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A. Part I (Theory) 

I. Introduction 

Quantum Mechanics is the physics of matter at scales much smaller than we are able to 

observe of feel. In another definition, a Quantum Mechanics is one of the more 

sophisticated field in physics that has affected our understanding of Nano-meter length 

scale systems important for chemistry, materials, optics, and electronics. The existence 

of orbitals and energy levels in atoms can only be explained by quantum mechanics. 

Quantum mechanics can explain the behaviors of insulators, conductors, semi-

conductors, and giant magneto-resistance. It can explain the quantization of light and 

its particle nature in addition to its wave nature. Quantum mechanics can also explain 

the radiation of hot body, and its change of color with respect to temperature. It explains 

the presence of holes and the transport of holes and electrons in electronic devices. 

Quantum mechanics has played an important role in photonics, quantum electronics, 

and micro-electronics. 

 

II. Principles of Quantum Mechanics 

i. Energy quanta 

 In 1900. Planck postulated that thermal radiation emitted from a heated surface 

is in a form of discrete packets of energy called quanta. 

𝐸 = ℎ𝜐 
 

 
ii. Einstein interpretation for photoelectric effect: 

 In 1905, Einstein suggested the energy in a light wave is also contained in discrete 

packets or bundles. 

 The particle -like packet of energy is called photon, whose energy is given by 

𝐸 = ℎ𝜐 
 The minimum energy required to remove an electron is called the work function 

of the material and any access photon energy goes into kinetic energy of the 

photoelectron. 

𝑇𝑚𝑎𝑥 =
1

2
𝑚𝑣2 = ℎ𝜐 − ℎ𝜐𝑜 .      𝑊𝑜𝑟𝑘 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ℎ𝜐𝑜 
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III. Wave particle duality  

 The light wave in the photoelectric effect behave as if they are particle. 

 In 1924, De Broglie postulated the existence of matter wave. Since wave exhibit 

particle-wave behavior, then particle should be expected to show particle-wave 

properties. 

Energy 𝐸 =
1

2
𝑚𝑣2 

Momentum �⃗� = 𝑚�⃗� 

E-p relation 𝐸 =
𝑝2

2𝑚
 

Force 𝐹 = 𝑚𝑎 = 𝑚
𝑑2

𝑑𝑡2
 

 

  
Energy  𝐸 = ℎ𝜈 = ℏ𝑤 

Wavelength 𝜆 =
𝑐

𝜈
 

Wavelength of particle 𝜆 =
ℎ

√2𝑚𝐸
 

Wave equation 
𝜕2

𝜕𝑥2
Ψ(𝑥. 𝑡) =

1

𝑐2
𝜕2

𝜕𝑡2
 Ψ(𝑥. 𝑡) 

 Wave particle duality principle 

Particle: momentum ⇒ wavelength 

Wave: wavelength ⇒ momentum 

  The momentum of photon 𝑝 =
ℎ

𝜆
= ℏ𝑘.        (ℏ =

ℎ

2𝜋
.  𝑘 =

2𝜋

𝜆
). 

  The wavelength of particle 𝜆 =
ℎ

𝑝
,            ( De Broglie wavelength). 

 
i. De Broglie Hypothesis 

The reasoning that led de Broglie to put forward his revolutionary hypothesis runs as 

follows. The entire physical universe is composed of matter and radiation. In quantum 

theory of radiation, a fragment or quantum of energy E is assigned a frequency,                 

𝜔 (= 2𝜋𝜈) such that 𝐸 = ℎ𝜈. Although there is no physical sense of frequency, 

nevertheless the theory based on this assumption works well. From this notion de 

Broglie speculated that material particles, which are also fragment of energy                     

(e.g.,𝐸 = 𝑚𝑐2), might be assigned some characteristic frequency. A material particle 

of rest mass 𝑚𝑜 is equivalent to energy 𝑚𝑜𝑐
2, therefore, according to de Broglie idea 

we can write 

 𝑚𝑜𝑐
2 =  ℏ𝜔 

 Where 𝜔, is the frequency of some intrinsic periodic process that associated with the 

material particle; Let us see what this periodic process appears to an observer with 

respect to which it is moving. 

 

ii. Total Relativistic Energy 

The relativistic energy expression is the tool used to calculate binding energies of nuclei 

and the energy yields of nuclear fission and fusion. 

The famous Einstein relationship for energy 

𝐸 = 𝑚𝑐2 
includes both the kinetic energy and rest mass energy for a particle. The kinetic energy 

of a high speed particle can be calculated from 

𝐾𝐸 =  𝑚𝑐2 −𝑚𝑂𝑐
2 

http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html#c4
http://hyperphysics.phy-astr.gsu.edu/hbase/ke.html#ke
http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/releng.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/releng.html#c5
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In other manner, it can be blended with the relativistic momentum expression 

𝑝 =
𝑚𝑜𝑣

√1 −
𝑣2

𝑐2

 

to give an alternative expression for energy. The combination 𝑝𝑐 shows up often in 

relativistic mechanics. It can be manipulated as follows: 

𝑝2𝑐2 =
𝑚𝑜
2𝑣2𝑐2

1 −
𝑣2

𝑐2

=
𝑚𝑜
2 𝑣

2

𝑐2
𝑐4

1 −
𝑣2

𝑐2

 

and by adding and subtracting a term it can be put in the form: 

𝑝2𝑐2 =
𝑚𝑜
2𝑐2 [

𝑣2

𝑐2
− 1]

1 −
𝑣2

𝑐2

+
𝑚𝑜
2𝑐4

1 −
𝑣2

𝑐2

 = −𝑚𝑜
2𝑐4 + (𝑚𝑐2)2 

which may be rearranged to give the expression for energy.This means, the relativistic 

energy of a particle can also be expressed in terms of its momentum in the expression: 

𝐸 = 𝑚𝑐2=√𝑝2𝑐2 +𝑚𝑂
2𝑐4 

 For a particle with zero momentum  𝑝 = 0. 
𝐸 = 𝑚0𝑐

2 

 A light photon has 𝑚0 = 0, but it does have momentum 𝑝, 

𝐸 = 𝑝𝑐 

IV. The wave equation 

Wave equation (Traveling wave) 
𝜕2

𝜕𝑥2
�⃗⃗� =

1

𝑣2

𝜕2

𝜕𝑡2
�⃗⃗�, 

𝜕2

𝜕𝑥2
�⃗⃗⃗� =

1

𝑣2

𝜕2

𝜕𝑡2
�⃗⃗⃗�,    where 𝑣 =

1

√𝜇𝜀
 

The configuration or state of a quantum object is completely specified by a 

wavefunction denoted as ψ(x). 

Sinusoidal form 

�⃗⃗�(𝑟. 𝑡) = �⃗⃗�𝑜𝑐𝑜𝑠(�⃗⃗� ∙ 𝑟 − 𝜔𝑡 + 𝜙) 

Exponential form 

�⃗⃗�(𝑟. 𝑡) = �⃗⃗�𝑜 ∙ 𝑒
−𝑖(�⃗⃗�∙𝑟−𝜔𝑡+𝜙) 

Whereas, the program of classical mechanics is to determine the position of the particle 

at any given time 𝑥(𝑡).Once we know that, we can figure out the velocity (𝑣 =
𝑑𝑥

𝑑𝑡
), the 

momentum (𝑝 = 𝑚𝑣),the kinetic energy (𝐾𝐸 =
1

2
𝑚𝑣2), or any other dynamical 

variable of interest. 

The value of (position 𝑥 at any time 𝑡) for any microscopic object can be find by 

applying Newton's second law 𝐹 = 𝑚𝑎 = 𝑚
𝜕2𝑥

𝜕𝑡2
, the force can be expressed as the 

derivate of a potential energy function 𝐹 = −
𝜕𝑉

𝜕𝑡
.From these two form of force, we can 

determine the position 𝑥(𝑡), with applying an appropriate initial condition (typically 

the position and velocity at time 𝑡 = 0). Newton's law determines 𝑥(𝑡) for all future 

time. 

http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/relmom.html#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/debrog2.html#c2
http://hyperphysics.phy-astr.gsu.edu/hbase/relativ/relmom.html#c1
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While in the quantum mechanics approaches, this same problem is dealt differently. In 

this case, what we're looking for is the wave equation,Ψ(𝑟. 𝑡), [in one dimension like 𝑥 

for example a wave function or equation represents a function of 𝑥, for any given time 

t]; of the particle. 

The Schrödinger equation plays a role logically analogous to Newton Second law. 

Given suitable initial conditions [typically,𝜓(𝑟. 0)], the Schrödinger equation 

determines 𝜓(𝑥. 𝑡) for all future time, just as, in classical mechanics,  

The Born's statistical interpretation of the wave function has been used to describe the 

state of particle, which says that  |Ψ(𝑥. 𝑡)|2 gives the probability of finding the particle 

at point 𝑥, at time 𝑡 - or more precisely; 

|Ψ(𝑥. 𝑡)|2𝑑𝑥 = (
probability of finding the particle 

between 𝑥  and (𝑥 + 𝑑𝑥). at time 𝑡
) 

The statistical interpretation introduces a kind of indeterminacy into QM and because 

of the statistical interpretation, probability plays a control role in QM. For example, 

when an electron manifests as a wave, it is described by 

𝜓(𝑧) ∝ 𝑒𝑥𝑝(𝑖𝑘𝑧)         and       
𝜕2

𝜕𝑧2 
𝜓(𝑧) = −𝑘2𝜓(𝑧) 

And a generalization of this wave into three dimensions' yields 

∇2𝜓(𝑟) = −𝑘2𝜓(𝑟) 
The statistical interpretation of the wave function |Ψ(𝑥. 𝑡)|2is the probability density 

for finding the particle at point 𝑥 at time 𝑡.The value of the integral of the probability 

density must be equal 1, so that the particle's go to be somewhere 

∫ |Ψ(𝑥. 𝑡)|2𝑑𝑥 = 1
+∞

−∞

  

This mathematical relation represents the normalization of the probability density for 

finding the particle over all region. 

i. Uncertainty principle (Heisenberg principle)  

 It is impossible to simultaneously describe the absolute accuracy position and 

momentum of a particle. 

 It is impossible to simultaneously describe the absolute accuracy energy of 

particle and momentum of a particle. 

∆𝑝∆𝑥 ≥ ℏ                         exp (𝑘𝑥) 

∆𝐸∆𝑡 ≥ ℏ                         exp (𝜔𝑡) 

 The Uncertainty principle is only significant for subatomic particles 

ii. Operators in quantum mechanics 

An operator is a rule or an instruction which transforms a function into another function. 

Or (An operator is a rule for building one function from another). 

Example include the identity 1̂ such that 1̂𝑓(𝑥) = 𝑓(𝑥), the spatial derivative �̂� =
𝜕

𝜕𝑥
 

such that �̂�𝑓(𝑥) =
𝜕𝑓(𝑥)

𝜕𝑥
, the position �̂� = 𝑥 such that �̂�𝑓(𝑥) = 𝑥𝑓(𝑥).  Notationally, 

operators will be distinguished by hats on top of symbols.   
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All operator's com with a small set of special functions of their own. For an operator �̂�, 

if 

�̂�𝑓(𝑥. 𝐴) = 𝐴 ∙ 𝑓(𝑥. 𝐴) 

for a given 𝐴 ∈  𝐶, then 𝑓(𝑥) is an eigenfunction of the operator �̂� and A is the 

corresponding eigenvalue. Operators act on eigenfunctions in a way identical to 

multiplying the eigenfunction by a constant number. 

In physics or specially in quantum mechanics, to every observable quantity is associated 

a corresponding operator. 

For instance, 

 The momentum operator                             �̂� = −𝑖ℏ𝛻. 

�̂�𝑥 = −𝑖ℏ
𝜕2

𝜕𝑥2
,   �̂�𝑦 = −𝑖ℏ

𝜕2

𝜕𝑦2
. �̂�𝑧 = −𝑖ℏ

𝜕2

𝜕𝑧2
 

 The position operator                                      �̂� = 𝑥  

 The Hamiltonian operator              �̂� =
𝑝2

2𝑚
+ 𝑉(�̂�) = −

ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥) 

 The energy operator                                       �̂� = 𝑖ℏ
𝜕

𝜕𝑡
                

 The kinetic energy operator                          �̂� = −
ℏ2

2𝑚
𝛻 

 The angular momentum operator 

�̂�𝑥 = −𝑖ℏ (𝑦
𝜕

𝜕𝑧
− 𝑧

𝜕

𝜕𝑦
).   �̂�𝑦 = −𝑖ℏ (𝑧

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑧
). �̂�𝑧 = −𝑖ℏ (𝑥

𝜕

𝜕𝑦
− 𝑦

𝜕

𝜕𝑥
). 

These operators are derived as the same, such as in the case of the classic mechanics 

for the particle and from the relation following 

𝐿 = 𝑟 × 𝑝 = |

𝑖 𝑗 𝑘
𝑥 𝑦 𝑧
𝑝𝑥 𝑝𝑦 𝑝𝑧

| 

V. The Schrödinger's wave Equation 

 Schrödinger in 1924 provided a formulation called wave mechanics which 

incorporated  

 The principle of quanta (Planck). 

 Wave -particle duality (de Broglie). 

Based on the wave-particle duality principle, we will describe the motion of electron in 

a crystal by wave  

  Classical physics 

𝑝2

2𝑚
+ 𝑉(𝑥) = 𝐸 

  Wave mechanics  

                                                    𝒑 ⟶ −𝒊ℏ
𝝏

𝝏𝒙
        𝑬 → 𝒊ℏ

𝝏

𝝏𝒕
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Schrödinger's wave Equation 

−
ℏ2

2𝑚

𝜕2Ψ(𝑥. 𝑡)

𝜕𝑥2
+ 𝑉(𝑥)𝛹(𝑟. 𝑡) = 𝑖ℏ

𝜕𝛹(𝑟. 𝑡)

𝜕𝑡
  

𝜓(𝑟. 𝑡): wavefunction, 𝑉(𝑥): Potential function, 𝑚 : mass of the particle. 

 

i. The Schrödinger equation derivative 

The wave function 𝛹(𝑥. 𝑡) of a particle moving in x-direction in terms of 𝑝𝑥 and E can 

be expressed as: 

 
𝛹(𝑟. 𝑡) = 𝐴 exp [−𝑖 (

𝐸𝑡

ℏ
−
𝑝𝑥𝑥

ℏ
)] (1) 

From this equation 

 ∂Ψ

∂t
= −

iE

ℏ
Ψ (2) 

 
iℏ
∂Ψ

∂t
= EΨ (3) 

 ∂Ψ

∂x
=
i𝑝𝑥
ℏ
Ψ (4) 

 
−𝑖ℏ

∂Ψ

∂x
= 𝑝𝑥Ψ (5) 

Differentiating Eq. 1, again with respect to x, we have  

 
−𝑖ℏ

∂2Ψ

∂x2
= 𝑝𝑥

∂Ψ

∂x
= 𝑖

𝑝𝑥
2

ℏ
Ψ (6) 

 
−ℏ2

∂2Ψ

∂x2
= 𝑝𝑥

2Ψ (7) 

For a non-relativistic free particle, the total energy E of the particle moving in                          

x -direction is equal to its kinetic energy T.  

𝐸 = 𝑇 =
𝑝𝑥

2

2𝑚
 

Multiplying both sides of above equation by Ψ, we have 

 
𝐸Ψ =

𝑝𝑥
2

2𝑚
Ψ (8) 

Making use of Eqns. (2) and (7) we can write Eqn. (8) as: 

 
𝑖ℏ
𝜕𝛹

𝜕𝑡
=
−ℏ2

2𝑚

∂2Ψ

∂x2
 (9) 

This equation is known as time-dependent Schrödinger for a free particle. If the particle 

is moving in a force field described by potential energy function V, its total energy is 

𝐸 =
𝑝𝑥

2

2𝑚
+ 𝑉 

and the Schrödinger equation, it will be now in the form of 

 
𝑖ℏ
𝜕𝛹

𝜕𝑡
=
−ℏ2

2𝑚

∂2Ψ

∂x2
+ 𝑉𝛹 (10) 

in three dimensions, it is represented by:  

 
𝑖ℏ
𝜕𝛹

𝜕𝑡
=
−ℏ2

2𝑚
∇2𝛹 + 𝑉𝛹 (11) 
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is known as the time-dependent Schrödinger equation of a particle in three dimensions. 

The Schrödinger equation is motivated by further energy balance that total energy is 

equal to the sum of potential energy and kinetic energy. Defining the potential energy 

to be V (r), the energy balance equation becomes 

[−
ℏ2

2𝑚
∇2 + 𝑉(𝑟)]𝛹(𝑟. 𝑡) = 𝐸𝛹(𝑟. 𝑡) 

However, it predicts many experimental outcomes, as well as predicting the existence 

of electron orbitals inside an atom, and how electron would interact with other particles. 

 

ii. Stationary state (Time-independent Schrödinger Equation)  

When the potential energy V is independent of time, the wave function may be written 

as product of two wave functions, of which one is function of x and the other is function 

of t only. 

Assume the position and time parameters in wavefunction is separable. 

𝛹(𝑟. 𝑡) = 𝜓(𝑟)𝜙(𝑡)        𝑖𝑛 3𝐷 
or 

𝛹(𝑥. 𝑡) = 𝜓(𝑥)𝜙(𝑡)        𝑖𝑛 1𝐷 
The Schrödinger equation Eq. (10) can be written with this new form of the 

wavefunction as  

 −ℏ2

2𝑚
∙ 𝜙(𝑡)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑉(𝑥)𝜓(𝑥)𝜙(𝑡) = 𝑖ℏ𝜓(𝑥)

𝜕𝜙(𝑡)

𝜕𝑡
  

Divided the equation above be 𝜓(𝑥)𝜙(𝑡) we get 

−ℏ2

2𝑚
∙
1

𝜓(𝑥)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑉(𝑥) = 𝑖ℏ

1

𝜙(𝑡)

𝜕𝜙(𝑡)

𝜕𝑡
 

The left side of equation is a function of position x only and the right side is a function 

of time t only, which implies each side of this equation must be equal to same constant. 

−ℏ2

2𝑚
∙
1

𝜓(𝑥)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑉(𝑥) = 𝑖ℏ

1

𝜙(𝑡)

𝜕𝜙(𝑡)

𝜕𝑡
= 𝜂 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

 

iii. Physical meaning of 𝜼 

 

𝑖ℏ
1

𝜙(𝑡)

𝜕𝜙(𝑡)

𝜕𝑡
= 𝜂 (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

⇒  𝜙(𝑡) = 𝑒−𝑖(𝜂 ℏ⁄ )𝑡 = 𝑒−𝑖𝜔𝑡    The position-independent wavefunction is always in a               

Where        
𝜂

ℏ
= 𝜔                       form of exponential term 𝑒−𝑖𝜔𝑡. 

∵ 𝐸 = ℏ𝜔  ⇒ 𝜂 = 𝐸      The separation constant is the total energy E of the particle.                                

Whereas, the wave equation can be written as 𝛹(𝑥. 𝑡) = 𝜓(𝑥)𝜙(𝑡) =  𝜓(𝑥) 𝑒−𝑖𝜔𝑡       
Then we can find two solutions to the time-independent Schrödinger equation: 

−ℏ2

2𝑚
∙
1

𝜓(𝑥)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑉(𝑥) = 𝑖ℏ

1

𝜙(𝑡)

𝜕𝜙(𝑡)

𝜕𝑡
= 𝐸 

Or 

−ℏ2

2𝑚
∙
1

𝜓(𝑥)

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑉(𝑥) − 𝐸 = 0 

𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑘2𝜓(𝑥) = 0 
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Case 1:                   𝑘 =
2𝑚[𝐸−𝑉(𝑥)]

ℏ2
> 0   if 𝐸 > 𝑉(𝑥) ⇒ 𝜓(𝑥) = 𝐴 exp (±𝑖𝑘𝑥) 

Case 2:                   𝛾 =
2𝑚[𝑉(𝑥)−𝐸]

ℏ2
> 0   if 𝑉(𝑥) > 𝐸 ⇒ 𝜓(𝑥) = 𝐴 exp (±𝑖𝛾𝑥) 

 

iv. Physical meaning of the wave equation  

 Max Born postulated in 1926 that the wavefunction |Ψ(𝑥. 𝑡)|2𝑑𝑥 is the 

probability of finding the particle between 𝑥 and 𝑑𝑥  at a given  

|Ψ(𝑥. 𝑡)|2 = Ψ(𝑥. 𝑡) ∙  Ψ(𝑥. 𝑡)∗ 

                                            = 𝜓(𝑥)𝑒−𝑖(𝐸 ℏ⁄ )𝑡 ∙  𝜓(𝑥)∗𝑒+𝑖(𝐸 ℏ⁄ )𝑡 

            = 𝜓(𝑥) ∙  𝜓(𝑥)∗ 

               Probability          |Ψ(𝑥. 𝑡)|2 = 𝜓(𝑥) ∙  𝜓(𝑥)∗ 

 The probability density function is independent of time.  

 Fortunately, the Schrödinger equation has the property that it automatically 

preserves the normalization of the wave function. 

𝑑

𝑑𝑡
∫ |𝛹(𝑥. 𝑡)|2𝑑𝑥 =
+∞

−∞

∫
𝜕

𝜕𝑡
|𝛹(𝑥. 𝑡)|2𝑑𝑥

+∞

−∞

  

 [Note that the integral is a function only of 𝑥, so we use a total derivative (
𝑑

𝑑𝑡
) in the 

first term, but the integrand is a function of 𝑥 as well as 𝑡, so it's partial derivative (
𝜕

𝜕𝑡
) 

in the second one]. 

𝜕

𝜕𝑡
|Ψ|2 =

𝜕

𝜕𝑡
(Ψ∗Ψ) = Ψ∗

𝜕Ψ

𝜕𝑡
+
𝜕Ψ∗

𝜕𝑡
Ψ 

 

 

Now the Schrödinger equation says that 

𝜕Ψ 

𝜕𝑡
 =

𝑖ℏ 

2𝑚

𝜕2Ψ

𝜕𝑥2
−
𝑖

ℏ
𝑉Ψ  

And hence (taking the complex conjugate of equation above) 

𝜕Ψ ∗

𝜕𝑡
 = −

𝑖ℏ 

2𝑚

𝜕2Ψ∗

𝜕𝑥2
+
𝑖

ℏ
𝑉Ψ∗  

So  

𝜕

𝜕𝑡
|Ψ|2 =

𝑖ℏ 

2𝑚
(Ψ∗

𝜕2Ψ

𝜕𝑥2
−
𝜕2Ψ∗

𝜕𝑥2
Ψ) =

𝜕Ψ 

𝜕𝑥
[
𝑖ℏ 

2𝑚
(Ψ∗

𝜕Ψ

𝜕𝑥
−
𝜕Ψ∗

𝜕𝑥
Ψ)]  

The integral of equation above can be now evaluated explicitly by the equation: 

𝑑

𝑑𝑡
∫ |Ψ(𝑥. 𝑡)|2𝑑𝑥 =
+∞

−∞

𝑖ℏ 

2𝑚
(Ψ∗

𝜕2Ψ

𝜕𝑥2
−
𝜕2Ψ∗

𝜕𝑥2
Ψ) |

+∞

−∞
  

But Ψ(𝑥. 𝑡) must go to zero as 𝑥 goes to (∓) infinity – otherwise the wave function 

would not be normalizable. It follows that 

𝑑

𝑑𝑡
∫ |Ψ(𝑥. 𝑡)|2𝑑𝑥 =
+∞

−∞

0  

And hence that the integral on the left is constant (independent of time); if Ψ is 

normalize at 𝑡 = 0, it stays normalize for all future time. 
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 The state of a particle has to be more richly endowed and described by a wave 

function or state function (x, t). The state function (also known as a state vector) 

is a vector in the infinite dimensional space. 

 The state of a particle in quantum mechanics is described by a state function, 

which has infinitely many degrees of freedom. 

 In the Schrödinger equation, the wave function (x, t) is a continuous function of 

the position variable x at any time instant t; hence, it is described by infinitely 

many numbers, and has infinite degrees of freedom. 

 

v. Boundary condition for wavefunction 

 The probability of finding the particle over the entire space must be equal to 1 

∫ |𝛹(𝑥. 𝑡)|2𝑑𝑥
+∞

−∞

= ∫ 𝜓(𝑥) ∙  𝜓(𝑥)∗
+∞

−∞

𝑑𝑥 = 1 

 𝜓(𝑥) must be finite, single-valued and continuous. 

 𝜕𝜓(𝑥) 𝜕𝑥⁄  must be finite, single-valued and continuous. 

 If the probability were to become infinite at some point in space, then the 

probability of finding the particle at the position would be certain, that violate the 

uncertainty principle. 

 The second derivative must finite which implies that the first derivative must be 

continuous. 

 The first derivative is related to the particle momentum, which must be finite and 

single-valued. 

 The finite first derivative implies that the function itself must be continuous. 

