
CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 1 

 

 

 

 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 2 

Chapter One 

Database Fundamentals 

 

1.1 Properties of a Database 

A database is a collection of interrelated data items that are managed 

as a single unit. 

  

This definition is deliberately broad because so much variety exists 

across the various software vendors that provide database systems. For 

example, Microsoft Access places the entire database in a single data file, 

so an Access database can be defined as the file that contains the data 

items.  

 

Oracle Corporation defines its database as a collection of physical 

files that are managed by an instance of its database software product. 

An instance is a copy of the database software running in memory.  

 

Microsoft SQL Server and Sybase Adaptive Server Enterprise (ASE) 

define a database as a collection of data items that have a common 

owner, and multiple databases are typically managed by a single 

instance of the database management software.  

 

This can all be quite confusing if you work with multiple products, 

because, for example, a database as defined by Microsoft SQL Server or 

Sybase ASE is exactly what Oracle Corporation calls a schema. 

 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 3 

A database object is a named data structure that is stored in a 

database. The specific types of database objects supported in a database 

vary from vendor to vendor and from one database model to another.  

 

Database model refers to the way in which a database organizes its 

data to pattern the real world.  

 

1.2 The Database Management System 

The database management system (DBMS) is software provided by 

the database vendor. Software products such as Microsoft Access, 

Oracle, Microsoft SQL Server, Sybase ASE, DB2, Ingres, and MySQL are all 

DBMSs.  

 

If it seems odd to you that the DBMS acronym is used instead of 

merely DMS, remember that the term database was originally written as 

two words, and by convention has since become a single compound 

word. 

 

The DBMS provides all the basic services required to organize and 

maintain the database, including the following: 

 

 Moves data to and from the physical data files as needed. 

 Manages concurrent data access by multiple users, including 

provisions to prevent simultaneous updates from conflicting with 

one another. 

 Manages transactions so that each transaction’s database changes 

are an all-or-nothing unit of work. In other words, if the 

transaction succeeds, all database changes made by it are recorded 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 4 

in the database; if the transaction fails, none of the changes it made 

are recorded in the database. 

 Supports a query language, which is a system of commands that a 

database user employs to retrieve data from the database. 

 Provides provisions for backing up the database and recovering 

from failures. 

 Provides security mechanisms to prevent unauthorized data access 

and modification. 

 

A data bank and a database are the same thing. Data bank is merely 

an older term that was used by the scientists who developed early 

database systems. In fact, the term data bank is still used in a few human 

languages. 

 

1.3 Layers of Data Abstraction 

Databases are unique in their ability to present multiple users with 

their own distinct views of the data while storing the underlying data 

only once. These are collectively called user views. 

 

 A user in this context is any person or application that signs on to 

the database for the purpose of storing and/or retrieving data. 

  

The architecture shown in Figure 1-1 was first developed by 

ANSI/SPARC (American National Standards Institute/Standards 

Planning and Requirements Committee) in the 1970s and quickly 

became a foundation for much of the database research and 

development efforts that followed. Most modern DBMSs follow this 

architecture, which is composed of three primary layers: the physical 

layer, the logical layer, and the external layer.  



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 5 

 

 
 

Figure 1-1: Database layers of abstraction 
 

The Physical Layer 

The physical layer contains the data files that hold all the data for the 

database. 

 
The Logical Layer 

The logical layer or logical model comprises the first of two layers of 

abstraction in the database: the physical layer has a concrete existence 

in the operating system files, whereas the logical layer exists only as 

abstract data structures assembled from the physical layer as needed. 

 

The External Layer 

The external layer or external model is the second layer of 

abstraction in the database. This layer is composed of the user views, 

which are collectively called the subschema. 

 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 6 

Physical Data Independence 

The ability to alter the physical file structure of a database without 

disrupting existing users and processes is known as physical data 

independence. Here are some examples of physical changes that can be 

made in a data-independent manner: 

 Moving a database data file from one device to another or one 

directory to another 

 Splitting or combining database data files 

 Renaming database data files 

 Moving a database object from one data file to another 

 Adding new database objects or data files 

 
Logical Data Independence 

The ability to make changes to the logical layer without disrupting 

existing users and processes is called logical data independence. Here 

are some examples of changes in the logical layer that can be safely 

made thanks to logical data independence: 

  Adding a new database object 

  Adding data items to an existing object 

 Making any change in which a view can be placed in the external 

model that replaces (and processes the same as) the original 

object in the logical layer, such as combining or splitting existing 

objects 

 

1.4 Prevalent Database Models 

A database model is essentially the architecture that the DBMS uses 

to store objects within the database and relate them to one another.  

 

 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 7 

 

Flat Files 

Flat files are “ordinary” operating system files, in that records in a file 

contain no information to communicate the file structure or any relationship 

among the records to the application that uses the file. 

