-neighbor clustering algorithm, 462

field overloading, 92

financial data analysis, 607-609
credit policy analysis, 608-609
crimes detection, 609
data warehouses, 608
loan payment prediction, 608—609
targeted marketing, 609

FindCBLOF algorithm, 569-570

five-number summary, 49

fixed-width clustering, 570

FOIL, 359, 363, 418

Forest-RC, 383

forward algorithm, 591

FP-growth, 257-259, 272
algorithm illustration, 260
example, 257-258
performance, 259

FP-trees, 257
condition pattern base, 258
construction, 257-258
main memory-based, 259
mining, 258, 259

Frag-Shells, 212, 213

fraudulent analysis, 610-611

frequency patterns
approximate, 281, 307-312
compressed, 281, 307-312
constraint-based, 281
near-match, 281
redundancy-aware top-k, 281
top-k, 281

frequent itemset mining, 18, 272, 282
Apriori algorithm, 248-253
closed patterns, 262-264
market basket analysis, 244-246
max patterns, 262-264
methods, 248-264
pattern-growth approach, 257-259
with vertical data format, 259-262, 272

frequent itemsets, 243, 246, 272
association rule generation from, 253, 254

closed, 247, 248, 262-264, 308
finding, 247

finding by confined candidate generation,

248-253
maximal, 247, 248, 262-264, 308
subsets, 309

frequent pattern mining, 279

advanced forms of patterns, 320

application domain-specific semantics, 282

applications, 317-319, 321
approximate patterns, 307-312
classification criteria, 280—283
colossal patterns, 301-307
compressed patterns, 307-312
constraint-based, 294-301, 320
data analysis usages, 282

for data cleaning, 318

direct discriminative, 422
high-dimensional data, 301-307
in high-dimensional space, 320
in image data analysis, 319

for indexing structures, 319
kinds of data and features, 282

multidimensional associations, 287—289

Index

687

in multilevel, multidimensional space, 283294

multilevel associations, 283—-294
in multimedia data analysis, 319
negative patterns, 291-294

for noise filtering, 318
Pattern-Fusion, 302—-307
quantitative association rules, 28
rare patterns, 291-294

in recommender systems, 319
road map, 279-283

scalable computation and, 319
scope of, 319-320

in sequence or structural data analysis, 319

9-291

in spatiotemporal data analysis, 319
for structure and cluster discovery, 318

for subspace clustering, 318-319
in time-series data analysis, 319
top-k, 310

in video data analysis, 319

See also frequent patterns

associative, 415, 416419
discriminative, 416, 419-422
framework, 422

frequent patterns, 17, 243

abstraction levels, 281
association rule mapping, 280
basic, 280

frequent pattern-based classification, 415-422, 437



frequent patterns (Continued)
closed, 262264, 280
concepts, 243-244
constraint-based, 281
dimensions, 281
diversity, 280
exploration, 313-319
growth, 257-259, 272
max, 262-264, 280
mining, 243-244, 279-325
mining constraints or criteria, 281
number of dimensions involved in, 281
semantic annotation of, 313-317
sequential, 243
strong associations, 437
structured, 243
trees, 257-259
types of values in, 281
frequent subgraphs, 591
front-end client layer, 132
full materialization, 159, 179, 234
fuzzy clustering, 499-501, 538
data set for, 506
with EM algorithm, 505-507
example, 500
expectation step (E-step), 505
flexibility, 501
maximization step (M-step), 506-507
partition matrix, 499
as soft clusters, 501
fuzzy logic, 428
fuzzy sets, 428-429, 437, 499
evaluation, 500-501
example, 499

G
gain ratio, 340
C4.5 use of, 340
formula, 341
maximum, 341
gateways, 131
gene expression, 513-514
generalization
attribute, 169-170
attribute, control, 170
attribute, threshold control, 170
in multimedia data mining, 596
process, 172
results presentation, 174
synchronous, 175
generalized linear models, 599-600
generalized relations
attribute-oriented induction, 172

presentation of, 174
threshold control, 170
generative model, 467469
genetic algorithms, 426-427, 437
genomes, 15
geodesic distance, 525-526, 539
diameter, 525
eccentricity, 525
measurements based on, 526
peripheral vertex, 525
radius, 525
geographic data warehouses, 595
geometric projection visualization, 58—60
Gini index, 341
binary enforcement, 332
binary indexes, 341
CART use of, 341
decision tree induction using,
342-343
minimum, 342
partitioning and, 342
global constants, for missing values, 88
global outliers, 545, 581
detection, 545
example, 545
Google
Flu Trends, 2
popularity of, 619-620
gradient descent strategy, 396-397
algorithms, 397
greedy hill-climbing, 397
as iterative, 396-397
graph and network data clustering, 497,
522-532, 539
applications, 523-525
bipartite graph, 523
challenges, 523-525, 530
cuts and clusters, 529-530
generic method, 530-531
geodesic distance, 525-526
methods, 528-532
similarity measures, 525-528
SimRank, 526-528
social network, 524-525
web search engines, 523-524
See also cluster analysis
graph cuts, 539
graph data, 14
graph index structures, 591
graph pattern mining, 591-592, 612-613
graphic displays
data presentation software, 44—45
histogram, 54, 55



quantile plot, 51-52
quantile-quantile plot, 52-54
scatter plot, 54-56
greedy hill-climbing, 397
greedy methods, attribute subset selection,
104-105
grid-based methods, 450, 479-483, 491
CLIQUE, 481483
STING, 479-481
See also cluster analysis
grid-based outlier detection, 562564
CELL method, 562, 563
cell properties, 562
cell pruning rules, 563
See also outlier detection
group-based support, 286
group-by clause, 231
grouping attributes, 231
grouping variables, 231
Grubb’s test, 555