 

vi. Probabilistic Interpretation of the wave function 

The final, most accepted interpretation of this wave function (one that also agrees with 

experiments) is that its magnitude squared corresponds to the probabilistic density 

function. In other words, the probability of finding an electron in an interval                   

[𝑥;  𝑥 +  Δ𝑥] is equal to 

|Ψ(𝑥. 𝑡)|2 Δ𝑥 

For the 3D case, the probability of finding an electron in a small volume Δ𝑉 in the 

vicinity of the point r is given by 

|Ψ(𝑥. 𝑡)|2 Δ𝑉 

Since the magnitude squared of the wavefunction represents a probability density 

function, it must satisfy the normalization condition of a probability density function, 

viz., 

∫|Ψ(𝑥. 𝑡)|2 d𝑉 = 1 

The magnitude squared of this wave function is like some kind of "energy" that cannot 

be destroyed. Electrons cannot be destroyed and hence, charge conservation is upheld 

by the Schrödinger equation. 

Motivated by the conservation of the "energy" of the wave function, we shall consider 

an "energy" conserving system where the classical Hamiltonian will be a constant of 

motion. In this case, there is no "energy" loss from the system. Therefore, the 

Schrödinger equation that governs the time evolution of the wave function   is: 
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�̂�Ψ = 𝑖ℏ
𝜕Ψ

𝜕𝑡
 (1) 

where �̂� is the Hamiltonian operator, one can solve (1) formally to obtained: 

Ψ(𝑡) = 𝑒−𝑖
�̂�
ℏ
𝑡Ψ(𝑡 = 0) (2) 

Since the above is a function of an operator, it has meaning only if this function acts 

on the eigenvectors of the operator �̂� . It can be shown easily that if �̅�  ∙ 𝑉𝑖  =  𝜆𝑖 𝑉𝑖, 
𝑒𝑥𝑝(�̅�) ∙ 𝑉𝑖 = 𝑒𝑥𝑝(𝜆𝑖) 𝑉𝑖                  (3) 

If �̂� is a Hermitian operator, then there exists Eigenfunctions, or special wave functions, 

Ψ𝑛, such that 

�̂�Ψ𝑛 = 𝐸𝑛Ψ𝑛 (4) 

where 𝐸𝑛 is purely real. In this case, the time evolution of 𝜓𝑛from (2) is 

Ψ(𝑡) = 𝑒−𝑖
𝐸𝑛
ℏ
𝑡Ψ𝑛(𝑡 = 0) = 𝑒−𝑖𝜔𝑛𝑡Ψ𝑛(𝑡 = 0) (5) 

In the above, 𝐸𝑛 = ℏ𝜔𝑛, or the energy 𝐸𝑛 is related to frequency 𝜔𝑛 via the reduced 

Planck constant ℏ.  

Scalar variables that are measurable in classical mechanics, such as p and x, are known 

as observables in quantum mechanics. They are elevated from scalar variables to 

operators in quantum mechanics, denoted by a "^" symbol here. In classical mechanics, 

for a one particle system, the Hamiltonian is given by 

𝐻 = 𝑇 + 𝑉 =
𝑝2

2𝑚
+ 𝑉 (6) 

The Hamiltonian contains the information from which the equations of motion for the 

particle can be derived. But in quantum mechanics, this is not sufficient, and H becomes 

an operator 

�̂� =
�̂�2

2𝑚
+ �̂� (7) 

This operator works in tandem with a wavefunction   to describe the state of the particle. 

The operator acts on a wave function  Ψ(𝑡), where in the coordinate x representation, 

is  𝛹(𝑥. 𝑡). 
When  Ψ(𝑥. 𝑡) is an Eigenfunction with energy 𝐸𝑛, it can be expressed as 

Ψ(𝑥. 𝑡)  = 𝛹𝑛(𝑥)𝑒
−𝑖𝜔𝑛𝑡 (8) 

where 𝐸𝑛 = ℏ𝜔𝑛. The Schrödinger equation for  𝜓𝑛(𝑥)  then becomes 

�̂�Ψ𝑛(𝑥) = (
�̂�2

2𝑚
+ �̂�)  Ψ(𝑥) = 𝐸𝑛Ψ(𝑥) (9) 

For simplicity, we consider an electron moving in free space where it has only a 

constant kinetic energy but not influenced by any potential energy. In other words, there 

is no force acting on the electron. In this case, �̂� = 0, and this equation becomes 

�̂�2

2𝑚
 Ψ(𝑥) = 𝐸𝑛Ψ(𝑥) (10) 

It has been observed by de Broglie that the momentum of a particle, such as an electron 

which behaves like a wave, has a momentum 

𝑝 = ℏ𝑘 (11) 

where 𝑘 = 2𝜋 𝜆⁄  is the wavenumber of the wave function; This motivates that the 

operator �̂� can be expressed by 

�̂� = −𝑖ℏ
𝑑

𝑑𝑥
 (12) 
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in the coordinate space representation. This is chosen so that if an electron is described 

by a state function  𝜓(𝑥) = 𝑐1𝑒
𝑖𝑘𝑥, then �̂�𝜓(𝑥) = ℏ𝑘𝜓(𝑥). The above motivation for 

the form of the operator �̂� is highly heuristic. Equation (10) for a free particle is then 
𝑖ℏ 

2𝑚

𝑑

𝑑𝑥
Ψ𝑛(𝑥) = 𝐸𝑛Ψ𝑛(𝑥) (13) 

Since this is a constant coefficient ordinary differential equation, the solution is of the 

form 

𝜓𝑛(𝑥) = 𝑒±𝑖𝑘𝑥 (14) 

which when used in (13), yields 

ℏ2𝑘2

2𝑚
= 𝐸𝑛 (15) 

Namely, the kinetic energy T of the particle is given by 

𝑇 =
ℏ2𝑘2

2𝑚
  (16) 

where 𝑝 = ℏ𝑘 is in agreement with de Broglie's finding. 

In many problems, the operator �̂� is a scalar operator in coordinate space representation 

which is a scalar function of position 𝑉(𝑥). This potential traps the particle within it 

acting as a potential well. In general, the Schrödinger equation for a particle becomes 

[−
ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)]Ψ(𝑥. 𝑡) = 𝑖ℏ

𝜕

𝜕𝑡
Ψ(𝑥. 𝑡) (17) 

For a particular eigenstate with energy 𝐸𝑛 as indicated by (8), it becomes 

[−
ℏ2

2𝑚

𝜕2

𝜕𝑥2
+ 𝑉(𝑥)]Ψ𝑛(𝑥) = 𝐸𝑛Ψ𝑛(𝑥) (18) 

The above is an eigenvalue problem with eigenvalue 𝐸𝑛 and Eigenfunction Ψ𝑛(𝑥). 
These eigenstates are also known as stationary states, because they have a time 

dependence indicated by (8). Hence, their probability density functions |Ψ(𝑥. 𝑡)|2 are 

time independent. 

These Eigenfunctions correspond to trapped modes in the potential well defined by           

𝑉(𝑥) very much like trapped guided modes in a dielectric waveguide. These modes are 

usually countable and they can be indexed by the index n. 

In the special case of a particle in free space, or the absence of the potential well, the 

particle or electron is not trapped and it is free to assume any energy or momentum 

indexed by the continuous variable k. In (15), the index for the energy should rightfully 

be k and the Eigenfunctions are uncountably infinite. Moreover, the above can be 

generalized to two and three dimensional cases. 

 

iv. Application of Schrödinger wave Equation 

We have now enough knowledge to study some simple solutions of time-independent 

Schrödinger equation such as: 

 

1. Electron in free space. 

2. Electron in infinite potential well. 

3. Step potential function (The potential step). 

4. Potential barrier (The Finite Square Well Potential). 

5. Potential barrier and well. 

6. Harmonic oscillator. 
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1. Electron in free space (Free particle: Continuous states). 

 This simplest one-dimensional problem (Electron in free space means no force 

acting on the electron), it corresponding to 𝑉(𝑥) = 0  for any value of 𝑥. 

 We must have 𝐸 > 𝑉(𝑥) to assure the motion of electron. 

−
ℏ2

2𝑚

𝜕2𝜓(𝑥)

𝜕𝑥2
+ (𝑉(𝑥) − 𝐸)𝜓(𝑥) = 0  (1-1) 

This is above time-independent Schrödinger's wave equation, and since 𝑉(𝑥) = 0, 

this equation become 

𝜕2𝜓(𝑥)

𝜕𝑥2
+
2𝑚𝐸

ℏ2
𝜓(𝑥) = 0    (free space)  (1-2) 

 

Or 

(
𝜕2

𝜕𝑥2
+ 𝑘2)𝜓(𝑥) = 0  (1-3) 

Where 𝑘2 = 2𝑚𝐸 ℏ2⁄ . 𝑘  being the wave number; The most general solution to eq. 

above is a combination of two linearly independent wave planes 𝜓+ = 𝑒𝑖𝑘𝑥 and  

𝜓− = 𝑒
−𝑖𝑘𝑥 

𝜓𝑘(𝑥) = 𝐴+𝑒
𝑖𝑘𝑥 + 𝐴−𝑒

−𝑖𝑘𝑥  (1-4) 

Where  𝐴+ and 𝐴− are two arbitrary constants. 

∵  𝜙(𝑡) = 𝑒−𝑖𝜔𝑡  and Ψ(𝑥. 𝑡) = 𝜓(𝑥) ∙  𝜙(𝑡)  (1-5) 

Then 

Ψ(𝑥. 𝑡) = 𝐴+𝑒
𝑖(𝑘𝑥−𝜔𝑡)      +       𝐴−𝑒

−𝑖(𝑘𝑥+𝜔𝑡) 
Right- going wave         Left-going wave 

 

(1-6) 

This formula above of the wavefunction represents the stationary state, which can also 

be written as 

Ψ(𝑥. 𝑡) = 𝐴+𝑒
𝑖(𝑘𝑥−ℏ𝑘2𝑡 2𝑚⁄ )      +       𝐴−𝑒

−𝑖(𝑘𝑥+ℏ𝑘2𝑡 2𝑚⁄ )  (1-7) 

Since 𝜔 = 𝐸 ℏ⁄ = ℏ𝑘2 2𝑚⁄ , the first term Ψ+(𝑥. 𝑡) = 𝐴+𝑒
𝑖(𝑘𝑥−𝜔𝑡), represents a wave 

travelling to the right, while the second term Ψ−(𝑥. 𝑡) = 𝐴−𝑒
−𝑖(𝑘𝑥+𝜔𝑡),represents a 

wave travelling to the left. The intensities of these waves are given by |𝐴+|
2 and |𝐴−|

2, 

respectively. 

We should note that the wave Ψ+(𝑥. 𝑡) and Ψ−(𝑥. 𝑡) are associated, respectively, with 

a free particle travelling to the right and to the left with well-defined momenta and 

energy; 𝑝± = ±ℏ𝑘, 𝐸± = ℏ2𝑘2 2𝑚⁄ . 

We will comment on the physical implications of this in moment. Since there are no 

boundary conditions, there are no restrictions on k or on E, all vales yield solutions to 

the equation. 

Remember the postulate of de Broglie's wave-particle principle: 

𝜆 =
ℎ

𝑝
 

We also have  

𝑝 = √2𝑚𝐸   and   𝐸 = 𝑝2 2𝑚⁄  

Which implies the consistency of wave-particle principle and wave mechanics in free 

space (wave mechanics is based on energy quanta and wave particle duality). 

 

The free particle problem is simple to solve mathematically, yet it presents a number 

of physical subtleties. Let us discuss briefly three of these subtleties. 
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First, the probability density corresponding to either solutions 

𝑃±(𝑥. 𝑡) = |Ψ±(𝑥. 𝑡)|
2
= |𝐴±|

2
 (1-8) 

are constant, for they depend neither on x and t. This is due to the complete loss of 

information about the position and time for a state with definite values of momentum, 

𝑝± = ±ℏ𝑘, and energy, 𝐸± = ℏ
2𝑘2 2𝑚⁄ . This is consequence of Heisenberg's 

uncertainty principle: when the momentum and energy of a particle are known exactly, 

∆𝑝 =0 and ∆𝐸 = 0, there must be total uncertainty about its position and time:              

∆𝑥 → ∞ and ∆𝑡 → ∞. 

 

Second, an apparent discrepancy between the speed of the wave and the speed of the 

particle; it is supposed to represent. The speed of the plane waves Ψ±(𝑥. 𝑡)  is given by 

υ𝑤𝑎𝑣𝑒 =
𝜔

𝑘
=
𝐸

ℏ𝑘
=
ℏ2𝑘2 2𝑚⁄

ℏ𝑘
=
ℏ𝑘

2𝑚
 

(1-9) 

On the other hand, the classical speed of the particle is given by  

υ𝑐𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 =
𝑝

𝑚
=
ℏ𝑘

𝑚
= 2υ𝑤𝑎𝑣𝑒 (1-10) 

This means that the particle travels twice as fast as the wave that represents it. 

 

Third, the wavefunction is not normalizable: 

∫ Ψ±
∗(𝑥. 𝑡)Ψ±

 (𝑥. 𝑡)
+∞

−∞

𝑑𝑥 = |𝐴±|
2
∫ 𝑑𝑥 → ∞
+∞

−∞

 (1-11) 

The solution Ψ±
 (𝑥. 𝑡) are thus unphysical; physical wavefunctions must be square 

integrable. The problem can be traced to this; a free particle cannot have sharply defined 

momenta and energy. 

 

In view of these three subtleties above, the solution of the Schrödinger equation related 

to this case, that are physically acceptable cannot be planes waves. The answer is 

provided wave packet 

Ψ(𝑥. 𝑡) =
1

√2
∫ ∅(𝑘)𝑒𝑖(𝑘𝑥−𝜔𝑡)𝑑𝑘.
+∞

−∞

 (1-12) 

Where ∅(𝑘), the amplitude of the wave packet, is given by the Fourier transform of 

𝜓(𝑥. 0) as 

∅(𝑘) =
1

√2
∫ 𝜓(𝑥. 0)𝑒𝑖𝑘𝑥𝑑𝑥.
+∞

−∞

 (1-13) 

The wave packet solution cures and avoids all the subtleties raised above. First, the 

momentum, the position and the energy of the particle are no longer known exactly; 

only probabilistic outcomes are possible. Second, the wave packet (1-12) and the 

particle travel with the same speed 𝑣𝑔 = 𝑝 𝑚⁄ , called the group speed or the speed of 

the whole packet. 

Third, the wave packet (1-12) is normalizable. To summarize, a free particle cannot be 

represented by a single (monochromatic) plane wave; it has to be represented by a wave 

packet. The physical solutions of the Schrödinger equation are thus given by wave 

packets, not by stationary solutions. 
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2. Electron in infinite potential well (bound particle)   

   a. The Asymmetric square well. 

Consider a particle of mass m confined to move inside an infinitely deep asymmetric 

potential well. 

 

  𝑉(𝑥) = {
+∞        𝑥 < 0.
0 0 ≤ 𝑥 ≤ 𝑎.
+∞          𝑥 > 𝑎.

      (2.1) 

 

 

Classically, the particle remains confined inside the well, moving at constant 

momentum 𝑝 = ±√2𝑚𝐸 back and forth as a result of repeated reflection from the walls 

of the wsell. 

Quantum mechanically, we expect this particle to have only bound state solutions and 

a discrete nondegenerate energy spectrum. Since 𝑉(𝑥) is infinite outside the region        

0 ≤ 𝑥 ≤ 𝑎. the wavefunction of the particle must be zero outside the boundary.  

Region 1 & 3 

𝑉(𝑥) = ∞  and  𝑉(𝑥) > 𝐸 

⇒ Decaying wave 

𝜕2𝜓(𝑥)

𝜕𝑥2
+
2𝑚

ℏ2
[𝑉(𝑥) − 𝐸]𝜓(𝑥) = 0 

Region 2 

𝑉(𝑥) = 𝑜  and  𝐸 > 𝑉(𝑥) 
⇒ Travelling wave 

𝜕2𝜓(𝑥)

𝜕𝑥2
+
2𝑚𝐸

ℏ2
𝜓(𝑥) = 0 

 

Hence we can look for solutions only inside the well, in the same way that we have 

learned in “Fundamental physics" 
𝜕2𝜓(𝑥)

𝜕𝑥2
+ 𝑘2𝜓(𝑥) = 0.   with  𝑘2 =

2𝑚𝐸

ℏ2
 (2-2) 

So that, the solution will be 

𝜓(𝑥) = 𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 ⇒ 𝜓(𝑥) = 𝐴𝑐𝑜𝑠(𝑘𝑥) + 𝐵𝑠𝑖𝑛(𝑘𝑥) (2-3) 

 

Boundary conditions 

𝜓(𝑥) must continuous (at boundaries and the wavefunction vanishes at the walls). 

𝜓(0) = 𝜓(𝑎) = 0 

𝜓(𝑥 = 0+) = 𝜓(𝑥 = 0−) = 0 
(2-4) 

And 

                               𝜓(𝑥 = 𝑎+) = 𝜓(𝑥 = 𝑎−) = 0 

 
(2-5) 

Since                                  𝐴𝑐𝑜𝑠(𝑘0) = 𝐴𝑐𝑜𝑠(𝑘𝑎) = 0 

Then                                                𝐴 = 0   

Because                      𝑐𝑜𝑠(𝑘0) ≠ 𝑜   and  𝑐𝑜𝑠(𝑘𝑎) ≠ 0 

But                                     𝐵𝑠𝑖𝑛(𝑘𝑎) = 0 

Then                                     𝑠𝑖𝑛(𝑘𝑎) = 0     

Because                                           𝐵 ≠ 0    

And                                              𝑘𝑛𝑎 = 𝑛𝜋        (𝑛 = 1.2.3.⋯ )              
This condition above determines the energy 

𝐸𝑛 =
ℏ2

2𝑚
𝑘𝑛
2 =

ℏ2𝜋2

2𝑚𝑎2
𝑛2  (𝑛 = 1.2.3.⋯ ) (2-6) 
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 The energy is quantized; only certain values are permitted. This is expected since the 

states of a particle which is confined to a limited region of space are bounded and the 

energy spectrum is discrete. This is in sharp contrast to classical physics where the 

energy of the particle, given by  𝐸 = 𝑝2 2𝑚⁄ , takes any value; the classical energy 

evolves continuously. 

As it can be inferred from (2-6), we should note that the energy between adjacent levels 

is not constant: 

𝐸𝑛+1 − 𝐸𝑛 = 2𝑛 + 1 (2-7) 

Which leads  

𝐸𝑛+1 − 𝐸𝑛
𝐸𝑛

=
(𝑛 + 1)2−𝑛2

𝑛2
=
2𝑛 + 1

𝑛2
 (2-8) 

In the classical limit 𝑛 → ∞, 

lim
𝑛→∞

𝐸𝑛+1 − 𝐸𝑛
𝐸𝑛

= lim
𝑛→∞

2𝑛 + 1

𝑛2
= 0 (2-9) 

The levels become so close together as to be practically indistinguishable. 

Since 𝐴 = 0 and 𝑘𝑛 = 𝑛𝜋 𝑎⁄ , then the wavefunction yields 𝜓𝑛(𝑥) = 𝐵𝑠𝑖𝑛(𝑛𝜋𝑥 𝑎⁄ ), 
and we can choose the constant B so that 𝜓𝑛(𝑥) is normalized (total probability equal 

one): 

1 = ∫ |𝜓𝑛(𝑥)|
2

𝑎

0

𝑑𝑥 = |𝐵|2∫ 𝑠𝑖𝑛2(𝑛𝜋𝑥 𝑎⁄ )
𝑎

0

𝑑𝑥 (2-10) 

∫ (𝐵𝑠𝑖𝑛 (𝑘𝑥))
2

𝑎

0

𝑑𝑥 = 1 (2-11) 

∫𝑠𝑖𝑛2(𝑘𝑥) 𝑑𝑥 =
𝑥

2
−
𝑠𝑖𝑛2𝑘𝑥

4𝑘
 

 

(2-12) 

∫ (𝐵𝑠𝑖𝑛 (𝑘𝑥))
2

𝑎

0

𝑑𝑥 = 1 = 𝐵2 (
𝑥

2
−
𝑠𝑖𝑛2𝑘𝑥

4𝑘
) |
𝑎
0

 (2-13) 

𝐵 = √
2

𝑎
 

Hence 

𝜓𝑛(𝑥) = √
2

𝑎
𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑎
)   (𝑛 = 1.2.3.⋯ ) (2-14) 

The solution of the time-independent Schrödinger equation has thus given us the energy 

(2-6) and the wave function (2-14). There is then an infinite sequence of discrete energy 

levels corresponding to the positive integer values of the quantum number n. It is clear 

that 𝑛 = 0, yields an uninteresting result: 𝜓0(𝑥) = 0 and 𝐸𝑜 = 0;later, we will examine 

in more detail the physical implications of this. So, the lowest energy, or ground state 

energy, corresponds to 𝑛 = 1; it is 𝐸1 = ℏ
2𝜋2 (2𝑚𝑎2)⁄ . As will be explained later, this 

is called the zero-point energy, for there exists no state with zero energy. The states 

corresponding to 𝑛 = 2.3.4.⋯ are called excited states; their energies are given by  

𝐸𝑛 = 𝑛2𝐸1. As shown in Figure above, we can see that each function 𝜓𝑛(𝑥) 

has(𝑛 − 1) nodes, and the functions 𝜓2𝑛+1(𝑥) are even and the functions 𝜓2𝑛(𝑥)  are 

odd with respect to the center of the well;  

Note that none of the energy levels is degenerate (there is only one eignfunction for 

each energy level) and that the wavefunctions corresponding to different energy levels 

are orthogonal: 

0 
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∫ 𝜓𝑚
∗

𝑎

0

(𝑥)𝜓𝑛(𝑥)𝑑𝑥 = 𝛿𝑚𝑛 (2-15) 

Since we are dealing with stationary states and since 𝐸𝑛 = 𝑛
2𝐸1, the most general 

solutions of the time-dependent Schrödinger equation are given by 

𝛹(𝑥. 𝑡) = ∑𝜓𝑛(𝑥)𝑒
−𝑖𝐸𝑛𝑡 ℏ⁄ = √

2

𝑎

∞

𝑛=1

∑𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
)

∞

𝑛=1

𝑒−𝑖𝑛
2𝐸1𝑡 ℏ⁄  (2-16) 

 

 
Quantization of energy levels  

∵ 𝑘 = √
2𝑚𝐸

ℏ2
 

   

 

 Discrete                     discrete energy 

Wave vector 

    𝑘 =
𝑛𝜋

𝑎
                      𝐸 = 𝐸𝑛 =

ℏ2𝑛2𝜋2

2𝑚𝑎2
 

                       Infinite well 

                              𝐸𝑛 ∝ 𝑛
2 

 

 

 
Example: infinite potential well 

Infinite potential well width of 5�̇� 

 

𝐸 = 𝐸𝑛 =
ℏ2𝑛2𝜋2

2𝑚𝑎2
=

𝑛2(1.054 × 10−34)2𝜋2

2(9.11 × 10−34)(5 × 10−10)2
= 𝑛2(2.41 × 10−19)𝐽 

                                           =
𝑛2(2.41×10−19)

1.6×10−19
= 𝑛2(1.51)𝑒𝑉 

𝐸1 = 1.51 𝑒𝑉 

𝐸2 = 6.04 𝑒𝑉 = 4𝐸1 

𝐸3 = 13.59 𝑒𝑉 = 9𝐸1 

For potential, well, 𝐸𝑛 ∝ 𝑛
2 
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 b. The symmetric potential well 

In this case, the potential well that previously described, is translated to the left by a distance of 𝑎 2⁄  

to become symmetric  

𝑽(𝒙) = {
+∞         𝒙 < 𝟎.
𝟎 𝟎 ≤ 𝒙 ≤ 𝒂.
+∞         𝒙 > 𝒂.

 

First, we would expect the energy spectrum (ii-6) to remain unaffected by this 

translation, since the Hamiltonian is invariant under spatial translations; as it contains 

only a kinetic part, it commutes with the particle’s momentum, [�̂�. �̂�] = 0. The energy 

spectrum is discrete and nondegenerate. 

Second, earlier in this chapter we saw that for symmetric potentials, 𝑉(−𝑥) =  𝑉(𝑥), 
the wave function of bound states must be either even or odd. The wave function 

corresponding to the potential that described in Eq. above can be written as follows: 

 

𝜓𝑛(𝑥) = √
2

𝑎
 𝑠𝑖𝑛 [

𝑛𝜋

𝑎
(𝑥 +

𝑎

2
)] =

{
 
 

 
 
√
2

𝑎
𝑐𝑜𝑠 (

𝑛𝜋

𝑎
𝑥) (𝑛 = 1.3.5.⋯ ).

√
2

𝑎
𝑠𝑖𝑛 (

𝑛𝜋

𝑎
𝑥) (𝑛 = 2.4.6.⋯ ).

 

That is, the wave functions corresponding to odd quantum numbers are symmetric          

𝑛 = 1.3.5.⋯, are symmetric (−𝑥) = 𝜓(𝑥) , and those corresponding to even numbers 

𝑛 = 2.4.6.⋯are antisymmetric, 𝜓(−𝑥) = 𝜓(𝑥). 
 