 

 Flat files are often used to store database information. In this case, the 

operating system is still unaware of the contents and structure of the files, but 

the DBMS has metadata that allows it to translate between the flat files in the 

physical layer and the database structures in the logical layer.  

 

Metadata, which literally means “data about data,” is the term used for the 

information that the database stores in its catalog to describe the data stored 

in the database and the relationships among the data. The metadata for a 

customer, for example, might include all the data items collected about the 

customer (such as name, address, and account status), along with the length, 

minimum and maximum data values, and a brief description of each data item, 

figure 1-2 shows a sample flat file system. 

 

An application program is a unit of computer program logic that performs 

a particular function within an application system.  

 

 
Figure 1-2:  Flat file order system 

 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 8 

The Hierarchical Model 

The earliest databases followed the hierarchical model, which 

evolved from the file systems that the databases replaced, with records 

arranged in a hierarchy much like an organization chart. 

 

 Each file from the flat file system became a record type, or node in 

hierarchical terminology—but the term record is used here for 

simplicity. Records were connected using pointers that contained the 

address of the related record. Pointers told the computer system where 

the related record was physically located, much as a street address 

directs you to a particular building in a city, a URL directs you to a 

particular web page on the Internet, or GPS coordinates point to a 

particular location on the planet. 

 

 Each pointer establishes a parent-child relationship, also called a 

one-to-many relationship, in which one parent can have many children, 

but each child can have only one parent, figure 1-3 shows the 

hierarchical structure of the hierarchical model. 

 

 
 

Figure 1-3:  Hierarchical model structure 
 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 9 

 

The Network Model 

The network database model evolved at around the same time as the 

hierarchical database model. The most popular database based on the 

network model was the Integrated Database Management System 

(IDMS), originally developed by Cullinane (later renamed Cullinet). The 

product was enhanced with relational extensions, named IDMS/R and 

eventually sold to Computer Associates.  

 

As with the hierarchical model, record types (or simply records) 

depict what would be separate files in a flat file system, and those 

records are related using one-to-many relationships, called owner-

member relationships or sets in network model terminology. We’ll stick 

with the terms parent and child, again for simplicity.  

 

As with the hierarchical model, physical address pointers are used to 

connect related records, and any identification of the parent record(s) is 

removed from each child record to avoid possible inconsistencies. In 

contrast with the hierarchical model, the relationships are named so the 

programmer can direct the DBMS to use a particular relationship to 

navigate from one record to another in the database, thus allowing a 

record type to participate as the child in multiple relationships. 

 

The Relational Model 

In addition to complexity, the network and hierarchical database 

models share another common problem—they are inflexible. Computer 

scientists were still looking for a better way. 

 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 11 

The relational model is based on the notion that any preconceived 

path through a data structure is too restrictive a solution, especially in 

light of ever-increasing demands to support ad hoc requests for 

information. Database users simply cannot think of every possible use of 

the data before the database is created; therefore, imposing predefined 

paths through the data merely creates a “data jail.” 

 

 The relational model allows users to relate records as needed rather 

than as predefined when the records are first stored in the database. 

Moreover, the relational model is constructed such that queries work 

with sets of data (for example, all the customers who have an 

outstanding balance) rather than one record at a time, as with the 

network and hierarchical models. 

 

The relational model presents data in familiar two-dimensional 

tables, much like a spreadsheet does. Unlike a spreadsheet, the data is 

not necessarily stored in tabular form and the model also permits 

combining (joining in relational terminology) tables to form views, which 

are also presented as two-dimensional tables. Instead of linking related 

records together with physical address pointers, as is done in the 

hierarchical and network models, a common data item is stored in each 

table; just as was done in flat file systems, figure 1-4 shows the 

relational model. 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 11 

 
 

Figure 1-4:  Relational model structure  
 

In Figure 1-5, three of the five tables have been represented with 

sample data in selected columns. 

 

 

 
Figure 1-5:  Relational table contents 

 

 

The Object-Oriented Model 

The object-oriented (OO) model actually had its beginnings in the 

1970s, but it did not see significant commercial use until the 1990s.  

 



CHAPTER ONE: DATABASE FUNDAMENTALS  

 

 12 

An object is a logical grouping of related data and program logic that 

represents a real-world thing, such as a customer, employee, order, or 

product. Individual data items, such as customer ID and customer name, 

are called variables in the OO model and are stored within each object. 

You might also see variables referred to as instance variables or 

properties, but I will stick with the term variables for consistency.  

 

In OO terminology, a method is a piece of application program logic 

that operates on a particular object and provides a finite function, such 

as checking a customer’s credit limit or updating a customer’s address. 

Among the many differences between the OO model and the models 

already presented, the most significant is that variables can be accessed 

only through methods. This property is called encapsulation. 

 

 
 

Figure 1-6:  The anatomy of an object 


