
Chapter One 

Introduction To Cipher Systems 
(1.1) What is cryptography?  

Cryptography is the science of using mathematics to encrypt and decrypt data. I.e. 
cryptography is the study of secret (crypto-) writing (-graphy). Cryptography enables you 
to store sensitive information or transmit it across insecure channels or networks (like 
the Internet) so that it cannot be read by anyone except the intended recipient. While 
cryptography is the science of securing data, cryptanalysis is the science of analyzing and 
breaking secure communication. Classical cryptanalysis involves an interesting combination 
of analytical reasoning, application of mathematical tools, pattern finding, patience, 
determination, and luck. Cryptanalysts are also called attackers.  

(1.2) How does cryptography work?  
A cryptographic algorithm, or cipher, is a mathematical function used in the encryption 

and decryption process. A cryptographic algorithm works in combination with a key — a 
word, number, or phrase to encrypt the plaintext. The same plaintext encrypts to 
different ciphertext with different keys. The security of encrypted data is entirely 
dependent on two things: the strength of the cryptographic algorithm and the secrecy of 
the key. A cryptographic algorithm, plus all possible keys and all the protocols that make 
it work comprise a cryptosystem.  

 
Figure 1: How does cryptography work? 

(1.3) Basic Concepts 
Encryption domains and codomains 

¾ A denotes a finite set called the alphabet of definition. For example, A={0;1},the 
binary alphabet, is a frequently used alphabet of definition. Note that any alphabet 
can be encoded in terms of the binary alphabet. For example, since there are 32 
binary strings of length five, each letter of the English alphabet can be assigned a 
unique binary string of length five. 

¾ M denotes a set called the message space. M consists of strings of symbols from 
an alphabet of definition. An element of M is called a plaintext message or simply a 
plaintext. For example, M may consist of binary strings, English text, computer 
code, etc. 
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.

¾ C denotes a set called the ciphertext space. C consists of strings of symbols from 
an alphabet of definition, which may differ from the alphabet of definition for M. 
An element of C is called a ciphertext. 

Encryption and decryption transformations 

¾ K denotes a set called the key space. An element of K is called a key. 

¾ Each element e∈K uniquely determines a bijection from M to C, denoted by Ee. 

Ee is called an encryption function or an encryption transformation. Note that Ee 

must be a bijection if the process is to be reversed and a unique plaintext message 
recovered for each distinct ciphertext. 

¾ For each d∈K, Dd denotes a bijection from C to M (i.e., Dd: C→M). Dd is called a 
decryption function or decryption transformation. 

¾ The process of applying the transformation Ee to a message m∈M is usually 
referred to as encrypting m or the encryption of m. 

¾ The process of applying the transformation Dd to a ciphertext c is usually referred 
to as decrypting c or the decryption of c  

¾ An encryption scheme consists of a set {Ee: e∈K} of encryption transformations 

and a corresponding set {Dd: d∈K} of decryption transformations with the property 
that for each e∈K there is a unique key d∈K such that Dd=Ee

-1 ;that is, Dd(Ee(m))=m 
for all m∈M. An encryption scheme is sometimes referred to as a cipher. 

¾ The keys e and d in the preceding definition are referred to as a key pair and 
some-times denoted by (e; d). Note that e and d could be the same. 

¾ To construct an encryption scheme requires one to select a message space M, a 
ciphertext space C, a key space K, a set of encryption transformations {Ee: e∈K}, 
and a corresponding set of decryption transformations {Dd: d∈K}.  

 

m=Dd(c) 

c=Ee(m) 

Figure 2: Secret writing 
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(1.4) Terminology 
Cryptography: the art or science encompassing the principles and methods of 
transforming an intelligible message into one that is unintelligible, and then 
retransforming that message back to its original form. 

Plaintext: the original intelligible message. 

Ciphertext: the transformed message, i.e. unintelligible message. 

Cipher: an algorithm for transforming an intelligible message into one that is 
unintelligible by transposition and/or substitution methods. 

Key: some critical information used by the cipher, known only to the sender & receiver. 

Encipher (Encode): the process of converting plaintext to ciphertext using a cipher and a 
key. 

Decipher (Decode): the process of converting ciphertext back into plaintext using a 
cipher and a key. 

Cryptanalysis: the study of principles and methods of transforming an unintelligible 
message back into an intelligible message without knowledge of the key. Also called 
codebreaking. 

Cryptology:  both cryptography and cryptanalysis. 

Cryptanalyst: someone who engages in cryptanalysis. 

 

 

 
Figure 3: The block diagram to cipher system 
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(1.5) Classification of cipher systems 
In general we can classify the cipher systems as the following: 

I. Secret key systems. 

1. Conventional systems (classical). 
a. Transposition cipher. 

i Simple. 
¾ Message reversal cipher. 
¾ Columnar transposition. 

ii Double. 
b. Substitution cipher. 

i Monoalphabetic. 
¾ Simple. 

(a) Direct stander. 
(b) Standard reverse. 
(c) Multiplicative cipher. 
(d) Affine cipher. 
(e) Mixed alphabet. 
(f) Keyword mixed. 
(g) Transposed keyword mixed. 

¾ Homophonic. 
(a) Beale. 
(b) Higher order. 

ii Polyalphabetic. 
¾ Vigenere. 
¾ Beaufort. 

iii Polygraphic. 
¾ Playfair. 
¾ Hill cipher. 

2. Modern systems. 
a. Block cipher. 

¾ DES (Data Encryption Standards). 
b. Stream cipher. 

¾ LFSR (Linear Feedback Shift Register). 
II. Public key systems. 

1. RSA. 
2. Knapsack. 
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(1.6) Secret key systems 
In such type of systems the encipher key and the decipher key must be known only by 

the sender and the receiver, so they must exchange the key over a secure channel. 
 
 

Key: e or d  
 

 

Sender 

 

Adversary 

Secure channel 

c=Ee(m) 

c  

Receiver 

 
 
 
 
 
 m=Dd(c)  
 
 
 

Figure 4: Secret key systems 
 
The problems with secret key cryptography are: 

i. Requires establishment of a secure channel for key exchange. 
ii. Two parties cannot start communication if they never met. 

 
(1.6.1) Conventional systems (classical) 

Before there are computers, cryptography consisted of characters based algorithms. 
Different cryptography algorithms either substituted characters for another or 
transposed characters with another. The better algorithm did both. 

The primary change is that algorithms work on bits instead of characters; this is 
actually just a change in the alphabet size from 26 elements (in English) to two elements 
only. Most good cryptographic algorithms still combine elements of substitution and 
transposition. 
(1.6.1.1) Transposition cipher 

In transposition ciphers the letters of the original message (plaintext) are arranged in 
a different order to get the ciphertext. 

Plaintext → Rearrange characters → Ciphertext 
i. Simple 
¾ Message reversal cipher 

In such procedure the plaintext will be written backward to produce the ciphertext. 
For example if the message is: ALMANSOUR UNIVERSITY COLLEGE, then 

Plaintext  = ALMANSOUR UNIVERSITY COLLEGE 
Ciphertext = EGELLOC YTISREVINU RUOSNAMLA 
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Mathematically if L is the length of the message then c=E(k)=L+1-k, where k is the 
position of the letter in the plaintext. 
¾ Columnar transposition 

We arrange the message as array of 2-dimensition. The number of rows and columns 
depends on the length of the message, if the length of the message equal to 30 then the 
probability of the numbers of rows and columns are: 15X2, 2X15, 10X3, 3X10, 5X6, or 
6X5. Note that if the length of the message is 29, we must add a dummy letter in the 
end of the message. 

For example if the message is: ALMANSOUR UNIVERSITY COLLEGE, then the length 
of the message is 26, we will add a dummy letter X to the end of the message and the 
length will be 27. We can say that 27=9X3 and 

 

If the key is (2,3,1) then we arrange the columns as the following: 

1 2 3 
A L M 
A N S 
O U R 
U N I 
V E R 
S I T 
Y C O 
L L E 
G E X 

2 3 1 
L M A 
N S A 
U R O 
N I U 
E R V 
I T S 
C O Y 
L E L 
E X G 

The ciphertext comes from the reading on the above table by columns 
LNUNEICLEMSRIRTOEXAAOUVSYLG 

To make the key easy to remember we take a keyword like TWO and rearrange its 
letters alphabetically   

T W O 
2 3 1 

So (2,3,1) is the key that will use to rearrange the array columns. 
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ii. Double 
Double Transposition consists of two applications of columnar transposition to a 

message. The two applications may use the same key for each of the two steps, or they 
may use different keys. 

Columnar transposition works like this: First pick a keyword, such as DESCRIBE, then 
write the message under it in rows: 

D E S C R I B E 
Y O U R M O T H 
E R W A S A H A 
M S T E R A N D 
Y O U R F A T H 
E R S M E L T O 
F E L D E R B E 
R R I E S    

Now number the letters in the keyword in alphabetical order. 
3 4 8 2 7 6 1 5 
D E S C R I B E 
Y O U R M O T H 
E R W A S A H A 
M S T E R A N D 
Y O U R F A T H 
E R S M E L T O 
F E L D E R B E 
R R I E S    

Then read the cipher off by columns, starting with the lowest-numbered column: 
Column 1 is THNTTB, followed by RAERMDE YEMYEFR ORSORER HADHOE OAAALR 
MSRFEES UWTUSLI. This completes the first columnar transposition. Next, select and 
number a second keyword, and write this intermediate ciphertext under it in rows: 

2 7 1 8 9 5 4 6 3 
C O A S T L I N E 
T H N T T B R A E 
R M D E Y E M Y E 
F R O R S O R E R 
H A D H O E O A A 
A L R M S R F E E 
S U W T U S L I  

Finally, take it off by columns again and put it into five-letter groups for transmission. 

NDODR WTRFH ASEER AERMR OFLBE OERSA YEAEI HMRAL UTERH MTTYS OSU 

To decrypt a double transposition, construct a block with the right number of rows 
under the keyword, blocking off the short columns. Write the cipher in by columns, and 
read it out by rows.  
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(1.6.1.2) Substitution cipher 
A system of encryption in which each letter of a message is replaced with another 

character, but retains its position within the message. 
i. Monoalphabetic 

A substitution cipher system is the system that use one alphabet throughout 
encryption. 
a. Simple substitution cipher 

Simple substitution ciphers replaced each character of plaintext with the 
corresponding character of the ciphertext; a single one-to-one mapping from plaintext to 
ciphertext characters is used to encipher an entire message. 
¾ Direct standard 

The Caesar cipher is the one most famous and simplest of all ciphers. It is classified 
as a substitution cipher because the sender replaces the letters in the actual message 
with a new set of letters. In the Caesar cipher, each letter is replaced with the third 
letter following it in the alphabet. The alphabet wraps around, so if the letter in the 
actual message were X,Y, or Z, it would be replaced with A, B, or C, respectively. The 
modern English alphabet actually contains several letters not in the Roman alphabet, but 
we will demonstrate the cipher using the modern English alphabet.  
Plaintext alpha.:     
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Ciphertext alpha.:  
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 0 1 2 

As an example, if the message is: ALMANSOUR UNIVERSITY COLLEGE, then 
A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 
D O P D Q V R X U  X Q L Y H U V L W B  F R O O H J H 

Note that the key to deciphering a message encoded with a Caesar cipher (also called 
a Caesar shift) is knowing the number of letters by which the alphabet is shifted. As we 
see, in Caesar cipher the key is k=3, we can choose a different value to the key in the 
range between 0 and 25. 

c=Ek(m)=(m+k) mod 26 
For example in the above example E3(A) = E3(0) = (0+3) mod 26 = 3 =D and E3(Y) = 

E3(24) = (24+3) mod 26 = 1 = B and so on. 
If the adversary received the ciphertext and he know that the sender used the shift 

method, the only thing he need to do, is to try all the possibilities that equal to 25 trials. 
¾ Standard reverse 

This method is similar to the Direct standard, except that the ciphertext alphabet 
are written in reversed order from Z to A.  

c=Ek(m)=(25-m+k) mod 26 
For example if k=0 then, 
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Plaintext alpha.:     
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Ciphertext alpha.:  
25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A 

 As an example, if the message is: ALMANSOUR UNIVERSITY COLLEGE, then 

¾ Multiplicative cipher 
Ciphers based on multiply each character by a key k; that is, 

A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 
Z O N Z M H L F I  F M R E V I H R G B  X L O O V T V 

Ek(m)=(m*k) mod 26 
Where k and 26 are relatively prime (GCD(k,26)=1), so that the letters of the 

alphabet produce a complete set of residues, so that in this case the key must be an odd 
number and not equal to 13. So, if k=9 then, 
Plaintext alpha.:     
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Ciphertext alpha.:  
0 9 18 1 10 19 2 11 20 3 12 21 4 13 22 5 14 23 6 15 24 7 16 25 8 17 
A J S B K T C L U D M V E N W F O X G P Y H Q Z I R 

As an example, if the message is: ALMANSOUR UNIVERSITY COLLEGE, then 

For example in the above example E9(A) = E9(0) = (0*9) mod 26 = 0 =A and E9(Y) = 
E9(24) = (24*9) mod 26 = 8 = I and so on. 

A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 
A V E  A N G W Y X  Y N U H K X G U P I  S W V V K C K 

 
¾ Affine cipher 

Addition (shifting) and multiplication can be combined to give an Affine 
transformation 

Ek1,k2(m)=(m*k1+k2) mod 26 
The conditions on k1 are the same conditions on the key of the multiplicative cipher, 

and the conditions on k2 are the same conditions on the key of the additive cipher. 
Now, if k1=7 and k2=4 then 
Plaintext alpha.:     
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Ciphertext alpha.:  
4 11 18 25 6 13 20 1 8 15 22 3 10 17 24 5 12 19 0 7 14 21 2 9 16 23 
E L S Z G N U B I P W D K R Y F M T A H O V C J Q X 

As an example, if the message is: ALMANSOUR UNIVERSITY COLLEGE,  

For example in the above example E7,4(A) = E7,4(0) = (0*7+4) mod 26 = 4 =E and E7,4(Y) 
= E7,4(24) = (24*7+4) mod 26 = 16 = Q and so on. 

A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 
E D K E R A Y O T  O R I V G T A I H Q  S Y D D G U G 
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¾ Mixed alphabet 
If we permit the cipher alphabet to be any rearrangement of the plain alphabet, then 

we can generate an enormous number of distinct modes of encryption. There are 26! such 
rearrangements, which is over 400,000,000,000,000,000,000,000,000, which gives rise 
to an equivalent number of distinct cipher alphabets. Each cipher alphabet is known as a 
key. If our message is intercepted by the enemy, who correctly assumes that we have 
used a monoalphabetic substitution cipher, they are still faced with the impossible 
challenge of checking all possible keys. If an enemy agent could check one of these 
possible keys every second, it would take roughly one billion times the lifetime of the 
universe to check all of them and find the correct one.   

For example, one of the 26! Is the following 
Plaintext alpha.:     
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Ciphertext alpha.:  
X J Z S M L H U B V D C Y Q P I R W T F K E G N A O 

if the message is: ALMANSOUR UNIVERSITY COLLEGE,  

The disadvantage of this method is that the arrangement is difficult to be 
remembered. 

A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 
X C Y X Q T P K W  K Q B E M W T B F A  Z P C C M H M 

¾ Keyword mixed 
In this method we need a keyword like MATHEMATICS, and a keyletter like S, then: 

1st. Remove the repeated letters from the keyword, and you will get MATHEICS. 
2nd. Put the first letter of the modified keyword under the keyletter flowed by 

the remaining letters of the keyword. 
3rd. Complete the ciphertext alphabet by the remaining letters without 

repetitions. 
Plaintext alpha.:     
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Ciphertext alpha.:  
B D F G J K L N O P Q R U V W X Y Z M A T H E I C S 

if the message is: ALMANSOUR UNIVERSITY COLLEGE, 

¾ Transposed keyword mixed  
In this method we need a keyword like MATHEMATICS. After removing the repeated 

letters, we put it in a matrix with number of columns equal to the number of the letters 
in the modified keyword 

A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 
B R U B V M W T Z  T V O H J Z M O A C  F W R R J L J 

M A T H E I C S 
B D F G J K L N 
O P Q R U V W X 
Y Z       
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Then we take the matrix letters column by column and we will get 
Plaintext alpha.:     
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

Ciphertext alpha.:  
M B O Y A D P Z T F Q H G R E J U I K V C L W S N X 

if the message is: ALMANSOUR UNIVERSITY COLLEGE, 
A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 
M H G M R K E C I  C  R T L A I K T V N  O E H H A P A 

 
b. Homophonic substitution cipher 

Homophonic substitution cipher are similar to simple substitution, except the 
mapping is one-to many, and each plaintext character is enciphered with a variety of 
ciphertext characters. 