3. Step potential function (The potential step) 

Another sample problem consists of particle that is free everywhere, but beyond a 

particle point, say 𝑥 = 0, the potential increases sharply (i.e., it becomes repulsive or 

attractive).  A potential of this type is called a potential step, as shown in Figure below.  

𝑉(𝑥) = {
0. 𝑥 < 0.
𝑉𝑜. 𝑥 ≥ 0 ≥.

                 (3-1) 

 
Figure: Potential step and propagation directions of the incident, reflected, and transmitted waves, plus 

their probability densities |𝜓 (𝑥)|
2 when 𝐸 > 𝑉𝑂 and 𝐸 < 𝑉𝑂. 

In this problem, we try to analyze the dynamics of a flux of particles (all having the 

same mass m and moving with the same velocity) moving from left to the right. We are 

going to consider two cases, depending on whether the energy of the particles is larger 

or smaller than V0. 
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a) Case 𝑬 > 𝑽𝒐 

The particles are free for 𝑥 <  0 and feel a repulsive potential V0 that starts at 𝑥 =  0 

and stays flat (constant) for 𝑥 >  0. Let us analyze the dynamics of this flux of particles 

classically and then quantum mechanically. 

Classically, the particles approach the potential step or barrier from the left with a 

constant momentum  √2𝑚𝐸. As the particles enter the region 𝑥 ≥  0, where the 

potential now is 𝑉 = 𝑉𝑜, they slow down to a momentum √2𝑚(𝐸 − 𝑉𝑂); they will then 

conserve this momentum as they travel to the right. Since the particles have sufficient 

energy to penetrate into the region 𝑥 ≥  0, there will be total transmission: all the 

particles will emerge to the right with a smaller kinetic energy 𝐸 − 𝑉𝑂. This is then a 

simple scattering problem in one dimension. 

Quantum mechanically, the dynamics of the particle is regulated by the Schrödinger 

equation which is given in these two regions by 

(
𝑑2

𝑑𝑥2
+ 𝑘1

2)𝜓1(𝑥)=0       (𝑥 <  0 )            (3-2) 

(
𝑑2

𝑑𝑥2
+ 𝑘2

2)𝜓2(𝑥)=0       (𝑥 ≥  0 )             (3-3) 

Where  𝑘1
2 = 2𝑚𝐸 ℏ2⁄  and 𝑘2

2 = 2𝑚(𝐸 − 𝑉𝑂) ℏ
2⁄ .The most general solutions to these 

two equations are plane waves: 

                            𝜓1(𝑥) = 𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥     (𝑥 <  0 )             (3-4) 

                            𝜓2(𝑥) = 𝐶𝑒
𝑖𝑘2𝑥 + 𝐷𝑒−𝑖𝑘2𝑥     (𝑥 ≥  0 )             (3-5) 

Where 𝐴𝑒𝑖𝑘1𝑥 and 𝐶𝑒𝑖𝑘2𝑥 represent waves moving in the positive x-direction, but 

𝐵𝑒−𝑖𝑘1𝑥 and 𝐷𝑒−𝑖𝑘2𝑥 correspond to waves moving in the negative x-direction. We are 

interested in the case where the particles are initially incident on the potential step from 

the left: they can be reflected or transmitted at 𝑥 =  0. Since no wave is reflected from 

the region 𝑥 >  0 to the left, the constant D must vanish. Since we are dealing with 

stationary states, the complete wave function is thus given by: 

Ψ(𝑥. 𝑡) = {
𝜓1(𝑥)𝑒

−𝑖𝜔𝑡 = 𝐴𝑒𝑖(𝑘1𝑥−𝜔𝑡) + 𝐵𝑒−𝑖(𝑘1𝑥−𝜔𝑡) 𝑥 <  0

𝜓2(𝑥)𝑒
−𝑖𝜔𝑡 = 𝐶𝑒𝑖(𝑘2𝑥−𝜔𝑡)                             𝑥 ≥  0

         (3-6) 

where Aei(k1x−ωt), Be−i(k1x−ωt), and Cei(k2x−ωt) represent the incident, the reflected, 

and the transmitted waves, respectively; they travel to the right, the left, and theright 

(Figure above). Note that the probability density |𝜓 (𝑥)|
2 shown in the lower left plot 

of Figure above is a straight line for 𝑥 >  0, since |𝜓 (𝑥)|
2 = |Cei(k2x−ωt)|

2
= |C|2. 

Let us now evaluate the reflection and transmission coefficients, R and T, as defined by 

𝑅 = |
reflected current density

incident current density
| = |

𝐽𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑

𝐽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
|    𝑇 = |

𝐽𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑒𝑑
𝐽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

| ;     (3-7) 

R represents the ratio of the reflected to the incident beams and T the ratio of the 

transmitted to the incident beams. To calculate R and T, we need to find Jincident,      

Jreflected, and Jtransmitted . 

Since the incident wave is 𝜓𝑖(𝑥) = 𝐴𝑒
𝑖𝑘1𝑥, the incident current density (or incident 

flux) is given by 

𝑅𝐽𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 =
𝑖ℏ

2𝑚
(𝜓𝑖(𝑥)

𝑑𝜓𝑖
∗(𝑥)

𝑑𝑥
− 𝜓𝑖

∗(𝑥)
𝑑𝜓𝑖(𝑥)

𝑑𝑥
=
ℏ𝑘1
𝑚

|𝐴|2)     (3-8) 

Similarly, since the reflected and transmitted waves are 𝜓𝑟(𝑥) = 𝐵𝑒−𝑖𝑘1𝑥,  and 

𝜓𝑡(𝑥) = 𝐶𝑒
𝑖𝑘2𝑥,we can verify that the reflected and transmitted fluxes are 

𝐽𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 =
ℏ𝑘1
𝑚

|𝐵|2.      𝐽𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 =
ℏ𝑘2
𝑚

|𝐶|2                 (3-9) 

So that, we can expressed the reflection and transmission coefficients by the equation 
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𝑅 =
|𝐵|2

|𝐴|2
.           𝑇 =

|𝐶|2

|𝐴|2
 ;                (3-10) 

  Thus, the calculation of R and T is reduced to determining the constants B and C. For 

this, we need to use the boundary conditions of the wave function at 𝑥 =  0. Since both 

the wave function and its first derivative are continuous at 𝑥 =  0, 

𝜓1(0) = 𝜓2(0).     
𝑑𝜓1(0)

𝑑𝑥
=
𝑑𝜓2(0)

𝑑𝑥
                (3-11) 

equations (3-4) and (3-5) yield 

𝐴 + 𝐵 = 𝐶.     𝑘1(𝐴 − 𝐵) = 𝑘2𝐶               (3-12) 

Hence  

𝐵 =
𝑘1 − 𝑘2
𝑘1 + 𝑘2

𝐴.     𝐶 =
2𝑘1

𝑘1 + 𝑘2
𝐴               (3-13) 

As for the constant A, it can be determined from the normalization condition of the 

wave function, but we don’t need it here, since R and T are expressed in terms of ratios. 

A combination of (iii-10) with (iii-3) leads to 

 𝑅 =
(𝑘1 − 𝑘2)

2

(𝑘1 + 𝑘2)2
=
(1 − 𝜅)2

(1 + 𝑘2)2
.     𝑇 =

4𝑘1𝑘2
(𝑘1 + 𝑘2)2

   (3-14) 

Where 𝜅 = 𝑘2 𝑘1 = √1 − 𝑉𝑜 𝐸⁄⁄ . The sum of R and T is equal to 1, as it should be. 

In contrast to classical mechanics, which states that none of the particles get reflected, 

equation (iii-14) shows that the quantum mechanical reflection coefficient R is not zero: 

there are particles that get reflected in spite of their energies being higher than the step 

Vo. This effect must be attributed to the wavelike behavior of the particles. 

From (iii-14) we see that as E gets smaller and smaller, T also gets smaller and smaller 

so that when 𝐸 = 𝑉𝑜 the transmission coefficient T becomes zero and 𝑅 = 1. On the 

other hand, when 𝐸 > 𝑉𝑜 0, we have 𝜅 = √1 − 𝑉𝑜 𝐸⁄ ≅ 1; hence 𝑅 =  0 and 𝑇 = 1. 

This is expected since, when the incident particles have very high energies, the potential 

step is so weak that it produces no noticeable effect on their motion. 

 

Remark: physical meaning of the boundary conditions 

Throughout this chapter, we will encounter at numerous times the use of the boundary 

condition of the wave function and its first derivative as in Eq. (iii-11). What is the 

underlying physics behind these continuity conditions? We can make two observations: 

 Since the probability density |ψ (x)|
2of finding the particle in any small region 

varies continuously from one point to another, the wave function ψ (x) must, 

therefore, be a continuous function of x; thus, as shown in (11), we must have 

𝜓1(0) = 𝜓2(0) 

 Since the linear momentum of the particle, �̂�𝜓
 
(x) = −ℏ𝑑𝜓

 
(x) 𝑑𝑥⁄ , must be a 

continuous function of x as the particle moves from left to right, the first derivative 

of the wave function, 𝑑𝜓
 
(x) 𝑑𝑥⁄ , must also be a continuous function of x, notably 

at x=0. Hence, as shown in (iii-11), we must have 𝑑𝜓
1 
(0) 𝑑𝑥⁄ = 𝑑𝜓

2 
(0) 𝑑𝑥⁄ . 

 

b) Case 𝑬 < 𝑽𝒐 

Classically, the particles arriving at the potential step from the left (with momenta        

p= 2mE) will come to a stop x=0 and then all will bounce back to the left with the 

magnitudes of their momenta unchanged. None of the particles will make it into the 
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right side of the barrier x=0; there is total reflection of the particles. So the motion of 

the particles is reversed by the potential barrier. 

Quantum mechanically, the picture will be somewhat different. In this case, the 

Schrödinger equation and the wave function in the region 𝑥 < 0 are given by (3-1) 

and (3-3), respectively. 

But for 𝑥 > 0  the Schrödinger equation is given by 

(
𝑑2

𝑑𝑥2
+ 𝑘2

′ 2)𝜓2(𝑥)=0       (𝑥 ≥  0 )                (3-15) 

Where 𝑘′2
2
= 2𝑚(𝑉𝑜 − 𝐸) ℏ

2⁄ . This equation’s solution is 

𝜓2(𝑥) = 𝐶𝑒
−𝑘2

′𝑥 + 𝐷𝑒𝑘2
′𝑥       (𝑥 ≥  0 )                (3-16) 

Since the wave function must be finite everywhere, and since the term 𝑒𝑘2
′𝑥 diverges 

when → ∞ , the constant D has to be zero. Thus, the complete wave function is 

Ψ(𝑥. 𝑡) = {
𝐴𝑒𝑖(𝑘1𝑥−𝜔𝑡) + 𝐵𝑒−𝑖(𝑘1𝑥−𝜔𝑡) 𝑥 <  0

𝐶𝑒−𝑘2
′𝑥𝑒−𝑖𝜔𝑡                              𝑥 ≥  0

                       (3-17) 

Let us now evaluate, as we did in the previous case, the reflected and the transmitted 

coefficients. First we should note that the transmitted coefficient, which corresponds to 

the transmitted wave function 𝜓𝑡(𝑥) = 𝐶𝑒
−𝑘2

′𝑥, is zero since 𝜓𝑡(𝑥) is a purely real 

function (𝜓𝑡
∗(𝑥) = 𝜓𝑡(𝑥)) and therefore 

          𝐽𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 =
ℏ

2𝑖𝑚
(𝜓𝑡(𝑥)

𝑑𝜓𝑡(𝑥)

𝑑𝑥
− 𝜓𝑡(𝑥)

𝑑𝜓𝑡(𝑥)

𝑑𝑥
)                                    (3-18) 

Hence, the reflected coefficient R must be equal to 1. We can obtain this result by 

applying the continuity conditions at x=0 for (3-4) and (3-16): 

                 𝐵 =
𝑘1 − 𝑖𝑘2

′

𝑘1 + 𝑖𝑘2
′ 𝐴.     𝐶 =

2𝑘1
𝑘1 + 𝑖𝑘2

′ 𝐴                    (3-19) 

Thus, the reflected coefficient is given by 

   𝑅 =
|𝐵|2

|𝐴|2
=
𝑘1
2 + 𝑘′2

2

𝑘1
2 + 𝑘′2

2 = 1                    (3-20) 

We therefore have total reflection, as in the classical case. There is, however, a 

difference with the classical case: while none of the particles can be found classically 

in the region x=0, quantum mechanically there is a nonzero probability that the wave 

function penetrates this classically forbidden region. To see this, note that the relative 

probability density 

                𝑃(𝑥) = |𝜓𝑡(𝑥)|
2 = |𝐶|2

=
4𝑘1

2|𝐴|2

𝑘1
2 + 𝑘′2

2   𝑒
−2𝑘2

′𝑥             
         (3-21) 

is appreciable near x=0 and falls exponentially to small values as x becomes large; the 

behavior of the probability density is shown in Figure above. 

 

Example:  Penetration depth 

𝜓𝑡(𝑥) = 𝐵𝑒−𝑘2𝑥.        𝑘2 = √
2𝑚(𝑉𝑜 − 𝐸)

ℏ2
> 0 

 
The penetration depth defined as 𝑘2𝑑 = 1 
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𝑑 =
𝟏

𝑘2
= √

ℏ2

2𝑚(𝑉𝑜 − 𝐸)
= √

ℏ2

2𝑚(2𝐸𝑜 − 𝐸)
 

=
1.𝑂54 × 10−34

√2(9.11 × 10−31)(4.56 × 10−31)
= 11.6 × 10−10𝑚 

𝑑 = 11.6 �̇� 

 

4. Potential barrier (The Finite Square Well Potential) 

 Consider a particle of mass m moving in the following symmetric potential 

                  𝑉(𝑥) = {

𝑉𝑜.                     𝑥 < −𝑎 2.⁄

0. −𝑎 2⁄ ≤ 𝑥 ≤ 𝑎 2.⁄

𝑉𝑜.                  𝑥 > 𝑎 2.⁄
                       (4-1) 

 
Figure: Finite square well potential and propagation directions of the incident, reflected 

and transmitted waves when 𝐸 > 𝑉𝑜 and 0< 𝐸 < 𝑉𝑜. 

The two physically interesting cases are E > Vo and E < Vo. We expect the solutions to 

yield a continuous doubly-degenerate energy spectrum for E > Vo and a discrete 

nondegenerate spectrum for 0< E < Vo. 

a. The Scattering Solutions (𝐄 > 𝐕𝐨) 
Classically, if the particle is initially incident from left with constant momentum 

√2𝑚(𝐸 − 𝑉𝑜), it will speed up to √2𝑚𝐸 between −𝑎 2 ≤ 𝑥 ≤ 𝑎 2⁄  ⁄ and then slow 

down to its initial momentum in the region 𝑥 > 𝑎. All the particles that come from the 

left will be transmitted, none will be reflected back; therefore 𝑇 = 1 and 𝑅 =  0. 

Quantum mechanically, and as we did for the step and barrier potentials, we can verify 

that we get a finite reflection coefficient. The solution is straightforward to obtain; just 

follow the procedure outlined in the previous two sections. The wave function has an 

oscillating pattern in all three regions (see Figure above). 

 

b. The Bound State Solutions (𝟎 < 𝐄 < 𝐕𝐨) 

   Classically, when E < Vo the particle is completely confined to the region                

−𝑎 2⁄ ≤ 𝑥 ≤ 𝑎 2⁄ ; it will bounce back and forth between 𝑥 = −𝑎 2⁄   and 𝑥 = 𝑎 2⁄  with 

constant momentum 𝑝 = √2𝑚𝐸. 

Quantum mechanically, the solutions are particularly interesting for they are expected 

to yield a discrete energy spectrum and wave functions that decay in the two regions 

𝑥 < −𝑎 2⁄  and 𝑥 > 𝑎 2⁄ , but oscillate in −𝑎 2⁄ ≤ 𝑥 ≤ 𝑎 2⁄ . In these three regions, the 

Schrödinger equation can be written as 
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            (
𝑑2

𝑑𝑥2
− 𝑘1

2)𝜓1(𝑥) = 0         (𝑥 < −𝑎 2⁄ )                    (4-2) 

              (
𝑑2

𝑑𝑥2
+ 𝑘2

2)𝜓2(𝑥) = 0         (−𝑎 2 ≤ 𝑥 ≤⁄ −𝑎 2⁄ )               (4-3) 

            (
𝑑2

𝑑𝑥2
− 𝑘1

2)𝜓3(𝑥) = 0         (𝑥 > 𝑎 2⁄ )         (4-4) 

Where 𝑘1
2 = 2𝑚(𝐸 − 𝑉𝑜) and 𝑘2

2 = 2𝑚𝐸 ℏ2⁄ . Eliminating the physically unacceptable 

solutions which grow exponentially for large values of |𝑥|, we can write the solution to 

this Schrödinger equation in the regions 𝑥 < −𝑎 2⁄ and 𝑥 > 𝑎 2⁄ as follows: 

𝜓1(𝑥) = 𝐴𝑒𝑘1𝑥         (𝑥 < −𝑎 2⁄ ).                      (4-5) 

𝜓3(𝑥) = 𝐷𝑒
−𝑘1𝑥       (𝑥 < −𝑎 2⁄ ).                      (4-6) 

Since the bound state eigenfunctions of symmetric one dimensional Hamiltonians are 

either even or odd under space inversion, the solutions of (v-2) to (v-4) are then either 

antisymmetric (odd) 

𝜓𝑎(𝑥) = {
𝐴𝑒𝑘1𝑥.                     𝑥 < −𝑎 2.⁄

𝐶𝑠𝑖𝑛(𝑘2𝑥). −𝑎 2⁄ ≤ 𝑥 ≤ 𝑎 2.⁄

𝐷𝑒−𝑘1𝑥.                  𝑥 > 𝑎 2.⁄

                      (4-7) 

Or symmetric (even) 

𝜓𝑠(𝑥) = {
𝐴𝑒𝑘1𝑥.                     𝑥 < −𝑎 2.⁄

𝐵𝑐𝑜𝑠(𝑘2𝑥). −𝑎 2⁄ ≤ 𝑥 ≤ 𝑎 2.⁄

𝐷𝑒−𝑘1𝑥.                  𝑥 > 𝑎 2.⁄

                      (4-8) 

To determine the eigenvalues, we need to use the continuity conditions at 𝑥 = ±𝑎 2⁄ . 

The continuity of the logarithmic derivative,(1 𝜓𝑎(𝑥)⁄ )𝑑𝜓𝑎(𝑥) 𝑑𝑥⁄  at 𝑥 = ±𝑎 2⁄  

yields 

𝑘2𝑐𝑜𝑡 (
𝑘2𝑎

2
) = −𝑘1.                      (4-9) 

Similarly, the continuity of (1 𝜓𝑠(𝑥)⁄ )𝑑𝜓𝑠(𝑥) 𝑑𝑥 ⁄ at 𝑥 = ±𝑎 2⁄  gives 

𝑘2𝑡𝑎𝑛 (
𝑘2𝑎

2
) = −𝑘1.                     (4-10) 

The transcendental equations (4-9) and (4-10) cannot be solved directly; we can solve 

them either graphically or numerically. To solve these equations graphically, we need 

only to rewrite them in the following suggestive forms: 

−𝛼𝑛𝑐𝑜𝑡𝛼𝑛 = √𝑅2 − 𝛼𝑛2.     (for odd states).               (4-11) 

                   𝛼𝑛𝑡𝑎𝑛𝛼𝑛 = √𝑅2 − 𝛼𝑛2.     (for even states).     (4-12) 

where 𝛼𝑛
2 = (𝑘2𝑎 2⁄ )2 = 𝑚𝑎2𝐸𝑛 (2ℏ2)⁄  and 𝑅2 = 𝑚𝑎2𝑉𝑜 (2ℏ2)⁄ ; these equations are 

obtained by inserting 𝑘1 = √2𝑚(𝑉𝑜 − 𝐸) ℏ2⁄ and  𝑘2 = √2𝑚𝐸 ℏ2⁄  into (4-9) and (4-

10). The left-hand sides of (4-11) and (4-12) consist of trigonometric functions; the 

right-hand sides consist of a circle of radius R. The solutions are given by the points 

where the circle √𝑅2 − 𝛼𝑛2 intersects the functions −𝛼𝑛𝑐𝑜𝑡𝛼𝑛and 𝛼𝑛𝑡𝑎𝑛𝛼𝑛 (see Figure 

below). The solutions form a discrete set. As illustrated in Figure below, the 

intersection of the small circle with the curve 𝛼𝑛𝑡𝑎𝑛𝛼𝑛 yields only one bound state, 

𝑛 = 0, whereas the intersection of the larger circle with 𝛼𝑛𝑡𝑎𝑛𝛼𝑛 yields two bound 
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states, 𝑛 = 0.2, and its intersection with −𝛼𝑛𝑐𝑜𝑡𝛼𝑛yields two other bound states,          

𝑛 = 1.3. 

The number of solutions depends on the size of R, which in turn depends on the depth 

𝑉𝑜 and the width a of the well, since 𝑅 = √𝑚𝑎2𝑉𝑜 (2ℏ2)⁄ . The deeper and broader the 

well, the larger the value of R, and hence the greater the number of bound states. Note 

that there is always at least one bound state (i.e., one intersection) no matter how small 

𝑉𝑜 is. When 

0 < 𝑅 <
𝜋

2
.   or    0 < 𝑉𝑜 < (

𝜋

2
 ) 2  

2ℏ2

𝑚𝑎2
 .                    (4-13) 

there is only one bound state corresponding to 𝑛 = 0 (see Figure below); this state—

the ground state—is even. Then, and when 

𝜋

2
< 𝑅 < 𝜋.   or    (

𝜋

2
 ) 2  

2ℏ2

𝑚𝑎2
< 𝑉𝑜 < 𝜋 

2  
2ℏ2

𝑚𝑎2
 .                   (4-14) 

there are two bound states: an even state (the ground state) corresponding to 𝑛 = 0  and 

the first odd state corresponding to 𝑛 = 1. Now, if 

𝜋 < 𝑅 <
3𝜋

2
.   or    𝜋 2  

2ℏ2

𝑚𝑎2
< 𝑉𝑜 < (

3𝜋

2
 ) 2  

2ℏ2

𝑚𝑎2
 .                    (4-15) 

there exist three bound states: the ground state (even state), 𝑛 = 0, the first excited state 

(odd state), corresponding to 𝑛 = 1, and the second excited state (even state), which 

corresponds to 𝑛 = 2. In general, the well width at which n states are allowed is given 

by 

𝑡𝑎𝑛𝛼𝑛 → ∞  ⇒ 𝛼𝑛 =
2𝑛 + 1

2
𝜋.     (n = 0.1.2.3.⋯ ).               (4-16) 

          𝑐𝑜𝑡𝛼𝑛  → ∞  ⇒ 𝛼𝑛 = 𝑛𝜋.                (n = 1.2.3.⋯ ).        (4-17) 

Combining these two cases, we obtain 

𝛼𝑛 =
𝑛𝜋  

2
     (n = 1.2.3.⋯ ).              (4-18) 

Since 𝛼𝑛
2 = 𝑚𝑎2𝐸𝑛 (2ℏ2)⁄  we see that we recover the energy expression for the infinite 

well: 

𝛼𝑛 =
𝑛𝜋  

2
→ 𝐸𝑛 =

𝜋2ℏ2

2𝑚𝑎2
𝑛2                 (4-19) 
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Figure: Graphical solutions for the finite square well potential: they are given by the 

intersections of √𝑅2 − 𝛼𝑛
2 with 𝛼𝑛𝑡𝑎𝑛𝛼𝑛 and −𝛼𝑛𝑐𝑜𝑡𝛼𝑛. Where 𝛼𝑛

2 = 𝑚𝑎2𝐸𝑛 (2ℏ2)⁄   and 

𝑅2 = 𝑚𝑎2𝑉𝑜 (2ℏ2)⁄ . 

Example  

Find the number of bound states and the corresponding energies for the finite square 

well potential when: (a) 𝑅 = 1  (i.e., √𝑚𝑎2𝑉𝑜 (2ℏ2)⁄ = 1), and (b) 𝑅 = 2. 

Solution 

(a) From Figure above, when = √𝑚𝑎2𝑉𝑜 (2ℏ2)⁄ = 1 , there is only one bound state 

since 𝛼𝑛 <  𝑅. This bound state corresponds to 𝑛 = 0. The corresponding energy is 

given by the intersection of 𝛼0𝑡𝑎𝑛𝛼𝑜  with √1 − 𝛼𝑂
2  

𝛼0𝑡𝑎𝑛𝛼𝑜  = √1 − 𝛼𝑂
2   ⇒  𝛼𝑂

2(1 + 𝑡𝑎𝑛2𝛼𝑜) = 1  ⇒ 𝑐𝑜𝑠2𝛼𝑜 =  𝛼𝑂
2      

The solution of 𝑐𝑜𝑠2𝛼𝑜 = 𝛼𝑂
2  is given numerically by 𝛼𝑜 = 0.73909. Thus, the 

corresponding energy is determined by the relation √𝑚𝑎2𝐸𝑜 (2ℏ2)⁄ = 0.73909 , which 

yields 𝐸𝑜 ≅ 1.1ℏ2 (𝑚𝑎2)⁄ . 