H

hamming distance, 431
hard constraints, 534, 539
example, 534
handling, 535-536
harmonic mean, 369
hash-based technique, 255
heterogeneous networks, 592
classification of, 593
clustering of, 593
ranking of, 593
heterogeneous transfer learning, 436
hidden Markov model (HMM), 590, 591
hierarchical methods, 449, 457470, 491
agglomerative, 459461
algorithmic, 459, 461-462
Bayesian, 459
BIRCH, 458, 462—466
Chameleon, 458, 466—467
complete linkages, 462, 463
distance measures, 461-462
divisive, 459-461
drawbacks, 449
merge or split points and, 458
probabilistic, 459, 467-470
single linkages, 462, 463
See also cluster analysis
hierarchical visualization, 63
treemaps, 63, 65
Worlds-with-Worlds, 63, 64
high-dimensional data, 301
clustering, 447

Index 689

data distribution of, 560
frequent pattern mining, 301-307
outlier detection in, 576-580, 582
row enumeration, 302
high-dimensional data clustering, 497, 508-522,
538, 553
biclustering, 512-519
dimensionality reduction methods, 510,
519-522
example, 508-509
problems, challenges, and methodologies,
508-510
subspace clustering methods, 509,
510-511
See also cluster analysis
HilOut algorithm, 577-578
histograms, 54, 106-108, 116
analysis by discretization, 115-116
attributes, 106
binning, 106
construction, 559
equal-frequency, 107
equal-width, 107
example, 54
illustrated, 55, 107
multidimensional, 108
as nonparametric model, 559
outlier detection using, 558-560
holdout method, 370, 386
holistic measures, 145
homogeneous networks, 592
classification of, 593
clustering of, 593
Hopkins statistic, 484-485
horizontal data format, 259
hybrid OLAP (HOLAP), 164-165, 179
hybrid-dimensional association rules,
288

|
IBM Intelligent Miner, 603, 606
iceberg condition, 191
iceberg cubes, 160, 179, 190, 235
BUC construction, 201
computation, 160, 193-194, 319
computation and storage, 210211
computation with Star-Cubing algorithm,
204-210
materialization, 319
specification of, 190-191
See also data cubes
icon-based visualization, 60
Chernoff faces, 60-61



icon-based visualization (Continued)
stick figure technique, 61-63
See also data visualization
1D3, 332, 385
greedy approach, 332
information gain, 336
See also decision tree induction
IF-THEN rules, 355-357
accuracy, 356
conflict resolution strategy, 356
coverage, 356
default rule, 357
extracting from decision tree, 357
form, 355
rule antecedent, 355
rule consequent, 355
rule ordering, 357
satisfied, 356
triggered, 356
illustrated, 149
image data analysis, 319
imbalance problem, 367
imbalance ratio (IR), 270
skewness, 271
inconvertible constraints, 300
incremental data mining, 31
indexes
bitmapped join, 163
composite join, 162
Gini, 332, 341-343
inverted, 212, 213
indexing
bitmap, 160-161, 179
bitmapped join, 179
frequent pattern mining for, 319
join, 161-163, 179
OLAP, 160-163
inductive databases, 601
inferential statistics, 24
information age, moving toward, 1-2
information extraction systems, 430
information gain, 336-340

decision tree induction using, 338-339

ID3 use of, 336
pattern frequency support versus, 421
single feature plot, 420
split-point, 340
information networks
analysis, 592-593
evolution of, 594
link prediction in, 593-594
mining, 623

OLAP in, 594

role discovery in, 593—-594

similarity search in, 594
information processing, 153
information retrieval (IR), 26-27

challenges, 27

language model, 26

topic model, 26-27
informativeness model, 535
initial working relations, 168, 169, 177
instance-based learners. See lazy learners
instances, constraints on, 533, 539
integrated data warehouses, 126
integrators, 127
intelligent query answering, 618
interactive data mining, 604, 607
interactive mining, 30
intercuboid query expansion, 221

example, 224-225

method, 223-224
interdimensional association rules, 288
interestingness, 21-23

assessment methods, 23

components of, 21

expected, 22

objective measures, 21-22

strong association rules, 264-265

subjective measures, 22

threshold, 21-22

unexpected, 22
interestingness constraints, 294

application of, 297
interpretability

backpropagation and, 406-408

classification, 369

cluster analysis, 447

data, 85

data quality and, 85

probabilistic hierarchical clustering,

469

interquartile range (IQR), 49, 555
interval-scaled attributes, 43, 79
intracuboid query expansion, 221

example, 223

method, 221-223

value usage, 222
intradimensional association rules, 287
intrusion detection, 569-570

anomaly-based, 614

data mining algorithms, 614-615

discriminative classifiers, 615

distributed data mining, 615



signature-based, 614
stream data analysis, 615
visualization and query tools, 615
inverted indexes, 212, 213
invisible data mining, 33, 618-620, 625
IQR. See Interquartile range
IR. See information retrieval
item merging, 263
item skipping, 263
items, 13
itemsets, 246
candidate, 251, 252
dependent, 266
dynamic counting, 256
imbalance ratio (IR), 270, 271
negatively correlated, 292
occurrence independence, 266
strongly negatively correlated, 292
See also frequent itemsets
iterative Pattern-Fusion, 306
iterative relocation techniques, 448