The Homophonic Substitution Cipher involves replacing each letter with a variety 
of substitutes, the number of potential substitutes being proportional to the 
frequency of the letter. For example, the letter 'a' accounts for roughly 8% of all 
letters in English, so we assign 8 symbols to represent it. Each time an 'a' appears in 
the plaintext it is replaced by one of the 8 symbols chosen at random, and so by the 
end of the encipherment each symbol constitutes roughly 1% of the ciphertext. The 
letter 'b' accounts for 2% of all letters and so we assign 2 symbols to represent it. 
Each time 'b' appears in the plaintext either of the two symbols can be chosen, so 
each symbol will also constitute roughly 1% of the ciphertext. This process continues 
throughout the alphabet, until we get to 'z', which is so rare that is has only one 
substitute. In the example below, the substitutes happen to be 2-digit numbers, 
there are between 1 and 12 substitutes for each letter, depending on the letter's 
relative abundance. 

The point of offering several substitution options for popular letters is to 
balance out the frequencies of symbols in the ciphertext. Every symbol will 
constitute roughly 1% of the ciphertext. If none of the symbols appears more 
frequently than any other, then this cipher would appear to defy any potential attack 
via straightforward frequency analysis. 

A 09 12 33 47 53 67 78 92     
B 48 81           
C 13 41 62          
D 01 03 45 79         
E 14 16 24 44 46 55 57 64 74 82 87 98 
F 10 31           
G 06 25           
H 23 39 50 56 65 68       
I 32 70 73 83 88 93       
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J 15            
K 04            
L 26 37 51 84         
M 22 27           
N 18 58 59 66 71 91       
O 00 05 07 54 72 90 99      
P 38 95           
Q 94            
R 29 35 40 52 77 80       
S 11 19 36 76 86 96       
T 17 20 30 43 49 69 75 85 97    
U 08 61 63          
V 34            
W 60 89           
X 28            
Y 21 52           
Z 02            

if the message is: ALMANSOUR UNIVERSITY COLLEGE, 
A L M A N S O U R  U N I V E R S I T Y  C O L L E G E 

  53   26  27   47   71   76  00   63  29      63   59  32  34  74  35   76  32  75  21       13  00   51  51  74  06   46 

¾ Beale cipher 
 In this method we assign a set of numbers to each letter in the plaintext alphabet by 

using a specific text, each letter in the plaintext will be replaced by number that 
represent the location of some word in the text that start with this letter. 
For example, if the text is: 
       1         2     3        4      5     6      7          8        9    10  11     12        13 14       15      16 
“Christmas, the annual festival of Christ's birth. Christmas Day falls on December 25 and celebrates the 
  17  18  19    20   21     22      23     24     25 26    27   28   29      30   31   3233 34  35 
 birth of Jesus Christ in Bethlehem as recounted in the Gospels of Matthew and Luke. It is, after Easter,  
36   37      38        39 40 41     42      43     44  45     46      47   48    49     50 51   525354 
the most important feast in the Church's year. Since the Gospels make no mention of dates, it is not  
   55    56    57   58   59  60 61  62  63 64        65     66  67 68     69      70   71    72   73 
certain that Christ was born on this day. In fact, Christmas Day did not officially come into being until  
74   75    76      77         78             79       80 81 82   83 84 85   86       87 88    89  90 91 
354 when Pope Gregory proclaimed December 25 as the date of the Nativity. In doing so, he was  
     92    93 94      95        96  97    98       99 
following the early Church's policy of absorbing rather than repressing existing pagan rites which, since  
 
early times, had celebrated the winter solstice and the coming of spring.” 
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if the message is: ALMANSOUR COLLEGE, 
A L M A N S O U R  C O L L E G E 

03 31 29 14 48 44 05 73 24  15 97 31 31 94 27 35 

¾ Higher order homophonic  
Recall that, given enough ciphertext, most ciphers are theoretically breakable because 

there is a single key that deciphers the ciphertext into meaningful plaintext; all other 
keys produce meaningless sequence of letters. 

It is possible to construct higher-order homophonic ciphers where each ciphertext 
deciphers into more than one meaningful plaintext using different keys. For example, the 
same ciphertext could decipher into the following 2 different plaintexts using different 
keys: 

THE TREASURE IS BURIED IN GOOSE CREEK 
THE BEALE CIPHERS ARE A GIGANTIC HOAX 

 
To construct a second-order homophonic cipher (meaning that for each plaintext 

there are two possible meaningful plaintexts), arrange the numbers 1 through n2 into an 
nXn matrix K whose rows and columns correspond to the characters of the plaintext 
alphabet. For each plaintext character a, row a of K defines one set of homophones f1(a), 
while column a defines another set of homophones f2(a). A plaintext message M=m1 m2 …is 
enciphered along with a dummy message X=x1 x2 … to get ciphertext C=c1 c2 …, where ci = 
K(mi ,xi ), i=1,2,…  That is, ci is in row mi and column xi. 
 

For example. Let n=5. The following is 5X5 matrix for the plaintext alphabet {E, I, L, 
M, S}. 

 E I L M S 
E 10 22 18 02 11 
I 12 01 25 05 20 
L 19 06 23 13 07 
M 03 16 08 24 15 
S 17 09 21 14 04 

 
And the message that we want to encipher is SMILE which is replace by LIMES, then 

 
M = S M I L E 
X = L I M E S 
C = 21 16 05 19 11 
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ii. Polyalphabetic. 
Polyalphabetic substitution cipher is a substitution cipher in which the cipher alphabet 

changes during the encryption. The change is defined by a key. 
¾ Vigenere cipher 

The Vigenere Cipher , proposed by Blaise de Vigenere from the court of Henry III of 
France in the sixteenth century, is a polyalphabetic substitution based on the following 
tableau:  

 
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A 
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B 
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D 
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F 
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G 
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H 
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I 
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J 
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K 
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L 
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M 
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N 
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O 
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P 
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q 
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R 
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S 
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T 
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U 
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V 
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X 
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y 
Note that each row of the table corresponds to a Caesar Cipher. The first row is a 

shift of 0; the second is a shift of 1; and the last is a shift of 25. Mathematically, 
Eki(m)=(m+ki) mod 26. 

The Vigenere cipher uses this table together with a keyword to encipher a message. 
For example, suppose we wish to encipher the plaintext message:   

TO BE OR NOT TO BE THAT IS THE QUESTION 
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using the keyword RELATIONS. We begin by writing the keyword, repeated as many 
times as necessary, above the plaintext message. To derive the ciphertext using the 
tableau, for each letter in the plaintext, one finds the intersection of the row given by 
the corresponding keyword letter and the column given by the plaintext letter itself to 
pick out the ciphertext letter.  
 Keyword: R E L A T I O N S R  E L  A T I O N S  R E L A T  I O N S R E  L 
 Plaintext: T OB E O R N O T T O B  E T H A T I  S T H E Q U E S  T I O N 
 Ciphertext: K SM E H Z B  B  L K S M E M P O G A  J XS  E J  C S F  L Z S Y 
Decipherment of an encrypted message is equally straightforward. One writes the 
keyword repeatedly above the message:  
 Keyword: R E L A T I O N S R  E L  A T I O N S  R E L A T  I O N S R E  L 
 Ciphertext:  K SM E H Z B  B  L K S M E M P O G A  J XS  E J  C S F  L Z S Y 
 Plaintext: T OB E O R N O T T O B  E T H A T I  S T H E Q U E S  T I O N 
This time one uses the keyword letter to pick a column of the table and then traces down 
the column to the row containing the ciphertext letter. The index of that row is the 
plaintext letter.  
The strength of the Vigenere cipher against frequency analysis can be seen by examining 
the above ciphertext. Note that there are 7 'T's in the plaintext message and that they 
have been encrypted by 'K,' 'L,' 'K,' 'M,' 'G,' 'X,' and 'L' respectively. This successfully 
masks the frequency characteristics of the English 'T.' One way of looking at this is to 
notice that each letter of our keyword RELATIONS picks out 1 of the 26 possible 
substitution alphabets given in the Vigenere tableau. Thus, any message encrypted by a 
Vigenere cipher is a collection of as many simple substitution ciphers as there are letters 
in the keyword.  
¾ Beaufort cipher  
In the Beaufort cipher the table is used in the following way:  

• Encryption.  
Locate the plaintext letter in the top row of the table. Search the column 
immediately under till the keyletter is found. Follow the row of the keyletter 
to the left. The cryptoletter is found in the leftmost column.  

Mathematically, Eki(m)=(ki-m) mod 26. 
 
• Decryption.  

Locate the cryptoletter in the leftmost column of the table. Search the row 
to the right till the keyletter is found. Go straight up from the keyletter. 
The cleartext is found in the top row. 

The Beaufort way of using the table is somewhat easier than standard Vigenere, 
since you only have to follow one route instead of finding an intersection of a row 
and a column. 
 Keyword: R E L A T I O N S R  E L  A T I O N S  R E L A T  I O N S R E  L 
 Plaintext: T OB E O R N O T T O B  E T H A T I  S T H E Q U E S  T I O N 

Ciphertext:        Y QK WF R B Z Z Y  Q K  WA B O UK  Z L E W D O K V  Z JQ Y 
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Note, 

Cipher Enciphering Deciphering 

Vigenere c = m + k m = c – k 

Beaufort c = k - m m = k - c 

 
iii. Polygraphic 

Polygram substitution ciphers encipher block of letters at the time, rather than a 
single letter; this makes cryptanalysis harder, as it destroys the single letter frequency 
distribution. 
¾ Playfair cipher  

To encipher a message in Playfair, pick a keyword and write it into a five-by-five 
square, omitting repeated letters and combining I and J in one cell. In this example, we 
use the keyword MANCHESTER and write it into the square by rows. It may be written in 
any other pattern; other popular choices include writing it by columns or writing it in a 
spiral starting at one corner and ending in the center. Follow the keyword with the rest 
of the alphabet's letters in alphabetical order.  

M A N C H 
E S T R B 
D F G I/J K 
L O P Q U 
V W X Y Z 

First we need to prepare the plaintext message for encryption. To encrypt "THIS 
SECRET MESSAGE IS ENCRYPTED," break it up into two-letter groups. If both letters 
in a pair are the same, insert an X between them. If there is only one letter in the last 
group, add an X to it.  

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX 
Now we encrypt each two-letter group. Find the T and H in the square and locate the 

letters at opposite corners of the rectangle they form:  
. . N . H 
. . T . B 
. . . . . 
. . . . . 
. . . . . 

Replace TH with those letters, starting with the letter on the same row as the first 
letter of the pair: TH becomes BN. Continue this process with each pair of letters:  

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX 
BN FR 

Notice that S and E are in the same row. In this case we take the letter immediately 
to the right of each letter of the pair, so that SE becomes TS. 
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. . . . . 
E S T . . 
. . . . . 
. . . . . 
. . . . . 

 
TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX 
 BN FR TS 

Now we see that C and R are in the same column. Use the letter immediately below 
each of these letters, so that CR becomes RI. This is the last special case, and the 
encryption proceeds without further incident. 

. . . C . 

. . . R . 

. . . I/J . 

. . . . . 

. . . . . 
 

TH IS SE CR ET ME SX SA GE IS EN CR YP TE DX 
BN FR TS RI SR ED TW FS DT FR TM RI XQ RS GV 

To decrypt the message, simply reverse the process: If the two letters are in 
different rows and columns, take the letters in the opposite corners of their rectangle. 
If they are in the same row, take the letters to the left. If they are in the same column, 
take the letters above each of them. 
¾ Hill cipher  

This method apply a linear transformation on d letters of the plaintext to get d 
letters of the ciphertext. The message divided onto a number of blocks M, each block 
contains d letters, then rearrange it in matrix of one column and d rows. And we use a 
matrix K with the size dXd that contains numbers from the range between 0 and 25, then 

C=KM mod 26 
For example, if 

⎥
⎦

⎤
⎢
⎣

⎡
=⇒⎥

⎦

⎤
⎢
⎣

⎡
= −

920
1715

52
33 1KK  

and we want to encipher the message HELP, then 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

4
7

1 E
H

M ; ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

15
11

2 P
L

M  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
== I

H
KMC

8
7

34
33

4
7

52
33

11  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
== T

A
KMC

19
0

97
78

15
11

52
33

22  

so, the ciphertext is HIAT. 
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Now to decipher the word HIAT 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

8
7

1 I
H

C ; ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

19
0

2 T
A

C  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
== −

E
H

CKM
4
7

212
241

8
7

920
1715

1
1

1  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
== −

P
L

CKM
15
11

171
323

19
0

920
1715

2
1

2  

so, the original word is HELP. 
 

(1.7)One-Time Pads  
During the war, an AT&T engineer Gilbert Vernam proposed a system called the 

One-Time Pad that has perfect security. In this system additive ciphers are used to 
encipher each letter of the plaintext; however, the shift is different for each letter! The 
shift is determined from a one-time pad, which means some large collection of letters, 
such as a book. Each day a different page was used for the coded messages. If the 
plaintext were THE BRITISH HAVE FIFTY TANKS and the relevant part of the one-
time pad were SHE LOVES HIM SO VERY MUCH NOW we would use the number of each 
letter as the shift. For instance since S corresponds to number 18, the cipher for the 
beginning T would be 18 letters after T, namely, L. The ciphertext is then computed as 
follows  

 T H E B R I T I S H H A V E 

 19 7 4 1 17 8 19 8 18 7 7 0 21 4 

 S H E L O V E S H I M S O V 
 18 7 4 11 14 21 4 18 7 8 12 18 14 21 

Add : 37 14 8 12 31 29 23 26 25 15 19 18 35 25 

Mod : 11 14 8 12 5 3 23 0 25 15 19 18 9 25 
 L O I M F D X A Z P T S J Z8 

Different letters of ciphertext could correspond to the same plaintext letter, and vice 
versa. This cryptosystem is virtually unbreakable. The weakness is the key which must be 
immense. This must be shared by all communicants. Thus, there is a security problem in 
transport of the key. However, transport of the keys can usually be carried out at a 
chosen time and place, while coded messages usually need to be sent in emergency 
situations. Also, statistical analysis may be possible if the key is a regular text; for this 
reason some effort is usually made to choose keys which are truly random sequences of 
characters.  
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(1.8) Cryptanalysis: 
The science of deducing the plaintext from a ciphertext, without knowledge of the key. 
 
(1.8.1) Attacks on encrypted messages 
The objective of the following attacks is to systematically recover plaintext from 
ciphertext, or even more drastically, to deduce the decryption key. 
 

1.  A ciphertext-only attack: is one where the adversary (or cryptanalyst) tries to 
deduce the decryption key or plaintext by only observing ciphertext. Any encryption 
scheme vulnerable to this type of attack is considered to be completely insecure. 

2. A known-plaintext attack: is one where the adversary has a quantity of plaintext 
and corresponding ciphertext. This type of attack is typically only marginally more 
difficult to mount. 

3. A chosen-plaintext attack: is one where the adversary chooses plaintext and is 
then given corresponding ciphertext. Subsequently, the adversary uses any 
information deduced in order to recover plaintext corresponding to previously 
unseen ciphertext. 

4. An adaptive chosen-plaintext attack: is a chosen-plaintext attack wherein the 
choice of plaintext may depend on the ciphertext received from previous requests. 

5. A chosen-ciphertext attack: is one where the adversary selects the ciphertext 
and is then given the corresponding plaintext. One way to mount such an attack is for 
the adversary to gain access to the equipment used for decryption (but not the 
decryption key, which may be securely embedded in the equipment). The objective is 
then to be able, without access to such equipment, to deduce the plaintext from 
(different) ciphertext. 

6. An adaptive chosen-ciphertext attack: is a chosen-ciphertext attack where the 
choice of ciphertext may depend on the plaintext received from previous requests. 

 
(1.8.2) Some concepts on cryptanalysis: 
 
� Frequency: number of appearance of the letter in the ciphertext, where the 

frequencies of the ciphertext letters are compared with the frequencies in Table 1 or 
Figure 5. 

 
� Repetition: is the similar parts in the ciphertext that have length not less than three. 

This helps us to find the length of the key (the number of alphabets that used to 
enciphering in the polyalphabetic systems). 
Take the Highest Common Factor HCF between the reputations, which represent the 
length of the key, this method, is called the Kasiski method. 
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Letter %
a   8.167
b   1.492
c   2.782
d   4.253
e   12.702
f   2.228
g   2.015
h   6.094
i   6.966
j   0.153
k   0.772
l   4.025

m   2.406  

Letter %
n   6.749
o   7.507
p   1.929
q   0.095
r   5.987
s   6.327
t   9.056
u   2.758
v   0.978
w   2.360
x   0.150
y   1.974
z   0.074

Table 1: English letters frequencies 

 
Figure 5: Histogram of English letters frequencies 

 
� Index of Coincidence (IC): is the probability that two letters selected from the text 

are identical, we can compute the IC from the following equation: 

( )

( )1

1

−

−
=

∑
nn

ff
IC

Z

A
λλ

, 

where λf  is the frequency of the letter λ  in the ciphertext and n is the length of the 
letter. The IC value differs from language to another. We can use the IC to discover 
if the message were enciphered using Monoalphabetic system or polyalphabetic 
system.  
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� Coincidence: is the computing of the coincidence of the ciphertexts, where two 
messages put one over the other, and the purpose is to discover if the two messages 
were enciphered using the same key. If there is 7 coincidence letters between 100 
letters in the two messages then the two messages were enciphered using the same 
key, while if there is 4 letters coincidence between every 100 letters then they 
enciphered with different keys. 

