
Classes and objects
[image:]
[image:]
[image:]
[image:]
	
[image:]
[image:]
[image:]
[image:]
For example :
	 int Findsum (int num1 , int num2)
 {
 int sum = num1 + num2;
 return sum ;
 }
	Here, we defined a method named Findsum which takes two parameters of int type (num1 and num2) and returns a value of type int using the keyword return. If a method does not return anything, its return type would be void. A method can also optionally take no parameter (a parameterless method).

[image:]
[image:]
[image:]
[image:]
	[image:]
[image:]
[image:]
[image:]
Constructors
A constructor initializes an object when it is created. It has the same name as its class and is syntactically similar to a method. However, constructors have no explicit return type. The general form of a constructor is shown here:

access class-name(param-list) {
// constructor code
}

Typically, you will use a constructor to give initial values to the instance variables defined by the class or to perform any other startup procedures required to create a fully formed object. Also, usually, access is public because constructors are normally called from outside their class. The param-list can be empty, or it can specify one or more parameters.
All classes have constructors, whether you define one or not, because C# automatically provides a default constructor that causes all member variables to be initialized to their default values. For most value types, the default value is zero. For bool, the default is false.
For reference types, the default is null. However, once you define your own constructor, the default constructor is no longer used.
Here is a simple example that uses a constructor:

Ex : Design and implement a class to find the area of Circle?

class Circle
{
 private double radius;
 public Circle(double r) // constructor
 {
 radius = r;
 }
 public double Area()
 {
 return radius * radius * 3.14;
 }
 }
class Program
{
 static void Main(string[] args)
 {
 Circle obj1 = new Circle(3.5);
 Circle obj2 = new Circle(10);
 Console.WriteLine("the area of first circle is " + obj1.Area());
 Console.WriteLine("the area of second circle is " + obj2.Area());
 Console.ReadKey();
 }
}
Ex2 Design and implement a class to read two integer numbers and find the largest number

namespace CollectionsApplication
{
 class MaxNumber
 {
 private int number1;
 private int number2;
 public MaxNumber(int num1, int num2) // constructor
 {
 number1 = num1;
 number2 = num2;
 }

 public int FindMax()
 {
 if (number1 > number2)
 return number1;
 else
 return number2;
 }
 }
 class Test
 {
 static void Main(string[] args)
 {
 MaxNumber Max1 = new MaxNumber(50, 100);
 MaxNumber Max2 = new MaxNumber(80, 30);
 Console.WriteLine("Max value is : " + Max1.FindMax());
 Console.WriteLine("Max value is : " + Max2.FindMax());
 Console.ReadLine();
 }
 }
}

Example 3: Design and implement a class to create array table of 9 real numbers , and search the value ele in array and print index of numbers?

namespace CollectionsApplication
{
 class Search1
 {
 private double[] table;
 private double element;
 private int size;
 public Search1(int n, double ele) // constructor
 {
 table = new double[n];
 element = ele;
 size = n;
 }
 public void ReadArr()
 {
 Console.WriteLine("input the " + size + "elements ");
 for (int i = 0; i < size; i++)
 {
 Console.WriteLine("input element " + i);
 table[i] = double.Parse(Console.ReadLine());
 }
 }
 public void searchele()
 {
 int i;
 for (i = 0; i < size; i++)
 if (element == table[i]) break;
 if (i == size)
 Console.WriteLine("Value : " + element + "Not Found.");
 else
 Console.WriteLine("Value : " + element + " Order :" + i);
 }
 static void Main(string[] args)
 {
 Search1 obj1 = new Search1(10, 3.5);
 Search1 obj2 = new Search1(5, 10);
 obj1.ReadArr();
 obj1.searchele();
 obj2.ReadArr();
 obj2.searchele();
 Console.ReadKey();
 }
 }
} 	

image4.png
Fields

Fields are the data contained in the class. Fields may be implicit data types. objects of some other class.
enumerations, structs or delegates. In the example below. we define a class named Student containing a student's
name, age, marks in maths, marks in English. marks in science, total marks. o‘blaiued marks and a percentage.

image5.png
class Student

{

// fields contained in Student class

string name;

int
int
int
int
int
int

double

age;
marksInMaths;
marksInEnglish;
marksInscience;
totalMarks = 300; 1
abtainedMarks;

percentage;

initialization

image6.png
Default values for different data types are shown below:

Data Type | Default Value
int 0
long 0
float 0.0
double 0.0
bool False
char "\0' (null character)
string " (empty string)
Objects null

image7.png
Methods

Methods are the operations performed on the data. A method may take some input values through its parameters
and may return a value of a particular data type. The signature of the method takes the form

image8.png
<return type> <name of method>(<data type> <identifiers,

{

// body of the method

<data type> <identifier,..