 (b)When 𝑅 = 2 there are two bound states resulting from the intersections of √4 − 𝛼𝑂
2  

with  𝛼𝑜𝑡𝑎𝑛𝛼𝑜 and −𝛼1𝑐𝑜𝑡𝛼1;they correspond to 𝑛 = 0  and 𝑛 = 1, respectively. The 

numerical solutions of the corresponding equations 

       𝛼0𝑡𝑎𝑛𝛼𝑜  = √4 − 𝛼𝑂
2   ⇒    4𝑐𝑜𝑠2𝛼𝑜 = 𝛼𝑂

2      

−𝛼1𝑐𝑜𝑡𝛼1  = √4 − 𝛼1
2   ⇒    4𝑠𝑖𝑛2𝛼1 = 𝛼1

2 

Yield 𝛼𝑜 = 1.03 and 𝛼1 = 1.9, respectively. The corresponding energies are 

𝛼𝑜 = √
𝑚𝑎2𝐸𝑜
2ℏ2

= 1.03     ⇒ 𝐸𝑜 =
2.12ℏ2

𝑚𝑎2
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𝛼1 = √
𝑚𝑎2𝐸1
2ℏ2

= 1.9     ⇒ 𝐸1 =
7.22ℏ2

𝑚𝑎2
 

5. The potential barrier and well 

Consider a beam of particles of mass m that are sent from the left on a potential barrier 

               𝑉(𝑥) = {
0.         𝑥 < 0.
𝑉𝑜. 0 ≤ 𝑥 ≤ 𝑎.
0.         𝑥 > 𝑎

                      (5-1) 

This potential, which is repulsive, supports no bound states (Figure below). We are 

dealing here, as in the case of the potential step, with a one-dimensional scattering 

problem. 

Again, let us consider the following two cases which correspond to the particle energies 

being respectively larger and smaller than the potential barrier. 

a. The case 𝑬 > 𝑽𝒐 

Classically, the particles that approach the barrier from the left at constant momentum, 

𝑝1 = √2𝑚𝐸, as they enter the region 0 ≤ 𝑥 ≤ 𝑎 will slow down to a momentum       

𝑝1 = √2𝑚(𝐸 − 𝑉𝑜)They will maintain the momentum 𝑝2 until they reach the point 𝑥 =

0. Then, as soon as they pass beyond the point 𝑥 = 𝑎, they will accelerate to a 

momentum 𝑝2 = √2𝑚𝐸 and maintain this value in the entire region 𝑥 > 𝑎. Since the 

particles have enough energy to cross the barrier, none of the particles will be reflected 

back; all the particles will emerge on the right side of 𝑥 = 𝑎: total transmission. 

It is easy to infer the quantum mechanical study from the treatment of the potential step 

presented in the previous section. We need only to mention that the wave function will 

display an oscillatory pattern in all three regions; its amplitude reduces every time the 

particle enters a new region (see Figure below): 

 

Figure: Potential barrier and propagation directions of the incident, reflected, and transmitted 

waves, plus their probability densities |𝜓(𝑥)|2 when 𝐸 >  𝑉𝑜 and 𝐸 <  𝑉𝑜. 
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𝜓(𝑥) = {

𝜓1(𝑥) = 𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥 .         𝑥 ≤ 0.

𝜓2(𝑥) = 𝐶𝑒𝑖𝑘2𝑥 + 𝐷𝑒−𝑖𝑘2𝑥 . 0 < 𝑥 < 𝑎.

  𝜓3(𝑥) = 𝐸𝑒
𝑖𝑘1𝑥.                              𝑥 ≥ 𝑎

                    (5-2) 

where 𝑘1 = √2𝑚𝐸 ℏ2⁄  and 𝑘2 = √2𝑚(𝐸 − 𝑉𝑜) ℏ2⁄ . The constants B, C, D, and E can 

be obtained in terms of A from the boundary conditions: 𝜓(𝑥) and 𝑑𝜓(𝑥) 𝑑𝑥⁄ must be 

continuous at 𝑥 =0 and 𝑥 =a, respectively 

𝜓1(0) = 𝜓2(0).            
𝑑𝜓1(0)

𝑑𝑥
=
𝑑𝜓2(0)

𝑑𝑥
.               (5-3) 

𝜓2(𝑎) = 𝜓3(𝑎).            
𝑑𝜓2(𝑎)

𝑑𝑥
=
𝑑𝜓3(𝑎)

𝑑𝑥
.               (5-4) 

These equations yield 

𝐴 + 𝐵 = 𝐶 + 𝐷.            𝑖𝑘1(𝐴 − 𝐵) = 𝑖𝑘2(𝐶 − 𝐷).           (5-5) 

𝐶𝑒𝑖𝑘2𝑎 + 𝐷𝑒−𝑖𝑘2𝑎 = 𝐸𝑒𝑖𝑘1𝑎.  𝑖𝑘2 (𝐶𝑒
𝑖𝑘2𝑎 + 𝐷𝑒−𝑖𝑘2𝑎) = 𝑖𝑘1𝐸𝑒

𝑖𝑘1𝑎.         (5-6) 

Solving for E, we obtain  

𝐸 = 4𝑘1𝑘2 𝐴𝑒
−𝑖𝑘1𝑎[(𝑘1 + 𝑘2)

2𝑒−𝑖𝑘2𝑎 − (𝑘1 − 𝑘2)
2𝑒𝑖𝑘2𝑎]

−1
 

    = 4𝑘1𝑘2 𝐴𝑒
−𝑖𝑘1𝑎[4𝑘1𝑘2𝑐𝑜𝑠(𝑘2𝑎) − 2𝑖(𝑘1

2 + 𝑘2
2)2𝑠𝑖𝑛(𝑘2𝑎)]

−1  
    (5-7) 

The transmission coefficient is thus given by 

   𝑇 =
𝑘1|𝐸|

2

𝑘1|𝐴|2
= [1 +

1

4
(
𝑘1
2−𝑘2

2

𝑘1𝑘2
)
2

𝑠𝑖𝑛2(𝑘2𝑎)]
−1

 

  =  [1 +
𝑉𝑜
2

4𝐸(𝐸 − 𝑉𝑜)
𝑠𝑖𝑛2 (𝑎√2𝑚𝑉𝑜 ℏ2⁄ √𝐸 𝑉𝑜⁄ − 1)]

−1

      

           (5-8) 

 

Figure: Transmission coefficients for a potential barrier, 𝑇𝐵(𝜀) =
4𝜀(𝜀−1)

4𝜀(𝜀−1)+𝑠𝑖𝑛2(𝜆√𝜀−1)
  , and for 

a potential well, 𝑇𝑊(𝜀) =
4𝜀(𝜀+1)

4𝜀(𝜀+1)+𝑠𝑖𝑛2(𝜆√𝜀+1)
 . 
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because 

(
𝑘1
2 − 𝑘2

2

𝑘1𝑘2
)

2

=
𝑉𝑜
2

𝐸(𝐸 − 𝑉𝑜)
.     (5-9) 

Using the notation 𝜆 = 𝑎√2𝑚𝑉𝑜 ℏ2⁄  and 𝜀 = 𝐸 𝑉𝑜⁄  

𝑇 = [1 +
1

4𝜀(𝜀 − 1)
𝑠𝑖𝑛2(𝜆√𝜀 − 1)]

−1

.  (5-10) 

Similarly, we can show that 

𝑅 =
𝑠𝑖𝑛2(𝜆√𝜀 − 1)

4𝜀(𝜀 − 1) + 𝑠𝑖𝑛2(𝜆√𝜀 − 1)
= [1 +

4𝜀(𝜀 − 1)

𝑠𝑖𝑛2(𝜆√𝜀 − 1)
]

−1

.   (5-11) 

Special cases 

 If 𝐸 > 𝑉𝑜, and hence 𝜀 ≫ 1, the transmission coefficient T becomes asymptotically 

equal to unity, 𝑇 ≅ 1, and 𝑅 ≅0. So, at very high energies and weak potential barrier, 

the particles would not feel the effect of the barrier; we have total transmission. 

  We also have total transmission when 𝑠𝑖𝑛(𝜆√𝜀 − 1) = 0 or 𝜆√𝜀 − 1 = 𝑛𝜋. As 

shown     in Figure above, the total transmission, 𝑇(𝜀𝑛) ≅ 1, occurs whenever                                  

𝜀𝑛 = 𝐸 𝑉𝑜 = 𝑛
2𝜋2ℏ2 (2𝑚𝑎2𝑉𝑜)+ 1⁄⁄  or whenever the incident energy of the 

particle is 𝐸𝑛 = 𝑛
2𝜋2ℏ2 2𝑚𝑎2⁄  with 𝑛 = 1.2.3.⋯ The maxima of the transmission 

coefficient coincide with the energy eigenvalues of the infinite square well potential; 

these are known as resonances. This resonance phenomenon, which does not occur 

in classical physics, results from a constructive interference between the incident 

and the reflected waves. This phenomenon is observed experimentally in a number 

of cases such as when scattering low-energy (𝐸 ~ 0.1 𝑒𝑉) electrons off noble atoms 

(known as the Ramsauer–Townsend effect, a consequence of symmetry of noble 

atoms) and neutrons off nuclei. 

 In the limit 𝜀 → 1 we have 𝑠𝑖𝑛(𝜆√𝜀 − 1)~𝜆√𝜀 − 1, hence (5-10) and (5-11) become 

𝑇 = (1 +
𝑚𝑎2𝑉𝑜

2ℏ2
)
−1

.  𝑅 = (1 +
2ℏ2

𝑚𝑎2𝑉𝑜
)
−1

.     (5-12) 

The potential well(𝐕𝐨 < 𝟎) 

The transmission coefficient (v-10) was derived for the case where Vo > 0, i.e., for a 

barrier potential. Following the same procedure that led to (v-10), we can show that 

the transmission coefficient for a finite potential well, Vo < 0, is given by 

𝑇𝑊 = [1 +
1

4𝜀(𝜀 − 1)
𝑠𝑖𝑛2(𝜆√𝜀 − 1)]

−1

. (5-13) 

where 𝜀 = 𝐸 |𝑉𝑜|⁄  and 𝜆 = 𝑎√2𝑚|𝑉𝑜| ℏ2⁄ . Notice that there is total transmission 

whenever 𝑠𝑖𝑛 (𝜆√𝜀 − 1) = 0 𝑜𝑟  𝜆√𝜀 − 1 = 𝑛𝜋. As shown in Figure above, the total 

transmission, 𝑇𝑊 = 1, occurs whenever 𝜀𝑛 = 𝐸 |𝑉𝑜|⁄ = 𝑛2𝜋2ℏ2 (2𝑚𝑉𝑜)− 1⁄   or 
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whenever the incident energy of the particle is 𝐸𝑛 = 𝑛2𝜋2ℏ2 (2𝑚) − |𝑉𝑜|⁄ with 𝑛 =

1.2.3.⋯. 

b. The case 𝑬 < 𝑽𝒐 Tunneling 

Classically, we would expect total reflection: every particle that arrives at the barrier 

(𝑥 =  0) will be reflected back; no particle can penetrate the barrier, where it would 

have a negative kinetic energy. 

We are now going to show that the quantum mechanical predictions differ sharply 

from their classical counterparts, for the wave function is not zero beyond the barrier. 

The solutions of the Schrödinger equation in the three regions yield expressions that 

are similar to (v-2) except that 𝜓2(𝑥) = 𝐶𝑒
𝑖𝑘2𝑥 + 𝐷𝑒−𝑖𝑘2𝑥should be replaced with 

𝜓2(𝑥) = 𝐶𝑒
𝑘2𝑥 + 𝐷𝑒−𝑘2𝑥: 

𝜓(𝑥) = {

𝜓1(𝑥) = 𝐴𝑒
𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥.         𝑥 ≤ 0.

𝜓2(𝑥) = 𝐶𝑒𝑘2𝑥 + 𝐷𝑒−𝑘2𝑥. 0 < 𝑥 < 𝑎.

  𝜓3(𝑥) = 𝐸𝑒𝑖𝑘1𝑥.                              𝑥 ≥ 𝑎

               (5-14) 

where 𝑘1
2 = 2𝑚𝐸 ℏ2⁄  and 𝑘2

2 = 2𝑚(𝐸 − 𝑉𝑜) ℏ
2⁄ . The behavior of the probability 

density corresponding to this wave function is expected, as displayed in Figure above, 

to be oscillatory in the regions 𝑥 <  0 and 𝑥 > 𝑎, and exponentially decaying for      

𝑜 ≤ 𝑥 ≤ 𝑎. 

   To find the reflection and transmission coefficients 

𝑅 =
|𝐵|2

|𝐴|2
 .       𝑇 =

|𝐸|2

|𝐴|2
               (5-15) 

We need only to calculate B and E in terms of A. The continuity conditions of the 

wave function and its derivative at 𝑥 =  0 and 𝑥 = 𝑎 yield 

𝐴 + 𝐵 = 𝐶 + 𝐷 .                      (5-16) 

𝑖𝑘1(𝐴 − 𝐵) = 𝑘2(𝐶 − 𝐷) .                      (5-17) 

𝐶𝑒𝑘2𝑎 +𝐷𝑒−𝑘2𝑎 = 𝐸𝑒𝑖𝑘1𝑎 .                      (5-18) 

𝑘2(𝐶𝑒
𝑘2𝑎 − 𝐷𝑒−𝑘2𝑎) = 𝑖𝑘1𝐸𝑒

𝑖𝑘1𝑎 .                      (5-19) 

The last two equations lead to the following expressions for C and D: 

     𝐶 =
𝐸

2
(1 + 𝑖

𝑘1
𝑘2
) 𝑒(𝑖𝑘1−𝑘2)𝑎 .   𝐷 =

𝐸

2
(1 − 𝑖

𝑘1
𝑘2
) 𝑒(𝑖𝑘1+𝑘2)𝑎                    (5-20) 

Inserting these two expressions into the two equations (5-16) and (5-17) and dividing 

by A, we can show that these two equations reduce, respectively, to 

1 +
𝐵

𝐴
=
𝐸

𝐴
𝑒𝑖𝑘1𝑎 [𝑐𝑜𝑠ℎ(𝑘2𝑎) − 𝑖

𝑘1
𝑘2
𝑠𝑖𝑛ℎ(𝑘2𝑎)] .                      (5-21) 

1 −
𝐵

𝐴
=
𝐸

𝐴
𝑒𝑖𝑘1𝑎 [𝑐𝑜𝑠ℎ(𝑘2𝑎) + 𝑖

𝑘1
𝑘2
𝑠𝑖𝑛ℎ(𝑘2𝑎)] .                      (5-22) 

Solving these two equations for 𝐵 𝐴 ⁄ and 𝐸 𝐴 ⁄ , we obtain 
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𝐵

𝐴
= −𝑖

𝑘1
2 + 𝑘2

2

𝑘1𝑘2
𝑠𝑖𝑛ℎ(𝑘2𝑎) [2𝑐𝑜𝑠ℎ(𝑘2𝑎) + 𝑖

𝑘2
2 − 𝑘1

2

𝑘1𝑘2
𝑠𝑖𝑛ℎ(𝑘2𝑎)]

−1

 .                           (5-23) 

𝐸

𝐴
= 2𝑒−𝑖𝑘1𝑎 [2𝑐𝑜𝑠ℎ(𝑘2𝑎) + 𝑖

𝑘2
2 − 𝑘1

2

𝑘1𝑘2
𝑠𝑖𝑛ℎ(𝑘2𝑎)]

−1

 .        (5-24) 

Thus, the coefficients R and T become 

 𝑅 =
|𝐵|2

|𝐴|2
= (

𝑘1
2 + 𝑘2

2

𝑘1𝑘2
)

2

𝑠𝑖𝑛ℎ2(𝑘2𝑎) [4𝑐𝑜𝑠ℎ
2(𝑘2𝑎) + (

𝑘2
2 + 𝑘1

2

𝑘1𝑘2
)

2

𝑠𝑖𝑛ℎ2(𝑘2𝑎)]

−1

 .         (5-25) 

𝑇 =
|𝐸|2

|𝐴|2
= 4 [4𝑐𝑜𝑠ℎ2(𝑘2𝑎) + (

𝑘2
2 − 𝑘1

2

𝑘1𝑘2
)

2

𝑠𝑖𝑛ℎ2(𝑘2𝑎)]

−1

 .        (5-26) 

We can rewrite R in terms of T as 

𝑅 =
1

4
𝑇 (
𝑘2
2 − 𝑘1

2

𝑘1𝑘2
) 𝑠𝑖𝑛ℎ2(𝑘2𝑎)

  .                            (5-27) 

Since 𝑐𝑜𝑠ℎ2(𝑘2𝑎) = 1+ 𝑠𝑖𝑛ℎ
2(𝑘2𝑎)we can reduce (5-26) to 

T= [1 +
1

4
(
𝑘2
2−𝑘1

2

𝑘1𝑘2
)
2

𝑠𝑖𝑛ℎ2(𝑘2𝑎)]
−1

 .         (5-28) 

Note that T is finite. This means that the probability for the transmission of the particles 

into the region 𝑥 ≥  𝑎 is not zero (in classical physics, however, the particle can in no 

way make it into the 𝑥 ≥  0 region). This is a purely quantum mechanical effect which 

is due to the wave aspect of microscopic objects; it is known as the tunneling effect: 

quantum mechanical objects can tunnel through classically impenetrable barriers. This 

barrier penetration effect has important applications in various branches of modern 

physics ranging from particle and nuclear physics to semiconductor devices. For 

instance, radioactive decays and charge transport in electronic devices are typical 

examples of the tunneling effect. 

   Now since 

(
𝑘2
2 − 𝑘1

2

𝑘1𝑘2
)

2

= (
𝑉𝑜

√𝐸(𝑉𝑜 − 𝐸)
)

2

=
𝑉𝑜
2

𝐸(𝑉𝑜 − 𝐸)
.         (5-29) 

We can rewrite (v-27) and (v-28) as follows: 

         𝑅 =
1

4

𝑉𝑜
2𝑇

𝐸(𝑉𝑜 − 𝐸)
 𝑠𝑖𝑛ℎ2 (

𝑎

ℏ
√2𝑚(𝑉𝑜 − 𝐸)).                            (5-30) 

T= [1 +
1

4

𝑉𝑜
2

𝐸(𝑉𝑜−𝐸)
𝑠𝑖𝑛ℎ2 (

𝑎

ℏ
√2𝑚(𝑉𝑜 − 𝐸))]

−1

 .         (5-31) 

Or 

𝑅 =
𝑇

4𝜀(1 − 𝜀)
 𝑠𝑖𝑛ℎ2(𝜆√1 − 𝜀).         (5-32)    

         T= [1 +
1

4𝜀(1−𝜀)
𝑠𝑖𝑛ℎ2(𝜆√1 − 𝜀)]

−1

 .         (5-33) 

Where 𝜆 = 𝑎√2𝑚𝑉𝑜 ℏ2⁄  and 𝜀 = 𝐸 𝑉𝑜⁄ . 
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Special cases 

 If  𝐸 ≪ 𝑉𝑜. Hence 𝜀 ≪ 1 or 𝜆√1 − 𝜀 ≫ 1. we may approximate 𝑠𝑖𝑛ℎ (𝜆√1 − 𝜀) ≅
1

2
𝑒𝑥𝑝(𝜆√1 − 𝜀). We can thus show that the transmission coefficient (v-33) becomes      

T≅ {
1

4𝜀(1−𝜀)
[𝑒(𝜆√1−𝜀)]

2
}
−1

= 16𝜀(1 − 𝜀)𝑒−2𝜆√1−𝜀  

                     = 16 (1 −
𝐸

𝑉𝑜
) 𝑒−(2𝑎 ℏ⁄ )√2𝑚(𝑉𝑜−𝐸) 

      (5-34) 

This shows that the transmission coefficient is not zero, as it would be classically, but 

has a finite value. So, quantum mechanically, there is a finite tunneling beyond the 

barrier 𝑥 >  𝑎. 

 When 𝐸 ≅ 𝑉𝑜, hence 𝜀 ≅ 1, we can verify that (5-32) and (5-33) lead to the relations 

(5-12). 

 Taking the classical limit ℏ → 0, the coefficients (5-32) and (5-33) reduce to the 

classical result: 𝑅 → 1 and 𝑇 → 0. 

c. The Tunneling Effect 

In general, the tunneling effect consists of the propagation of a particle through a region 

where the particle’s energy is smaller than the potential energy 𝐸 <  𝑉(𝑥). Classically 

this region, defined by 𝑥1 <  𝑥 <  𝑥2 (Figure below-a), is forbidden to the particle 

where its kinetic energy would be negative; the points 𝑥 = 𝑥1 and 𝑥 = 𝑥2 are known as 

the classical turning points. 

Quantum mechanically, however, since particles display wave features, the quantum 

waves can tunnel through the barrier. 

 

Figure: (a)Tunneling though a potential barrier. (b) Approximation of a smoothly varying 

potential 𝑉(𝑥) by square barriers. 

As shown in the square barrier example, the particle has a finite probability of tunneling 

through the barrier. In this case, we managed to find an analytical expression (5-33) for 

the tunneling probability only because we dealt with a simple square potential. Analytic 

expressions cannot be obtained for potentials with arbitrary spatial dependence. In such 

cases one needs approximations. The Wentzel–Kramers Brillouin (WKB) method 

provides one of the most useful approximation methods. We will show that the 

transmission coefficient for a barrier potential V(x) is given by: 

T~𝑒𝑥𝑝 {−
2

ℏ
∫ 𝑑𝑥√2𝑚[V(x) − 𝐸]
𝑥2

𝑥1
}.       (5-35) 
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The transmission probability for the general potential of Figure above, where we 

divided the region 𝑥1  <  𝑥 <  𝑥2 into a very large number of small interval  , is given 

by 

T~ lim
𝑁→∞

∏ 𝑒𝑥𝑝 [−
2∆𝑥𝑖

ℏ
√2𝑚(𝑉(𝑥𝑖) − 𝐸)]

𝑁
𝑖=1  

= 𝑒𝑥𝑝 [−
2

ℏ
lim
∆𝑥𝑖→0

∑∆𝑥𝑖
𝑖

√2𝑚(𝑉(𝑥𝑖) − 𝐸)] 

→ 𝑒𝑥𝑝 [−
2

ℏ
∫ 𝑑𝑥√2𝑚[V(x) − 𝐸]
𝑥2

𝑥1

] 

    (5-36) 

The approximation leading to this relation is valid, only if the potential V(x) is a 

smooth, slowly varying function of x. 

 

6. Harmonic oscillator. 

The harmonic oscillator is one of those few problems that are important to all branches 

of physics. It provides a useful model for a variety of vibrational phenomena that are 

encountered , for instance, in classical mechanics, electrodynamics, statistical 

mechanics, solid state, atomic , nuclear, and particle physics. In quantum mechanics, 

it serves as an invaluable tool to illustrate the basic concepts and the formalism. 

The paradigm for a classical harmonic oscillator is a mass 𝑚 attached to a spring of 

force constant 𝑘. The motion is governed by Hooke’s law. 

 
𝐹 = −𝑘𝑥 = 𝑚

𝑑2𝑥

𝑑𝑡2
 (6-1) 

 (as always, we ignore friction), and the solution is  

 𝑥(𝑡) = 𝐴𝑠𝑖𝑛(𝜔𝑡) + 𝐵𝑐𝑜𝑠(𝜔𝑡) (6-2) 

Where 𝜔 ≡ √
𝑘

𝑚
  is the (angular) frequency of oscillation. The potential energy is  

 
𝑉(𝑥) =

1

2
𝑘𝑥2 (6-3) 

Its graph is a parabola. 

Of course, there’s no such thing as a perfect simple harmonic oscillator-if you stretch 

it too far the spring is going to break, and typically Hook’s law fails long before that 

point is reached. But practically any potential is approximately parabolic, in the 

neighborhood of a local minimum (Figure below). Formally, if we expand 𝑉(𝑥) in a 

Taylor series about the minimum: 

 
𝑉(𝑥) = 𝑉(𝑥𝑜) + 𝑉

′(𝑥𝑜)(𝑥 − 𝑥𝑜) +
1

2
𝑉′′(𝑥𝑜)(𝑥 − 𝑥𝑜)

2 +⋯ (6-4) 

Subtract  𝑉(𝑥𝑜) [you can add a constant to 𝑉(𝑥𝑜) with impunity, since that doesn’t 

change the force], recognize that 𝑉′ = 0 (since 𝑥𝑜 is a minimum), and drop the higher 

–order terms [which are negligible as long as (𝑥 − 𝑥𝑜) stays small], the potential 

becomes 

 
𝑉(𝑥) ≅

1

2
𝑉′′(𝑥𝑜)(𝑥 − 𝑥𝑜)

2 (6-5) 

Which described simple harmonic oscillation (about the point 𝑥𝑜), with an effective 

spring constant 𝑘 = 𝑉′′(𝑥𝑜). That’s why the simple harmonic oscillator is so important: 
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virtually any oscillatory motion is approximately simple harmonic, as long as the 

amplitude is small. 