 
(1.9) Cryptanalysis examples: 
First of all we must specified the type of the cipher system that was used. If the 
frequencies of the ciphertext are the same as the frequencies of the language then, a 
transposition cipher system was used; otherwise a substitution cipher system was used. 
(1.9.1) Cryptanalysis of transposition cipher systems: 
When we decide that a transposition cipher system were used, we put the cipher text in 
mXn matrix, m and n depends on the length of the received ciphertext, for example if 
the length is 500 then one of the possible sizes is 20X25. Then we rearrange the columns 
to get some known patterns such as (and, the, ion, that,…) in addition to some expected 
word in the message. 
As we know there are two types of transposition cipher system: simple and double 
transposition, the cryptanalysis of the last one is more complicated because we lose the 
ability to find the known patterns. 
(1.9.2) Cryptanalysis of substitution cipher systems: 
If we know that a substitution cipher system was used, the next step is to determine 
whether a monoalphabetic system or polyalphabetic system was used, by using the IC of 
the language.  
Example: A sample of ordinary English contains the following distribution of letters   
 

Letter Count Letter count 
A 141 N 119 
B 36 O 132 
C 36 P 28 
D 103 Q 1 
E 188 R 95 
F 37 S 64 
G 34 T 182 
H 102 U 59 
I 123 V 13 
J 4 W 55 
K 18 X 3 
L 56 Y 23 
M 27 Z 0 
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What is the probability of selecting an identical pair of letters from this collection? in 
other word compute the IC. 

( )

( )1

1

−

−
=

∑
nn

ff
IC

Z

A
λλ

 

IC=
)11679(1679

)10(0)123(23...)136(36)1141(141
−

−+−++−+− = 0656.0
2817362
184838

≈ . 

Example: What is the index of coincidence for a collection of 2600 letters consisting of 
100 A ’s,100 B ’s,100 C ’s,...,100 Z ’s? 

IC= 0384615.0
25992600

9910099100...9910099100
≈

⋅
⋅+⋅++⋅+⋅ . 

As we see from the two examples above the index of coincidence of totally random 
(uniformly distributed) collection of letters is about 0.0385. Vigenere ciphertexts from 
longer keywords have a more uniform distribution of letters. For keyword length closer to 
1, the index of coincidence will be larger, closer to 0.0656. 

 
If the length of the text is n, we can quantify the connection between index of 
coincidence and keyword length k, (number of alphabets), where: 

( ) ( )0385.0065.0
0265.0

−+−
⋅

≈
ICnIC

nk , 

Example: A polyalphabetic ciphertext has the following letter counts. 
Letter Count Letter count 

A 60 N 28 
B 50 O 83 
C 42 P 44 
D 64 Q 69 
E 51 R 13 
F 63 S 29 
G 19 T 66 
H 48 U 87 
I 56 V 63 
J 67 W 19 
K 23 X 43 
L 45 Y 39 
M 44 Z 67 

Estimate the keyword length. 
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Solution: There are n=1282 letters. 

IC= 04355.0
821121
35761

12811282
6667...49505960

≈=
⋅

⋅++⋅+⋅ . 

K= ( ) ( ) 1892.5
03846.004355.0128204355.0065.0

12820265.0
=

−+−
⋅ . 

Based only on this evidence, a reasonably likely keyword length is 5. 
 
¾ Now, after the above tests if we conclude that a monoalphabetic cipher system was 

used, then: 
 If a direct standard or reversed system were used, we compare the frequencies of 

the ciphertext with the frequencies of the English language, start by putting E against 
the letter with the higher frequency in the ciphertext, then we put the other letters 
sequentially. 

 If a mixed cipher system was used (Random) then we compare the frequencies of the 
ciphertext with that in Table 1 and Figure 5. 
 
For advanced analysis we can use in addition to Table 1, a table of double letter 
frequencies TH, HE, IN, ER, RE, ON, AN, EN,…, and triple letter frequencies THE, AND, 
TIO, ATI, FOR, THA, TER, RES,… and so on. 
  
 
¾ If a polyalphabetic cipher system was used then we will use the Kasiski method to find 

the length of the key k (number of alphabets). Then we divide the ciphertext into k 
parts, each part will analyze as in  above.   

 
The Kasiski method was introduced in 1863 by the Prussian military officer Friedrich W. 
Kasiski. The method analysis repetitions in the ciphertext to determine the period. 
For example, consider the plaintext TO BE OR NOT TO BE enciphered with a Vigenere 
cipher with key HAM: 

K= H A M H A M H A M H A M H 
M= T O B E O R N O T T O B E 
C= A O N L O D U O F A O N L 

The ciphertext contains two occurrences of the sequence AONL 9 characters apart, and 
the period could be 1,3 or 9 (we know it’s 3). 
Repetitions in the ciphertext more than two characters long are unlikely to occur by 
chance. They occur when the plaintext pattern repeats at a distance equal to a multiple 
of the period. 
If there are m ciphertext repetitions that occur at intervals I j (1  j≤ m) the period is 
likely to be some number that divides most of the m intervals. 

≤

 
Example: We shall use IC and Kasiski method to analyze the following ciphertext. 
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ZHYME ZVELK OJUBW CEYIN CUSML RAVSR YARNH CEARI UJPGP VARDU 
QZCGR NNCAW JALUH GJPJR YGEGQ FULUS QFFPV EYEDQ GOLKA LVOSJ
TFRTR YEJZS RVNCI HYJNM ZDCRO DKHCR MMLNR FFLFN QGOLK ALVOS
JWMIK QKUBP SAYOJ RRQYI NRNYC YQZSY EDNCA LEILX RCHUG IEBKO 
YTHGV VCKHC JEQGO LKALV OSJED WEAKS GJHYC LLFTY IGSVT FVPMZ 
NRZOL CYUZS FKOQR YRTAR ZFGKI QKRSV IRCEY USKVT MKHCR MYQIL 
XRCRL GQARZ OLKHY KSNFN RRNCZ TWUOC JNMKC MDEZP IRJEJ W 
 
When we calculate the frequency distribution, we will find that the IC=0.04343, n=346,  

k= ( ) ( ) 2659.5
03846.004343.034604343.0065.0

3460265.0
=

−+−
⋅  

The IC indicates that this is a polyalphabetic cipher with a period of about 5. 
We observe that there are 3 occurrences of the sequence QGOLKALVOSJ, the first two 
occurrences are separated by 51 and the last two by 72 characters (start to start); the 
only common divisor of 51 and 72 is 3 - the period is almost certainly 3. 
 
Example: When we calculate the IC of some ciphertext, we find that k=9.34. Also we 
observe that there is NYX appearance many times in the ciphertext and the distance 
between them are 30, 50, 90, 110, and 33. 
Since these can each be factored as 

30=2X3X5 
50=2X5X5 
90=2X3X3X5 
110=2X5X11 
33=3X11 

there are a number of candidates for key length. 2 and 5 are popular factors among these 
distance followed by 3 and 11. Note that all but 33 have 2X5=10 as a factor. The 
cryptanalyst might then disregard 33 as a pure coincidence, and discard that data in 
favor of conjecture that the key length is a multiple of 2 and/or 5. Combining this with 
data from the Friedman test that the key approximately 9 letters long, the cryptanalyst 
guesses that the key is 10 letters long, and not 2 or 5 letters long. 
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Attempt all the following exercises  

 
 
 

Exercises 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Q1) In problems 1-5, state whether the following are true or false. 

1.  14 = 5 (mod 9)  
2.  4 = 16 (mod 12) 
3.  7 = 3 (mod 10)  
4.  -3 = 5 (mod 8)  
5.  3 = 9 (mod 12)  
6.  90 = 9 (mod 10)  

 
Q2) Try to encipher the following message: 

If you have some trouble when you worry you make it double 
Using 

a) Message reversal. 
b) Columnar transposition, key=Software. 
c) Double columnar transposition, key1=Microsoft, key2=Samsung. 
d) Direct standard, key=7. 
e) Multiplicative cipher, key=11. 
f) Affine cipher, key=(7,12). 
g) Keyword mixed, keyword=Professional, keyletter=S. 
h) Transposed keyword mixed, keyword=Marching season. 
i) Vigenere cipher, keyword=Yanni. 
j) Beaufort cipher, keyword=Yanni. 
k) Playfair cipher, keyword=imagination. 

 

Q3) If , use this matrix to encipher the message:  ⎥
⎦

⎤
⎢
⎣

⎡
=

94
57

K

WINTER LIGHT 
then find K-1 and decipher the result of the above. 
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Q4) Encrypt the following message using a direct standard Cipher with key value K=18 and 
write a modular equation to express this system of encipherment. 

MATHEMATICS IS FUN 
 

Q5) Decrypt the following message, which has been encrypted using a direct standard 
Cipher with key value K=1. Write out a modular equation to express this system of 
encipherment. 

GZUD Z MHBD CZX 
 

Q6) Try to decipher the following ciphertext: 
ETNAN XFWN LYK Y RYETNA QF EBWKXF LTX KYQP ETQK YPHQWN QK 
RXA DXB KXF DXB PXFE LYKT DXBAKNMR LNMM KX DXBA RNNE 
KCNMM MQUN TNMM QR QF VNP LQET Y ZQAM UNNI DXBA KTXNK XF. 

 

Q7) Consider the ciphertext: 
WSPGM HHEHM CMTGP NROVX WISCQ TXHKRVESQT IMMKW BMTKW 
CSTVL TGOPZ XGTQM CXHCX HSMGX WMNIA XPLVY GROWX LILNF 
JXTJI RIRVE XRTAX WETUS BITJM CKMCO TWSGR HIRGK PVDNI HWOHL 
DAIVX JVNUS JX 

Calculate the IC, and then estimate the key length. 

 

Q8) How many possible keys does a Playfair cipher have? Express your answer as an 
approximate power of 2. 

 

Q9) The following message has been encrypted using a direct standard Cipher with an 
unknown key value. Use the first word of the encrypted message to try all the 
possible keys. Then decrypt the entire message and determine the correct key value 
used for encryption. 
DZXP XPDDLRPD NLY MP DZWGPO MJ NZXAWPETYR ESP AWLTY 
NZXAZYPYE 

 

Q10) The following message has been encrypted using a direct standard Cipher with an 
unknown key value. Use the table of frequency to determine which cipher characters 
occur frequently and infrequently. Decrypt the entire message and state the key 
value used to encrypt the message. 
BMBLG HMTLX TLRMH WXVKR IMTFX LLTZX PAXGR HNWHG HMDGH 
PPAXK XMAXP HKWLU XZBGT GWXGW HYMXG FHKXM AHKHN ZATGT 
ERLBL BLKXJ NBKXW MHWXV KRIML NVAFX LLTZX L 
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Q11) Decipher:  
NSCRG LEXCT OEFNE HNRTL HOAHT OEICY NOIOT TEEGK SGWAO IHIAA 
NRWEN OTKRT DDPE 
if you know that a columnar transposition were used with keyword k=COMPARE. 

 

Q12) Decipher the following cryptogram: 
GLZOXA 

Knowing that an Affine cipher with k2=4 was used and that the plaintext is a word of 
the English language. 

 

Q13) If you know that a Vigenere cipher were used to get the following encrypted 
message: 

TUAEIGTUEISBLNCCUA 
And the key was k=RUN. Try to get the plaintext. 

 
Q14) Encipher the message 

TO BE OR NOT TO BE 
Using the Playfair cipher with the key, k=software engineering. 

 
Q15) Use a second order homophonic cipher to encipher the message COROLLA using the 

dummy message CAPPRIS. [Hint: create a table of nXn size, where n is the number 
of the used letters] 

 

Q16) In a ciphertext we observe that there is a pattern appears several times, and the 
distance between them are 63, 21, and 56 what are the possibilities of the key 
length. 

 
Q17) If you know that the keyword mixed cipher was used to encipher a message, and you 

receive one of the cryptogram. Use the frequencies comparison to find the original 
message. 
YHVEVJLXVSST VI V HZIKSJ DR JCLI HZXZBJ YZNZSDFEZBJ LB 
JZXCBDSDAT EVBT DR JCZ XLFCZH ITIJZEI JCVJ PZHZ DBXZ 
XDBLILYZHZY IZXKHZ VHZ BDP WHZVMVWSZ. 

 
Q18) Using the Hill digraph cipher that sends plaintext block PQ to ciphertext CD with 

C=3P+10Q (mod 26) 
D=9P+7Q (mod 16) 

encipher the message BEWARE THE MESSENGER, then compute the inverse 
transformation and decipher again. 
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Q19) Decipher the ciphertext message RD SR QO VU QP CZ AN QW RD DS AK OB 
which was enciphered using the Hill digraph cipher which sends plaintext block PQ to 
ciphertext block CD via 

C=13P+4Q (mod 26) 
D=9P+Q (mod 26). 

Q20) A cryptanalyst has determined that the most common digraph appearing in 
ciphertext enciphered using a Hill digraph cipher is RH, followed closely by NI.  She 
assumes these correspond to the most common English digraphs, TH and HE, 
respectively.  If she is correct, given these values, what are the values of a,b,c, and 
d in the enciphering transformation 

C = aP + bQ (mod 26) 

D = cP + dQ (mod 26) 

 
Q21) Explain the difference between a substitution cipher and a transposition cipher. 
 
Q22) A message is enciphered with a transposition cipher.  What should we see when we 

do a frequency analysis of the message? 
 

 



 

Chapter Two 

Practical Security 
 

(2.1) Introduction: 
The discussion of chapter one arise a certain weakness of Monoalphabetic cipher, the 
encipherment of a letter only involves using a small portion of the letters of key, exactly 
the one letter which is substituted for it. Then we can break this cipher system by 
finding small portion of the message and try to decipher them and by using these small 
portions we can find the way to decipher the overall message. 
To make the system more secure, it seems desirable to use a considerable amount of keys 
to encipher each character of the message. And also it is probably helpful to ‘spread’ the 
statistical structure of the ciphertext by enciphering a number of message characters 
simultaneously. 

 

(2.2) Diffusion and Confusion: 
In order to accommodate the points of using a considerable amount of key and spread the 
statistical structure of ciphertext, and reduce the effectiveness of statistical attacks 
on ciphertext: Shannon suggests that the cryptographer uses two techniques which he 
calls Diffusion and Confusion. 
The idea of diffusion is to spread the statistics of the message space into a statistical 
structure, which involves long combinations of the letter in the ciphertext. 
To understand the idea of diffusion assume M=m1 m2…, then we pick an integer s and 
replace m by the sequence y1 y2… where  

26 mod  
1

0
∑
−

=
+=

s

i
inn my  

Where n=1, 2, 3,… By doing this we’ll get the message space with letter frequencies of 
the new message space Y will become more equal than in M. 
The effect of all this is that the cryptanalyst needs along time so that he can find a 
certain way to decipher the ciphertext. In practice this means that we are enciphering a 
number of message characters simultaneously and dependently. 
The disadvantage of this type of system is that, at the receiver, each part of the 
message depends on a number of ciphertext characters. Thus, if one single ciphertext is 
error transmitted, this may cause many errors in the received message. This diffusing 
effect of one error in transmission causing many in decipherment is usually called error 
propagation.  
The idea of confusion is to hide any relationship between the plaintext, ciphertext and 
the key. This implies that the message characters will encipher depending on virtually the 
entire key. This idea will force the cryptanalyst to find the whole key simultaneously and 
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will make him solve considerably more complex equation than when he was able to find the 
key piece by piece. 
The ideas of confusion and diffusion are the principles behind the design of most block 
ciphers. 
The summary of the above discussion is: 
� Confusion is produced using substitution; when a long block of plaintext is 

substituted for a different block of ciphertext, the statistical patterns of 
plaintext become hard to detect. 

� Diffusion dissipates the redundancy of the plaintext by spreading it out over the 
ciphertext; this can be produced using permutation, i.e. reordering the parts of a 
plaintext message. 

 

(2.3) Shannon’s five criteria: 
Shannon suggests five important criteria to evaluate the cipher systems, which are: 

1. The amount of secrecy offered. 
2. The size of the key. 
3. The simplicity of the enciphering and deciphering operations. 
4. The propagation of errors. 
5. Extension of the message. 