)

image9.png
Instantiating the class

In C# a class is instantiated (making its objects) using the new keyword.

Student theStudent = new Student();

You can also declare the reference and assign an object to it in different steps. The following two lines are
equivalent to the above line

Student theStudent;

theStudent = new Student ();

image10.png
Accessing the members of a class

The members of a class (fields. methods and properties) are accessed using dot "' operator against the reference of
the object like this:

image11.png
Student theStudent = new Student();

theStudent .marksOfMaths = 93;
theStudent .CalculateTotal () ;

Console.WriteLine (theStudent .obtainedMarks) ;

image12.png
Let's now make our Student class with some related fields. methods and then instantiate it in the Main() method.

image13.png
using System;

namespace CSharpschool

{

// Defining a class to store and manipulate students information

class Student

{

// fields

string name;

int age;

int marksOfMaths;
int marksOfEnglish;
int marksOfScience;
int totalMarks = 300;
int obtainedMarks ;

double percentage;

// methods

void CalculateTotalMarks ()

{

obtainedMarks = marksOfMaths + marksOfEnglish + marksOfScience;

image14.png
void CalculatePercentage ()

{

percentage

(double) obtainedMarks / totalMarks * 100;

double GetPercentage ()

{

return percentage;

image15.png
// Main method or entry point of program

static void Main()

{

// creating new instance of Student
Student stl = new Student () ;

// setting the values of fields
stl.name - "Einstein";

stl.age = 20;

st1.marksOfEnglish = 80;

st1.marksOfMaths = 99;

image16.png
stl.marksOfScience = 96;
// calling functions
st1.CalculateTotalMarks () ;
st1.CalculatePercentage () ;

double stlPercentage - stl.GetPercentage();
// calling and retrieving value

// returned by the function

Student st2 = new Student () ;
st2.name = "Newton";
st2.age = 23;
st2.marksOfEnglish = 77;
st2.marksOfMaths = 100;
st2.marksOfScience = 99;
st2.CalculateTotalMarks () ;
st2.CalculatePercentage () ;

double st2Percentage = st2.GetPercentage () ;

Console.WriteLine ("{0} of {1} years age got {2}% marks", stl.name, stl.age, stl.percentage);

Console.WriteLine ("

0} of {1} years age got {2}% marks", st2.name, st2.age, st2.percentage);

image1.png
Concept of a Class

A class is simply an abstract model used to define a new data types. A class may contain any combination of
encapsulated data (fields or member variables), operations that can be performed on data (methods) and accessors
to data (properties). For example. there is a class String in the System namespace of .Net Framework Class Library
(FCL). This class contains an array of characters (data) and provide different operations (methods) that can be
applied to its data like ToLowerCase(). Trim(). Substring(). etc. It also has some properties like Length (used to
find the length of the string).

A class in C# is declared using the keyword class and its members are enclosed in parenthesis

class MyClass

{

// fields, operations and properties go here

‘where MyClass is the name of class or new data type that we are defining here.

image2.png
Objects

As mentioned above. a class is an abstract model. An object is the concrete realization or instance built on the
model specified by the class. An object is created in the memory using the keyword 'new"' and is referenced by an
identifier called a "reference”.

MyClass myObjectReference = new MyClass();
In the line above, we made an object of type MyClass which is referenced by an identifier myObjectReference.
The difference between classes and implicit data types is that objects are reference types (passed by reference)

while implicit data types are value type (passed by making a copy). Also. objects are created at the heap while
implicit data types are stored on stack.

image3.png
Student Class

string studentName
int studentRollNum

Student Objectl Student Object2 Student Object3

studentName = "pqr"

studentRollNum = 1 studentRollNum = 2

|
i

|

| studentName = "xyz"
| studentRollNum = 3
i

|
i
|
| studentName = "abc"
i
i
i