 

 

Figure: Parabolic approximation (dashed curve) to an arbitrary potential, in the neighborhood 

of a local minimum. 

The quantum mechanics problem is to solve the Schrödinger equation for the potential  

 
𝑉(𝑥) =

1

2
𝑚𝜔2𝑥2 (6-6) 

(it is customary to eliminate the spring constant in favor of the classical frequency, 

using Equation (6-6). As we have seen, it suffices to solve the time-independent 

Schrödinger equation: 

 
−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+
1

2
𝑚𝜔2𝑥2𝜓 = 𝐸𝜔 (6-7) 

In the literature you will find two entirely different approaches to this problem. The 

first called the analytic method, which is a straightforward “brute force” solution to 

differential equation, using the method of power series expansion; it has the virtue that 

the same strategy can be applied to many others potentials. The second method is a 

diabolically clever algebraic technique, using so-called the ladder or algebraic method, 

does not deal with solving the Schrödinger equation, but deals instead with operator 

algebra involving operators known as the creation and annihilation or ladder operators. 

a. Algebraic method 

To begin with, let’s rewrite Equation (6-7) in a more suggestive form 

 1

2𝑚
[(
ℏ

𝑖

𝑑

𝑑𝑥
)
2

+ (𝑚𝜔 𝑥  )2] 𝜓 = 𝐸𝜓 (6-8) 

The idea is to factor the term in square brackets. If these were numbers, it would be  

𝑢2 + 𝑣2 = (𝑢 − 𝑖𝑣)(𝑢 + 𝑖𝑣) 
Here, however, it’s not quite so simple, because 𝑢 and 𝑣 are operators, and operators 

do not, in general, commute (𝑢𝑣 is not the same as 𝑣𝑢). Still, this does invite us to take 

a look at the expressions 

 
𝑎± ≡

1

√2𝑚
(
ℏ

𝑖

𝑑

𝑑𝑥
± 𝑖𝑚𝜔 𝑥  ) (6-9) 

What is their product, 𝑎−𝑎+ ? Warring: operators can be slippery to work with in the 

abstract, and you are bound to mike mistake unless you give them a “test fuction”, 𝑓(𝑥), 
to act on. At the end you can throw away the test function, and you’ll be left with an 

equation involving the operators alone. In the present case, we have  
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(𝑎−𝑎+)𝑓(𝑥) =
1

2𝑚
(
ℏ

𝑖

𝑑

𝑑𝑥
− 𝑖𝑚𝜔 𝑥  ) (

ℏ

𝑖

𝑑

𝑑𝑥
+ 𝑖𝑚𝜔 𝑥  ) 𝑓(𝑥)

=
1

2𝑚
(
ℏ

𝑖

𝑑

𝑑𝑥
− 𝑖𝑚𝜔 𝑥  ) (

ℏ

𝑖

𝑑𝑓

𝑑𝑥
+ 𝑖𝑚𝜔 𝑥𝑓  ) 

=
1

2𝑚
[−ℏ2

𝑑2𝑓

𝑑𝑥2
+ ℏ𝑚𝜔 

𝑑

𝑑𝑥
(𝑥𝑓) − 𝑚𝜔 𝑥

𝑑𝑓

𝑑𝑥
+ (𝑚𝜔 𝑥  )2𝑓  ] 

                   =
1

2𝑚
[(
ℏ

𝑖

𝑑

𝑑𝑥
)
2

+ (𝑚𝜔 𝑥  )2 + ℏ𝑚𝜔 ]  𝑓(𝑥) 

 

(6-10) 

[I used 𝑑(𝑥𝑓) 𝑑𝑥 = 𝑥(𝑑𝑓 𝑑𝑥⁄ ) + 𝑓⁄  in the last step]. Discarding the test function, we 

conclude that 

 𝑎−𝑎+ =
1

2𝑚
[(
ℏ

𝑖

𝑑

𝑑𝑥
)
2

+ (𝑚𝜔 𝑥  )2] +
1

2
ℏ𝜔  (6-11) 

 Evidently, Equation (vi-8) does not factor perfectly – there’s an extra term (1 2⁄ )ℏ𝜔.  
 However, if we pull this over to the other side, the Schrödinger equation becomes 

 (𝑎−𝑎+ −
1

2
ℏ𝜔 )𝜓 = 𝐸 (6-12) 

Notice that the ordering of the factors  𝑎+ and 𝑎− is important here, the same argument 

with 𝑎+ on the left yields  

 𝑎+𝑎− =
1

2𝑚
[(
ℏ

𝑖

𝑑

𝑑𝑥
)
2

− (𝑚𝜔 𝑥  )2] −
1

2
ℏ𝜔  (6-13) 

Thus 

 𝑎−𝑎+ − 𝑎+𝑎− =  ℏ𝜔
  (6-14) 

And the Schrödinger equation can also be written  

 (𝑎+𝑎− +
1

2
ℏ𝜔 )𝜓 = 𝐸𝜓 (6-15) 

Now, here comes the crucial step: I claim that if 1/; satisfies the Schrödinger equation, 

with energy E, then a+1l/ satisfies the Schrödinger equation with energy (E +hw). 

Proof: 

(𝑎+𝑎− +
1

2
ℏ𝜔 ) (𝑎+𝜓) = (𝑎+𝑎−𝑎+ +

1

2
ℏ𝜔 𝑎+)𝜓 

             = 𝑎+ (𝑎−𝑎+ +
1

2
ℏ𝜔 )𝜓 = 𝑎+ [(𝑎−𝑎+ −

1

2
ℏ𝜔 )𝜓 + ℏ𝜔𝜓 ] 

                                   = 𝑎+(𝐸𝜓 + ℏ𝜔𝜓
 ) = (𝐸 + ℏ𝜔 )(𝑎+𝜓).𝑄𝐸𝐷 

Notice that whereas the ordering of 𝑎+ and 𝑎− does matter, the ordering of 𝑎± and 

any constants (such as ℏ, 𝜔, and 𝐸) does not.] By the same token, 𝑎−𝜓 is a solution 

with energy(𝐸 − ℏ𝜔 ): 

(𝑎−𝑎+ −
1

2
ℏ𝜔 ) (𝑎−𝜓) = 𝑎− (𝑎+𝑎− −

1

2
ℏ𝜔 )𝜓 

= 𝑎− [(𝑎+𝑎− +
1

2
ℏ𝜔 )𝜓 − ℏ𝜔𝜓 ] = 𝑎−(𝐸𝜓 − ℏ𝜔𝜓

 ) 

                                                                                              = (𝐸 − ℏ𝜔 )(𝑎−𝜓). 𝑄𝐸𝐷 

Here, then, is a wonderful machine for grinding out new solutions, with higher and 

lower energies—if we can just find one solution, to get started! We call 𝑎± ladder 
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operators, because they allow us to climb up and down in energy; 𝑎+ is called the 

raising operator, and 𝑎− the lowering operator. The “ladder” of states is illustrated in 

Figure below. 

But wait! What if I apply the lowering operator repeatedly? Eventually I’m going to 

reach a state with energy less than zero, which (according to the general theorem) does 

not exist! At some point the machine must fail. How can that happen? We know that 

𝑎−𝜓 is a new solution to the Schrödinger equation, but there is no guarantee that it will 

be normalizable—it might be zero, or its square integral might be infinite. Conclusion: 

There must occur a “lowest rung” (let’s call it 𝜓𝑜) such that 

 𝑎−𝜓 = 0 (6-16) 

That is to say 

1

√2𝑚
(
ℏ

𝑖

𝑑𝜓𝑜
𝑑𝑥

− 𝑖𝑚𝜔 𝑥  𝜓𝑜) = 0 

Or  

𝑑𝜓𝑜
𝑑𝑥

= −
𝑚𝜔 

ℏ
𝑥  𝜓𝑜 

This differential equation for 𝜓𝑜 is easy to solve: 

∫
𝑑𝜓𝑜
𝜓𝑜

= −
𝑚𝜔 

ℏ
∫𝑥𝑑𝑥    ⇒   𝑙𝑛𝜓𝑜 = −

𝑚𝜔 

2ℏ
𝑥2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

So  

 𝜓𝑜(𝑥) = 𝐴𝑜𝑒
−
𝑚𝜔 

2ℏ
𝑥2 . (6-17) 

 

 

To determine the energy of this state, we plug it into the Schrödinger equation {in the 

form of Equation (6-15},(𝑎+𝑎− +
1

2
ℏ𝜔 )𝜓𝑜 = 𝐸𝑜𝜓𝑜, and exploit the fact that              

𝑎−𝜓 = 0. Evidently 

 𝐸𝑜 =
1

2
ℏ𝜔  (6-18) 

With our foot now securely planted on the bottom rung” (the ground state of the 

quantum oscillator), we simply apply the raising Operator to generate the excited 

states”: 

 𝜓𝑛(𝑥) = 𝐴𝑛(𝑎+)
𝑛𝑒−

𝑚𝜔 

2ℏ
𝑥2 , 𝑤𝑖𝑡ℎ  𝐸𝑛 = (𝑛 +

1

2
)ℏ𝜔     (6-19) 

(This method does not immediately determine the normalization factor 𝐴𝑛; For 

example, 

𝜓1(𝑥) = 𝐴1𝑎+𝑒
−
𝑚𝜔 

2ℏ
𝑥2 = 𝐴1

1

√2𝑚
(
ℏ

𝑖

𝑑

𝑑𝑥
− 𝑖𝑚𝜔 𝑥  ) 𝑒−

𝑚𝜔 

2ℏ
𝑥2

 

Figure: the ladder of stationary states for the simple harmonic 

oscillator. 
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      =
𝐴1

√2𝑚
(
ℏ

𝑖
(−

𝑚𝜔 

ℏ
𝑥) 𝑒−

𝑚𝜔 

2ℏ
𝑥2 + 𝑖𝑚𝜔 𝑥𝑒−

𝑚𝜔 

2ℏ
𝑥2
 

) 

Which simplify to  

 𝜓1(𝑥) = (𝑖𝐴1𝜔√2𝑚)𝑥𝑒
−
𝑚𝜔 

2ℏ
𝑥2

 

 
(6-20) 

I wouldn’t want to calculate 𝜓50 in this way, but never mind: We have found all the 

allowed energies, and in principle we have determined the stationary states—the rest is 

just computation. 

 

a. Analytical Method 

We return now to the Schrödinger equation for the harmonic oscillator (Equation 6-7): 

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2
+
1

2
𝑚𝜔2𝑥2𝜓 = 𝐸𝜔 

Things look a little cleaner if we introduce the dimensionless variable 

 𝜉 ≡ √
𝑚𝜔 

ℏ
 𝑥   (6-21) 

In term of 𝜉, the Schrödinger reads 

 
𝑑2𝜓

𝑑𝑥2
= (𝜉2 − 𝐾)𝜓  (6-22) 

Where 𝐾 is the energy, in units of (1 2⁄ )ℏ𝜔:  

 𝐾 ≡
2𝐸

ℏ𝜔 
  (6-23) 

Our problem is to solve Equation 6-22, and in the process obtain the “allowed” values 

of 𝐾 (and hence of 𝐸). 

To begin with, note that at very large 𝜉 (which is to say, at very large 𝑥), 𝜉2completely 

dominates over the constant 𝐾, so in this regime 

 
𝑑2𝜓

𝑑𝜉2
≈ 𝜉2𝜓   (6-24) 

which has the approximate solution (check it!) 

 𝜓(𝜉) ≈  𝐴𝑒−𝜉
2 2⁄ + 𝐵𝑒+𝜉

2 2⁄  (6-25) 

The B term is clearly not normalizable (it blows up as |𝑥| → ∞); the physically 

acceptable solutions, then, have the asymptotic for 

 𝜓(𝜉) ≈  ( )𝑒−𝜉
2 2⁄ ,    at large 𝜉 (6-26) 

This suggests that we “peel off ’ the exponential part, 

 𝜓(𝜉) = ℎ( 𝜉 )𝑒−𝜉
2 2⁄ ,     (6-27) 

in hopes that what remains [ℎ( 𝜉 )] has a simpler functional form than 𝜓(𝜉) itself. 

Differentiating Equation 6-26, we have 

𝑑𝜓

𝑑𝜉
= (

𝑑ℎ

𝑑𝜉
− 𝜉ℎ) 𝑒−𝜉

2 2⁄  

And 

𝑑2𝜓

𝑑𝜉2
= (

𝑑2ℎ

𝑑𝜉2
− 2𝜉

𝑑ℎ

𝑑𝜉
+ (𝜉2 − 1)) 𝑒−𝜉

2 2⁄  
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So the Schrödinger equation (Equation 6-21) becomes 

 
𝑑2ℎ

𝑑𝜉2
− 2𝜉

𝑑ℎ

𝑑𝜉
+ (𝐾 − 1)ℎ = 0,     (6-28) 

I propose to look for a solution to Equation 6-28 in the form of a power series in 𝜉: 

 ℎ(𝜉) = 𝑎𝑜 + 𝑎1𝜉 + 𝑎2𝜉
2 +⋯ =∑𝑎𝑗𝜉

𝑗

∞

𝑗=0

,     (6-29) 

Differentiating the series term by term, 

 
𝑑ℎ

𝑑𝜉
= 𝑎1 + 2𝑎2𝜉 + 3𝑎3𝜉

2… =∑𝑗𝑎𝑗𝜉
𝑗−1

∞

𝑗=0

,     (6-30) 

And 

𝑑2ℎ

𝑑𝜉2
= 2𝑎2 + 2 ∙ 3𝑎3𝜉 + 3 ∙ 4𝑎4𝜉

2 +⋯ =∑(𝑗 + 1)(𝑗 + 2)𝑎𝑗+2𝜉
𝑗

∞

𝑗=0

,     (6-31) 

Putting these into Equation vi-27, we find 

 ∑[(𝑗 + 1)(𝑗 + 2)𝑎𝑗+2 − 2𝑗𝑎𝑗 + (𝐾 − 1)𝑎𝑗]𝜉
𝑗 = 0  

∞

𝑗=0

,     (6-32) 

It follows (from the uniqueness of power series expansions“) that the coefficient of each 

power of 𝜉 must vanish 

(𝑗 + 1)(𝑗 + 2)𝑎𝑗+2 − 2𝑗𝑎𝑗 + (𝐾 − 1)𝑎𝑗 = 0 

And hence that 

 𝑎𝑗+2 =
(2𝑗 + 1 − 𝐾)

(𝑗 + 1)(𝑗 + 2)
𝑎𝑗 ,     (6-33) 

This recursion formula is entirely equivalent to the Schrödinger equation itself. 

Given 𝑎𝑜 it enables us (in principle) to generate 𝑎2, 𝑎4, 𝑎6, … and given 𝑎1 it generates 

𝑎3, 𝑎5, 𝑎7, … . Let us write 

 ℎ(𝜉) = ℎ𝑒𝑣𝑒𝑛(𝜉) + ℎ𝑜𝑑𝑑(𝜉)     (6-34) 

Where 

ℎ𝑒𝑣𝑒𝑛(𝜉) = 𝑎𝑜 + 𝑎2𝜉
2 + 𝑎4𝜉

4 +⋯ 

is an even function of 𝜉 (since it involves only even powers), built on 𝑎𝑜, and 

ℎ𝑜𝑑𝑑(𝜉) = 𝑎1𝜉 + 𝑎3𝜉
3 + 𝑎5𝜉

5 +⋯ 

is an odd function, built on 𝑎1. Thus Equation vi-31 determines ℎ(𝜉) in terms arbitrary 

constants (𝑎𝑜 and 𝑎1)—which is just what we would expect, for a second order 

differential equation. 

 However, not all the solutions so obtained are normalizable. For at very large j, the 

recursion formula becomes (approximately) 

𝑎𝑗+2 ≈
2

𝑗
𝑎𝑗 ,   

With the (approximate) solution 

𝑎𝑗 ≈
𝐶

(𝑗 2⁄ )!
,   

For some constant C, and this yields ( at large ξ, where the higher powers dominate) 

ℎ(𝜉) ≈ 𝐶∑
1

(𝑗 2⁄ )!
𝜉𝑗 ≈ 𝐶∑

1

𝑘!
𝜉2𝑘 ≈ 𝐶𝑒𝜉

2
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Now, if h goes like 𝑒𝑥𝑝(𝜉2), then 𝜓 (remember 𝜓?——that’s what we’re trying to 

calculate) goes like exp (𝜉2 2⁄ ),  (Equation vi-27), which is precisely the asymptotic 

behavior we don ’t want.” There is only one way to wiggle out of this: For normalizable 

solutions the power series must terminate. There must occur some “highest” 𝑗 (call it 

𝑛) such that the recursion formula spits out 𝑎𝑛+2 = 0 (this will truncate either the series 

ℎ𝑒𝑣𝑒𝑛 or the series ℎ𝑜𝑑𝑑; the other one must be zero from the start). For physically 

acceptable solutions, then, we must have 

𝐾 = 2𝑛 + 1,   

for some positive integer 𝑛 , which is to say (referring to Equation 6-23) that the energy 

must be of the form 

 𝐸𝑛 = (𝑛 +
1

2
)ℏ𝜔,    𝑓𝑜𝑟 𝑛 = 0,1,2, …. (6-35) 

Thus we recover, by a completely different method, the fundamental quantization 

condition we found algebraically in Equation 6-19. 

For the allowed values of K, the recursion formula reads 

 𝑎𝑗+2 =
−2(𝑛 − 𝑗)

(𝑗 + 1)(𝑗 + 2)
𝑎𝑗 

(6-36) 

 

If 𝑛 = 0, there is only one term in the series (we must pick 𝑎1 to kill ℎ𝑜𝑑𝑑, and 𝑗 = 0  

in Equation. 6-36 yields 𝑎1 = 0): 

ℎ0(𝜉) = 𝑎0, 
And hence  

𝜓0(𝜉) = 𝑎0𝑒
−𝜉2 2⁄  

(which reproduces Equation 6-17). For 𝑛 = 0 we pick 𝑎0 = 0, and Equation 6-36 

with 𝑗 = 0 yields 𝑎3 = 0, so 

ℎ1(𝜉) = 𝑎1𝜉, 
And hence 

𝜓1(𝜉) = 𝑎1𝜉𝑒
−𝜉2 2⁄  

(confirming Equation 6-20). For 𝑛 = 2, 𝑗 = 0yields 𝑎2 = −2𝑎0, andj 𝑗 = 2 gives 

𝑎4 = 0, so 

ℎ2(𝜉) = 𝑎𝑜(1 − 2𝜉
2), 

And 

𝜓2(𝜉) = 𝑎𝑜(1 − 2𝜉
2)𝑒−𝜉

2 2⁄  
and so on. 

In general, ℎ𝑛(𝜉) will be a polynomial of degree 𝑛 in 𝜉, involving even powers only, if 

𝑛 is an even integer, and odd powers only, if 𝑛 is an odd integer. Apart from the overall 

factor (𝑎𝑜 or 𝑎1) they are the so-called Hermite polynomials, 𝐻𝑛(𝜉). 

The Hermite polynomials is: 

𝐻𝑛(𝜉) = (−1)
𝑛𝑒𝜉

2 𝑑𝑛

𝑑𝑥𝑛
𝑒𝜉

−2
 

The first few of them are listed in Table below. By tradition, the arbitrary multiplicative 

factor is chosen so that the coefficient of the highest power of ‘𝜉 is 2𝑛”. With this 

convention, the normalized stationary states for the harmonic oscillator are 

 𝜓𝑛(𝜉) = (
𝑚𝜔

𝜋ℏ
)
1 4⁄ 1

√2𝑛𝑛!
𝐻𝑛(𝜉)𝑒

−𝜉2 2⁄  (6-37) 
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They are identical (of course) to the ones we obtained algebraically in Equation 6-19. 

In Figure below a I have plotted 𝜓𝑛(𝑥) for the first few n’s. 

The quantum oscillator is strikingly different from its classical counterpart—not only 

are the energies quantized, but the position distributions have some bizarre features. 

For instance, the probability of finding the particle outside the classically allowed range 

(that is, with 𝑥 greater than the classical amplitude for the energy in question) is not 

zero, and in all odd states the probability of 

Table: The first few Hermite polynomials, 𝐻𝑛(𝜉). 

𝐻𝑜 = 1,                                       For  𝑛 = 0, 

𝐻1 = 2𝑥,                                     For  𝑛 = 1, 

𝐻2 = 4𝑥
2 − 2,                            For  𝑛 = 2, 

𝐻3 = 8𝑥
3 − 12𝑥,                        For  𝑛 = 3, 

𝐻4 = 16𝑥
4 − 48𝑥2 + 12,           For  𝑛 = 4, 

𝐻5 = 32𝑥
5 − 160𝑥3 + 120𝑥,    For  𝑛 = 5, 

 

 

Figure: (a) The first four stationary states of the harmonic oscillator. 

(b) Graph of |𝜓1(𝑥)|
2
, with the classical distribution (dashed curve) superimposed. 

finding the particle at the center of the potential well is zero. Only at relatively large 𝑛 

do we begin to see some resemblance to the classical case. In Figure above-b I have 

superimposed the classical position distribution on the quantum one (for = 100 ); if 

you smoothed out the bumps in the latter, the two would fit pretty well (however, in the 

classical case we are talking about the distribution of positions over time for one 

oscillator, whereas in the quantum case we are talking about the distribution over an 

ensemble of identically-prepared systems). 
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Solved Problem in Quantum Mechanics in One Dimension 

Wave Function for a Free Particle-1:Problem 

A free electron has wave function 

 Ψ(𝑥, 𝑡) = 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) (1) 

 

1. Determine the electron's de Broglie wavelength, momentum, kinetic energy and 

speed when 𝑘 =  50𝑛𝑚−1. 
2. Determine the electron's de Broglie wavelength, momentum, total energy, 

kinetic energy and speed when 𝑘 =  50 𝑝𝑚−1. 
-:Solution 

1. The equations relating the speed v, momentum p, de Broglie wavelength 𝜆, wave 

number 𝑘, kinetic energy 𝐸, angular frequency 𝜔 and group velocity 𝑣𝑔 for a 

nonrelativistic particle of mass 𝑚 are: 

 
𝑝 = 𝑚𝑣 =

ℎ

𝜆
= ℏ𝑘 (2) 

 
𝐸 =

1

2
𝑚𝑣2 =

𝑝2

2𝑚
=
ℏ2𝑘2

2𝑚
= ℏ𝜔 (3) 

 
𝑣𝑔 =

𝑑𝜔

𝑑𝑘
= 𝑣 (4) 

When 𝑘 =  50 𝑛𝑚−1, 

 λ = 126 pm,              p = 9.87KeV/c (5) 

And, for an electron (𝑚 =  511 𝑘𝑒𝑉/𝑐2), 

 𝐸 = 95.2eV,                 ν = 1.93 × 10−2𝑐 (6) 

2. The equations relating the speed 𝑣, momentum 𝑝, de Broglie wavelength λ, wave 

number 𝑘, total energy 𝐸, kinetic energy 𝐾, angular frequency 𝜔 and group velocity 

𝑣𝑔 for a relativistic particle of mass 𝑚 are: 

 
𝑝 = 𝛾𝑚𝑣 =

ℎ

𝜆
= ℏ𝑘 (7) 

 𝐸 = 𝛾𝑚𝑐2 = 𝑚𝑐2 + 𝐾 = √𝑝2𝑐2 +𝑚2𝑐4 = ℏ𝜔 (8) 

 
𝑣𝑔 =

𝑑𝜔

𝑑𝑘
= 𝑣 =

𝑝𝑐2

𝐸
 (9) 

 
𝛾 =

1

√1 − 𝛽2
 (10) 

 𝛽 = 𝑣 𝑐⁄  (11) 

When 𝑘 =  50 𝑝𝑚−1, 

 λ = 126 fm,              p = 9.87MeV/c (12) 

And, for an electron (𝑚 =  511 𝑘𝑒𝑉/𝑐2), 

 𝐸 = 9.88 𝑀eV,       K = 9.37MeV          ν = 0.9987 𝑐 (13) 
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Potential Energy of a Particle -2:Problem 

In a region of space, a particle with mass 𝑚 and with zero energy has a time-

independent wave function 

 𝜓(𝑥) = 𝐴𝑥𝑒−𝑥
2 𝐿2⁄  (14) 

Where 𝐴 and 𝐿 are constants. 

Determine the potential energy U(x) of the particle. 

-:Solution 

The time-independent Schrödinger equation for the wavefunction (𝑥) of a particle of 

mass 𝑚 in a potential 𝑈(𝑥) is: 

 −
ℏ𝟐

𝟐𝒎

𝒅𝟐𝜓(𝑥)

𝒅𝒙𝟐
+ 𝑈(𝑥) 𝜓(𝑥) = 𝐸𝜓(𝑥) (15) 

When a particle with zero energy has wavefunction (𝑥) given by Eq. (14), it follows 

on substitution into Eq. (15) that 

 𝑈(𝑥)=
𝟐ℏ𝟐

𝒎𝑳𝟒
(𝒙𝟐 −

𝟑𝑳𝟐

𝟐
) (16) 

𝑈(𝑥) is a parabola centred at 𝑥 =  0 with 𝑈(𝑥)=
−𝟑ℏ𝟐

𝒎𝑳𝟐
. 