Jaccard coefficient, 71
join indexing, 161-163, 179

K
k-anonymity method, 621-622
Karush-Kuhn-Tucker (KKT) conditions, 412
k-distance neighborhoods, 565
kernel density estimation, 477-478
kernel function, 415
k-fold cross-validation, 370-371
k-means, 451-454

algorithm, 452

application of, 454

CLARANS, 457

within-cluster variation, 451, 452

clustering by, 453

drawback of, 454-455

functioning of, 452

scalability, 454

time complexity, 453

variants, 453—-454
k-means clustering, 536
k-medoids, 454-457

absolute-error criterion, 455

cost function for, 456

PAM, 455-457
k-nearest-neighbor classification, 423

closeness, 423

distance-based comparisons, 425

Index

editing method, 425
missing values and, 424
number of neighbors, 424-425
partial distance method, 425
speed, 425
knowledge
background, 30-31
mining, 29
presentation, 8
representation, 33
transfer, 434
knowledge bases, 5, 8
knowledge discovery
data mining in, 7
process, 8
knowledge discovery from data (KDD), 6
knowledge extraction. See data mining
knowledge mining. See data mining
knowledge type constraints, 294
k-predicate sets, 289
Kulczynski measure, 268, 272

691

negatively correlated pattern based on, 293-294

L

language model, 26
Laplacian correction, 355
lattice of cuboids, 139, 156, 179, 188—189, 234
lazy learners, 393, 422-426, 437
case-based reasoning classifiers, 425-426
k-nearest-neighbor classifiers, 423-425
I-diversity method, 622
learning
active, 430, 433-434, 437
backpropagation, 400
as classification step, 328
connectionist, 398
by examples, 445
by observation, 445
rate, 397
semi-supervised, 572
supervised, 330
transfer, 430, 434-436, 438
unsupervised, 330, 445, 490
learning rates, 403—404
leave-one-out, 371
lift, 266, 272
correlation analysis with, 266-267
likelihood ratio statistic, 363
linear regression, 90, 105
multiple, 106
linearly, 412-413
linearly inseparable data, 413—415
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link mining, 594 all_confidence, 272
link prediction, 594 antimonotonic, 194
load, in back-end tools/utilities, 134 attribute selection, 331
loan payment prediction, 608—609 categories of, 145
local outlier factor, 566567 of central tendency, 39, 44, 45-47
local proximity-based outliers, 564-565 correlation, 266
logistic function, 402 data cube, 145
log-linear models, 106 dispersion, 48-51
lossless compression, 100 distance, 72-74, 461-462
lossy compression, 100 distributive, 145
lower approximation, 427 holistic, 145
Kulczynski, 272
M max_confidence, 272
machine learning, 24-26 of multidimensional databases, 146
active, 25 null-invariant, 272
data mining similarities, 26 pattern evaluation, 267-271
semi-supervised, 25 precision, 368-369
supervised, 24 proximity, 67, 68-72
unsupervised, 25 recall, 368-369
Mabhalanobis distance, 556 sensitivity, 367
majority voting, 335 significance, 312
Manhattan distance, 72-73 similarity/dissimilarity, 65-78
MaPle, 519 specificity, 367
margin, 410 median, 39, 46
market basket analysis, 244-246, 271-272 bin, smoothing by, 89
example, 244 example, 46
illustrated, 244 formula, 4647
Markov chains, 591 for missing values, 88
materialization metadata, 92, 134, 178
full, 159, 179, 234 business, 135
iceberg cubes, 319 importance, 135
no, 159 operational, 135
partial, 159-160, 192, 234 repositories, 134-135
semi-offline, 226 metarule-guided mining
max patterns, 280 of association rules, 295-296
max_confidence measure, 268, 272 example, 295-296
maximal frequent itemsets, 247, 308 metrics, 73
example, 248 classification evaluation, 364-370
mining, 262-264 microeconomic view, 601
shortcomings for compression, 308-309 midrange, 47
maximum marginal hyperplane (MMH), 409 MineSet, 603, 605
SVM finding, 412 minimal interval size, 116
maximum normed residual test, 555 minimal spanning tree algorithm, 462
mean, 39, 45 minimum confidence threshold, 18, 245
bin, smoothing by, 89 Minimum Description Length (MDL), 343-344
example, 45 minimum support threshold, 18, 190
for missing values, 88 association rules, 245
trimmed, 46 count, 246
weighted arithmetic, 45 Minkowski distance, 73
measures, 145 min-max normalization, 114
accuracy-based, 369 missing values, 88—89

algebraic, 145 mixed-effect models, 600



mixture models, 503, 538
EM algorithm for, 507-508
univariate Gaussian, 504
mode, 39, 47
example, 47
model selection, 364
with statistical tests of significance, 372-373
models, 18
modularity
of clustering, 530
use of, 539
MOLAP. See multidimensional OLAP
monotonic constraints, 298
motifs, 587
moving-object data mining, 595-596, 623—624
multiclass classification, 430-432, 437
all-versus-all (AVA), 430-431
error-correcting codes, 431-432
one-versus-all (OVA), 430
multidimensional association rules, 17, 283,
288, 320
hybrid-dimensional, 288
interdimensional, 288
mining, 287-289
mining with static discretization of quantitative
attributes, 288
with no repeated predicates, 288
See also association rules
multidimensional data analysis
in cube space, 227-234
in multimedia data mining, 596
spatial, 595
of top-k results, 226
multidimensional data mining, 11-13, 34 155-156,
179, 187,227, 235
data cube promotion of, 26
dimensions, 33
example, 228-229
retail industry, 610
multidimensional data model, 135-146, 178
data cube as, 136139
dimension table, 136
dimensions, 142-144
fact constellation, 141-142
fact table, 136
snowflake schema, 140-141
star schema, 139-140
multidimensional databases
measures of, 146
querying with starnet model, 149-150
multidimensional histograms, 108
multidimensional OLAP (MOLAP), 132, 164, 179
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multifeature cubes, 227, 230, 235
complex query support, 231
examples, 230-231