It is clear that any system has a higher security will be superior than any other system. 
If the system theoretically can be broken, it might, practically impossible to do so; 
because there might not be a certain way to analyze the code so that an intruder can’t 
take the original plaintext from the ciphertext.  
Some of cipher systems generate a key space i.e. it take all the possibilities of the keys 
that may solve the problem. A good cipher system has to have a simple encipher and 
decipher algorithms but the analysis of the key has to be a very complicated one; i.e. the 
time taken to encipher and decipher the message must be a polynomial time while the 
time taken by the cryptanalyst to break the message must be an exponential time. 
One of the most good things in cipher system is that the key must be simple and can be 
easily memorized. In many ciphering systems, the error might be propagate and damage 
or garbled the information, hence we have cut this propagation of errors. Finally the fifth 
criteria discuss that if the message being a very long, it might be broken, hence the 
cipher system has to be unbreakable in spite of the massage is long. 
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Table 1 
Selected percentiles of the (chi-square) distribution. A(v,2χ α )-entry of x in the table 

has the following meaning: if X is a random variable having a distribution with v 
degrees of freedom, then P(X>x)=

2χ
α . 
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(2.4)Concept of randomness: 
Golomb’s randomness postulates are presented here for historical reasons they were one 
of the first attempts to establish some necessary conditions for a periodic pseudo 
random sequence to look random. It is emphasized that these conditions are far from 
being sufficient for such sequences to be considered random. Unless otherwise stated, all 
sequences are binary sequences. 
 

Definition Let s = s0, s1, s2,… be an infinite sequence. The subsequence consisting of the 
first n terms of s is denoted by sn = s0, s1, …, sn. 
 

Definition The sequence s = s0, s1, s2,… is said to be N-periodic if si = si+N for all i . The 
sequence s is periodic if it is N-periodic for some positive integer N. The period of a 
periodic sequence s is the smallest positive integer N for which s is N-periodic. If s is a 
periodic sequence of period N, then the cycle of s is the subsequence s

0≥

N . 
 

Definition Let s be a sequence. A run of s is a subsequence of s consisting of consecutive 
0’s or consecutive 1’s which is neither preceded nor succeeded by the same symbol. A run 
of 0’s is called a gap, while a run of 1’s is called a block. 
 

Definition Let s = s0, s1, s2,… be a periodic sequence of period N. The autocorrelation 
function of s is the integer-valued function C(t) defined as 

( ) ( )∑
−

=
+ −≤≤−⋅−=

1

0
.10 for   ,12121)(

N

i
tii Ntss

N
tC  

The autocorrelation function C(t) measures the amount of similarity between the 
sequence s and a shift of s by t positions. If s is a random periodic sequence of period N, 
then )(tCN ⋅  can be expected to be quite small for all values of t, 0 < t <N. 
The above equation can be put in another simple form 

,)(
N

DAtC −
=     for  10 −≤≤ Nt  

where A is the number of the similar locations between the original sequence sN and the 
shifted one sN+t, while D is the number of the different locations between them. 
 
Example: Consider the following sequence: 

0101101011010110101101011 
compute the autocorrelation function. 
Solution: 
As we see N=5, sN=01011, so 

S0=01011 
S1=10110 
S2=01101 
S3=11010 
S4=10101 
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1) S = 0 1 0 1 1 
         S0=  0 1 0 1 1 

A=5, D=0, 1
5

05)0( =
−

=⇒ c  

2) S = 0 1 0 1 1 
S1= 1 0 1 1 0 

A=1, D=4, 
5
3

5
41)1( −=

−
=⇒ c  

3) S  = 0 1 0 1 1 
S2= 0 1 1 0 1 

A=3, D=2, 
5
1

5
23)2( =

−
=⇒ c  

4) S  = 0 1 0 1 1 
S3= 1 1 0 1 0 

A=3, D=2, 
5
1

5
23)3( =

−
=⇒ c  

5) S  = 0 1 0 1 1 
S4= 1 0 1 0 1 

A=1, D=4, 
5
3

5
41)4( −=

−
=⇒ c . 

 
Definition Let s be a periodic sequence of period N. Golomb’s randomness postulates are 
the following. 

R1: In the cycle sN of s, the number of 1’s differs from the number of 0’s by at 
most 1. In other word if N is an even number then the number of 1’s and 0’s are 
equal, while  if N is an odd number, then the number of 1’s either more by one or 
less by one than the number of 0’s. 

R2: In the cycle sN, at least half the runs have length 1, at least one-fourth have 
length 2, at least one-eighth have length 3, in general, at least 1/2i have length 
i. Moreover, for each of these lengths, there are (almost) equally many gaps and 
blocks. 

R3: The autocorrelation function C(t) is two-valued. That is for some integer K, 
 

( ) ( )∑
−

=
+

⎩
⎨
⎧

−≤≤
=

=−⋅−=⋅
1

0 .11 ,
0,t ,

1212)(
N

i
tii NtifK

ifN
sstCN  

 
Definition A binary sequence which satisfies Golomb’s randomness postulates is called a  
pseudo-noise sequence or a pn-sequence. 
 
Example (pn-sequence) Consider the periodic sequence s of period N = 15 with cycle 

s15 = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1. 
The following shows that the sequence s satisfies Golomb’s randomness postulates. 
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R1: The number of 0’s in s15 is 7, while the number of 1’s is 8. 
R2: s15 has 8 runs. There are 4 runs of length 1 (2 gaps and 2 blocks), 2 runs of 

length 2 (1 gap and 1 block), 1 run of length 3 (1 gap), and 1 run of length 4 (1 
block). 

R3: The autocorrelation function C(t) takes on two values: C(0)=1 and C(t) =
15
1

−  

for .141 ≤≤ t  
Hence, s is a pn-sequence. 

 
(2.5) Statistical tests for randomness: 
Let s = s0, s1, s2, …, sn-1 be a binary sequence of length n. This subsection presents four 
statistical tests that are commonly used for determining whether the binary sequence s 
possesses some specific characteristics that a truly random sequence would be likely to 
exhibit. It is emphasized again that the outcome of each test is not definite, but rather 
probabilistic. If a sequence passes all four tests, there is no guarantee that it was indeed 
produced by a random bit generator. 
In the following tests we will take the significant value α  to be equal 0.05, so the success 
degree will be (100-α )%=(100-5)%=95%. 
 
(i) Frequency test (monobit test) 
The purpose of this test is to determine whether the number of 0’s and 1’s in s are 
approximately the same, as would be expected for a random sequence. Let n0 , n1 denote 
the number of 0’s and 1’s in s, respectively. The statistic used is 

( )
n

nn
X

2
1

1
0 −

=  

which approximately follows a  distribution with 1 degree of freedom if n≥ 10. i.e. when 2χ
α =0.05, X1≤3.84. 
 
(ii) Serial test (two-bit test) 
The purpose of this test is to determine whether the number of occurrences of 00, 01, 
10, and 11 as subsequences of s are approximately the same, as would be expected for a 
random sequence. Let n0, n1 denote the number of 0’s and 1’s in s, respectively, and let n00, 
n01, n10, n11 denote the number of occurrences of 00, 01, 10, 11 in s, respectively. Note 
that n00+n01+n10+n11=(n-1) since the subsequences are allowed to overlap. The statistic used 
is 
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which approximately follows a  distribution with 2 degrees of freedom if n≥21. i.e. 
X

2χ

2≤5.99. 
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(iii) Poker test 

Let m be a positive integer such that m

m
n 25 ⋅≥⎥⎦
⎥

⎢⎣
⎢ , and let k = ⎥⎦

⎥
⎢⎣
⎢
m
n . Divide the sequence s 

into k non-overlapping parts each of length m, and let ni be the number of occurrences of 
the ith type of sequence of length m, 1≤ i≤2m . The poker test determines whether the 
sequences of length m each appear approximately the same number of times in s, as would 
be expected for a random sequence. The statistic used is  

kn
k

X
m

i
i

m
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

2

1

2
3

2  

which approximately follows a  distribution with 22χ m-1 degrees of freedom. Note that 
the poker test is a generalization of the frequency test: setting m = 1 in the poker test 
yields the frequency test. 
 
(iv) Runs test 
The purpose of the runs test is to determine whether the number of runs (of either 
zeros or ones) of various lengths in the sequence s is as expected for a random sequence. 
The expected number of gaps (or blocks) of length i in a random sequence of length n is 
ei=(n-i+3)/2i+2 .Let k be equal to the largest integer i for which ei≥5. Let Bi, Gi be the 
number of blocks and gaps, respectively, of length i in s for each i, 1≤ i k. ≤
The statistic used is 

( ) ( )∑∑
==

−
+

−
=

k

i i

ii
k

i i

i

e
eG

e
eB

X i

1

2

1

2

4  

which approximately follows a  distribution with 2k-2 degrees of freedom. 2χ
 
Example: (basic statistical tests) Consider the (non-random) sequence s of length n=160 
obtained by replicating the following sequence four times: 

11100 01100 01000 10100 11101 11100 10010 01001. 
Test the randomness of this sequence. 
 
Solution: 
The complete sequence is: 

11100 01100 01000 10100 11101 11100 10010 01001 
11100 01100 01000 10100 11101 11100 10010 01001 
11100 01100 01000 10100 11101 11100 10010 01001 
11100 01100 01000 10100 11101 11100 10010 01001 

 
(i) (frequency test) n0=84, n1=76, and the value of the statistic X1 is 0.4. 

( )
n

nn
X

2
1

1
0 −

=  

( ) .4.0
160

7684 2

1 =
−

=X  
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(ii) (serial test) n00=44, n01=40, n10=40, n11=35, and the value of the statistic X2 is 0.6252. 
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( ) ( ) 17684
160
235404044

159
4 222222 ++−+++=  

( ) ( ) 157767056
160
21225160016001936

159
4

++−+++=  

 

( ) ( ) 112832
160
26361

159
4

+−=  

.6252.014.1600252.160 =+−=  
 
 
 (iii) (poker test)  
 

m=1 ⎥⎦
⎥

⎢⎣
⎢

1
160 =160 > 5.21=10 

m=2 ⎥⎦
⎥

⎢⎣
⎢

2
160 =80 > 5.22=20 

m=3 ⎥⎦
⎥

⎢⎣
⎢

3
160 =53 > 5.23=40 

m=4 ⎥⎦
⎥

⎢⎣
⎢

4
160 =40 < 5.24=80 

 
 
 
 
 
 
 
 
 
Here m=3 and k=53. The blocks 000, 001, 010, 011, 100, 101, 110, 111 appear 5, 10, 6, 4, 12, 
3, 6,and 7 times, respectively, and the value of the statistic X3 is 9.6415. 
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( ) 537631246105
53
2 22222222

3

3 −+++++++=X  

( ) 6415.95349369144163610025
53
8

=−+++++++=  



Chapter Two Practical security
 

Cipher Systems  Saad al-mo’omen
 

37

(iv) (runs test)  
 

i ei=(n-i+3)/2i+2   

1 (160-1+3)/23=
8

162 =20.25 > 5 

2 (160-2+3)/24=
16
161 =10.0625 > 5 

3 (160-3+3)/25=
32
160 =5 = 5 

4 (160-4+3)/26=
64
159 =2.4843 < 5 

 
Here k=3. There are 25, 4, 5 blocks of lengths 1, 2, 3, respectively, and 8, 20, 12 gaps of 
lengths 1, 2, 3, respectively. The value of the statistic X4 is 31.7913. 
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=X  

.7913.314 =X  
 
For a significance level of α =0.05, the threshold values for X1, X2, X3, and X4 are 3.8415 
(for one degree of freedom), 5.9915 (for two degree of freedom), 14.0671 (for seven 
degree of freedom, since 2m-1=23-1=7), and 9.4877 (for four degree of freedom, since 
2k-2=2(3)-2=4), respectively (see Tables 1). Hence, the given sequence s passes the 
frequency, serial, and poker tests, but fails the runs test. 
 
Example: Consider the following periodic sequence 

0101011101100011111001101001000010101110110001111100110100100001010111…. 
The period of this sequence is 31. Take the four first cycles of this sequence to test if it 
is a random sequence. 
Solution: The first 124 bits of the sequence are 

0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 
0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 
0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 
0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 

(i) (frequency test) n0=60, n1=64, and the value of the statistic X1 is 0.1290. 
( ) 1290.0

124
6460 2

1 =
−

=X < 3.84, 

so the sequence pass this test. 
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(ii) (serial test) n00=27, n01=32, n10=32, n11=32, and the value of the statistic X2 is  
 

X2 ( ) ( ) 16460
124
232323227

123
4 222222 ++−+++=  

( ) ( ) 17696
124
23801

123
4

+−=  

4807.011290.1246097.123 =+−= < 5.99, 
so the sequence pass this test also. 
 
 (iii) (poker test)  
 

m=1 ⎥⎦
⎥

⎢⎣
⎢

1
124 =124 > 5.21=10 

m=2 ⎥⎦
⎥

⎢⎣
⎢

2
124 =62 > 5.22=20 

m=3 ⎥⎦
⎥

⎢⎣
⎢

3
124 =41 > 5.23=40 

m=4 ⎥⎦
⎥

⎢⎣
⎢

4
124 =31 < 5.24=80 

 
 
 
 
 
 
 
 
 
Here m=3 and k=41.  
 

010 101 110 110 001 111 100 110 100 100 
001 010 111 011 000 111 110 011 010 010 
000 101 011 101 100 011 111 001 101 001 
000 010 101 110 110 001 111 100 110 100 
100 0         

 
The blocks 000, 001, 010, 011, 100, 101, 110, 111 appear 3, 5, 5, 4, 7, 5, 7,and 5 times, 
respectively, and the value of the statistic X3 is 

 

( ) 4157574553
41
2 22222222

3

3 −+++++++=X  

( ) 5122.241254925491625259
41
8

=−+++++++=  

The degree of freedom here is 23-1=7, so =14.0671. And since 2.5122<14.0671, so the 
sequence pass this test also. 

2χ
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(iv) (runs test)  
 

i ei=(n-i+3)/2i+2   

1 (124-1+3)/23=
8

126 =15.75 > 5 

2 (124-2+3)/24=
16

125 =7.8125 > 5 

3 (124-3+3)/25=
32
124 =3.875 < 5 

 
Here k=2.  

i Bi Gi

1 16 17 

2 8 8 

 
There are 16, 8 blocks of lengths 1, 2, respectively, and 17, 8 gaps of lengths 1, 2, 
respectively. The value of the statistic X4 is 
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=X  

.11213.04 =X  

The degree of freedom here is 2(2)-2=4, so =5.99. And since 0.11213<5.99, so the 
sequence pass this test also. 

2χ
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Attempt all the following exercises  

 
 
 

Exercises 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Q1) Consider the sequence s of length n=125 obtained by replicating the following 

sequence five times: 
01011  01011  01011  01011  01011 

Test the randomness of this sequence. 
 

Q2) Consider the sequence s of length n=144 obtained by replicating the following 
sequence six times: 

110010  111011  010011  011111 
Test the randomness of this sequence. 
 

Q3) Consider the following sequence of length n=200: 
1010010100 0101100100 1101110010 1001001101 0101001101 
0100101100 0101101100 0110101010 1001101010 0100111001 
0011010110 1101100001 0011011110 1010010010 1101010100 
0100101000 1101101010 0100111001 0000100101 1011010011 

Test the randomness of this sequence. 
 



Chapter Three 

Stream Ciphers 
 
(3.1) Introduction 
Stream ciphers are an important class of encryption algorithms. They encrypt individual 
characters (usually binary digits) of a plaintext message one at a time, using an encryption 
transformation which varies with time. By contrast, block ciphers tend to simultaneously 
encrypt groups of characters of a plaintext message using a fixed encryption 
transformation. Stream ciphers are generally faster than block ciphers in hardware, and 
have less complex hardware circuitry. They are also more appropriate, and in some cases 
mandatory (e.g., in some telecommunications applications), when buffering is limited or 
when characters must be individually processed as they are received. Because they have 
limited or no error propagation, stream ciphers may also be advantageous in situations 
where transmission errors are highly probable. 
 
(3.2) One Time Pad 
Definition Unconditional Security 
A cryptosystem is unconditionally secure if it cannot be broken even with infinite 
computational  resources. 
Definition One-time Pad (OTP) 
A cryptosystem developed by Mauborgne based on Vernam's stream cipher consisting of: 
|M| = |C| = |K|, with mi; ci; zi . { }1,0∈

Encrypt   e→ ki (mi) =mi ⊕ zi . 
decrypt   d→ ki (ci) =ci ⊕ zi . 

 
Remarks: 

1. The truth table of the XOR operation ⊕  is: 
a b a⊕ b 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

2. Encryption and decryption are the same operation (XOR). Why? We show that 
decryption of ciphertext bit ci yields the corresponding plaintext bit. 

Decryption: ci  z⊕ i = (mi ⊕  zi) ⊕  zi = mi ⊕ (zi ⊕  zi)= mi. 
Note that zi ⊕  zi= 0 for zi = 0 and for zi = 1. 

 
Example: Encryption of the letter A by Alice. 
‘A’ is given in ASCII code as 6510 = 10000012. 
Let's assume that the first key stream bits are →  z1, …, z7 = 0101101 
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Encryption by Alice: plaintext mi   : 1000001 = ‘A’ (ASCII symbol) 
key stream zi:  0101101 
ciphertext ci :  1101100 = ‘l’ (ASCII symbol) 

 
Decryption by Bob: ciphertext ci  : 1101100 = ‘l’ (ASCII symbol) 

 key stream zi :  0101101 
 plaintext mi   : 1000001 = ‘A’ (ASCII symbol) 
 

Theorem:  The OTP is unconditionally secure if keys are only used once. 
 