Problem3:- Photon Energy From a Transition in an Infinite Square Well 

Potential. 

A proton is confined in an infinite square well of width 10 𝑓𝑚. (The nuclear potential 

that binds protons and neutrons in the nucleus of an atom is often approximated by an 

infinite square well potential.) 

1. Calculate the energy and wavelength of the photon emitted when the proton 

undergoes a transition from the first excited state (𝑛 =  2) to the ground state 

(𝑛 =  1). 

2. In what region of the electromagnetic spectrum does this wavelength belong? 

 

-:Solution 

1. The energy 𝐸𝑛 of a particle of mass 𝑚 in the nth energy state of an infinite square 

well potential with width 𝐿 gives as: 

 
𝐸𝑛 =

𝑛2ℎ2

8𝑚𝐿2
 (17) 

The energy 𝐸 and wavelength 𝜆 of a photon emitted as the particle makes a transition 

from the 𝑛 =  2 state to the 𝑛 =  1 state are 

 
𝐸 = 𝐸2 − 𝐸1 =

3ℎ2

8𝑚𝐿2
 (18) 

 

 
𝜆 =

ℎ𝑐

𝐸
 (19) 

For a proton (𝑚 = 938 𝑀𝑒𝑉/𝑐2), 𝐸 =  6.15𝑀𝑒𝑉 and 𝜆 =  202 𝑓m. The wavelength 

is in the gamma ray region of the spectrum. 
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Wave Functions for a Particle in an Infinite Square Well Potential -4:Problem 

A particle with mass m is in an infinite square well potential with walls at 𝑥 =  −𝐿 2⁄  

and 𝑥 =  𝐿 2.⁄  

Write the wave functions for the states 𝑛 =  1, 𝑛 =  2 and 𝑛 =  3. 

 

Solution:- 

The normalized wave functions for a particle in an infinite square well potential with 

walls at 𝑥 =  0 and 𝑥 =  𝐿  gives as 𝜓𝑛(𝑥) = √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
).To obtain the 

wavefunctions  𝜓𝑛(𝑥) for a particle in an infinite square potential with walls at 𝑥 =
 −𝐿 2⁄  and 𝑥 =  𝐿 2⁄  we replace 𝑥 in aforementioned Eq. by 𝑥 +  𝐿 = 2: 

 

𝜓𝑛(𝑥) = √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝜋(𝑥 + 𝐿 2⁄ )

𝐿
) (20) 

Which satisfies  𝜓𝑛(−𝐿 2⁄ ) = 𝜓𝑛(𝐿 2⁄ ) = 0 as required. Thus, 

 

𝜓1(𝑥) = √
2

𝐿
𝑐𝑜𝑠 (

𝜋𝑥

𝐿
) (21)   

 𝜓2(𝑥) = −√
2

𝐿
𝑠𝑖𝑛 (

2𝜋𝑥

𝐿
) (22) 

 𝜓2(𝑥) = −√
2

𝐿
𝑐𝑜𝑠 (

3𝜋𝑥

𝐿
) (23) 

 

Position Probability for a Particle in an Infinite Square Well Potential -:Problem5 

A particle is in the nth energy state 𝜓𝑛(𝑥) of an infinite square well potential with 

width L. 

1. Determine the probability 𝑃𝑛(1 𝑎⁄ ) that the particle is confined to the first 1 𝑎⁄  of 

the width of the well. 

2. Comment on the n-dependence of 𝑃𝑛(1 𝑎⁄ ). 
 

Solution:- 

The wave function  𝜓𝑛(𝑥)  for a particle in the nth energy state in an infinite square 

box with walls at 𝑥 = 0 and 𝑥 = 𝐿 is 

 

𝜓𝑛(𝑥) = √
2

𝐿
𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) (24) 

The probability 𝑃𝑛(1 𝑎⁄ ) that the electron is between 𝑥 = 0 and 𝑥 = 𝐿 in the state  

𝜓𝑛(𝑥)is 

 
𝑃𝑛 (

1

𝑎
) = ∫ |𝜓𝑛(𝑥)|

2
𝐿 2⁄

0

𝑑𝑥 =
2

𝐿
∫ 𝑠𝑖𝑛2 (

𝑛𝜋𝑥

𝐿
)

𝐿 2⁄

0

𝑑𝑥

=
1

𝑎
−
𝑠𝑖𝑛(2𝑛𝜋 𝑎⁄ )

2𝑛𝜋
 

 

(25) 
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𝑃𝑛(1 𝑎⁄ ) is the probability that the particle in the state  𝜓𝑛(𝑥) is confined to the first 

1 𝑎⁄  of the width of the well. The sinusoidal n-dependent term decreases as n increases 

and vanishes in the limit of large n: 

 
𝑃𝑛 (

1

𝑎
) →

1

𝑎
     𝑎𝑠    𝑛 → ∞ (26) 

 

𝑃𝑛(1 𝑎⁄ ) = 1 𝑎⁄  is the classical result. The above analysis is consistent with the 

correspondence principle, which may be stated symbolically as 

 quantum physics  →  classical physics as 𝑛 → ∞ (27) 

Where n is a typical quantum number of the system. 

 

Energy Levels for a Particle in a Finite Square Well Potential -:6Problem 

A particle with energy E is bound in a finite square well potential with height U and 

width 2L situated at −𝐿 ≤ 𝑥 ≤ +𝐿. 

The potential is symmetric about the midpoint of the well. The stationary state wave 

functions are either symmetric or antisymmetric about this point. 

1. Show that for 𝐸 <  𝑈, the conditions for smooth joining of the interior and 

exterior wave functions leads to the following equation for the allowed energies 

of the symmetric wave functions: 

 𝑘𝑡𝑎𝑛𝑘𝐿 = 𝛼 (28) 

Where  

 𝛼 = √
2𝑚(𝐸 − 𝑈)

ℏ2
 

 

(29) 

And 

 𝑘 = √
2𝑚𝐸

ℏ2
 (30) 

k is the wave number of oscillation in the interior of the well. 

2. Show that Eq. (28) can be rewritten as 

 
𝑘𝑠𝑒𝑐𝑘𝐿 =

√2𝑚𝑈

ℏ
 (31)   

3. Apply this result to an electron trapped at a defect site in a crystal, modeling the 

defect as a finite square well potential with height 5 𝑒𝑉 and width 200 𝑝𝑚. 

 

Solution:- 

The wavefunction 𝜓 (𝑥) for a particle with energy 𝐸 in a potential 𝑈(𝑥) satisfies the 

time-independent Schrödinger equation. 

Inside the well (−𝐿 ≤ 𝑥 ≤ +𝐿), the particle is free. The wavefunction symmetric about 

𝑥 =  0 is 

 𝜓 (𝑥) = 𝐴𝑐𝑜𝑠𝑘𝑥    𝑤ℎ𝑒𝑟𝑒 𝑘 = √
2𝑚𝐸

ℏ2
 (32) 

Outside the well (−∞ <  𝑥 <  −𝐿 and 𝐿 <  𝑥 <  ∞), the potential has constant value 

𝑈 >  𝐸. The wavefunction symmetric about 𝑥 =  0 is 

 

𝜓 (𝑥) = 𝐵𝑒
−𝛼|𝑥|  𝑤ℎ𝑒𝑟𝑒 𝛼 = √

2𝑚(𝑈 − 𝐸)

ℏ2
 (33) 
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𝜓 (𝑥) and its derivative are continuous at 𝑥 =  𝐿: 

 𝐴𝑐𝑜𝑠𝑘𝐿 = 𝐵𝑒−𝛼𝐿   (34) 

 𝐴𝑘𝑠𝑖𝑛𝑘𝐿 = 𝐵𝛼𝑒−𝛼𝐿   (35) 

From which 

 𝑘𝑡𝑎𝑛𝑘𝐿 = 𝛼 (36) 

 

Or, alternatively, 

 𝜃𝑠𝑒𝑐𝜃 = ±𝑎 (37) 

Where 

 𝜃 = 𝑘𝐿 (38) 

 

And 

 

𝛼 = √
2𝑚𝑈𝐿2

ℏ2
  (39) 

Eq. (36) are equations for the allowed values of k. The equation with the positive sign 

yields values of 𝜃 in the first quadrant. The equation with the negative sign yields values 

of 𝜃 in the third quadrant. 

Solving Eq. (37) numerically for an electron in a well with 𝑈 =  5 𝑒𝑉 and 𝐿 =
 100 𝑝𝑚 yields the ground state energy 𝐸 =  2.43 𝑒𝑉. 

 

Problem7:-Wave Function 

An electron is trapped in an infinitely deep potential well of width L = 106 fm. 

Calculate the wavelength of photon emitted from the transition E4 → E3. 

 

Solution:- 

 
𝐸𝑛 =

𝑛2ℎ2

8𝑚𝐿2
=
𝜋2𝑛2ℏ2𝑐2

8𝑚𝑐2𝐿2
=

𝜋2 × (197.3 MeV fm)2𝑛2

2 × 0.511(MeV) × (102 fm)2

= 0.038 𝑛2 eV 

 

(40) 

 𝐸1 = 0.038 eV, 𝐸2 = 0.152 eV,  𝐸3 = 0.342 eV,   𝐸4 = 0.608 eV,  (41) 

 ∆𝐸43 = 𝐸4 − 𝐸3 = 0.608 − 0.342 = 0.266eV   (42) 

𝜆 =
1.241

0.266
= 4.665 nm 

 

Problem8:-Wave Function 

If 𝜓(𝑥) =  
𝑁

𝑥2+𝑎2
, calculate the normalization constant N. 

 

Solution:- 

Normalization condition is 

 
∫ |𝜓|2𝑑𝑥 = 1
+∞

−∞

 (43) 

 𝑁2∫ (𝑥2 + 𝑎2)−2𝑑𝑥 = 1
+∞

−∞

 (44) 

Put 𝑥 =  𝑎 𝑡𝑎𝑛 𝜃; 𝑑𝑥 =  𝑠𝑒𝑐2𝜃 𝑑𝜃 
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 (
2𝑁2

𝑎3
)∫ 𝑐𝑜𝑠2𝜃𝑑𝜃 = 𝑁2𝜋 2𝑎3 = 1⁄

𝜋 2⁄

0

 (45) 

Therefore,  

𝑁 = (
2𝑎3

𝜋
)

1 2⁄

 

 

Problem9:-Wave Function 

Find the flux of particles represented by the wave function 

𝜓(𝑥)  =  𝐴 𝑒𝑖𝑘𝑥  +  𝐵𝑒−𝑖𝑘𝑥 

 

Solution:- 

The flux is  

 
𝐽𝑥 = (

ℏ

2𝑖𝑚
) [𝜓∗

𝑑𝜓

𝑑𝑥
− 𝜓

𝑑𝜓∗

𝑑𝑥
] (46) 

𝐽𝑥 = (
ℏ

2𝑖𝑚
) [(𝐴 𝑒−𝑖𝑘𝑥  +  𝐵𝑒𝑖𝑘𝑥)𝑖𝑘(𝐴 𝑒𝑖𝑘𝑥 −  𝐵𝑒−𝑖𝑘𝑥)

+ (𝐴 𝑒𝑖𝑘𝑥  +  𝐵𝑒−𝑖𝑘𝑥)𝑖𝑘(𝐴 𝑒−𝑖𝑘𝑥 +  𝐵𝑒𝑖𝑘𝑥)] 
(47) 

𝐽𝑥 = (
ℏ𝑘

2𝑚
) [𝐴2 − 𝐵2 − 𝐴𝐵𝑒−2𝑖𝑘𝑥 + 𝐴𝐵𝑒2𝑖𝑘𝑥 + 𝐴2 − 𝐵2 + 𝐴𝐵𝑒−2𝑖𝑘𝑥

− 𝐴𝐵𝑒2𝑖𝑘𝑥] = (
ℏ𝑘

𝑚
) [𝐴2 − 𝐵2] 

(48) 

Problem10:-Wave Function 

(a) Find the normalized wave functions for a particle of mass m and energy E trapped 

in a square well of width 2𝑎 and depth 𝑉𝑜 >  𝐸. 

(b) Sketch the first two wave functions in all the three regions. In what respect do 

they differ from those for the infinite well depth. 
 

Solution:- 

 (a) 

 𝜓1 = 𝐴𝑒𝛽𝑥 (−∞ < 𝑥 < −𝑎)  

     𝜓2 = 𝐷𝑐𝑜𝑠𝛼𝑥 (−𝑎 < 𝑥 < +𝑎)

  𝜓1 = 𝐴𝑒
−𝛽𝑥 (𝑎 < 𝑥 < ∞)

 (49) 

Normalization implies that 

 
∫ |𝜓1|

2𝑑𝑥 +
−𝑎

−∞

∫ |𝜓2|
2𝑑𝑥 + ∫ |𝜓3|

2𝑑𝑥 = 1
∞

𝑎

𝑎

−𝑎

 (50) 

 ∫ 𝐴2𝑒2𝛽𝑥𝑑𝑥 +
−𝑎

−∞

∫ 𝐷2𝑐𝑜𝑠2𝛼𝑥𝑑𝑥 + ∫ 𝐴2𝑒−2𝛽𝑥𝑑𝑥 = 1
∞

𝑎

𝑎

−𝑎

 (51) 

 𝐴2 𝑒−2𝛽𝑎 2𝛽⁄ + 𝐷2[𝑎 + 𝑠𝑖𝑛 (2𝛼𝑎) 2𝛼⁄ ] + 𝐴2 𝑒−2𝛽𝑎 2𝛽⁄ = 1 (52) 

Or  

 𝐴2 𝑒−2𝛽𝑎 𝛽⁄ + 𝐷2[𝑎 + 𝑠𝑖𝑛 (2𝛼𝑎) 2𝛼⁄ ] = 1 (53) 

Boundary condition at 𝑥 =  𝑎 gives 

 𝐷𝑐𝑜𝑠𝛼𝑎 = 𝑎𝑒−𝛽𝑎 (54) 

Combining (53) and (54) gives 
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𝐷 = (𝑎 +
1

𝛽
)
−1

𝐴 = 𝑒𝛽𝑎𝑐𝑜𝑠𝛼𝑎 (𝑎 +
1

𝛽
)
−1 (55) 

(b)The difference between the wave functions in the infinite and finite potential wells 

is that in the former the wave function within the well terminates at the potential well, 

while in the latter it penetrates the well. 

 
Figure: Wave functions in potential wells of infinite and finite depths. 

Problem11:-Wave Function 

The state of a free particle is described by the following wave function (Fig. below) 

𝜓(𝑥) = {
0                     𝑥 < −3𝑎
𝑐  −3𝑎 < 𝑥 < 𝑎
0                 𝑥 > 𝑎

 

(a) Determine c using the normalization condition. 

(b) Find the probability of finding the particle in the interval [0, a]. 

 

Fig.: Uniform distribution of 𝜓. 

 

Solution:- 

(a)The normalization condition requires 

 ∫ |𝜓 |
2𝑑𝑥 = ∫ |𝑐|2𝑑𝑥 = 1 = 4𝑎

𝑎

−3𝑎

|𝑐|2
∞

−∞

 (56) 

Therefore,  𝑐 = 1 2√𝑎⁄  



First semester Quantum Mechanics-Lecture Note       

2016-2017   College of Science/ Physics Department 

 

Dr. abbas albarazanghi 46 

 

(b)The probability is 

 ∫ |𝜓 |
2𝑑𝑥 = ∫ 𝑐2𝑑𝑥 = 1 4⁄

𝑎

0

𝑎

0

 (57) 

 

 

Problem11:-Potential Wells and Barriers 

(a) The one-dimensional time-independent Schrödinger equation is 

(
−ℏ2

2𝑚
)
𝑑2𝜓(𝑥)

𝑑𝑥2
+ 𝑈(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥) 

            Give the meanings of the symbols in this equation. 

(b) A particle of mass m is contained in a one-dimensional box of width a.The 

potential energy 𝑈(𝑥) is infinite at the walls of the box (𝑥 =  0 and 𝑥 =  𝑎) and 

zero in between (0 <  𝑥 <  𝑎). 

Solve the Schrodinger equation for this particle and hence show that the 

normalized solutions have the form 𝜓𝑛(𝑥) = (
𝑎

2
)
2

𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
), with energy 𝐸𝑛 =

 ℎ2𝑛2/8𝑚𝑎2, where 𝑛 is an integer (𝑛 >  0). 

(c) For the case 𝑛 =  3, find the probability that the particle will be located in the        

region 𝑎 3⁄ <  𝑥 <  2𝑎 3⁄ . 
(d) Sketch the wave-functions and the corresponding probability density distributions     

for the cases n = 1, 2 and 3. 

 

Solution:- 

(a) The term 
−ℏ2𝑑2

2𝑚𝑑𝑥2
 is the kinetic energy operator, 𝑈(𝑥) is the potential energy 

operator, 𝜓(𝑥) is the eigen function and 𝐸 is the eigen value. 

(b) Put 𝑈(𝑥)  =  0 in the region 0 <  𝑥 <  𝑎 in the Schrödinger equation to obtain 

 
(
−ℏ2

2𝑚
)
𝑑2𝜓(𝑥)

𝑑𝑥2
= 𝐸𝜓(𝑥) (58) 

Or 
𝑑2𝜓(𝑥)

𝑑𝑥2
+ (

2𝑚𝐸

ℏ2
)𝜓(𝑥) = 0 (59) 

      Writing  

 𝛼2 =
2𝑚𝐸

ℏ2
 (60) 

      Eq. (58) become 

 𝑑2𝜓(𝑥)

𝑑𝑥2
+ 𝛼2𝜓(𝑥) = 0 (61) 

     Which has the solution 

 𝜓(𝑥) = 𝐴𝑠𝑖𝑛𝛼𝑥 + 𝐵𝑐𝑜𝑠𝛼𝑥 (62) 

     Where A and B are constants of integration. Take the origin at the left corner, Fig.  

     below.       
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Fig.: Square potential well of infinite depth. 

Boundary condition 

𝜓(0) = 0,    𝜓(𝑎) = 0, 
The first one gives 𝐵 =  0. We are left with 

 𝜓(𝑥) = 𝐴𝑠𝑖𝑛𝛼𝑥 (63) 

The second one gives 

 𝛼𝑎 = 𝑛𝜋, 𝑛 = 1,2,3, … (64) 

𝑛 =  0 is excluded as it would give a trivial solution. 

Using the value of 𝛼 in Eq. (62). 

 𝜓(𝑥) = 𝐴𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝑎
) (65) 

This is an unnormalized solution. The constant A is determined from normalization 

condition. 

∫ 𝜓𝑛
∗

𝑎

0

(𝑥)𝜓(𝑥)𝑑𝑥 = 1 

𝐴2∫ 𝑠𝑖𝑛2 (
𝑛𝜋𝑥

𝑎
)

𝑎

0

𝑑𝑥 = 1 

(
𝐴2

2
)(𝑥 − 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝑎
)) |

𝑎
0
= 𝐴𝑎2 = 1 

 

Therefore,  

 𝐴 = (
2

𝑎
)

1
2
 (66) 

 

The normalized wave function is 

 𝜓(𝑥) = (
2

𝑎
)

1
2
𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝑎
) (67) 

Using the value of α from (63) in (59), the energy is 

 𝐸𝑛 =
𝑛2ℏ2

8𝑚𝑎2
 (68) 

(c) Probability 

 𝑝 = ∫ |𝜓3(𝑥)|
2
𝑑𝑥 =

𝑎

0

∫ (
2
𝑎
)

 

𝑠𝑖𝑛2 (
3𝜋𝑥
𝑎
)𝑑𝑥

2𝑎
3

𝑎
3

=
1

3
 (69) 

(d) 𝜓(𝑛) and probability density 𝑃(𝑥) distributions for 𝑛 =  1,2 and 3 are sketched 

in      
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           Fig below. 

 
Problem12:-Potential Wells and Barriers 

A particle of mass me trapped in an infinite depth well of width L = 1nm. 

Consider the transition from the excited state n = 2 to the ground state n = 1. 

Calculate the wavelength of light emitted. In which region of electromagnetic spectrum 

does it fall? 

 

Solution:- 

Referring to the previous question, the energy of the nth level is 

 𝐸𝑛 =
𝑛2ℏ2

8𝑚𝐿2
 (70) 

And  

 𝐸𝑛+1 =
(𝑛 + 1)2ℏ2

8𝑚𝐿2
 (71) 

Therefore,  

 𝐸𝑛+1 − 𝐸𝑛 =
(2𝑛 + 1)ℏ2

8𝑚𝐿2
 (72) 

The ground state corresponds to n = 1 and the first excited state to 𝑛 = 2,𝑚 =  8 𝑚𝑒 

and 𝐿 =  1𝑛𝑚 =  106 𝑓𝑚. Putting 𝑛 =  1 in (70) 

ℎ𝑣 = 𝐸2 − 𝐸1 =
3ℏ2

8𝑚𝐿2
=
3𝜋2ℏ2𝑐2

16𝑚𝑒𝑐2𝐿2
                                                                                         

     = 3𝜋2(197.3)2𝑀𝑒𝑉2. 𝑓𝑚2 (16 × 0.511 𝑀𝑒𝑉)(106)2𝑓𝑚2 = 0.14 ×⁄ 10−6𝑀𝑒𝑉  
      = 0.14 𝑒𝑉  

𝜆(𝑛𝑚) =
1.241

𝐸(𝑒𝑉)
=

1.241

0.14
=8864 nm 

This corresponds to the microwave region of the electro-magnetic spectrum 
 

Problem 13: Explain what was learned about quantization of radiation or mechanical 

system from the following experiments: 

(a) Photoelectric effect. 

(b) Black body radiation spectrum. 

 

Solution:- 

(a) Photoelectric effect:  
This refers to the emission of electrons observed when one irradiates a metal under 

vacuum with ultraviolet light. It was found that the magnitude of the electric current 

thus produced is proportional to the intensity of the striking radiation provided that the 

frequency of the light is greater than a minimum value characteristic of the metal, while 

the speed of the electrons does not depend on the light intensity, but on its frequency. 

These results could not be explained by classical physics. 
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Einstein in 1905 explained these results by assuming light, in its interaction with matter, 

consisted of corpuscles of energy ℎ𝑣, called photons. When a photon encounters an 

electron of the metal it is entirely absorbed, and the electon, after receiving the energy 

ℎ𝑣, spends an amount of work 𝑊 equal to its binding energy in the metal, and leaves 

with a kinetic energy 
1

2
𝑚𝑣2 = ℎ𝜈 −𝑊 

This quantitative theory of photoelectricity has been completely verified by experiment, 

thus establishing the corpuscular nature of light. 

 

(b) Black body radiation spectrum. 

A black body is one which absorbs all the radiation falling on it. The spectral 

distribution of the radiation emitted by a black body can be derived from the general 

laws of interaction between matter and radiation. The expressions deduced from the 

classical theory are known as Wien law and Rayleigh law. The former is in good 

agreement with experiment in the short wavelength end of the spectrum only, while the 

latter is in good agreement with the long wavelength results but leads to divergency in 

total energy. 

Planck in 1900 succeeded in removing the difficulties encountered by classical physics 

in black body radiation by postulating that energy exchanges between matter and 

radiation do not take place in a continuous manner but by discrete and indivisible 

quantities, or quanta, of energy. He showed that by assuming that the quantum of energy 

was proportional to the frequency, 𝐸 =  ℎ𝜈, he was able to obtain an expression for the 

spectrum which is in complete agreement with experiment: 

𝐸𝜈 =
8𝜋ℎ𝜈3

𝑐3
𝐿

𝑒
ℎ𝜈
𝑘𝑇 − 1

 

where ℎ is a universal constant, now known as Planck constant. Planck hypothesis has 

been confirmed by a whole array of elementary processes and it directly reveals the 

existence of discontinuities of physical processes on the microscopic scale, namely 

quantum phenomena. 

 
Problem 14: Consider the one-dimensional problem of a particle of mass m in a potential 

(See Figure below) 

𝑉 = {
∞        𝑥 < 0,
0 0 ≤ 𝑥 ≤ 𝑎,
𝑉0           𝑥 > 𝑎,

 

 
 

(a)  Show that the bound state energies (E <  V0) are given by the equation 

𝑡𝑎𝑛√
2𝑚𝐸𝑎

ℏ
= −√

𝐸

𝑉0 − 𝐸
 

(b) Without solving any further, sketch the ground state wave function. 
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Solution:- 

(a) The Schrödinger equations for the two regions are 

    𝜓′′ +
2𝑚𝐸𝜓

ℏ2
= 0,            0 ≤ 𝑥 ≤ 𝑎, 

𝜓′′ −
2𝑚(𝑉0 − 𝐸)𝜓

ℏ2
= 0,            𝑥 > 𝑎,     

with respective boundary conditions 𝜓 = 0 for 𝑥 = 0 and 𝜓 → 0 for 𝑥 → +∞. The 

solutions for E <  V0 are then 

𝜓 = 𝑠𝑖𝑛(2𝑚𝐸𝑥 ℏ⁄ ),              0 ≤ 𝑥 ≤ 𝑎, 

𝜓 = 𝐴𝑒−√2𝑚(𝑉0−𝐸)𝑥 ℏ⁄ ,                  𝑥 > 𝑎, 

where A is a constant. The requirement that 𝜓 and 𝜓′ are continuous at 𝑥 = 𝑎 gives 

𝑡𝑎𝑛√
2𝑚𝐸𝑎

ℏ
= −√

𝐸

𝑉0 − 𝐸
 

(b) The ground-state wave function is as shown in Fig. above. 