multilayer feed-forward neural networks,

398-399
example, 405
illustrated, 399
layers, 399
units, 399

multilevel association rules, 281, 283, 284, 320
ancestors, 287
concept hierarchies, 285
dimensions, 281
group-based support, 286
mining, 283-287
reduced support, 285, 286
redundancy, checking, 287
uniform support, 285-286

multimedia data, 14

multimedia data analysis, 319

multimedia data mining, 596

multimodal, 47

multiple linear regression, 90, 106

multiple sequence alignment, 590

multiple-phase clustering, 458—459

multitier data warehouses, 134

multivariate outlier detection, 556
with Mahalanobis distance, 556
with multiple clusters, 557
with multiple parametric distributions, 557
with Xz—static, 556

multiway array aggregation, 195, 235
for full cube computation, 195-199
minimum memory requirements, 198

must-link constraints, 533, 536

mutation operator, 426

mutual information, 315-316

mutually exclusive rules, 358

N

naive Bayesian classification, 385
class label prediction with, 353—-355
functioning of, 351-352
nearest-neighbor clustering algorithm, 461
near-match patterns/rules, 281
negative correlation, 55, 56
negative patterns, 280, 283, 320
example, 291-292
mining, 291-294
negative transfer, 436
negative tuples, 364
negatively skewed data, 47
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neighborhoods
density, 471
distance-based outlier detection, 560
k-distance, 565
nested loop algorithm, 561, 562
networked data, 14
networks, 592
heterogeneous, 592, 593
homogeneous, 592, 593
information, 592—-594
mining in science applications, 612—613
social, 592
statistical modeling of, 592-594
neural networks, 19, 398
backpropagation, 398-408
as black boxes, 406
for classification, 19, 398
disadvantages, 406
fully connected, 399, 406-407
learning, 398
multilayer feed-forward, 398-399
pruning, 406—-407
rule extraction algorithms, 406, 407
sensitivity analysis, 408
three-layer, 399
topology definition, 400
two-layer, 399
neurodes, 399
Ng-Jordan-Weiss algorithm, 521, 522
no materialization, 159
noise filtering, 318
noisy data, 89-91
nominal attributes, 41
concept hierarchies for, 284
correlation analysis, 95-96
dissimilarity between, 69
example, 41
proximity measures, 68—70
similarity computation, 70
values of, 79, 288
See also attributes
nonlinear SVMs, 413-415
nonparametric statistical methods,
553-558
nonvolatile data warehouses, 127
normalization, 112, 120
data transformation by, 113-115
by decimal scaling, 115
min-max, 114
z-score, 114-115
null rules, 92
null-invariant measures, 270-271, 272

null-transactions, 270, 272
number of, 270
problem, 292-293
numeric attributes, 43—-44, 79
covariance analysis, 98
interval-scaled, 43, 79
ratio-scaled, 43—44, 79
numeric data, dissimilarity on, 72-74
numeric prediction, 328, 385
classification, 328
support vector machines (SVMs) for, 408
numerosity reduction, 86, 100, 120
techniques, 100

o

object matching, 94
objective interestingness measures, 21-22
one-class model, 571-572
one-pass cube computation, 198
one-versus-all (OVA), 430
online analytical mining (OLAM)), 155, 227
online analytical processing (OLAP), 4, 33, 128,
179
access patterns, 129
data contents, 128
database design, 129
dice operation, 148
drill-across operation, 148
drill-down operation, 11, 135-136, 146
drill-through operation, 148
example operations, 147
functionalities of, 154
hybrid OLAP, 164-165, 179
indexing, 125, 160-163
in information networks, 594
in knowledge discovery process, 125
market orientation, 128
multidimensional (MOLAP), 132, 164, 179
OLTP versus, 128-129, 130
operation integration, 125
operations, 146—148
pivot (rotate) operation, 148
queries, 129, 130, 163-164
query processing, 125, 163—-164
relational OLAP, 132, 164, 165, 179
roll-up operation, 11, 135-136, 146
sample data effectiveness, 219
server architectures, 164-165
servers, 132
slice operation, 148
spatial, 595
statistical databases versus, 148—149