(3.3) Synchronous stream ciphers 
Definition: A synchronous stream. Cipher is one in which the keystream is generated 
independently of the plaintext message and of the ciphertext. 
 

 
Figure 1: General model of a binary additive synchronous stream cipher. 

  
properties of synchronous stream ciphers: 

1. synchronization requirements. In a synchronous stream cipher, both the sender 
and receiver must be synchronized – using the same key and operating at the same 
position (state) within that key – to allow for proper decryption. If synchronization 
is lost due to ciphertext digits being inserted or deleted during transmission, then 
decryption fails and can only be restored through additional techniques for re-
synchronization. Techniques for re-synchronization include re-initialization, placing 
special markers at regular intervals in the ciphertext, or, if the plaintext contains 
enough redundancy, trying all possible keystream offsets. 

2. no error propagation. A ciphertext digit that is modified (but not deleted) during 
transmission does not affect the decryption of other ciphertext digits. 

3. active attacks. As a consequence of property (1), the insertion, deletion, or replay 
of ciphertext digits by an active adversary causes immediate loss of 
synchronization, and hence might possibly be detected by the decryptor. As a 
consequence of property (2), an active adversary might possibly be able to make 
changes to selected ciphertext digits, and know exactly what affect these changes 
have on the plaintext.  

Most of the stream ciphers that have been proposed to date in the literature are 
additive stream ciphers, which are defined below. 
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(3.4) Self-synchronizing stream ciphers 
Definition: A self-synchronizing or asynchronous stream cipher is one in which the 
keystream is generated as a function of the key and a fixed number of previous 
ciphertext digits. 

 
Figure 2: General model of a self-synchronizing stream cipher. 

 
properties of self-synchronizing stream ciphers 

1. self-synchronization. Self-synchronization is possible if ciphertext digits are 
deleted or inserted, because the decryption mapping depends only on a fixed 
number of preceding ciphertext characters. Such ciphers are capable of re-
establishing proper decryption automatically after loss of synchronization, with 
only a fixed number of plaintext characters unrecoverable. 

2. limited error propagation. Suppose that the state of a self-synchronization 
stream cipher depends on t previous ciphertext digits. If a single ciphertext digit 
is modified (or even deleted or inserted) during transmission, then decryption of up 
to t subsequent ciphertext digits may be incorrect, after which correct decryption 
resumes. 

3. active attacks. Property (2) implies that any modification of ciphertext digits by 
an active adversary causes several other ciphertext digits to be decrypted 
incorrectly, thereby improving (compared to synchronous stream ciphers) the 
likelihood of being detected by the decryptor. As a consequence of property (1), it 
is more difficult (than for synchronous stream ciphers) to detect insertion, 
deletion, or replay of ciphertext digits by an active adversary.  

4. diffusion of plaintext statistics. Since each plaintext digit influences the entire 
following ciphertext, the statistical properties of the plaintext are dispersed 
through the ciphertext. Hence, self-synchronizing stream ciphers may be more 
resistant than synchronous stream ciphers against attacks based on plaintext 
redundancy. 

 
(3.5) Feedback shift registers 
Linear feedback shift registers (LFSRs) are used in many of the keystream generators 
that have been proposed in the literature. There are several reasons for this: 

1.  LFSRs are well-suited to hardware implementation. 
2. They can produce sequences of large period. 
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3. They can produce sequences with good statistical properties. 
4. Because of their structure, they can be readily analyzed using algebraic 

techniques. 
 
Definition: A linear feedback shift register (LFSR)of length L consists of L stages (or 
delay elements) numbered 0, 1, …, L-1, each capable of storing one bit and having one input 
and one output; and a clock which controls the movement of data. During each unit of time 
the following operations are performed: 

(i) The content of stage 0 is output and forms part of the output sequence. 
(ii) The content of stage i is moved to stage i-1 for each i, 11 −≤≤ Li . 
(iii) The new content of stage L-1 is the feedback bit sj which is calculated by 

adding together modulo 2 the previous contents of a fixed subset of stages 
0,1, … ,L-1. 

 
Figure 3 depicts an LFSR. Referring to the figure, each ci is either 0 or 1; the closed 
semi-circles are AND gates; and the feedback bit sj is the XOR of the contents of those 
stages i, 11 −≤≤ Li , for which cL-i = 1. 

 
Figure 3: A linear feedback shift register (LFSR) of length L. 

 
Definition: The LFSR of Figure 3 is denoted )(, DCL , where C(D) = 1+c1D+c2D2+…+cLDL 

∈Z2[D] is the connection polynomial. The LFSR is said to be non-singular if the degree of 
C(D) is L (that is, cL=1). If the initial content of stage i is si∈{0,1} for each i, 11 −≤≤ Li , 
then [sL-1, … , s1, s0] is called the initial state of the LFSR. 
 
Fact I: The initial state of the LFSR in Figure 3 is [sL-1, … , s1, s0], then the output 
sequence s = s0, s1, … is uniquely determined by the following recursion: 

sj = (c1 sj-1 + c2 sj-2 + … + cL sj-L) mod2 for j≥L. 
 
Example: (output sequence of an LFSR) Consider the LFSR 41,4 DD ++  depicted in 
Figure 4. If the initial state of the LFSR is [0, 0, 0, 0], the output sequence is the zero 
sequence. The following tables show the contents of the stages D3 , D2 , D1 , D0 at the end 
of each unit of time t when the initial state is [0, 1, 1, 0]. 
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t D3 D2 D1 D0  t D3 D2 D1 D0 
0 0 1 1 0  8 1 1 1 0 
1 0 0 1 1  9 1 1 1 1 
2 1 0 0 1  10 0 1 1 1 
3 0 1 0 0  11 1 0 1 1 
4 0 0 1 0  12 0 1 0 1 
5 0 0 0 1  13 1 0 1 0 
6 1 0 0 0  14 1 1 0 1 
7 1 1 0 0  15 0 1 1 0 

 
The output sequence is s = 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, … , and is periodic with 
period 15. 

 
Figure 4: The LFSR 41,4 DD ++  

 
Fact I: Every output sequence (i.e., for all possible initial states) of an LFSR )(, DCL  is 
periodic if and only if the connection polynomial C(D) has degree L. 
If an LFSR )(, DCL is singular (i.e., C(D) has degree less than L), then not all output 
sequences are periodic. However, the output sequences are ultimately periodic; that is, 
the sequences obtained by ignoring a certain finite number of terms at the beginning are 
periodic. For the remainder of this chapter, it will be assumed that all LFSRs are non-
singular. Fact II determines the periods of the output sequences of some special types of 
non-singular LFSRs. 
 
Fact II: (periods of LFSR output sequences) Let C(D) ∈Z2[D] be a connection polynomial 
of degree L. 
(i) If C(D) is irreducible over Z2, then each of the 2L-1 non-zero initial states of the non-
singular LFSR )(, DCL  produces an output sequence with period equal to the least 
positive integer N such that C(D) divides 1+DN in Z2[D]. (Note: it is always the case that 
this N is a divisor of 2L-1.) 
(ii) If C(D) is a primitive polynomial, then each of the 2L-1 non-zero initial states of the 
non-singular LFSR )(, DCL  produces an output sequence with maximum possible period 
2L-1. 
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Definition: If C(D) ∈Z2[D] is a primitive polynomial of degree L, then )(, DCL  is called a 
maximum-length LFSR. The output of a maximum-length LFSR with non-zero initial state 
is called an m-sequence. 
 
A binary message stream M=m1 m2… is enciphered by computing: 

ci=mi⊕ ki

As the bits of the key stream are generated as shown in the following figure: 
 

I0 I0 

ki

mi

LFSR 

ci

ki
LFSR  

 
 

ci mi 
 

Encipher Decipher  
 

Figure 5: Encryption With LFSR 
 

(3.6) Stream cipher algorithms: 
In this part, we’ll discuss some of stream cipher algorithms. We’ll explain those 
algorithms in details so that we can recognize their registers and also the type of 
connections or functions of connections. 
(3.6.1) Exclusive-OR algorithm: 
This algorithm consists of two linear feedback shift registers; each one has a linear 
feedback function, which will give the maximum period. 
The length of these registers are different but has the property that the greatest 
common divisor between their length=1, i.e. let M and N equal the length of the shift 
registers, hence the gcd(M,N)=1. 
The following figure will clarify this algorithm: 
 

M stages LFSR 

N stages LFSR 

ai 

bi 

XOR zi 

 
 
 
 
 
 
 

 
 

zi=ai ⊕ bi

Figure 6: XOR system 
 
The output of the algorithm is: 

Z=A⊕B= BABA + . 
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The input parameters for this system are as follows: 
1- The no. of shift registers. 
2- The length of shift registers. 
3- The linear feedback function and the length of the series to be generated. 
4- For each shift register: 

a. The linear feedback function applied as usual. 
b. The final result of the series for both shift registers applied to the XOR 

operation. 
The above points repeated many times according to the length of our series to be 
enciphered. 
 
(3.6.2) Hadamard algorithm: 
This algorithm is look like the XOR algorithm but the only difference between them is 
that the combining function will be changed to AND. Figure 7 will explain the algorithm: 
 

M stages LFSR 

N stages LFSR 

ai 

bi 

AND zi 

 
 
 
 
 
 
 

 
zi=ai bi

Figure 7: Hadamard system 
 
When the gcd(M,N)=1, the period length of the final sequence is (2M-1)(2N-1), which is the 
maximum period. 
 
Note: we can use the OR operation instead of AND, and the equation will be 

zi = ai + bi + ai bi. 
Example: We have two linear feedback shift registers with 2 and 3 stages respectively, 
and the corresponding connection polynomials are C1(D)=1+D+D2 and C2(D)=1+D2+D3, with 
initial states [1,1] and [1,1,1] respectively. Apply the Hadamard algorithm to find the 
resulting sequence. 
 
C1(D)=1+D+D2 ⇒  s0+s1. 

s1 so
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C2(D)=1+D2+D3 ⇒  s0+s1. 

s1 sos2

 
 
 
 
 
 

 LFSR 1 LFSR 2 
T S1 S2 ai S2 S1 S0 bi

0 1 1  1 1 1  
1 0 1 1 0 1 1 1 
2 1 0 1 0 0 1 1 
3 1 1 0 1 0 0 1 
4    0 1 0 0 
5    1 0 1 0 
6    1 1 0 1 
7    

 

1 1 1 0 
Max per. 22-1=3  23-1=7 
Output 110110110110…  11100101110010… 

 
Since gcd(3,7)=1, hence the period of the resulting sequence =3X7=21. 
A= 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 
B= 1 1 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 
Z= 1 1 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 
 
Note: approximately, three to four from the results are zeros, because of the AND 
operation. So, the result of the algorithm does not satisfy the first randomness 
postulate. 
(3.6.3) J-K flip-flop algorithm: 
In this algorithm, the combining function will be replaced by a J-K flip-flop; hence the 
final result will be given by the following equation: 

zi = (ai + bi + 1) zi-1 + ai

 

M stages LFSR 

N stages LFSR 

ai 

bi 

J-K zi 

 
 
 
 
 
 
 

Figure 8: J-K flip-flop system 
zi = (ai + bi + 1) zi-1 + ai
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The truth table for J-K flip flop is: 
 

J K 1+iz  
0 0 iz  
0 1 0 
1 0 1 
1 1 iz  

 
(3.6.4) Geffe’s algorithm: 
The system here consists of three linear feedback shift registers connected as shown in 
figure 9. The length of the shift registers are M, N, and L, where the gcd(M,N,L)=1. The 
equation that will use here is: 

zi = ai bi + bi ci + ci 

 
The keystream generated has period (2M-1)(2N-1)(2L-1). 
 

M stages LFSR 

N stages LFSR 

ai 

AND 

zi 

bi 

L stages LFSR 

AND 

ci 

XOR 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: Geffe’s system 

 
(3.6.5) Police algorithm: 
This system consists of three linear feedback shift registers of lengths M, N, and L, 
where gcd(M,N,L)=1. The second shift register connected to a police that control the 
output of the other two shift registers, see figure 10. If bi=0 then zi=ai, and if bi=1 then 
zi=ci. 
 
The equation that describe this systems is: 

zi=ai (bi+1) + ci bi
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M stages LFSR 

N stages LFSR 
zi 

L stages LFSR 

bi 

ci 

0 
1 

ai  
 
 
 
 
 
 

Figure 10: Police system 
(3.6.5) Pless’s algorithm: 
This system consists of eight linear feedback shift registers of deferent lengths. These 
shift registers are put in four pairs, the gcd of each pair is equal to one. There are four 
J-K flip-flops and a recycling clock. Each time the recycling clock will choose one bit from 
the four arrival bits, see figure 11. 
 
 
 
 
 
 
 
 
 
 
 
  

L1 stages LFSR 

L2 stages LFSR 

J-K 

 

L5 stages LFSR 

L6 stages LFSR 

J-K 

 

 

L7 stages LFSR 

L8 stages LFSR 

J-K 

 

L3 stages LFSR 

L4 stages LFSR 

 
 
 
 
 
 
Selector 

3 
 

2 
 

1 
 

0 

 

 

J-K 

 

zi 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

47Figure 11: Pless’s system 
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Attempt all the following exercises  

 
 
 

Exercises 
 

 
 
 
Q1) You have two linear feedback shift registers with 3 and 5 stages respectively, and 

the corresponding connection polynomials are C1(D)=1+D+D3 and C2(D)=1+D3+D5, with 
initial states [1,0,1] and [1,0,0,1] respectively. Apply the J-K flip-flop algorithm to 
find the resulting sequence. 

 
 
Q2) You have three linear feedback shift registers with 4, 5 and 3 stages respectively, 

and the corresponding connection polynomials are C1(D)=1+D2+D4 , C2(D)=1+D+D5, and 
C3(D)=1+D2+D3, with initial states [1,1,1,1] , [1,0,1,0,1], and [1,1,0] respectively. Apply 
the Geffe’s algorithm to find the resulting sequence. 

 
 
Q3) For (Q2), apply the police algorithm to find the resulting sequence. 
 
 
Q5) Prove that zi = (ai + bi + 1) zi-1 + ai , represent the result of the J-K flip-flop. 
 
 
Q6) Prove that zi=ai (bi+1) + ci bi  , represent the result of the Police algorithm. 
 
 
Q7) Prove that zi = ai bi + bi ci + ci, represent the result of the Geffe’s algorithm. 
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Q4) In Pless’s algorithm, there are 4 shift registers pairs with the following output: 
P1 = 0 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 0 … 
P2 = 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 1 1 … 
P3 = 0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 … 
P4 = 1 0 1 0 1 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 0 … 
If the initial of the recycling clock is 2, what are the first 10 bits of the resulting 
sequence? 

 
 
 

 
 



Chapter FOUR 

BLOCK Ciphers 
 
(4.1) Introduction 
A block cipher is a function which maps n-bit plaintext blocks to n-bit ciphertext blocks; 
n is called the block length. It may be viewed as a simple substitution cipher with large 
character size. The function is parameterized by a k-bit key , taking values from a subset 

 (the key space) of the set of all k-bit vectors VΚ k. It is generally assumed that the key 
is chosen at random. 
 
Definition: An n-bit block cipher is a function E: Vn X Κ  V→ n, such that for each key 
k∈ Κ , E(P;k) is an invertible mapping (the encryption function for k) from Vn to Vn, 
written Ek(P). The inverse mapping is the decryption function, denoted Dk(C). C=Ek(P) 
denotes that ciphertext C results from encrypting plaintext P under K. 
 
(4.2) DES 
The Data Encryption Standard (DES), known as the Data Encryption Algorithm (DEA) by 
ANSI (American National Standards Institute) and the DEA-1 by the ISO (International 
Standards Organization), has been a worldwide standard for over 20 years. 
The algorithm was introduces by IBM team cryptographers on 15, March 1973, to meet 
the following criteria: 

• The algorithm must provide a high level of security. 
• The algorithm must be completely specified and easy to understand. 
• The security of the algorithm must reside completely on the key; the security 

should not depend on the secrecy of the algorithm,  
• The algorithm must be available to all users. 
• The algorithm must be economically implementable in electronic devices. 

Although it was presented by IBM in 1974 it was not adopted as a federal standard until 
23, November 1976. This delay was caused by the time given to the public and the NSA 
(National security Agency) to check the algorithm and make sure it has no trapdoors or 
possible weaknesses. 
The standard was re-assessed every five years ever since. It was until 1998 that it was 
doubted- only doubted- that the algorithm was likely to be broken soon. So a need for 
another, stronger algorithm appeared. 
  