 

Problem 15: The dynamics of a particle moving one-dimensionally in a potential 𝑉(𝑥) 
is governed by the Hamiltonian 𝐻0 = 𝑝

2 2𝑚⁄ + 𝑉(𝑥), where 𝑝 = −𝑖ℏ𝑑 𝑑𝑥⁄  is the 

momentum operator. Let 𝐸𝑛
0, 𝑛 =  1, 2, 3, . .. , be the eigenvalues 𝐻0 . Now consider a 

new Hamiltonian 𝐻 = 𝐻0 + 𝜆𝑝 𝑚⁄ , where 𝜆 is a given parameter. Given 𝐴,𝑚 and 𝐸𝑛
0,), 

find the eigenvalues of 𝐻.  

 

Solution:- 

The new Hamiltonian is 

 

𝐻 = 𝐻0 + 𝜆𝑝 𝑚⁄ = 𝑝2 2𝑚⁄ + 𝜆𝑝 𝑚⁄ + 𝑉(𝑥), 
= (𝑝 + 𝜆)2 2𝑚⁄ + 𝑉(𝑥) − 𝜆2 2𝑚,⁄  

Or 

𝐻′ =
𝑝′
2

2𝑚
+  𝑉(𝑥), 

Where 𝐻′ = 𝐻 +
𝜆2

2𝑚
, 𝑝′ =  𝑝 + 𝜆, 

The eigenfunctions and eigenvalues of 𝐻′ are respectively 𝐸𝑛
0 and 𝜓𝑛

0. 

AS the wave number is 𝑘′ =
𝑝′

ℏ
=

1

ℏ
(𝑝 + 𝜆) ,the new eigenfunction are  

𝜓 = 𝜓0𝑒−𝜆𝑥 ℏ⁄  
and the corresponding eigenvalues are 

𝐸𝑛 = 𝐸𝑛
0 − 𝜆2 2𝑚⁄ . 

 

Problem 16: Use the uncertainty principle to obtain the ground state energy of a linear 

Oscillator. 

 

Solution:- 

∆𝑥∆𝑝~ℏ 2⁄    

 𝑝 =
ℏ

2𝑥
 

  𝐸 =
𝑝2

2𝑚
+
1

2
𝑚𝜔2𝑥2   
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𝐸 =
ℏ2

8𝑚𝑥2 
+
1

2
𝑚𝜔2𝑥2     

 

The ground state energy is obtained by setting 
𝜕𝐸

𝜕𝑥
= 0 

𝜕𝐸

𝜕𝑥
= −

ℏ2

4𝑚𝑥3 
+ 𝑚𝜔2𝑥 = 0 

Whence 𝑥2 =
ℏ

2𝑚𝜔
 

  ∴ 𝐸 = 1 4ℏ𝜔⁄ + 1 4ℏ𝜔⁄ =
1

2
ℏ𝜔 

 

𝑉𝑜. trapped in a potential well of finite depthm Consider a particle of mass  :17Problem  

𝑉(𝑥) = {
𝑉𝑜,   |𝑥| > 𝑎

0,     |𝑥| < 𝑎
 

Discuss the solutions and eigen values for the class I and II solutions graphically. 

 

Solution:- 

Consider a finite potential well. Take the origin at the centre of the well. 

𝑉(𝑥) = {
𝑉𝑜,   |𝑥| > 𝑎

0,     |𝑥| < 𝑎
 

𝑑2𝜓

𝑑𝑥2
+ (

2𝑚

ℏ2
) [𝐸 − 𝑉(𝑟)]𝜓 = 0 

Region 1 (𝐸 < 𝑉𝑜) 
𝑑2𝜓

𝑑𝑥2
− (

2𝑚

ℏ2
) [𝑉𝑜 − 𝐸]𝜓 = 0                                                                                 (1) 

𝑑2𝜓

𝑑𝑥2
− 𝛽2𝜓 = 0                                                                                                   (2) 

Where 𝛽2 = (
2𝑚

ℏ2
) (𝑉𝑜 − 𝐸)                                                                                         (3) 

𝜓1 = 𝐴𝑒𝛽𝑥 + 𝐵𝑒−𝛽𝑥                                                                                          (4) 

where 𝐴 and 𝐵 are constants of integration. 

Since 𝑥 is negative in region 1, and 𝜓1 has to remain finite we must set 𝐵 = 0, 

otherwise the wave function grows exponentially. The physically accepted solution is 

𝜓1 = 𝐴𝑒𝛽𝑥                                                                                                          (5) 

Region 2; (𝑉 = 0)                                                                

Fig: Square potential well of finite depth. 

 
𝑑2𝜓

𝑑𝑥2
+ (

2𝑚𝐸

ℏ2
)𝜓 = 0 

𝑑2𝜓

𝑑𝑥2
+ 𝛼2𝜓 = 0                                                                                                 (6) 

With  𝛼2 =
2𝑚𝐸

ℏ2
                                                                                                (7) 

𝜓2 = 𝐶𝑠𝑖𝑛𝛼𝑥 + 𝐷𝑐𝑜𝑠𝛼𝑥                                                                                  (8) 
                        odd           even 
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In this region either odd function must belong to a given value 𝐸 or even function, but 

not both, 

Region 3; (𝐸 < 𝑉𝑜)                                                                

Solution will be identical to (Eq. 4) 

𝜓3 = 𝐴𝑒
𝛽𝑥 + 𝐵𝑒−𝛽𝑥 

But physically accepted solution will be 

𝜓3 = 𝐵𝑒−𝛽𝑥                                                                                                       (9) 

Because we must put 𝐴 = 0 in this region where x takes positive values if the wave 

function has to remain finite. 

Class I (𝐶 = 0) 

𝜓2 = 𝐷𝑐𝑜𝑠𝛼𝑥                                                                                                    (10) 

Boundary conditions 

𝜓2(𝑎) = 𝜓3(𝑎)                                                                                                  (11) 

𝑑𝜓2 𝑑𝑥| 𝑥=𝑎⁄ = 𝑑𝜓3 𝑑𝑥| 𝑥=𝑎⁄                                                                           (11a) 

These lead to 

            𝐷𝑐𝑜𝑠𝛼𝑥 = 𝐵𝑒−𝛽𝑥                                                                                          (12)                                                                                                                                                                              

         −𝐷𝛼𝑐𝑜𝑠𝛼𝑥 = −𝐵𝛽𝑒−𝛽𝑎                                                                                   (13)                                                                                                                                                                              

Dividing (13) by (12) 

        𝛼𝑡𝑎𝑛𝛼𝑎 = 𝛽                                                                                                       (14)                                                                                                                                                                              

Class II (𝐷 = 0) 

𝜓2 = 𝐶𝑠𝑖𝑛 𝛼𝑥                                                                                                     (15) 

Boundary conditions: 

𝜓2(−𝑎) = 𝜓1(𝑎)                                                                                                (16) 

𝑑𝜓2 𝑑𝑥| 𝑥=−𝑎⁄ = 𝑑𝜓1 𝑑𝑥| 𝑥=−𝑎⁄                                                                         (17) 

These lead to 

      𝐶𝑠𝑖𝑛(−𝛼𝑎) = −𝐶𝑠𝑖𝑛(𝛼𝑎) = 𝐴𝑒𝛽𝑎                                                                    (18)                                                                                                                                                                              

       𝐶𝛼𝑐𝑜𝑠(𝛼𝑥) = 𝐴𝛽𝑒𝛽𝑎                                                                                          (19)                                                                                                                                                                              

Dividing (19) by (18) 

       𝛼𝑐𝑜𝑡(𝛼𝑎) = −𝛽                                                                                                  (20)        

 

Fig.: 𝜂 − 𝜉 curves for class I solutions. For explanation see the text. 

Note that from (15) and (2), 𝛼2 = −𝛽2, which is absurd because this implies that 𝛼2 +
𝛽2 = 0 that is 2𝑚𝑉𝑜 ℏ2⁄ = 0, but 𝑉𝑜 = 0. This simply means that class I and class II 

solutions cannot coexist 
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Energy levels: 

Class I: set 𝜉 = 𝛼𝑎; 𝜂 = 𝛽𝑎  

where 𝛼 and 𝛽 are positive. 

Equation (15) then becomes 

          𝜉𝑡𝑎𝑛𝜉 = 𝜂                                                                                                         (21)        

with 𝜉2 + 𝜂2 = 𝑎2(𝛼2 + 𝛽2) = 2𝑚𝑉𝑜𝑎
2 ℏ2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⁄                                     (22) 

The energy levels are determined from the intersection of the curve 𝜉𝑡𝑎𝑛𝜉 plotted 

against 𝜂 with the circle of known radius (
2𝑚𝑉𝑜𝑎

2

ℏ2
)
1 2⁄

, in the first quadrant since 𝜉 

and 𝜂 are restricted to positive values. 
The circles, Eq. (22), are drawn for 𝑉𝑜𝑎

2 = ℏ2 2𝑚,⁄   4ℏ2 2𝑚,⁄  and 9ℏ2 2𝑚.⁄  

for curves 1, 2 and 3 respectively Fig 3.9. For the first two values there is only one 

solution while for the third one there are two solutions. 

For class II, energy levels are obtained from intersection of the same circles with the 

curves of −𝜉𝑐𝑜𝑡𝜉 in the first quadrant, Fig above. 

Curve (1) gives no solution while the other two yield one solution each. 

Thus the three values of 𝑉𝑜𝑎
2 in the increasing order give, one, two and three energy 

levels, respectively. Note that for a given particle mass the energy levels depend on 

the combination 𝑉𝑜𝑎
2. With the increasing depth and/or width of the potential well, 

greater number of energy levels can be accommodated. 

For 𝜉 = 0 to 𝜋 2⁄ , that is 𝑉𝑜𝑎
2  between 0 and 𝜋2ℏ2 8𝑚⁄  there is just one level of 

class I 

 
Fig.: η − ξ curves for class II solutions. For explanation see the text. 

For 𝑉𝑜𝑎
2 between 2𝜋2ℏ2 8𝑚 ⁄ and 4𝜋2ℏ2 8𝑚 ⁄ m there is one energy level of each 

class or two altogether. As 𝑉𝑜𝑎
2 increases, energy levels appear successively first of 

one class and next of the other. 

 

Problem 18: Consider a stream of particles with energy 𝐸 travelling in one dimension 

from 𝑥 = −∞ to ∞. The particles have an average spacing of distance 𝐿. The particle 

stream encounters a potential barrier at x = 0. The potential can be written as 

𝑉(𝑥) = {

0   𝑖𝑓 𝑥 < 𝑎          
𝑉  𝑖𝑓  0 < 𝑥 < 𝑎
0   𝑖𝑓 𝑥 > 𝑎           

 

Suppose the particle energy is smaller than the potential barrier, i.e., < 𝑉𝑏. 

(a) For each of the three regions, write down Schrodinger’s equation and calculate 

the wave-function 𝜓 and its derivative 𝑑𝜓 𝑑𝑥⁄ .  
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Use the constants to represent the amplitude of the reflected and transmitted 

particle streams respectively and take 

𝑘1
2 =

2𝑚𝐸

ℏ2
  and  𝑘2

2 =
2𝑚(𝑉𝑏−𝐸)

ℏ2
 

(b) At the boundaries to the potential barrier, 𝜓 and 𝑑𝜓 𝑑𝑥⁄  must be 

continuous.Equate the solutions that you have at 𝑥 = 0  and 𝑥 =a and 

manipulate these equations to derive the following expression for the 

transmission amplitude. 

𝜏 =
4𝑖𝑘1𝑘2𝑒

−𝑖𝑘1𝑎

[(𝑖𝑘1 − 𝑘2)2𝑒−𝑘2𝑎] − [(𝑖𝑘1 − 𝑘2)2𝑒𝑘2𝑎]
 

 

Solution:- Schrodinger’s equation in one dimension 

(a) 
𝑑2𝜓

𝑑𝑥2
+ (

2𝑚

ℏ2
) (𝐸 − 𝑉)𝜓 = 0        

       Region 1:   (𝑥 < 0) 𝑉 = 0;  
𝑑2𝜓

𝑑𝑥2
+ 𝑘1

2𝜓 = 0       

       where 𝑘1
2 =

2𝑚𝐸

ℏ2
 

       Solution: 𝜓1 = exp(𝑖𝑘1𝑥) + 𝐴 exp(−𝑖𝑘1𝑥) 

       Region 2: (0 < 𝑥 < 𝑎) 𝑉 = 𝑉𝑏;   
𝑑2𝜓

𝑑𝑥2
− 𝑘2

2𝜓 = 0       

        where 𝑘2
2 =

2𝑚

ℏ2
(𝑉𝑏 − 𝐸) 

        Solution: 𝜓2 = Bexp(𝑘2𝑥) + 𝐶 exp(−𝑘2𝑥)    
        Region 3:   (𝑥 > 0) 𝑉 = 0;       
        Solution: 𝜓3 = Dexp(𝑖𝑘1𝑥)      
(b) Boundary conditions: 

        𝜓1(0) = 𝜓2(0) → 1 + 𝐴 = 𝐵 + 𝐶                                                           (1)       

        
 𝑑𝜓1

𝑑𝑥
| 𝑥=0 =

𝑑𝜓2

𝑑𝑥
| 𝑥=0 → 𝑖𝑘1(1 − 𝐴) = 𝑘2(𝐵 − 𝐶)                                     (2)            

     𝜓2(𝑎) = 𝜓3(𝑎) → Bexp(𝑘2𝑎) + 𝐶 exp(−𝑘2𝑎) = Dexp(𝑖𝑘1𝑎)                     (3)      

𝑑𝜓2

𝑑𝑥
| 𝑥=𝑎 =

𝑑𝜓3

𝑑𝑥
| 𝑥=𝑎 → 𝑘2(Bexp(𝑘2𝑎) − 𝐶 exp(−𝑘2𝑎)) = 𝑖𝑘1Dexp(𝑖𝑘1𝑎)   (4)        

Eliminate A between (1) and (2) to get 

B(𝑘2 − 𝑖𝑘1) − 𝐶(𝑘2 + 𝑖𝑘1) = 2𝑖𝑘1                                                                     (5)      

Eliminate D between (3) and (4) to get 

𝑘2(Bexp(𝑘2𝑎) − 𝐶 exp(−𝑘2𝑎)) = 𝑖𝑘1(Bexp(𝑘2𝑎) − 𝐶 exp(−𝑘2𝑎))               (6)      

Solve (5) and (6) to get 

  𝐵 =
2𝑖𝑘1(𝑘2+𝑖𝑘1)

[(𝑘2+𝑖𝑘1)
2−𝑒2𝑘2𝑎(𝑘2−𝑖𝑘1)

2]
                                                                    (7)      

  𝐶 =
2𝑖𝑘1(𝑘2−𝑖𝑘1)𝑒

2𝑘2𝑎

[(𝑘2+𝑖𝑘1)
2−𝑒2𝑘2𝑎(𝑘2−𝑖𝑘1)

2]
                                                                    (8)        

Using the values of B and C in (3), 

𝜏 = 𝐷 =
4𝑖𝑘1𝑘2𝑒

−𝑖𝑘1𝑎

[(𝑖𝑘1−𝑘2)
2𝑒−𝑘2𝑎]−[(𝑖𝑘1−𝑘2)

2𝑒𝑘2𝑎]
                                                        (9)        
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Problem 19: In Problem above, 

(a) Show that the fraction of transmitted particles is given by 𝐹𝑡𝑟𝑎𝑛𝑠 = 𝜏
∗𝜏 which when 

calculated evaluates to 

𝐹𝑡𝑟𝑎𝑛𝑠 = [1 +
𝑉𝑏
2𝑠𝑖𝑛ℎ2(𝑘2𝑎)

4𝐸(𝑉𝑏 − 𝐸)
]

−1

 

(b)  How would 𝐹𝑡𝑟𝑎𝑛𝑠 vary if 𝐸 > 𝑉𝑏 

Solution: - (a) 

𝐹𝑡𝑟𝑎𝑛𝑠 = 𝜏
∗𝜏 = |𝐷|2 = 16

𝑘1
2𝑘2

2

(𝑘1
2 + 𝑘2

2)2(𝑒2𝑘2𝑎 + 𝑒−2𝑘2𝑎) − 2(𝑘2
4 − 6𝑘2

2𝑘1
2 + 𝑘1

4)
 

𝐹𝑡𝑟𝑎𝑛𝑠 = 𝑇 = 16
4𝑘1

2𝑘2
2

(𝑘1
2+𝑘2

2)
2
𝑠𝑖𝑛ℎ2(𝑘2𝑎)+4𝑘1

2𝑘2
2
                                                                 (10)       

The expression simplifies to 

Use 𝑘1
2 = 2𝑚𝐸 ℏ2⁄  and 𝑘2

2 = 2𝑚(𝑉𝑏 − 𝐸) ℏ
2⁄  

The reflection coefficient 𝑅 is obtained by substituting (7) and (8) in (1) to find the 

value of 𝐴. After similar algebraic manipulations we find 

𝑅 = |𝐴|2 =
(𝑘1
2+𝑘2

2)
2
𝑠𝑖𝑛ℎ2(𝑘2𝑎)

(𝑘1
2+𝑘2

2)
2
𝑠𝑖𝑛ℎ2(𝑘2𝑎)+4𝑘1

2𝑘2
2
                                                                           (11)     

Note that 𝑅 + 𝑇 = 1 

When 𝐸 > 𝑉𝑏 , 𝑘2 becomes imaginary and  

sinh(𝑘2𝑎) = 𝑖 sinh(𝑘2𝑎)                                                                                                    (12)     

Using (11) in (9) and noting 𝑘1
2 + 𝑘2

2 =
2𝑚𝑉𝑏

ℏ2
 

𝑘2
2 =

2𝑚𝑉𝑏

ℏ2
 

And 𝑘1
2𝑘2

2 = (
2𝑚

ℏ2
)
2

𝐸(𝑉𝑏 − 𝐸) 

We find  

𝑇 =
1

1+
𝑉𝑏
2𝑠𝑖𝑛ℎ2(𝑘2𝑎)

4𝐸(𝐸−𝑉𝑏)

                                                                                                                 (13)  

And 

𝑅 =
1

1+
4𝐸(𝐸−𝑉𝑏)

𝑉𝑜
2𝑠𝑖𝑛ℎ2(𝑘2𝑎)

                                                                                                                 (14)  

A typical graph for 𝑇 versus 
𝐸

𝑉𝑏
 is shown in Fig. above. 

  
Fig. Transmission through a rectangular 

Potential barrier. 
Fig. Transmission as a function of 

𝐸

𝑉𝑏
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Problem 20: A particle of mass 𝑚 is moving in a region where there is a potential step 

at 𝑥 = 0: 𝑉(𝑥) = 0 for 𝑥 < 0 and 𝑉(𝑥) = 𝑈𝑜 (a positive constant) 𝑥 ≥ 0 

(a) Determine 𝜓(𝑥) separately for the regions 𝑥 ≪ 0 and 𝑥 ≫ 0 for the cases: 

(i)  𝑈𝑜 < 𝐸 

(ii) 𝑈𝑜 > 𝐸  

(b) Write down and justify briefly the boundary conditions that 𝜓(𝑥) must satisfy at  

the boundary between the two adjacent regions. Use these conditions to sketch the 

form of 𝜓(𝑥) in the region around = 0 for the cases (i) and (ii). 

 

Solution:- (a) Case (i) 𝑈𝑜 < 𝐸 region 𝑥 ≪ 0 

Putting 𝑉(𝑥) = 0, Schrödinger’s equation is reduced to  
𝑑2𝜓

𝑑𝑥2
+ (

2𝑚𝐸

ℏ2
)𝜓 = 0                                                                                                    (1)         

which has the solution 

𝜓1 = 𝐴𝑒𝑥𝑝(𝑖𝑘1𝑥) + 𝐵𝑒𝑥𝑝(−𝑖𝑘1𝑥)                                                                               (2)         

Where 𝑘1
2 =

2𝑚𝐸

ℏ2
                                                                                                             (3)         

𝜓1 represents the incident wave moving from left to right (first term in (2)) plus the 

reflected wave (second term in (2)) moving from right to left 

Region 𝑥 ≫ 0: 
𝑑2𝜓

𝑑𝑥2
+ [

2𝑚(𝐸−𝑈𝑜)

ℏ2
]𝜓 = 0                                                               (4)                                                                                                          

which has the physical solution 

𝜓2 = 𝐶𝑒𝑥𝑝(𝑖𝑘2𝑥)                                                                                                                  (5)        

Where 𝑘2
2 =

2𝑚(𝐸−𝑈𝑜)

ℏ2
                                                                                            (6)       

It represents the transmitted wave to the right with reduced amplitude. 

Note that the second term is absent in (5) as there is no reflected wave in the region 

𝑥 > 0 

Case (ii), 𝑈𝑜 > 𝐸 

Region 𝑥 < 0 

𝜓3 = 𝐴𝑒𝑥𝑝(𝑖𝑘1𝑥) + 𝐵𝑒𝑥𝑝(−𝑖𝑘1𝑥)                                                                       (7)                                

Region 𝑥 > 0 
𝑑2𝜓

𝑑𝑥2
−
2𝑚𝜓(𝐸−𝑈𝑜)

ℏ2
= 0                                                                                                        

𝑑2𝜓

𝑑𝑥2
− 𝛼2𝜓 = 0 

𝜓4 = 𝐶𝑒𝑥𝑝(−𝛼2𝑥) + 𝐷𝑒𝑥𝑝(𝛼2𝑥) 
𝜓 must be finite everywhere including at 𝑥 = −∞. We therefore set 𝐷 = 0. The 

physically accepted solution is then 

𝜓4 = 𝐶𝑒𝑥𝑝(−𝛼2𝑥)                                                                                                 (8)      

 

(b) The continuity condition on the function and its derivative at x = 0 leads to Eqs. (9) 

and (10). 

𝜓3(0) = 𝜓4(0) 
𝐴 + 𝐵 = 𝐶                                                                                                              (9)      
𝑑𝜓3
𝑑𝑥

| 𝑥=0 =
𝑑𝜓4
𝑑𝑥

| 𝑥=0 

𝑖𝑘1(𝐴 − 𝐵) = −𝐶𝛼                                                                                             (10)      

Dividing (10) by (9) gives 
𝑖𝑘1(𝐴−𝐵)

𝐴+𝐵
= −𝛼                                                                                                     (11)      

Diagrams for 𝜓 at around 𝑥 = 0 
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(c) 

 
Fig. The sketch of the wave form 𝜓(x) in case (i) & case (ii). 

Problem 21: A steady stream of particles with energy 𝐸(> 𝑉𝑜) is incident on a potential 

step of height 𝑉𝑜 as shown in Fig. below. 

The wave functions in the two regions are given by 

𝜓1(𝑥) = 𝐴𝑜𝑒𝑥𝑝(𝑖𝑘1𝑥) + 𝐴𝑒𝑥𝑝(−𝑖𝑘1𝑥) 
𝜓2(𝑥) = 𝐵𝑒𝑥𝑝(𝑖𝑘2𝑥) 
Write down expressions for the quantities 𝑘1 and 𝑘2 in terms of 𝐸 and 𝑉𝑜. Show that 

𝐴 = [
𝑘1−𝑘2

𝑘1+𝑘2
] 𝐴𝑜 and  𝐵 = [

2𝑘1

𝑘1+𝑘2
] 𝐴𝑜 

and determine the reflection and transmission coefficients in terms of 𝑘1 and 𝑘2. 

If 𝐸 = 4𝑉𝑜 3⁄  show that the reflection and transmission coefficients are 1/9 and 8/9 

respectively. 

Comment on why 𝐴2 + 𝐵2 is not equal to 1. 