user-control versus automation, 167
view, 129
online transaction processing (OLTP), 128
access patterns, 129
customer orientation, 128
data contents, 128
database design, 129
OLAP versus, 128-129, 130
view, 129
operational metadata, 135
OPTICS, 473-476
cluster ordering, 474-475, 477
core-distance, 475
density estimation, 477
reachability-distance, 475
structure, 476
terminology, 476
See also cluster analysis; density-based methods
ordered attributes, 103
ordering
class-based, 358
dimensions, 210
rule, 357
ordinal attributes, 42, 79
dissimilarity between, 75
example, 42
proximity measures, 74—75
outlier analysis, 20-21
clustering-based techniques, 66
example, 21
in noisy data, 90
spatial, 595
outlier detection, 543584
angle-based (ABOD), 580
application-specific, 548-549
categories of, 581
CELL method, 562-563
challenges, 548-549
clustering analysis and, 543
clustering for, 445
clustering-based methods, 552-553, 560-567
collective, 548, 575-576
contextual, 546-547, 573-575
distance-based, 561-562
extending, 577-578
global, 545
handling noise in, 549
in high-dimensional data, 576-580, 582
with histograms, 558-560
intrusion detection, 569-570
methods, 549-553
mixture of parametric distributions, 556-558
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multivariate, 556
novelty detection relationship, 545
proximity-based methods, 552, 560-567, 581
semi-supervised methods, 551
statistical methods, 552, 553-560, 581
supervised methods, 549-550
understandability, 549
univariate, 554
unsupervised methods, 550
outlier subgraphs, 576
outliers
angle-based, 20, 543, 544, 580
collective, 547-548, 581
contextual, 545-547, 573, 581
density-based, 564
distance-based, 561
example, 544
global, 545, 581
high-dimensional, modeling, 579-580
identifying, 49
interpretation of, 577
local proximity-based, 564-565
modeling, 548
in small clusters, 571
types of, 545-548, 581
visualization with boxplot, 555
oversampling, 384, 386
example, 384-385

P

pairwise alignment, 590
pairwise comparison, 372
PAM. See Partitioning Around Medoids algorithm
parallel and distributed data-intensive mining
algorithms, 31
parallel coordinates, 59, 62
parametric data reduction, 105-106
parametric statistical methods, 553-558
Pareto distribution, 592
partial distance method, 425
partial materialization, 159-160, 179, 234
strategies, 192
partition matrix, 538
partitioning
algorithms, 451-457
in Apriori efficiency, 255-256
bootstrapping, 371, 386
criteria, 447
cross-validation, 370-371, 386
Gini index and, 342
holdout method, 370, 386
random sampling, 370, 386



partitioning (Continued)
recursive, 335
tuples, 334
Partitioning Around Medoids (PAM) algorithm,
455-457
partitioning methods, 448, 451-457, 491
centroid-based, 451-454
global optimality, 449
iterative relocation techniques, 448
k-means, 451-454
k-medoids, 454-457
k-modes, 454
object-based, 454-457
See also cluster analysis
path-based similarity, 594
pattern analysis, in recommender systems,
282
pattern clustering, 308-310
pattern constraints, 297-300
pattern discovery, 601
pattern evaluation, 8
pattern evaluation measures, 267-271
all_confidence, 268
comparison, 269-270
cosine, 268
Kulczynski, 268
max_confidence, 268
null-invariant, 270-271
See also measures
pattern space pruning, 295
pattern-based classification, 282, 318
pattern-based clustering, 282, 516
Pattern-Fusion, 302-307
characteristics, 304
core pattern, 304-305
initial pool, 306
iterative, 306
merging subpatterns, 306
shortcuts identification, 304
See also colossal patterns
pattern-guided mining, 30
patterns
actionable, 22
co-location, 319
colossal, 301-307, 320
combined significance, 312
constraint-based generation, 296-301
context modeling of, 314-315
core, 304-305
distance, 309
evaluation methods, 264-271
expected, 22

expressed, 309
frequent, 17
hidden meaning of, 314
interesting, 21-23, 33
metric space, 306307
negative, 280, 291-294, 320
negatively correlated, 292, 293
rare, 280, 291-294, 320
redundancy between, 312
relative significance, 312
representative, 309
search space, 303
strongly negatively correlated, 292
structural, 282
type specification, 15-23
unexpected, 22
See also frequent patterns
pattern-trees, 264
Pearson’s correlation coefficient, 222
percentiles, 48
perception-based classification (PBC), 348
illustrated, 349
as interactive visual approach, 607
pixel-oriented approach, 348-349
split screen, 349
tree comparison, 350
phylogenetic trees, 590
pivot (rotate) operation, 148
pixel-oriented visualization, 57
planning and analysis tools, 153
point queries, 216, 217, 220
pool-based approach, 433
positive correlation, 55, 56
positive tuples, 364
positively skewed data, 47
possibility theory, 428
posterior probability, 351
postpruning, 344-345, 346
power law distribution, 592
precision measure, 368—369
predicate sets
frequent, 288-289
k, 289
predicates
repeated, 288
variables, 295
prediction, 19
classification, 328
link, 593-594
loan payment, 608—609
with naive Bayesian classification, 353—-355
numeric, 328, 385