(4.2.1) The algorithm 
DES is very much a traditional cipher in the sense that it employs the traditional 
cryptographic methods of transposition and substitution, but it is designed to interrelate 
them in such a way so to produce a ciphertext of such complexity that a brute-force key 
search is, at least in theory, the only- or at least the quickest- way to attack it 
successfully. A 56-bit key gives a search space of 256=7.2*1016. 
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(4.2.1.1) The encryption process 
The encryption process consists of two parts, one dealing with the text, and another 
dealing with the key. 
Part One: Processing the key 
To begin with, 64 key bits are fed to Permuted-Choice-1 (PC-1) where the eight parity 
bits (8, 16, 24,…, 64) are discarded to produce an initial 56-bit key K as shown in Figure 1. 
PC-1 is a single permutation but it is effectively divided into two 28-bit sub-blocks. The 
first 28 bits of K are usually designated C0 and the last 28 bits D0. The two 28-bit sub-
blocks are then shifted one place to the left so that e.g. the bit in the first position of C0 
moves to the last position of C0, the bit in the second position of C0 moves into the first 
position of C0 and so on. The left shifting of C0 and D0 produce a re-ordering of each and 
the results are designated C1 and D1 respectively. 
 

C0 D0

57 49 41 33 25 17 9 63 55 47 39 31 23 15 

1 58 50 42 34 26 18 7 62 54 46 38 30 22 

10 2 59 51 43 35 27 14 6 61 53 45 37 29 

19 11 3 60 52 44 36 

 

21 13 5 28 20 12 4 

 
Figure 1: Permuted-Choice-1 (PC1). 

 
The 56 bits of C1 and D1, taken as a single block, are then sent to second permutation,  
Permuted-Choice-2 (PC-2). This is shown in Figure 2. 
 

14 17 11 24 1 5 

3 28 15 6 21 10 

23 19 12 4 26 8 

16 7 27 20 13 2 

41 52 31 37 47 55 

30 40 51 45 33 48 

44 49 39 56 34 53 

46 42 50 36 29 32 
 

Figure 2: Permuted-Choice-2 (PC2). 
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The 48 bits output from PC-2 is the first iteration K1 of the key. K1 then enters the main 
algorithm. 
On the second round, C1 and D1 are shifted one place to the left to produce C2 and D2. 
The 56-bit block C2D2 enters PC-2 to produce the second 48-bit iteration of the key K2 
and so on for each iteration of the key. A block diagram of the key generation process is 
shown in Figure 3. 
 

D0 (28 bits) C0 (28 bits) 

Left Shift 1 Left Shift 1 

D1 (28 bits) C1 (28 bits) 

PC-2 

(48 bits) 
Left Shift 2 Left Shift 2

 

D2 (28 bits) C2 (28 bits) 

PC-2 

(48 bits) 

Left Shift 16
 

Left Shift 16
 

D16 (28 bits) C16 (28 bits) 

(48 bits) 

K16PC-2 

K2

K1

PC-1 

64 key bits 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: The DES key generation process. 
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For the full 16 rounds of DES, the schedule of left shifts is: 
 
Key iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
Left Shift 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 
 

Algorithm 4.1: DES key schedule 
INPUT: 64-bit key K = k1 … k64 (including 8 odd-parity bits). 
OUTPUT: sixteen 48-bit keys Ki, 1  i ≤ ≤  16. 

1. Define vi, 1  i  16 as follows: v≤ ≤ i = 1 for i ∈{ 1, 2, 9, 16}; vi = 2 otherwise. (These 
are left-shift values for 28-bit circular rotations below). 

2. T PC(K); represent T as 28-bit halves (C← 0, D0). (Use PC1 Table to select bits from 
K: C0 = k57 k49 … k36 , D0 = k63 k55 … k4). 

3. For i from 1 to 16, compute Ki as follows:  Ci ←  (Ci-1 ↵  vi), Di  (D← i-1 ↵  vi), 
Ki ←PC2(Ci, Di). (Use PC2 Table to select 48 bits from the concatenation b1 b2 … b56 
of Ci and Di: Ki = b14 b17 … b32 . ‘ ↵ ’ denotes left circular shift.) 

 
Part Two: Processing the text 
DES takes a 64-bit block of permuted ASCII plaintext, breaks it into two parts and 
processes the two 32-bit halves for 16 iterations (rounds) of a complex product algorithm 
to produce 64 bits of ciphertext. Full encryption thus lies in repeatedly enciphering each 
64-bit ciphertext block until the entire message has been converted into ciphertext. 
To begin with, the 64 bits of plaintext are subjected to the Initial Permutation (IP) and 
the output enters the main algorithm. The IP is implemented as shown in Figure 4. 

IP 
58 50 42 34 26 18 10 2 
60 52 44 36 28 20 12 4 
62 54 46 38 30 22 14 6 
64 56 48 40 32 24 16 8 
57 49 41 33 25 17 9 1 
59 51 43 35 27 19 11 3 
61 53 45 37 29 21 13 5 
63 55 47 39 31 23 15 7 

 

IP-1

40 8 48 16 56 24 64 32 
39 7 47 15 55 23 63 31 
38 6 46 14 54 22 62 30 
37 5 45 13 53 21 61 29 
36 4 44 12 52 20 60 28 
35 3 43 11 51 19 59 27 
34 2 42 10 50 18 58 26 
33 1 41 9 49 17 57 25 

 
Figure 4: DES initial permutation and inverse (IP and IP-1). 

 
The permutation tables are read from left to right in descending rows.   The permuted 
text is called the initial text or T0 and is split into two equal parts to form a 32-bit left-
hand half (L0) and a 32-bit right-hand half (R0). In the IP table shown above, the 
plaintext bytes are sorted into columns so that the odd numbered bits are in the lower 
half, which is R0, and the even numbered bits are in the upper half, which is L0. 
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The 32 bits of R0 now enter a four-stage function. The first step of the function is the 
E-bit selection table shown in Figure 5. 

E 
32 1 2 3 4 5 
4 5 6 7 8 9 
8 9 10 11 12 13 
12 13 14 15 16 17 
16 17 18 19 20 21 
20 21 22 23 24 25 
24 25 26 27 28 29 
28 29 30 31 32 1  

P 
16 7 20 21 
29 12 28 17 
1 15 23 26 
5 18 31 10 
2 8 24 14 

32 27 3 9 
19 13 30 6 
22 11 4 25  

Figure 5: DES per-round functions: expansion E and permutation P. 
 
At this step, R0 is expanded from 32 bits to 48 bits of R0. Note the duplication of 16 bit 
positions in the E-table. It is this, which gives the expansion of the 32-bit R0 into a new 
48-bit block. The 48 bits of R0 are now XORed with the 48 bits of the first iteration of 
the key k1. This XORing happens in a bit-by-bit form. The resulting block of 48 bits is now 
broken up into eight, six-bit sub blocks. Each sub-block moves into its assigned selection 
function S1, S2, …, S8 respectively. The output is eight, four-bit sub blocks in the range 
from 0000 to 1111 which then combine to yield a 32-bit block (see Figure 6). 

 
Figure 6: DES inner function f. 
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As they are non-linear, the selection functions (sometimes called the S-Boxes) lie at the 
core of DES security and they are set out in Figure 7. 
 

 
 

Figure 7: The S-Boxes of DES. 
 

If for example the first six-bit sub-block is 001011, then the first and the sixth bits 
determine the row in S1 while the second to the fifth bits determine the column in S1. 
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The number (in binary) at the intersection of the designated row and column is the 
output. In our example, the first and sixth bits are 0 and 1, which is decimal 1, while the 
second to fifth bits are 0101 equal 5. Thus, the substitution value is found in the 
intersection of row 1 and column 5 of S1 and 0010 (2) is the assigned replacement for 
001011. Were 001011 input to S5, however, the output would be 0111 (7). 
 
Having left the selection boxes, the new 32-bit block of R0 is now transposed by the 
permutation P (Figure 5), to give the new 32-bit block of R0. This is the last stage of the 
four-step function on R0. This four-step function is thus a highly complex product sub-
algorithm. To sum up; the 32-bit R0 is expanded by the E-table to 48 bits and the result 
is XORed with a 48-bit iteration of the 56-bit key. The 48-bit outcome is broken up into 
eight sub-blocks and each is substituted in selection boxes. The resulting eight, four-bit, 
sub-blocks are recombined to give a 32-bit block that is fed into the permutation P. 
 
Up to now, the 32-bit left-side block L0 has not played any part in the encryption 
procedure. This is remedied by moving L0 over to the right where it is XORed with the 
32-bit result of permutation P. The outcome is the new 32-bit right-side block. 
The original R0 moves leftwards to become L1. This completes the first DES iteration 
with a 64-bit text T1 consisting of a 32-bit left-hand block L1 and a 32-bit right-hand 
block R1 such that T1=L1R1. 
 
The 32-bit block R1 now enters the four-step function for the second round of 
encryption. 
Each round is functionally equivalent; taking 32-bit input Li-1 and Ri-1 from the previous 
round and producing 32-bit outputs Li and Ri for 1≤  i ≤ 16, as follows: 
 

Li = Ri-1;        (4.1) 
Ri = Li-1 f(R⊕ i-1, Ki), where f(Ri-1, Ki)= P(S(E(Ri-1) K⊕ i)) (4.2) 

 
In the last iteration, however, the left- and right-hand halves do not exchange places. 
They are combined and sent into the inverse IP-1 of the initial permutation IP. 
 
The output is the final ciphertext and the process encrypts eight bytes of the message. 
The next eight bytes of plaintext then enter into the algorithm for their 16-round 
encryption and the process continues until the entire message is has been enciphered. 
Figure 8 shows the main step of the DES algorithm. 
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Figure 8: DES computation path. 
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Algorithm 4.2: Data Encryption Standard (DES) 
INPUT: plaintext m1 … m64 ; 64-bit key K = k1 … k64 (includes 8 parity bits). 
OUTPUT: 64-bit ciphertext block C = c1 … c64. 

1. (key schedule) Compute sixteen 48-bit round keys Ki from K using Algorithm 4.1. 
2. (L0, R0)  IP(m← 1 m2 … m64). (Use IP Table in Figure 4  to permute bits; split the 

result into left and right 32-bit halves L0 = m58 m50 … m8 , R0 = m57 m49 … m7). 
3. (16 rounds) for i from 1 to 16, compute Li and Ri using Equations (4.1) and (4.2) 

above, computing f(Ri-1, Ki) = P(S(E(Ri-1)⊕ Ki)) as follows: 
a. Expand Ri-1 = r1 r2 … r32 from 32 to 48 bits using E per Table in Figure 5: 

T E(R← i-1). (Thus T = r32 r1 r2 … r32 r1). 

b. T’ T K← ⊕ i. Represent T’ as eight 6-bit character strings: (B1 , … , B8)=T’. 
c. T’’  (S← 1(B1), S2(B2), … , S8(B8)). (Here Si(Bi) maps Bi = b1 b2 … b6 to the 4-bit 

entry in row r and column c of Si in Figure 7 , where r = 2• b1 +b6, and 
b2b3b4b5 is the radix-2 representation of 0 ≤  c ≤  15. Thus S1(011011) yields 
r = 1, c = 13, and output 5, i.e., binary 0101). 

d. T’’’  P(T’’). (Use P per Table in Figure 5 to permute the 32 bits of T’’= t← 1 
t2 … t32, yielding t16 t7 … t25). 

4. b1 b2 … b64 (R16,  L16). (Exchange final blocks L16, R16). 
5. C ←  IP-1 (b1 b2 … b64). (Transpose using IP-1 from Table in Figure 4; C = b40 b8 … 

b25). 
 
(4.2.1.2) The decryption process 
The substitution and transposition of the Des seem like numbers chosen at random; there 
is no apparent pattern to the table describing the various changes. However, the change, 
which were chosen with extreme care, produce a surprising but intended result. The same 
DES algorithm is used both for encryption and decryption. 
This result is true because cycle (i) drives from cycle (i-1) in the following manner: 

Li = Ri-1, 
Ri = Li-1 ⊕ f(Ri-1,Ki) 

Where  is the exclusive-or operation, and f is the function computed in an expand shift 
substitute permute cycle. These two equations show that the result of each cycle 
depends only on the previous cycle. 

⊕

By rewriting these equations in terms of Ri-1 and Li-1, we get 
Ri-1 = Li, 

and 
Li-1 = Ri ⊕ f(Ri-1,Ki) = Ri ⊕ f(Li,Ki). 
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The last two equations show that these same values could be obtained from the results of 
later cycles. It is this property that makes the DES a reversible procedure; we can 
encrypt a string and also decrypt the result to derive the plaintext again. 
With the DES it is possible to go forward and encrypt or to go backwards and decrypt 
using the same function f. the only change is that the keys must be taken in reverse 
order (K16, K15,… ,K1) for decryption. That one algorithm can be used either to encrypt or 
decrypt is very convenient for a hardware or software implementation of the DES. 
 
 
(4.3) Practical example 
To get a slightly better idea of what goes on, it is easy to take 64 bits of plaintext 
through ‘one round’ of a DES. 
 
Let the plaintext be ( Caligula ) and the key ( Claudius ), each of them made up of 
eight letters and will thereby encrypt in a single block. 
 
The ASCII character of ( Claudius ), may be used to generate the one-round, 47-bit 
key K1. Thus, with a ‘parity’ bit inserted into the rightmost position, we have: 
 
C= 67  =10000110 l=108=11011001 a=97 =11000010 u=117=11101010 
d=100 =11001000 i=105=11010011 u=117=11101010 s=115= 11100110 
 
The 64 bits are fed into the 56-element permutation PC-1,i.e. 
 

Permuted-choice PC-1 
1 1 1 1 1 1 1  1 1 1 0 1 1 0 
1 1 1 1 1 1 1  1 1 0 0 0 0 0 
1 0 1 1 0 0 1  0 1 0 1 0 1 1 
0 0 0 0 0 1 0  0 1 0 0 0 1 0 

C0  D0

 
 
The parity bits are ‘lost’ leaving two 28-bit subsets C0 and D0 which are then shifted one 
place to the left. The output is: 

 
 

C1 = 1111111111111101100100000101 
D1 = 1101101100000010101101000101 

 
The 56-bit string C1D1, it is now sent to the permutation PC-2.This gives 
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1 1 1 0 1 1 
1 1 0 1 0 1 
0 0 1 1 1 1 
1 1 0 1 1 1 
0 0 0 0 1 0 
1 0 0 1 1 1 
0 0 0 1 0 0 

Pe
rm

ut
ed

-c
ho

ic
e 

PC
-2

 
0 0 1 1 1 1 

K1

 
and, reading off the rows in descending order, the output is the 48-bit key 

K1=111011110101001111110111000010100111000100001111 
which now moves into the main algorithm. 
 
Now we begin with the plaintext ( Caligula ), the ASCII codes 
 
C=67 =01000011 A=97 =01100001 l=108=01101100 i=105=01101001 
g=103=01100111 U=117=01110101 l=108=01101100 a=97 =01100001 
 
for the eight characters of  ( Caligula ) are (with zero in the leftmost position and taken 
as a bit string) sent to the initial permutation IP.  
 
 

1 1 1 1 1 1 1 1 
0 0 1 0 0 0 0 0 
0 1 1 1 0 1 0 0 
1 0 1 1 1 0 1 1 

L0

0 0 0 0 0 0 0 0 
1 1 1 1 1 1 1 0 
0 1 0 0 1 1 0 0 

In
it

ia
l P

er
m

ut
at

io
n 

IP
 

0 0 0 1 0 0 0 1 

R0

 
Reading off the rows from top to bottom gives the 64-bit initial text T0 which, in turn, is 
broken up into the two 32-bit blocks: 

 
L0=11111111001000000111010010111011 
R0=00000000111111100100110000010001 

 
R0 now proceeds into the 4-stage function f where it is first read into the E-table and 
expanded to the 48-bit block 1R0. 
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1 0 0 0 0 0 
0 0 0 0 0 1 
0 1 1 1 1 1 
1 1 1 1 0 0 
0 0 1 0 0 1 
0 1 1 0 0 0 
0 0 0 0 1 0 E-

ta
bl

e 
ex

pa
ns

io
n 

1 0 0 0 1 0 

1R0

 
and 1R0=100000000001011111111100001001011000000010100010. 
Having left its E-table expansion, the 48-bit block 1R0 meets and is XORed with the 48-
bit key K1 to yield 2R0=1R0 ⊕ K1, i.e. 
 

1R0= 100000000001011111111100001001011000000010100010 
K1  = 111011110101001111110111000010100111000100001111 
2R0= 011011110100010000001011001011111111000110101101 

 
The 48-bit block 2R0 is now broken up into the eight, 6-bit sub-blocks r1 to r8. Each sub-
block enters its appropriate substitution box S1 to S8 for the non-linear replacement: 
 

Selection box 
 1 2 3 4 5 6 7 8 

Input 011011 110100 010000 001011 001011 111111 000110 101101

Output 0101 1100 0001 1111 0111 1101 1110 1000 

 
In S1, the first and sixth bits of r1 (0 and 1) determine the row while the second, third, 
fourth and fifth bits determine the column. As binary 01 is decimal 1 and binary 1101 is 
decimal 13, the substitution value for r1 is found in the intersection of the [1] row and the 
[13] column in S1. The designated number is decimal 5 or binary 101 and, with a 0 added in 
the leftmost position, the 4-bit output block is 1ρ =0010. When the substitution are done 
for the seven remaining sub-blocks, the outputs is the eight 4-bit blocks 1ρ , 2ρ ,… , 8ρ  
which combine to give: 

3R0= 010111000001111101111101 11101000 
3R0 now enters into the permutation P to give 

1 0 1 1 
1 1 0 0 
0 1 0 1 
1 1 0 0 
1 0 1 1 
0 1 0 0 
1 1 0 1 Pe

rm
ut

at
io

n 
P 

1 0 1 1 

4R0
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and the output: 
 

4R0 = f(R0,K1) = 10111100010111001011010011011011. 
 