Fig. Potential step 

 
Solution:- 

𝑘1 = (
2𝑚𝐸

ℏ2
) 1 2⁄ ;  𝑘2 = (

2𝑚(𝐸−𝑉𝑜)

ℏ2
) 1 2⁄                                                                  (1) 

Boundary conditions at 𝑥 = 0 

𝜓1(0) = 𝜓2(0) 
𝑑𝜓1

𝑑𝑥
| 𝑥=0 =

𝑑𝜓2

𝑑𝑥
| 𝑥=0                                                                                            (2) 

These lead to 

𝐴𝑜 + 𝐴 = 𝐵                                                                                                          (3)      

𝑖𝑘1(𝐴𝑜 − 𝐴) = 𝑖𝑘2𝐵                                                                                                      

Or 

𝑘1(𝐴𝑜 − 𝐴) = 𝑘2𝐵                                                                                              (4) 

Solving (3) and (4) 

A=[
𝑘1−𝑘2

𝑘1+𝑘2
] 𝐴𝑜                                                                                                       (5)      

B=
2𝑘1

𝑘1+𝑘2
 𝐴𝑜                                                                                                          (6)     

 Reflection coefficient, 

𝑅 =
|𝐴|2

|𝐴𝑜|2
=

(𝑘1−𝑘2)
2

(𝑘1+𝑘2)2
                                                                                             (7)     

Transmission coefficient, 

𝑇 = (
𝑘2

𝑘1
)
|𝐵|2

|𝐴𝑜|2
=

4𝑘1𝑘2

(𝑘1+𝑘2)2
                                                                                      (8)     

Substituting the expressions for 𝑘1 and 𝑘2 from (1) and putting 𝐸 = 4𝑉𝑜 3⁄  

We find that 𝑅 = 1/9 and 𝑇 = 8/9. 
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From (7) and (8) it is easily verified that 

𝑅 + 𝑇 = 1 

Fig. Graphs for probability density. 

 
This is a direct result of the fact that the current density is constant for a steady state. 

Thus |𝐴𝑜|
2𝑣1 = |𝐴|2𝑣1 + |𝐵|

2𝑣2 

Where 𝑣1 =
𝑘1ℏ

𝑚
  and 𝑣2 =

𝑘2ℏ

𝑚
   

𝐴2 + 𝐵2 ≠ 1 because the sum of the intensities of the reflected intensity and 

transmitted intensities does not add up to unity. What is true is relation (9) which is 

relevant to current densities 

 

Problem 22: 

 (a)What boundary conditions do wave-functions obey? 

        A particle confined to a one-dimensional potential well has a wave-function given       

        by 

                                       𝜓(𝑥) = 0                 for                   𝑥 < −𝐿 2⁄  

𝜓(𝑥) = 𝐴𝑐𝑜𝑠 (
3𝜋𝑥

𝐿
) for  −𝐿 2⁄ ≤ 𝑥 ≤ 𝐿 2⁄  

                                       𝜓(𝑥) = 0                 for                   𝑥 > 𝐿 2⁄  

(b) Sketch the wave-function 𝜓(𝑥). 
(c) Calculate the normalization constant 𝐴. 

(d) Calculate the probability of finding the particle in the interval −𝐿 4⁄ ≤ 𝑥 ≤ 𝐿 4⁄  

(e) By calculating 
𝑑2𝜓

𝑑𝑥2
 and writing the Schrodinger equation as 

(−
ℏ2

2𝑚
)(
𝑑2𝜓

𝑑𝑥2
) = 𝐸𝜓 

       Show that the energy 𝐸 corresponding to this wave-function is 
9𝜋2ℏ2

2𝑚𝐿2
. 

 

Solution:- 

(a) The wave function must be finite, single-valued and continuous. At the boundary 

this is ensured by requiring the magnitude and the first derivative be equal. 

(b)  

Fig. Sketch of 𝜓~𝑐𝑜𝑠 (
3𝜋𝑥

𝐿
) 

 

(c) ∫ |𝜓|2𝑑𝑥 = 𝐴2
𝐿

2
−𝐿

2

∫ 𝑐𝑜𝑠2
3𝜋𝑥

𝐿
𝑑𝑥 = 1

𝐿

2
−𝐿

2

 

Or 

            𝐴2∫ (1 + cos 6𝜋𝑥 𝐿⁄ )𝑑𝑥 = 𝐴2𝐿 = 1

𝐿
2

−𝐿
2

 

Therefore  𝐴 = 1 √𝐿⁄  
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(d) 𝑃 (−
𝐿

4
< 𝑥 <

𝐿

4
) = 𝐴2 ∫ 𝑐𝑜𝑠2 (

3𝜋𝑥

𝐿
)𝑑𝑥 = (

1

𝐿
)

𝐿

4
−𝐿

4

∫
1

2
(1 + 𝑐𝑜𝑠 (

6𝜋𝑥

𝐿
)) 𝑑𝑥

𝐿

4
−𝐿

4

=

           
1

4
+

1

6𝜋
= 0.303 

(e) 
𝑑2𝜓

𝑑𝑥2
=

𝑑2

𝑑𝑥2
 𝐴 cos (

3𝜋𝑥

𝐿
) = −9𝜋2 (

𝐴

𝐿
) cos (

3𝜋𝑥

𝐿
) = −(

9𝜋2

𝐿
)𝜓 

           Therefore, (−
ℏ2

2𝑚
) (

𝑑2𝜓

𝑑𝑥2
) = −(

9𝜋2ℏ2

2𝑚𝐿
)𝜓 − 𝐸𝜓 

 

           Or      

𝐸 =
9𝜋2ℏ2

2𝑚𝐿
 

 

 
Problem 23: 

 (a) Sketch the one-dimensional “top hat” potential  

      (1) 𝑉 = 0                  for        𝑥 < 0;  

      (2) 𝑉 = 𝑊 constant, for 0 ≤ 𝑥 ≤ 𝐿;  

      (3) 𝑉 = 0                      for         𝑥 < 𝐿; 

(b) Consider particles, of mass 𝑚 and energy 𝐸 < 𝑊 incident on this potential barrier 

from the left (𝑥 < 0). Including possible reflections from the barrier boundaries, 

write down general expressions for the wavefunctions in these regions and the form 

the time-independent Schrodinger equation takes in each region. What ratio of 

wavefunction amplitudes is needed to determine the transmission coefficient? 

(c) Write down the boundary conditions for 𝜓 and 𝑑𝜓 𝑑𝑥⁄  at 𝑥 = 0  and 𝑥 = 𝐿. 

(d) A full algebraic solution for these boundary conditions is time consuming. 

      In the approximation for a tall or wide barrier, the transmission coefficient 𝑇 is  

      given by   𝑇 = 16 (
𝐸

𝑊
) (1 −

𝐸

𝑊
) 𝑒−2𝛼𝐿, where 𝛼2 = 2𝑚 (

𝑊−𝐸

ℏ2
)
2

 

      Determine 𝑇 T for electrons of energy 𝐸 = 2𝑒𝑉, striking a potential of value                       

       𝑊 = 5𝑒𝑉and width 𝐿 = 0.3𝑛𝑚. 

(e) Describe four examples where quantum mechanical tunneling is observed. 

 

Solution:- 

(a)  

Fig. Penetration of a rectangular 

barrier. 

 
(b) Region 1, 𝑥 < 0  

𝑑2𝜓

𝑑𝑥2
+ 𝑘2𝜓 = 0                                                                                                          

With 𝑘2 =
2𝑚𝐸

ℏ2
 

𝜓1 = 𝐴𝑒𝑖𝑘1𝑥 + 𝐵𝑒−𝑖𝑘1𝑥 

Incident reflected at 𝑥 = 0 

Region 2,    0 < 𝑥 < 𝐿  
𝑑2𝜓

𝑑𝑥2
− 𝛼2𝜓 = 0                                                                                                         



First semester Quantum Mechanics-Lecture Note       

2016-2017   College of Science/ Physics Department 

 

Dr. abbas albarazanghi 61 

 

With 𝛼2 =
2𝑚(𝑊−𝐸)

ℏ2
 

𝜓2 = 𝐶𝑒−𝛼𝑥 + 𝐷𝑒𝛼𝑥 

Region 3,    𝑥 > 𝐿  

𝑑2𝜓

𝑑𝑥2
+ 𝑘2𝜓 = 0 

With 𝑘2 =
2𝑚𝐸

ℏ2
 

𝜓3 = 𝐹𝑒𝑖𝑘1𝑥 

The second term is absent as there is no reflected wave coming from right to 

left 

The transmission coefficient   𝑇 =
|𝐹|2

|𝐴|2
 

(c) Boundary conditions 

𝜓1(0) = 𝜓2(0) 
𝑑𝜓1
𝑑𝑥

| 𝑥=0 =
𝑑𝜓2
𝑑𝑥

| 𝑥=0 

𝜓2(𝐿) = 𝜓3(𝐿) 
𝑑𝜓1
𝑑𝑥

| 𝑥=𝐿 =
𝑑𝜓2
𝑑𝑥

| 𝑥=𝐿 

 

(d) 𝑇 = 16 (
𝐸

𝑊
) (1 −

𝐸

𝑊
) 𝑒−2𝛼𝐿 

𝛼2 = 2𝑚 (
𝑊−𝐸

ℏ2
) → 𝛼 =

√2𝑚𝑐2(𝑊−𝐸)

ℏ𝑐
=

√2×0.511×(5−2)×10−6

197.3×10−15
= 8.8748 ×

109  𝑚−1 

Therefore 2𝛼𝐿 = 2 × 8.8748 × 109 × 0.3 × 10−9 = 5.3249     

𝑇 = 16 (
2

5
) (1 −

2

5
) 𝑒−5.3249 = 0.0187 

(e) Examples of quantum mechanical tunneling 

(i) 𝛼 − 𝑑𝑒𝑐𝑎𝑦 Observed 𝛼 − 𝑒𝑛𝑒𝑟𝑔𝑦 may be ∼ 5MeV although the Coulomb 

     barrier height is 20 or 30MeV 

(ii) Tunnel diode. 

(iii) Josephson effect :In superconductivity electron emission in pairs through      

       insulator is possible via tunneling mechanism 

(iv) Inversion spectral line in ammonia molecule. This arises due to tunneling        

       through the potential barrier between two equilibrium positions of the        

       nitrogen atom along the axis of the pyramid molecule which is     

       perpendicular to the plane of the hydrogen atoms. The oscillation between  

       the two equilibrium positions causes an intense spectral line in the    

       microwave region. 

 

Problem 24: Show that the wavefunction 𝜓𝑜(𝑥)  =  𝐴 𝑒𝑥𝑝(−𝑥2/2𝑎2) is a solution to 

the time- independent Schrodinger equation for a simple harmonic oscillator (SHO) 

potential. 

(−
ℏ2

2𝑚
)
𝑑2𝜓

𝑑𝑥2
+ (

1

2
)𝑚𝜔𝑜𝑥

2𝜓 = 𝐸 𝜓                                                                                                         

with energy 𝐸𝑜 = (
1

2
)  ℏ𝜔𝑜, and determine a in terms of m and 𝜔𝑜. 

The corresponding dimensionless form of this equation is 
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−
𝑑2𝜓

𝑑𝑅2
+ 𝑅2𝜓 = 𝜀𝐸 

where 𝑅 =  𝑥/𝑎 and 𝜀 =  𝐸/𝐸𝑜. 

Show that putting 𝜓(𝑅) = 𝐴𝐻(𝑅)𝑒𝑥𝑝(−𝑅2 2⁄ ) into this equation leads to Hermite’s 

equation 

−
𝑑2𝐻

𝑑𝑅2
− 2𝑅 (

𝑑𝐻

𝑑𝑅
) + (𝜀 − 1)𝐻 = 0 

𝐻(𝑅) is a polynomial of order n of the form 𝑎𝑛𝑅𝑛 + 𝑎𝑛 − 2 𝑅𝑛 − 2 + 𝑎𝑛 − 4 𝑅𝑛 −
4+. .. 
Deduce that 𝜀 is a simple function of n and that the energy levels are equally spaced. 

 

Solution:- 

By substituting 𝜓(𝑅)  =  𝐴𝐻(𝑅) 𝑒𝑥𝑝 (−𝑅2/2) in the dimensionless form of the 

equation and simplifying we easily get the Hermite’s equation. 

The problem is solved by the series method 

𝐻 =  𝛴𝐻𝑛(𝑅)  =  𝛴𝑛=0,2,4𝑎𝑛 𝑅𝑛 

𝑑𝐻

𝑑𝑅
= 𝑎𝑛𝑛𝑅

𝑛−1 

 

𝑑2𝐻

𝑑𝑅2
= ∑𝑛(𝑛 − 1) 𝑎𝑛𝑅

𝑛−2   

𝛴𝑛(𝑛 −  1)𝑎𝑛𝑅
𝑛−2  −  2𝛴𝑎𝑛𝑛𝑅

𝑛  +  (𝜀 −  1)𝛴𝑎𝑛𝑅
𝑛  =  0 

Equating equal power of 𝑅𝑛 

𝑎𝑛+2 =
[2𝑛 − (𝜀 −  1)]𝑎𝑛
(𝑛 + 1)(𝑛 + 2)

 

If the series is to terminate for some value of n then 

2𝑛 − (𝜀 −  1) = 0 becuase 𝑎𝑛 = 0. This gives 𝜀 = 2𝑛 + 1 

Thus 𝜀 is a simple function of n 

𝐸 =  𝜀𝐸𝑜 = (2𝑛 +  1)1/2ℏ𝜔, 𝑛 =  0, 2, 4, . . . 
= 1/2ℏ𝜔, 3ℏ𝜔/2, 5ℏ𝜔/2, . . . 
Thus energy levels are equally spaced. 

 

Problem 25: Show that for a simple harmonic oscillator in the ground state the 

probability for finding the particle in the classical forbidden region is approximately 

16%. 

 

Solution:- 

𝑢𝑜 = [
𝛼

√𝜋
] 𝑒−𝜁

2 2⁄ 𝐻𝑜(𝜁); 𝜁 = 𝛼𝑥 

𝑃 = 1 −∫ |𝑢𝑜|
2

𝑎

−𝑎

𝑑𝑥 = 1 − 2∫ (𝛼 √𝜋⁄ )
2
𝑒−𝜁

2 2⁄
𝑎

0

𝑑𝑥 = 1 −
2

√𝜋
∫ 𝑒−𝜁

2 2⁄ 𝑑𝜁
𝑎𝛼

0

 

𝐸𝑜 = 1 2⁄ 𝑘𝑎2 =
ℏ𝜔

2
(𝑛 = 0) 

Therefore  𝑎2 =
ℏ𝜔

𝑘
= (

ℏ

𝑘
) (

𝑘

𝑚
)
1 2⁄

=
ℏ

√𝑘𝑚
=

1

𝛼2
 

Therefore  𝛼2𝑎2 = 1 or 𝛼𝑎 = 1 

𝑃 = 1 −
2

√𝜋
∫ 𝑒−𝜁

2 2⁄ 𝑑𝜁
1

0

= 1 −
2

√𝜋
∫ [1 − 𝜁2 +

𝜁4

2!
−
𝜁6

3!
+
𝜁8

4!
−⋯ ]𝑑𝜁

1

0
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    = 1 −
2

√𝜋
[1 −

1

3
+
1

10
−
1

42
+

1

418
−⋯ ] ≈ 0.16 

Therefore, 𝑝 ≈  16%. 

Fig. Probability of the particle found 

outside the classical limits is shown shaded. 

 
Problem 26: Show that when 𝑛 →∞ the quantum mechanical simple harmonic 

oscillator gives the same probability distribution as the classical one. 

 

Solution:- 

The probability distribution for the quantum mechanical simple harmonic oscillator 

(S.H.O) is 

𝑃(𝑥) = |𝜓|2 =
𝛼𝑒𝑥𝑝(−𝜁2)𝐻𝑛

2(𝜁)

√𝜋 2𝑛𝑛!
                                                                              (1) 

𝜁 = 𝛼𝑥; 𝛼4 = 𝑚𝑘 ℏ2⁄   
Stirling approximation gives 

𝑛! → (2𝑛𝜋)1 2⁄ 𝑛𝑛𝑒−𝑛                                                                                           (2) 

Furthermore the asymptotic expression for Hermite function is 

𝐻𝑛(𝜁)(for 𝑛 →∞ ) → 2𝑛+1
(𝑛 2𝑒⁄ )

𝑛
2

√2𝑐𝑜𝑠𝛽
𝑒𝑥𝑝(𝑛𝛽2)𝑐𝑜𝑠 [(2𝑛 + 1 2⁄ )𝛽 −

𝑛𝜋

2
]            (3) 

Where  𝑠𝑖𝑛𝛽 = 𝜁 √2𝑛⁄                                                                                           (4) 

Using (2) and (3) in (1) 

𝑃(𝑥) → 2𝛼𝑒𝑥𝑝(−𝜁2)𝑒𝑥𝑝(2𝑛𝛽2)
𝑐𝑜𝑠2 [(2𝑛 + 1 2⁄ )𝛽 −

𝑛𝜋
2 ]

𝜋√2𝑛 𝑐𝑜𝑠𝛽
 

But 〈𝑐𝑜𝑠2 [(2𝑛 + 1 2⁄ )𝛽 −
𝑛𝜋

2
]〉 >=

1

2
  

Therefore 𝑃(𝑥) =
𝛼𝑒𝑥𝑝(−𝜁2)𝑒𝑥𝑝(2𝑛𝛽2)

𝜋√2𝑛 𝑐𝑜𝑠𝛽
.                                                                    (5) 

Classically, 𝐸 =  
𝑘𝑎2 

2
= (𝑛 +

1

2
) ℏ𝜔 (quantum mechanically) ≈  𝑛ℏ𝜔(𝑛 →∞) 

Therefore  𝑎2 =
2𝑛ℏ𝜔

𝑘
= (

2𝑛ℏ

𝑘
) (

𝑘

𝑚
)
1 2⁄

=
2𝑛ℏ

√𝑘𝑚
=

2𝑛

𝛼2
 

 
Fig: Probability distribution of quantum mechanical oscillator and classical oscillator. 

𝜔 = √
𝑘

𝑚
 

Or  

𝑎 =
√2𝑛

𝛼
                                                                                                                 (6) 
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𝑠𝑖𝑛𝛽 =
𝜁

√2𝑛
=
𝛼𝑥

√2𝑛
=
𝑥

𝑎
 

Therefore 

𝑐𝑜𝑠𝛽 =
(𝑎2−𝑥2)

1
2

𝑎
                                                                                                   (7) 

Using (6) and (7) in (5) 

𝑃(𝑥) =
𝑒𝑥𝑝(−𝜁2)𝑒𝑥𝑝(2𝑛𝛽2)

𝜋(𝑎2−𝑥2)
1
2

                                                                                     (8) 

Now when 𝑛 → ∞, 𝑠𝑖𝑛 𝛽 →  𝛽 and 

𝛽 → 𝜁 √2𝑛⁄ , and  𝑒𝑥𝑝(−𝜁2)𝑒𝑥𝑝(2𝑛𝛽2) → 1 

Therefore 𝑃(𝑥) =
1

𝜋(𝑎2−𝑥2)
1
2

 (classical). 

 
Problem 27: Derive the probability distribution for a classical simple harmonic 

oscillator. 

 

Solution:- 

One can expect the probability of finding the particle of mass 𝑚 at distance 𝑥 from the 

equilibrium position to be inversely proportional to the velocity 

𝑃(𝑥) =
𝐴

𝑣
                                                                                                                (1) 

where 𝐴 =normalization constant. The equation for S.H.O. is 

𝑑2𝑥

𝑑𝑡2
+ 𝜔2𝑥 = 0 

which has the solution 

𝑥 =  𝑎 𝑠𝑖𝑛 𝜔𝑡; (𝑎𝑡 𝑡 =  0, 𝑥 =  0) 
where a is the amplitude. 

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝜔√𝑎2 − 𝑥2                                                                                            (2) 

Using (2) in (1) 

𝑃(𝑥) =
𝐴

𝜔√𝑎2−𝑥2
                                                                                                     (3) 

We can find the normalization constant A. 

∫𝑃(𝑥)𝑑𝑥 = ∫
𝐴𝑑𝑥

𝜔√𝑎2−𝑥2

𝑎

−𝑎
=

𝜋𝐴

𝜔
=1 

Therefore, 

𝐴 =
𝜔

𝜋
                                                                                                                      (4) 

Using (4) in (3), the normalized distribution is 

𝑃(𝑥) =
1

𝜋√𝑎2−𝑥2
                                                                                                      (5) 

 
Problem 28: The wave function (unnormalized) for a particle moving in a one 

dimensional potential well 𝑉(𝑥) is given by 𝜓(𝑥)  =  𝑒𝑥𝑝(−𝑎𝑥2/2). If the potential is 

to have minimum value at 𝑥 =  0, determine (a) the eigen value (b) the potential 𝑉(𝑥). 
 

Solution:- 

Schrodinger’s equation in one dimension is 

(−
ℏ2

2𝑚
)
𝑑2𝜓

𝑑𝑥2
+ 𝑉(𝑥)𝜓 = 𝐸𝜓                                                                                    (1) 

Given 
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𝜓 = 𝑒𝑥𝑝 (−
1

2
𝑎𝑥2)                                                                                                 (2) 

Differentiating twice, 

We get 
𝑑2𝜓

𝑑𝑥2
= 𝑒𝑥𝑝 (−

1

2
𝑎𝑥2) (𝑎2𝑥2 − 𝑎)                                                                           (3) 

Inserting (2) and (3) in (1), we get 

𝑉(𝑥) = 𝐸 + (
ℏ2

2𝑚
) (𝑎2𝑥2 − 𝑎)                                                                                (4) 

Minimum value of 𝑉(𝑥)is determined from 

𝑑𝑉

𝑑𝑥
=
ℏ2𝑎2𝑥

𝑚
= 0 

Minimum of 𝑉(𝑥) occurs at 𝑥 =  0 
From (4) we find 0 = 𝐸 −

ℏ2𝑎

𝑚
 

(a) Or the eigen value 𝐸 =
ℏ2𝑎

𝑚
 

(b) 𝑉(𝑥) =
ℏ2𝑎

𝑚
+ (

ℏ2

2𝑚
) (𝑎2𝑥2 − 𝑎) =

ℏ2𝑎2𝑥2

2𝑚
 

 

 

Problem 29:  

(a) Show that the wave-function 𝜓𝑜𝑥)  =  𝐴 exp (−𝑥2/2𝑎2) with energy                                         

𝐸 =
ℏ𝜔

2
(where A and a are constants) is a solution for all values of x to the  one-

dimensional time-independent Schrodinger equation (TISE) for the simple 

harmonic oscillator (SHO) potential 𝑉(𝑥) =
𝑚𝜔2𝑥2

2
. 

(b) Sketch the function 𝜓1(𝑥)  =  𝐵𝑥 𝑒𝑥𝑝(−𝑥2/2𝑎2) (where B = constant), and show 

that it too is a solution of the TISE for all values of x. 

(c) Show that the corresponding energy 𝐸 =  (3/2)ℏ𝜔. 

 

Solution:- 

(a) 𝜓𝑜(𝑥) = 𝐴𝑒𝑥𝑝(−𝑥
2 2𝑎2⁄ ) 

Differentiate twice and multiply by −ℏ2 2𝑚⁄  

(−
ℏ2

2𝑚
)
𝑑2𝜓𝑜
𝑑𝑥2

= (
𝐴ℏ2

2𝑚𝑎2
)(1 −

𝑥2

𝑎2
)  𝑒𝑥𝑝 (

−𝑥2

2𝑎2
)

= (
𝐴ℏ2

2𝑚𝑎4
)𝜓𝑜 − (

ℏ2𝑥2

2𝑚𝑎2
)𝜓𝑜 

Or −(
ℏ2

2𝑚
)
𝑑2𝜓𝑜

𝑑𝑥2
+ (

ℏ2𝑥2

2𝑚𝑎2
)𝜓𝑜 = (

ℏ2

2𝑚𝑎2
)𝜓𝑜 

Compare the equation with the Schrodinger equation 

 𝐸 =
ℏ2

2𝑚𝑎2
=
ℏ𝜔

2
 

𝜔 =
ℏ

𝑚𝑎2
                                                                                                          

Or 𝑎 = (
ℏ

𝑚𝜔
)

1

2

 

 

Same relation is obtained by setting 

𝑉 =
ℏ2𝑥2

2𝑚𝑎2
=
𝑚𝜔2𝑥2

2
 

(b) 𝜓1(𝑥) = 𝐵𝑥𝑒𝑥𝑝(−𝑥2 2𝑎2⁄ ) 
Differentiate twice and multiply by −ℏ2 2𝑚⁄  
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(−
ℏ2

2𝑚
)
𝑑2𝜓1
𝑑𝑥2

=
𝐵ℏ2𝑥3𝑒𝑥𝑝(𝑥2 𝑎⁄ )

2𝑚𝑎4
+
3ℏ2𝑒𝑥𝑝(−𝑥2 2𝑎2⁄ )

2𝑚𝑎2
 

Substitute 

𝐵𝑥𝑒𝑥𝑝(−𝑥2 2𝑎2⁄ ) = 𝜓1 and 𝑎 = (
ℏ

𝑚𝜔
)

1

2
 and rearrange to get 

(−
ℏ2

2𝑚
)
𝑑2𝜓1
𝑑𝑥2

+ (
𝑚𝜔2

2
)𝜓1 = (

3ℏ𝜔

2
)𝜓1 

(c) 𝐸 =
3ℏ𝜔

2
 

 
Fig: 𝜓1 for SHO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