prediction cubes, 227-230, 235
example, 228-229
Probability-Based Ensemble, 229-230
predictive analysis, 18—-19
predictive mining tasks, 15
predictive statistics, 24
predictors, 328
prepruning, 344, 346
prime relations
contrasting classes, 175, 177
deriving, 174
target classes, 175, 177
principle components analysis (PCA), 100, 102-103
application of, 103
correlation-based clustering with, 511
illustrated, 103
in lower-dimensional space extraction, 578
procedure, 102-103
prior probability, 351
privacy-preserving data mining, 33, 621, 626
distributed, 622
k-anonymity method, 621-622
I-diversity method, 622
as mining trend, 624-625
randomization methods, 621
results effectiveness, downgrading, 622
probabilistic clusters, 502-503
probabilistic hierarchical clustering, 467-470
agglomerative clustering framework, 467,
469
algorithm, 470
drawbacks of using, 469-470
generative model, 467469
interpretability, 469
understanding, 469
See also hierarchical methods
probabilistic model-based clustering, 497-508, 538
expectation-maximization algorithm, 505-508
fuzzy clusters and, 499-501
product reviews example, 498
user search intent example, 498
See also cluster analysis
probability
estimation techniques, 355
posterior, 351
prior, 351
probability and statistical theory, 601
Probability-Based Ensemble (PBE), 229-230
PROCLUS, 511
profiles, 614
proximity measures, 67
for binary attributes, 70-72
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for nominal attributes, 68-70
for ordinal attributes, 74-75
proximity-based methods, 552, 560-567, 581
density-based, 564-567
distance-based, 561-562
effectiveness, 552
example, 552
grid-based, 562-564
types of, 552, 560
See also outlier detection
pruning
cost complexity algorithm, 345
data space, 300-301
decision trees, 331, 344-347
in k-nearest neighbor classification, 425
network, 406—407
pattern space, 295, 297-300
pessimistic, 345
postpruning, 344-345, 346
prepruning, 344, 346
rule, 363
search space, 263, 301
sets, 345
shared dimensions, 205
sub-itemset, 263
pyramid algorithm, 101

Q

quality control, 600
quantile plots, 51-52
quantile-quantile plots, 52
example, 53-54
illustrated, 53
See also graphic displays
quantitative association rules, 281, 283, 288,
320
clustering-based mining, 290-291
data cube-based mining, 289-290
exceptional behavior disclosure, 291
mining, 289
quartiles, 48
first, 49
third, 49
queries, 10
intercuboid expansion, 223-225
intracuboid expansion, 221-223
language, 10
OLAP, 129, 130
point, 216, 217, 220
processing, 163—-164, 218-227
range, 220
relational operations, 10
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queries (Continued) redundancy-aware top-k patterns, 281, 311, 320
subcube, 216, 217-218 extracting, 310-312
top-k, 225-227 finding, 312
query languages, 31 strategy comparison, 311-312
query models, 149-150 trade-offs, 312
query-driven approach, 128 refresh, in back-end tools/utilities, 134
querying function, 433 regression, 19, 90
coefficients, 105-106
example, 19
R linear, 90, 105-106
rag bag criterion, 488 in statistical data mining, 599
RainForest, 385 regression analysis, 19, 328
random forests, 382-383 in time-series data, 587-588
random sampling, 370, 386 relational databases, 9
random subsampling, 370 components of, 9
random walk, 526 mining, 10
similarity based on, 527 relational schema for, 10
randomization methods, 621 relational OLAP (ROLAP), 132, 164, 165, 179
range, 48 relative significance, 312
interquartile, 49 relevance analysis, 19
range queries, 220 repetition, 346
ranking replication, 347
cubes, 225-227, 235 illustrated, 346
dimensions, 225 representative patterns, 309
function, 225 retail industry, 609-611
heterogeneous networks, 593 RIPPER, 359, 363
rare patterns, 280, 283, 320 robustness, classification, 369
example, 291-292 ROC curves, 374, 386
mining, 291-294 classification models, 377
ratio-scaled attributes, 4344, 79 classifier comparison with, 373-377
reachability density, 566 illustrated, 376, 377
reachability distance, 565 plotting, 375
recall measure, 368-369 roll-up operation, 11, 146
recognition rate, 366-367 rough set approach, 428-429, 437
recommender systems, 282, 615 row enumeration, 302
advantages, 616 rule ordering, 357
biclustering for, 514-515 rule pruning, 363
challenges, 617 rule quality measures, 361-363
collaborative, 610, 615, 616, 617, 618 rule-based classification, 355-363, 386
content-based approach, 615, 616 [F-THEN rules, 355-357
data mining and, 615-618 rule extraction, 357—359
error types, 617-618 rule induction, 359-363
frequent pattern mining for, 319 rule pruning, 363
hybrid approaches, 618 rule quality measures, 361-363
intelligent query answering, 618 rules for constraints, 294

memory-based methods, 617
use scenarios, 616

recursive partitioning, 335 S
reduced support, 285, 286 sales campaign analysis, 610
redundancy samples, 218

in data integration, 94 cluster, 108-109

detection by correlations analysis, 94-98 data, 219



simple random, 108
stratified, 109-110
sampling
in Apriori efficiency, 256
as data redundancy technique, 108-110
methods, 108-110
oversampling, 384-385
random, 386
with replacement, 380-381
uncertainty, 433
undersampling, 384-385
sampling cubes, 218-220, 235
confidence interval, 219-220
framework, 219-220
query expansion with, 221
SAS Enterprise Miner, 603, 604
scalability
classification, 369
cluster analysis, 446
cluster methods, 445
data mining algorithms, 31
decision tree induction and, 347-348
dimensionality and, 577
k-means, 454
scalable computation, 319
SCAN. See Structural Clustering Algorithm for
Networks
core vertex, 531
illustrated, 532
scatter plots, 54
2-D data set visualization with, 59
3-D data set visualization with, 60
correlations between attributes, 54-56
illustrated, 55
matrix, 56, 59
schemas
integration, 94
snowflake, 140-141
star, 139-140
science applications, 611-613
search engines, 28
search space pruning, 263, 301
second guess heuristic, 369
selection dimensions, 225
self-training, 432
semantic annotations
applications, 317, 313, 320-321
with context modeling, 316
from DBLP data set, 316-317
effectiveness, 317
example, 314-315
of frequent patterns, 313-317