This completes the 4-stage function on R0. 
 
4R0 is now XORed with the as yet untouched left-half L0 to obtain the right-hand block 
R1=L0 ⊕ 4R0, i.e. 
 

4R0 = 10111100010111001011010011011011 
  L0  = 11111111001000000111010010111011 
  R1  = 01000011011111001100000001100000 
 

In a sense, R0 has been converted into the complex pseudorandom bit string 4R0 by means 
of the function f and the key K1. This ‘secondary key’ then ‘encrypts’ L0 as R1 while the 
original R0 becomes L1. 
Since this is a variant ‘one-round’ DES, the two 32-bit blocks R1 and L1 do not change 
position but form the 64-bit pre-output block T1 which is: 
 

T1

R1=L0 ⊕ 4R0 L1=R0
01000011011111001100000001100000 00000000111111100100110000010001 
 
Sending T1 to the inverse permutation IP-1 gives: 
 

 Bit 
position 

ASCII 
ciphertext 

0 1 0 0 0 0 1 0 1-8 B 
0 1 1 0 0 0 0 0 9-16 ‘ 
0 0 1 1 1 0 0 0 17-24 8 
0 0 1 1 1 0 0 0 25-32 8 
0 0 1 1 0 0 1 0 33-40 2 
0 0 1 1 0 0 0 1 41-48 1 
0 1 1 1 1 1 0 1 49-56 } In

ve
rs

e 
in

it
ia

l 
Pe

rm
ut

at
io

n 

0 0 1 0 0 1 0 0 57-64 

O
utput 

$ 
 
Reading off the rows yields (US keyboard) the ciphertext ( B’8821}$ ). 
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(4.4) Questions about the security of DES: 
(4.4.1) Key Length     
The length of the key is the most serious objection raised. The key in the original IBM 
implementation was 128 bits, while the DES key is effectively only 56 bits long. The 
argument for a longer key centers around the feasibility of an exhaustive search for a 
key. 
Given a piece of plaintext known to be enciphered as a particular piece of ciphertext the 
goal for the interceptor is to find the key under which the decipherment was done. This 
attack assumes that the same key will be used to encipher other (unknown) plaintext. 
Knowing the key will allow the interceptor to decipher intercepted ciphertext easily. 
The attack strategy is the "brute force" attack Encipher the known plaintext with an 
orderly series of keys, repeating with a new key until the enciphered plaintext matches 
the known ciphertext. There are 256 56-bit keys. If it were possible 10 test one every 
100 ms, the time to test all keys would be about 7.2 x 1015 sec., or about 228 million 
years. If the test took only 1 µ s, then the total time for the search is (only!) about 
2,280 years. 
Even supposing the-test-time to be 1 ns, infeasible on current technology machines, the 
search time is still in excess of two years, working full time with no hardware or software 
failures!                                  
Diffie and Hellman suggest a parallel attack. With a parallel design, multiple processors 
can be assigned the same problem simultaneously. If one chip, working at a rate of one 
key per microsecond, can check about 8.6x 1010 keys in one day, it would take 106 days to 
try all 256  7 x 10≈ 16 keys. However, 106 chips working in parallel at that rate could check 
all keys in one day. 

One estimate of the cost of such a machine is $50 million. Assuming a “key shop” 
existed where people would bring their plaintext/ciphertext pairs to obtain keys, and 
assuming that there was enough business to keep this machine busy 24 hours a day for 
five years, the proportionate cost would be only about $20,000 per solution. As hardware 
costs continue to fall, the cost of such a machine becomes lower. 
 
(4.4.2) Two keys give the effect of a 112-bit key 
Although the key length is believed by most analysts to be long enough, some people are 
still unsure about its 56-bit length. There is a method for increasing the effective length 
of the key. The method requires no change to the algorithm itself, which is convenient in 
case the algorithm is to be implemented by a hardware device or in an unmodifiable piece 
of software. 
Because there is considerable concern for the security available with only one 56-bit key, 
a reasonable approach may involve using two keys. If somehow an exhaustive search 
defeats one key, the second lock should double the time required to break in (or so the 
analogies to the physical world would imply.) Unfortunately, this is not quite so, Merkie 
argues that two 56-bit keys in series can be broken with a chosen plaintext attack in 257 
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tries, instead of the 2112 that would be expected. Therefore, the second encryption adds 
almost no security. 
Tuchman counters that two keys used in a special way enhances security, Tuchmnn uses a 
technique invented by Matyas and Meyer for use-by IBM in encrypting master keys in 
some of their encryption systems. With two keys, K1 and K2, the sender encrypts with K1, 
decrypts with K2, and encrypts with K1 again. The receiver decrypts with K1, encrypts with 
K2, and decrypts with K1 again. 
This approach is desirable for use with an automatic encrypting device (which might be 
either hardware or software). If the device expects two keys and the user wants to use 
only one, the user supplies K1 twice. The device encrypts with K1, decrypts with K1 (which 
returns the original plaintext), and finally encrypts with K1. In that way one device can 
produce both single and double encryptions. 
 
(4.4.3) Weaknesses of the DES 
There are known weaknesses of the DES, but these weaknesses are not believed to limit 
the effectiveness of the algorithm seriously. 
 
(4.4.3.1) Complements 
The first known weakness concern complements. (Throughout this discussion, 
“compliment” means “ones complement”, the result obtained by replacing all 1s by 0s and 
0s by 1s.) If the message is encrypted with a particular key, the complement of the 
encryption will be the encryption of the complement message under the complement key. 
Stated formally, let p represent a plaintext message and k a key, and let the symbol x  
mean the compliment of the binary string x. If c =DES(p, k) (meaning c is the DES 
encryption of p using key k), then ),( kpDESc = . Since most applications of encryption 
do not deal with complement messages, and since users can be warned not to use 
complement keys, this is not a serious problem. 
 
(4.4.3.2) Weak keys 
A second known weakness concerns choice of keys. Because the initial key is split into two 
halves, and the two haves arc independently shifted circularly, if the value being shifted 
is all 0s or all 1s, the key used for encryption in each cycle is the same as for all other 
cycles. Remember that the difference between encryption and decryption is that the key 
shifts are applied in reverse. Key shifts are right shifts and the number of positions 
shifted is taken from the bottom of the table up, instead of top down. But if the keys are 
al1 0s or all 1s anyway, right or left shifts by 0, 1, or 2 portions are all the same. For 
these keys, encryption is the same as decryption: c =DES(p,k), and p=DES(c,k). These 
keys are called "weak keys." The same thing happen, if one half of the key is all 0s and 
the other half is all 1s (see figure 9). Since these keys are known, they can simply be 
avoided, so this is not a serious problem 
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C0 D0

{0}28 

{1}28 

{0}28 

{1}28

{0}28 

{1}28 

{1}28 

{0}28

Figure 9: Four DES weak keys. 
 
 
(4.4.3.3) Semi-weak keys 
A third difficulty is similar: There arc identifiable pairs of keys that have more that one 
identical decryption. That is, there are two different keys k1 and k2 for which 
c=DES(p,k1) and c =DES(p,k2). This implies that k1 can decrypt a message encrypted under 
k2. These so-called "Semi-weak" keys are shown in Figure 10. 
 

C0 D0 C0 D0 
{01}14 

{01}14
{01}14 

{10}14
{10}14 

{10}14
{10}14 

{01}14

{01}14 

{01}14 

{0}28 

{1}28

{0}28 

{1}28 

{01}14 

{01}14

{10}14 

{10}14 

{0}28 

{1}28

{0}28 

{1}28 

{10}14 

{10}14

Figure 10: Six pairs of DES semi-weak keys (one pair per line). 
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Attempt all the following exercises  

 
 
 

Exercises 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Q1) In a DES algorithm you have: 

C1=1100101010111100011010101111 
D1=1100000011111100010100001111 

Find k3. 
 

Q2) In a DES algorithm you have the initial key=Baghdadi, find the key of the first round 
k1. 

 
Q3) In a DES algorithm you have the initial key=Shankoti, find the key of the first round 

k1. 
 
Q4) In a DES algorithm you have: 

C8=1100101010111100011010101111 
D8=1100000011111100010100001111 

Find k12. 
 
Q5) If the input to the S-Box is 

110101010101010011001110100101001000110011110011 
what is the output. 

 
Q6) Use the one-round DES algorithm to encrypt (Get busy) using the key (Sean Paul). 
 
Q7) In the 16th round of the DES algorithm you get: 

R15=10110111100000011010011110100011 
L15=01111100011100011010101100010101 

and the result of the S-Box is 
3R15=00110011010100111100101101101011 

what is the ciphertext. 
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Q8) The input to the inner function of the DES algorithm is: 

R7= 10111100101010001110100001001011 
and  

K8= 011111011011111011011110000001111101110010101010 
what is the output [f(R7,k8)]. 

 
 
 



Chapter Five 

Public key cryptography 
 
(5.1) Modular arithmetic - cryptographer's mathematics 
Introduction  
Mod-arithmetic is the central mathematical concept in cryptography. Almost any cipher 
from the Caesar Cipher to the RSA Cipher use it. Thus, I will show you here how to 
perform Mod addition, Mod subtraction, Mod multiplication, Mod Division and Mod 
Exponentiation. It is a very easy concept to understand as you will see. Use this page as a 
reference page and open it whenever you encounter any mod-calculations or mod-
terminology that leave questions behind.  
 
What is meant by Mod, Modulus and Modular Arithmetic? 
“Modulus” (abbreviated as "mod") is the Latin word for “remainder, residue” or more in 
“what is left after parts of the whole are taken”. Thus, "modular" or "mod arithmetic" is 
really "remainder arithmetic". More precise: We are looking for the integer that occurs 
as a remainder (or the "left-over") when one integers is divided by another integer. Let's 
do three examples:  
Example: When 7 is divided by 3 it leaves a remainder of 1. Think of $1 as a left over 
after $7 are equally split among 3 people. Surely, there is a mathematical notation for 
mod arithmetic: Instead of writing 7 = 3*2 + 1 where 1 is the integer remainder we will 
write: 7 mod 3 = 1, which reads as: "7 modulo 3 is 1" and 3 is called the "modulus". 
Sure, this notation does not reveal the $2 that every person gets as his share. True, 
however, we are solely interested in the left over part, the remainder of $1 in our 
example. 
Example: When 8 is divided by 3 it leaves a remainder of 2. Thus, we write: 
8 mod 3 = 2. 
Example: When 9 is divided by 3 it leaves no remainder. Thus, we write: 9 mod 3 = 0. 

 
Figure 1: Arithmetic MOD 3 can be performed on  

a clock with 3 different times: 0, 1 and 2. 
Computations involving the modulus to determine remainders are called “Modular 
Arithmetic”. It was first studied by the German Mathematician Karl Friedrich Gauss 
(1777-1855) in 1801. You may have heard this anecdote about Gauss when he went to 
school: His Mathematics teacher tried to keep the bored genius busy, so he asked him to 
add up the first 100 integers hoping that he would keep him quiet for a little while. 
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However, young Karl promptly responded “5050 and the formula for the sum of the first 
n integers is n*(n+1) / 2”. Do you know why?         
Great, we have the principle of Mod Arithmetic straight: To find the remainder simply 
divide the larger integer by the smaller integer. This surely works for large numbers as 
well: I.e.  365 MOD 7 = 1 (since 365 = 52*7 +1) . 
 
What is the usage of Mod arithmetic? 
365 MOD 7 = 1 tells us that if Christmas will fall on Thursday and we don't have a leap 
year it will fall on a Friday next year. The same for your birthday and any other day as 
well: every week day will fall on the following weekday the next year. Notice again that we 
only care about the remainder 1 and not the completed 52 weeks in a year. In fact if a 
year would consist of only 358 or 351 or 15 or 8 days, we would still have the same "shift 
by 1" effect. Apparently, solely the length of each week (called the modulus) determines 
the "shift by 1". What does 366 MOD 7 = 2 explain for leap years?  (answer: Shift by 2 
days).  
 
Congruent numbers  
Integers that leave the same remainder when divided by the modulus m are somehow 
similar, however, not identical. Such numbers are called "congruent" .  For instance, 1 and 
13 and 25 and 37 are congruent mod 12 since they all leave the same remainder when 
divided by 12. We write this as 1 = 13 = 25 = 37 mod 12. However, they are not congruent 
mod 13. Why not?  Because it yield a different remainder when  divided by 13.  
  
Modular Arithmetic is also called Clock Arithmetic 
The classical example for mod arithmetic is clock arithmetic: Look at the 12-hour clock in 
your room. You see 12 numbers on the clock. Here, the modulus is 12 with the twelve 
remainders 0,1,2,..11. So, when you give the time you actually give a remainder between 0 
and 11. Again, the modulus m=12 is in charge of these reminders. What time is it 50 hours 
after midnight? It is 2 (a.m.) since 50 hours equal 2 full days and 2 hours.   
 
In Modular Arithmetic, we add, subtract, multiply, divide and exponentiate as 
follows:  
A) Mod Addition  
Let's start simple: What time is it 10 hours after 11:00? It is 11+10 = 21 o'clock, and 21 
minus the modulus 12 leaves a remainder of 9, thus 9 o'clock.  What time is it 22 hours 
after 11:00? It is 11+22 = 33 and subtracting the modulus 12 repeatedly (which is also 
called "dividing") yields again 9. Ignoring a.m. and p.m., we are performing mod arithmetic 
on the clock. Let's write the two examples in mod notation: 11+10 = 21 mod 12 = 9  and 11 
+  22 = 33 mod 12 = 9.   
 
How to perform Mod Addition: First add the two numbers, secondly, divide the sum by 
the modulus to compute the remainder.  
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B) Mod Subtraction 
Subtraction is performed in a similar fashion: First subtract, secondly compute the 
remainder. 
 
Example: 25 - 8  = 17 MOD 12 = 5 
Example: 50 - 11 = 39 MOD 12 = 3  
What if we obtain a negative answer? Say it is 2 o'clock in New York, what time is it in 
L.A.? Turning the hand on a clock 3 hours backwards shows that it is 11 o'clock:  2 - 3  = -
1 MOD 12 = 11 
Thus, if the answer is negative, add the modulus you get a positive number. That number 
must be between 0 and the modulus. 
Example: 3 - 50 = -47 MOD 12 = 1 since - 1 + 12 =11. 
Example: 14 - 77  = -63 MOD 12 = 9  since -63 + 12 + 12 + 12 + 12 + 12 + 12 = 9. 
Example: 11 - 50 = -39 MOD 15 = 6 since -39 + 15 + 15 + 15 = 6  
  
C) Mod Multiplication 
Since multiplication of positive numbers is repeated addition it can be reduced to the 
above mod addition. 
How do we compute 5 * 8 MOD 12? First we multiply:  5 * 8 = 40, secondly we find the 
remainder: 40 MOD 12 = 4.   
 
A useful shortcut:  
A mod expert would find the answer to 123 * 62 mod 12 immediately. It is 6. How does 
she know? Without being a Gauss genius, she computes 123 mod 12 = 3 and 62 mod 12 = 2 
and multiplies those two answers. To verify this: 123*62 mod 12 = 7626 mod 12 = 6. This 
computation aid is true for addition and subtraction as well. Therefore, we may write 
them as:  
 
Computation Rules for Mod Arithmetic 

1) a + b mod m = (a mod m) + (b mod m)  
2) a - b mod m = (a mod m) - (b mod m)  
3) a * b mod m = (a mod m) * (b mod m)  

  
D) Mod Division 
Division is the inverse operation of multiplication. This means that every division question 
can be answered by answering a "find the missing number" multiplication question.  
I.e. Since 5*8 = 4 MOD 12 dividing by 5 yields  

8 = 4/5 MOD 12. 
Thus, if I had asked you: Compute 4/5 MOD 12, the answer is apparently 8.  
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Example: 
 To compute     5 / 7 mod 12, we introduce an x  
                x = 5 / 7 mod 12  to multiply both sides by 7. 
               7x = 5 mod 12.   
We find x by testing the 12 different remainders 0, 1, ...11.  
 
Trial and error yields x=11 since  
7 * 11 mod 12 = 77 mod 12 = 5.    
 
Some Mod Divisions have no Solution 
Unlike the division of real numbers, mod division does not always yield an answer. The 
reason for that is that the mod-multiplication does not always yield all possible 
remainders less than the modulus. Let's investigate this fact. For example:   
Using a modulus of m=6, we set up a multiplication table that displays the multiplications 
of the remainders 0,1,2,3,4 and 5. 