Index

mutual information, 315-316
task definition, 315
Semantic Web, 597
semi-offline materialization, 226
semi-supervised classification, 432-433,
437
alternative approaches, 433
cotraining, 432-433
self-training, 432
semi-supervised learning, 25
outlier detection by, 572
semi-supervised outlier detection, 551
sensitivity analysis, 408
sensitivity measure, 367
sentiment classification, 434
sequence data analysis, 319
sequences, 586
alignment, 590
biological, 586, 590-591
classification of, 589-590
similarity searches, 587
symbolic, 586, 588—-590
time-series, 586, 587—-588
sequential covering algorithm, 359
general-to-specific search, 360
greedy search, 361
illustrated, 359
rule induction with, 359-361
sequential pattern mining, 589
constraint-based, 589
in symbolic sequences, 588-589
shapelets method, 590
shared dimensions, 204
pruning, 205
shared-sorts, 193
shared-partitions, 193
shell cubes, 160
shell fragments, 192, 235
approach, 211-212
computation algorithm, 212, 213
computation example, 214-215
precomputing, 210
shrinking diameter, 592
sigmoid function, 402
signature-based detection, 614
significance levels, 373
significance measure, 312
significance tests, 372373, 386
silhouette coefficient, 489—490
similarity
asymmetric binary, 71
cosine, 77-78
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similarity (Continued)
measuring, 65-78, 79
nominal attributes, 70
similarity measures, 447-448, 525-528
constraints on, 533
geodesic distance, 525-526
SimRank, 526-528
similarity searches, 587
in information networks, 594
in multimedia data mining, 596
simple random sample with replacement
(SRSWR), 108
simple random sample without replacement
(SRSWOR), 108
SimRank, 526-528, 539
computation, 527-528
random walk, 526-528
structural context, 528
simultaneous aggregation, 195
single-dimensional association rules, 17, 287
single-linkage algorithm, 460, 461
singular value decomposition (SVD), 587
skewed data
balanced, 271
negatively, 47
positively, 47
wavelet transforms on, 102
slice operation, 148
small-world phenomenon, 592
smoothing, 112
by bin boundaries, 89
by bin means, 89
by bin medians, 89
for data discretization, 90
snowflake schema, 140
example, 141
illustrated, 141
star schema versus, 140
social networks, 524-525, 526528
densification power law, 592
evolution of, 594
mining, 623
small-world phenomenon, 592
See also networks
social science/social studies data mining,
613
soft clustering, 501
soft constraints, 534, 539
example, 534
handling, 536-537
space-filling curve, 58
sparse data, 102

sparse data cubes, 190
sparsest cuts, 539
sparsity coefficient, 579
spatial data, 14
spatial data mining, 595
spatiotemporal data analysis, 319
spatiotemporal data mining, 595, 623624
specialized SQL servers, 165
specificity measure, 367
spectral clustering, 520-522, 539
effectiveness, 522
framework, 521
steps, 520-522
speech recognition, 430
speed, classification, 369
spiral method, 152
split-point, 333, 340, 342
splitting attributes, 333
splitting criterion, 333, 342
splitting rules. See attribute selection measures
splitting subset, 333
SQL, as relational query language, 10
square-error function, 454
squashing function, 403
standard deviation, 51
example, 51
function of, 50
star schema, 139
example, 139-140
illustrated, 140
snowflake schema versus, 140
Star-Cubing, 204-210, 235
algorithm illustration, 209
bottom-up computation, 205
example, 207
for full cube computation, 210
ordering of dimensions and, 210
performance, 210
shared dimensions, 204-205
starnet query model, 149
example, 149-150
star-nodes, 205
star-trees, 205
compressed base table, 207
construction, 205
statistical data mining, 598-600
analysis of variance, 600
discriminant analysis, 600
factor analysis, 600
generalized linear models, 599-600
mixed-effect models, 600
quality control, 600



regression, 599
survival analysis, 600
statistical databases (SDBs), 148
OLAP systems versus, 148—149
statistical descriptions, 24, 79
graphic displays, 4445, 51-56
measuring the dispersion, 48-51
statistical hypothesis test, 24
statistical models, 23-24
of networks, 592-594
statistical outlier detection methods, 552, 553560,
581
computational cost of, 560
for data analysis, 625
effectiveness, 552
example, 552
nonparametric, 553, 558-560
parametric, 553-558
See also outlier detection
statistical theory, in exceptional behavior disclosure,
291
statistics, 23
inferential, 24
predictive, 24
StatSoft, 602, 603
stepwise backward elimination, 105
stepwise forward selection, 105
stick figure visualization, 61-63
STING, 479-481
advantages, 480—481
as density-based clustering method, 480
hierarchical structure, 479, 480
multiresolution approach, 481
See also cluster analysis; grid-based methods
stratified cross-validation, 371
stratified samples, 109-110
stream data, 598, 624
strong association rules, 272
interestingness and, 264-265
misleading, 265
Structural Clustering Algorithm for Networks
(SCAN), 531-532
structural context-based similarity, 526
structural data analysis, 319
structural patterns, 282
structure similarity search, 592
structures
as contexts, 575
discovery of, 318
indexing, 319
substructures, 243
Student’s ¢-test, 372
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subcube queries, 216, 217-218
sub-itemset pruning, 263
subjective interestingness measures, 22
subject-oriented data warehouses, 126
subsequence, 589
matching, 587
subset checking, 263-264
subset testing, 250
subspace clustering, 448
frequent patterns for, 318-319
subspace clustering methods, 509, 510-511,
538
biclustering, 511
correlation-based, 511
examples, 538
subspace search methods, 510-511
subspaces
bottom-up search, 510-511
cube space, 228-229
outliers in, 578-579
top-down search, 511
substitution matrices, 590
substructures, 243
sum of the squared error (SSE), 501
summary fact tables, 165
superset checking, 263
supervised learning, 24, 330
supervised outlier detection, 549-550
challenges, 550
support, 21
association rule, 21
group-based, 286
reduced, 285, 286
uniform, 285-286
support, rule, 245, 246
support vector machines (SVMs), 393, 408—-415,
437
interest in, 408
maximum marginal hyperplane, 409, 412
nonlinear, 413-415
for numeric prediction, 408
with sigmoid kernel, 415
support vectors, 411
for test tuples, 412413
training/testing speed improvement, 415
support vectors, 411, 437
illustrated, 411
SVM finding, 412
supremum distance, 7374
surface web, 597
survival analysis, 600
SVMs. See support vector machines
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symbolic sequences, 586, 588
applications, 589
sequential pattern mining in, 588-589
symmetric binary dissimilarity, 70
synchronous generalization, 175

T
tables, 9
attributes, 9
contingency, 95
dimension, 136
fact, 165
tuples, 9
tag clouds, 64, 66
Tanimoto coefficient, 78
target classes, 15, 180
initial working relations, 177
prime relation, 175, 177
targeted marketing, 609
taxonomy formation, 20
technologies, 23-27, 33, 34
telecommunications industry, 611
temporal data, 14
term-frequency vectors, 77
cosine similarity between, 78
sparse, 77
table, 77
terminating conditions, 404
test sets, 330
test tuples, 330
text data, 14
text mining, 596-597, 624
theoretical foundations, 600-601, 625
three-layer neural networks, 399
threshold-moving approach, 385
tilted time windows, 598
timeliness, data, 85
time-series data, 586, 587
cyclic movements, 588
discretization and, 590
illustrated, 588
random movements, 588
regression analysis, 587-588
seasonal variations, 588
shapelets method, 590
subsequence matching, 587
transformation into aggregate approximations,
587
trend analysis, 588
trend or long-term movements, 588
time-series data analysis, 319
time-series forecasting, 588

time-variant data warehouses, 127
top-down design approach, 133, 151
top-down subspace search, 511
top-down view, 151
topic model, 26-27
top-k patterns/rules, 281
top-k queries, 225
example, 225-226
ranking cubes to answer, 226-227
results, 225
user-specified preference components,
225
top-k strategies
comparison illustration, 311
summarized pattern, 311
traditional, 311
TrAdaBoost, 436
training
Bayesian belief networks, 396-397
data, 18
sets, 328
tuples, 332-333
transaction reduction, 255
transactional databases, 13
example, 13-14
transactions, components of, 13
transfer learning, 430, 435, 434—436, 438
applications, 435
approaches to, 436
heterogeneous, 436
negative transfer and, 436
target task, 435
traditional learning versus, 435
treemaps, 63, 65
trend analysis
spatial, 595
in time-series data, 588
for time-series forecasting, 588
trends, data mining, 622625, 626
triangle inequality, 73
trimmed mean, 46
trimodal, 47
true negatives, 365
true positives, 365
t-test, 372
tuples, 9
duplication, 98-99
negative, 364
partitioning, 334, 337
positive, 364
training, 332-333
two sample t-test, 373



two-layer neural networks, 399
two-level hash index structure, 264

U

ubiquitous data mining, 618-620, 625
uncertainty sampling, 433
undersampling, 384, 386
example, 384—385
uniform support, 285-286
unimodal, 47
unique rules, 92
univariate distribution, 40
univariate Gaussian mixture model, 504
univariate outlier detection, 554—555
unordered attributes, 103
unordered rules, 358
unsupervised learning, 25, 330, 445, 490
clustering as, 25, 445, 490
example, 25
supervised learning versus, 330
unsupervised outlier detection, 550
assumption, 550
clustering methods acting as, 551
upper approximation, 427
user interaction, 30-31

A\

values
exception, 234
expected, 97, 234
missing, 88—89
residual, 234
in rules or patterns, 281
variables
grouping, 231
predicate, 295
predictor, 105
response, 105
variance, 51, 98
example, 51
function of, 50
variant graph patterns, 591
version space, 433
vertical data format, 260
example, 260-262

Index

frequent itemset mining with, 259-262,
272

video data analysis, 319

virtual warehouses, 133

visibility graphs, 537

visible points, 537

visual data mining, 602-604, 625
data mining process visualization, 603
data mining result visualization, 603
data visualization, 602—-603
as discipline integration, 602
illustrations, 604—607
interactive, 604, 607
as mining trend, 624

Viterbi algorithm, 591

w

warehouse database servers, 131
warehouse refresh software, 151
waterfall method, 152
wavelet coefficients, 100
wavelet transforms, 99, 100-102
discrete (DWT), 100-102
for multidimensional data, 102
on sparse and skewed data, 102
web directories, 28
web mining, 597, 624
content, 597
as mining trend, 624
structure, 597-598
usage, 598
web search engines, 28, 523-524
web-document classification, 435
weight arithmetic mean, 46
weighted Euclidean distance, 74
Wikipedia, 597
WordNet, 597
working relations, 172
initial, 168, 169
World Wide Web (WWW), 1-2, 4, 14
Worlds-with-Worlds, 63, 64
wrappers, 127

y 4

z-score normalization, 114-115
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