* mod 6 0 1 2 3 4 5 

0 0 0 0 0 0 0 
1 0 1 2 3 4 5 
2 0 2 4 0 2 4 
3 0 3 0 3 0 3 
4 0 4 2 0 4 2 
5 0 5 4 3 2 1 

 
Two Observations:   
1) Some divisions have no answer  
The rows created by the remainders 0,2,3,4 do not contain all six remainders. 
Consequently, some divisions have no answer. I.e. consider division by 2: 
4 / 2 = 2 mod 6   since 2 * 2 = 4 mod 6.   
2 / 2 = 1 mod 6   since 1 * 2 = 2 mod 6.  
However, 3 / 2 = x mod 6 has no answer x since there exists no remainder x such that 2 * 
x yields 3 mod 6. 
Also, 5 / 2 mod 6 has no answer. Why not? In fact no odd integer could possibly be 
divided by 2 mod. If, however, we use a modulus of 7 any odd (and any even) integer less 
than 7 can be divided by 2. Explain why by using the multiplication for mod 7 below.    
 
2) Some divisions have many answers 
I.e. 4 / 2 = 2 mod 6 , since 2 * 2 = 4 mod 6, 
also 4 / 2 = 5 mod 6, since 2 * 5 = 4 mod 6.   
Even seemingly odd divisions like 0/3 or even worse 0/0 are legal mod 6. Both have the 
answer 2. Explain this.  
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If we don't limit us to the six remainders as answers, we actually find an infinite number 
of answers. Notice that also 2*8, 2*11, 2*14, 2*17, ... yield 4 mod 6. Consequently, when 
dividing 4 by 2 mod 6   8,11,14,17,...are correct answers as well. Thus, don't be surprised 
if your partner finds a different answer than you. It might be just as correct as yours. 
  
Example: If the modulus is m=7, the divisions yield unique solutions.  

* mod 7 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 
2 0 2 4 6 1 3 5 
3 0 3 6 2 5 1 4 
4 0 4 1 5 2 6 3 
5 0 5 3 1 6 4 2 
6 0 6 5 4 3 2 1 

 
Perform the following divisions. Which one has multiple answers between 0 and the 
modulus? Find them if they exist. Which division has a unique answer? Which division has 
no answer?  
1) 7 / 4 = x mod 12       (or 7 = 4*x mod 12)   No answer. 
2) 6 / 9 = x mod 12       (or 6 = 9*x mod 12)     x=2. 
3) 7 / 5 = x mod 13       (or 7 = 5*x mod 13)     x=4. 
4) 3 / 13 = x mod 26     (or 3 = 13*x mod 26)   No answer. 
5) 4 / 10 = x mod 26     (or 4 = 10*x mod 26)   x=3. 
6) 12 / 10 = x mod 29   (or 12 = 10*x mod 29)  x=7.  
  
E)  Mod Exponentiation 
In the encryption process of the RSA Cipher the plain message is raised to the power of 
e mod m, where e and m (commonly a 200 digit number) make up the public key. To 
account for huge numbers, one of our goals in this section is to learn some shortcuts when 
performing mod exponentiation. 
Since mod exponentiation is repeated multiplication,  it can be reduced to the above mod 
multiplication. 
How do we compute 34 MOD 12?  First we multiply:  3 * 3 * 3 * 3 = 81, secondly we find 
the remainder: 81 mod 12 = 9.   
 
Shortcut 1: Instead of first computing the (large) power and secondly finding the 
remainder, it is easier to find the remainders of smaller powers and mod multiply them to 
get the final answer.   
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There is a fast way to compute 2377 mod 24 . Since 23 = -1 mod 24, we may write (-1)77 
mod 24 which simplifies to -1 mod 24. To get a positive answer, we add 24 to get 23 as 
the final answer.  
Shortcut 2: If the base is a little less than the modulus, then rewrite the base as a small 
negative number which when exponentiated yields a smaller answer then the original 
power.   
Powers such as 12345676 would yield an overflow on your calculator. However, performing 
modular arithmetic using the modulus m=1234569 we are able to compute the answer 64. 
Why?     
Answer: 1234567 = -2 mod 1234569. Thus, (-2)6 = 64 MOD 1234569 
   
We conclude the Mod Exponentiation with one last shortcut. There is a fast way to 
compute 211 mod 15. Since 211 = ((22)2)2 * 23 , we compute 211 mod 15 as  (24)2 * 23 mod 15 
=((24)2 mod 15 ) * (23 mod 15 ) = 1 * 8 mod 15 = 8. Check: Dividing 2048 by 15 leaves a 
remainder of 8. Correct. 
Shortcut 3: (Repeated Squaring) To compute an, divide the exponent n by the greatest 
power of 2 that is less than n. This yields an exponent e and a remainder r. Finally, 
compute ae * ar. To compute ae, use shortcuts if necessary. ar is a fairly small number.  
Example:   
1) 311 mod 12=3. Since 32 = 9, 34=(9)2 = 81 = 9 mod 12. Also: 38=(34)2=(9)2 = 81 = 9 mod 12. 
Since, 33 = 27 = 3 mod 12, 311 = 38 * 33 = 9 * 3 = 27 = 3 mod 12. 
 
2) 411 mod 12=4. Since 42 =4, 44=48=4. 48 * 43 = 4.   
 
3) 513 mod 17=3. Since 52=8, 54 = 13 = -4, 58 = 16 =-1, 513 = -1 * -4 * 5 =20. 
 
4) 333 mod 17=3. Since 32 = 9, 34 = -4, 38 = -1, 316 =1, 332 = 1 
 
5) 165 mod 19=4. Since 16 = -3, 162 = 9, 164 = 81 = 5.     
 

(5.2) Euler's ϕ-function 
Definition: Euler’s ϕ-function yields the number of integers less than a given integer n 
that have no common factor with n. I.e. the gcd equal to 1.  
Example: Say n=4, then 1 and 3 - a total of 2 integers - are relative prime to 4 and less 
than 4. Thus, Euler’s ϕ-function yields 2 which is commonly written as ϕ(4)=2.  
Example: Say n=5, then 1, 2, 3 and 4 - a total of 4 integers - are relative prime to 5 and 
less than 5. Thus, ϕ(5)=4. In fact, whenever n is a prime number, none of the n-1 numbers 
less than n can have a common factor with n. Thus, we may write: ϕ(p)=p-1 when p is a 
prime number.   
Example: Say n=7, then 1, 2, 3, 4, 5, 6 - a total of 6 integers - are relative prime to 7 and 
less than 7. Thus, ϕ(7)=6. 
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Example: Say n=12, then 1, 5, 7, 11 - a total of 4 integers - are relative prime to 12 and 
less than 12. Thus, ϕ(12)=4.  
Example: Say n=15, then 1,2,4,7,8,11,13,14 - a total of 4 integers - are relative prime to 
15 and less than 15. Thus, ϕ(15)=8.  
  
Observe a summary of the ϕ−values for the first twenty integers:  

M 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
ϕ(M) 1 2 2 4 2 6 4 8 4 10 4 12 6 8 8 16 6 18 8 

  
Four Computation Rules for Euler’s  ϕ-Function 

1) ϕ(p) =   p-1 for a prime p. 

2) ϕ(pk) = pk - pk-1 for a prime power pk . 

3) ϕ(p*q) = (p-1)*(q-1) for two distinct primes p and q. This rule is used 
for the RSA cipher. 

4) ϕ(k*m) = ϕ(k)*ϕ(m) when k and m are relative prime. 
  
Example: ϕ(3)=3-1=2 as 1 and 2 are relative prime to 3. 
Example: ϕ(8)= ϕ(23)=23 -22 =4 as 1,3,5,7 are relative prime to 8.  
Example: ϕ(15)=ϕ(3*5)=(3-1)*(5-1)=2*4=8 as 1,2,4,7,8,11,13,14 are relative prime to 15. 
Example: ϕ(24) = ϕ(23*3) = ϕ(23)*ϕ(3) = (23-22)*(3-1) = 4*2 = 8 as 1,5,7,11,13,17,19,23 are 
relative prime to 24. 
  
Computation of ϕ(n) in a single formula 
The 4 computation rules can be combined into one formula that yields ϕ(n) for any given n. 
Here it is: 

ϕ(n) = n * (1- 1/p1) * (1- 1/p2) *…* (1-1/pk), 
where p1 , p2, ..., pk are the prime divisors of n. 
 
Let me show you two examples of this formula:  
Example: 
Say n=180, then a prime check program yields the prime factors 2,3 and 5, so that  
ϕ(180) = 180 * (1-1/2) * (1-1/3) * (1-1/5)  

 = 180 * (1/2) * (2/3) * (4/5)  
 =  90 * (2/3) * (4/5) = 60 * (4/5) = 48. 

Example: 
Say n=360, since 360=2*180 the prime factors are again 2,3 and 5, so that  
ϕ(360) = 360 * (1-1/2) * (1-1/3) * (1-1/5) = 360 * (1/2) * (2/3) * (4/5)   

 = 180 * (2/3) * (4/5) = 120 * (4/5)= 96  
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(5.3) Euler's theorem:  
For a given integer n, each integer a that is relative prime to n yields 1 MOD n when 
raised to the power of ϕ(n):  

aϕ(n) =1 MOD n. 
If n is a prime, let's call it p, we know that ϕ(p) = p-1 (rule 1 of phi-function) which 
simplifies Euler's Theorem to:  

ap-1  =1 MOD p. 
This special case of Euler's Theorem is also known as Fermat's Little Theorem. 
Example: Say M=5, then 1,2,3,4 are relative prime so that ϕ(5)=4. When raising 1,2,3 and 
4 to the power of 4 we compute mod 5:  
14 = 1 mod 5, 24 = 16 = 1 mod 5, 34 = 81 = 1 mod 5 and 44 = 256 = 1 mod 5. This is just what 
Euler teaches us. 
Example: Say M=8, then 1,3,5 and 7 are relative prime ϕ(8)=4. When raising 1,3,5 and 7 to 
the power of 4 we compute mod 8:  
14 = 1 mod 8, 34 = 81 = 1 mod 8, 54 = 625 = 1 mod 8 and 74 = (72)2 = (49)2 = (-1)2 = 1 mod 5.   
(5.4) Euclidean algorithm: 
We now present an algorithm, called the Euclidean algorithm, for finding gcd(a,b). 
Suppose that a>b>0 (otherwise, interchange a and b), and write 

11 rbka +=  br <≤ 10  

212 rrkb +=  120 rr <≤  

3231 rrkr +=  230 rr <≤  

4342 rrkr +=  340 rr <≤  
M  M  

nnnn rrkr += −− 12  10 −<≤ nn rr  

111 ++− += nnnn rrkr  nn rr <≤ +10  
Since a>b>r1>r2>r3>r4>…, the remainders will eventually become zero, so at some point we 
obtain rn+1=0. rn=gcd(a,b).  
Example: 

a) Let a=190 and b=34. Then 
190=  20345 +⋅
34=  14201 +⋅
20=  6141 +⋅
14=  262 +⋅
6=  023 +⋅

so gcd(190,34)=2. 

b) Let a=108 and b=60. Then 
108=  48601 +⋅
60=  12481 +⋅
48=  0124 +⋅

so gcd(108,60)=12. 
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(5.5) Extended Euclid algorithm: 
Given a and b, the extended Euclid algorithm computes g, u, and v such that  

g = gcd(a, b) = u . a + v . b 
This algorithm is used to compute the modular inverse. If g = 1, then 

1 = u . a +v . b 
implies that 

1 = u . a (mod b) 
1 = v . b (mod a) 

and therefore 
u = a-1 (mod b) 
v = b-1 (mod a) 

Algorithm 5.1: Extended Euclid Algorithm (EEA) 
EEA(a, b, g, u, v) 
begin 
(g0 , g1) = (a, b) 
(u0 , u1) = (1, 0) 
(v0 , v1) = (0, 1) 
while g1 ≠ 0 do 

begin 
q = g0 div g1

(g0 , g1) = (g1 , g0-g1 . q) 
(u0 , u1) = (u1 , u0-u1 . q) 
(v0 , v1) = (v1 , v0-v1 . q) 
end  

g = g0 ; u = u0 ; v = v0

end 
 

Example: a = 21 and b = 16 apply the extended Euclid algorithm 
 

Iteration q g0 g1 u0 u1 v0 v1

0 - 21 16 1 0 0 1 
1 1 16 5 0 1 1 -1 
2 3 5 1 1 -3 -1 4 
3 5 1 0 -3 16 4 -21 
  •   •   •   

EEA returns g = 1, u = -3 and v = 4 
This implies 

1 = -3 . 21 + 4 . 16 
Therefore 

21-1 = -3 (mod 16) 
16-1 = 4 (mod 21) 
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(5.6) RSA cipher   
In this and the following sections I am going to show you how highly secure communication 
is realized. We are leaving behind the breakable ciphers that we studied in the previous 
chapters. Rather, we are going to use learned concepts such as MOD arithmetic, Euler’s 
ϕ-function, Euler’s Theorem and the Euclidean Algorithm in order to create an 
unbreakable cipher: The RSA Cipher. It is the most popular cryptosystem among today’s 
secure ciphers. It leads us to Two-Key Cryptography – commonly called Public-Key 
Cryptography. 
The US-Cryptographer Bruce Schneier distinguishes roughly between One-Key and Two-
Key Cryptography as follows: 

“There are two kinds of cryptography in this world: cryptography that 
will stop your kid sister from reading your files, and cryptography that will 
stop major governments from reading your files.” 

Public Key Cryptography started in 1976 when 31-year-old computer wizard named Whitfield 
Diffie came up with a new system that surprised the world of ciphers. As a child, Diffie 
devoured all the books he could find on the subject of cryptography. Certainly there is 
something about codes -- secret rings, intrigue -- that appeals to youngsters. Diffie, son of an 
historian, took them very seriously.  

Diffie solved the major problem of existing cryptography by making the key  
transfer unnecessary 

The problem with the existing system of cryptography was the key transfer. In order to 
communicate secretly the sender has to deliver the secret key to the recipient. In that 
way the recipient can decrypt the encrypted message. The dilemma: In order to transfer 
a secret a different secret (the key) had to be delivered before. How can the key be 
sent from one party to another? If you sent it over an insecure channel (i.e. telephone, 
internet, etc.) what's to stop someone from intercepting it and using it to decode all 
subsequent messages? Diffie showed in a clever manner how to overcome the key 
transfer dilemma.  

(5.6.1) The Diffie-Hellman key exchange 
In 1976, the two Mathematicians Whitfield Diffie and Martin Hellman devised the notion 
of Public-Key-Cryptography in “New Directions in Cryptography”. They showed how two 
communication partners that are at different locations can publicly create a common key 
without fearing that a third person who observes the key generation could crack it. The 
public creation of a common secret key was the first major step in Public Key 
Cryptography. It enables two parties to establish secure communication without having to 
deliver the secret key at some earlier point in time. 

 

Since you know how to perform MOD arithmetic you will understand the Diffie-Hellman 
Key Exchange between Alice and Bob easily. Here it is in 4 steps. The two left columns 
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show the general key exchange protocol. The two right columns display an example for 
the key exchange protocol: 

1) Alice and Bob publicly pick 2 integers: 

a) a prime number p  

b) and an integer s between 1 and p.   

1)  Alice and Bob publicly pick 

a) p = 11 and  

b) s = 3. 

2) Alice picks a 
random number  a  
that is less than p. 

2) Bob picks a random 
number  b  that is 
less than p. 

2) Alice picks a=2. 2) Bob picks b=4. 

3) Alice computes  

A = sa MOD p and 
sends A to Bob. 

3) Bob computes  

B = sb MOD p and 
sends B to Alice. 

3) Alice computes  

A = 32 MOD 11 = 9  

3) Bob computes  

B = 34 = 81 

= 4 MOD 11   

4) Alice computes the 
key K = Ba MOD p. 

4) Bob computes the 
key K = Ab MOD p. 

4) Alice computes  

K = 42 MOD 11 = 5 

4) Bob computes  

K = 94 = 6561 MOD 
11 =  5.  

We have to answer the following two questions: 

1) Why do Alice and Bob always end up with the same key K ? 

2) Why can’t an eavesdropper compute K ? 

Answer to questions 1): 

Alice and Bob compute the key K in the final step as follows: 

Alice: K = Ba = sba MOD p.  

Bob: K = Ab = sab MOD p. 

Since sba = sab MOD p both Alice and Bob compute the same key K. 

Answer to questions 2): 

Say, an eavesdropper did a great job by intercepting the values A and B, p and s. In 
order to uncover the key K he has to compute either a or b. Mathematics teaches that 
this is impossible if a, b, p, s, A, B were chosen as of 100-digits numbers or larger.  

The reason: although it is quite simple to compute i.e. A = sa MOD p, however, solving this 
equation for a is impossible. More formally stated: Although the “discrete exponential 
function” can be executed, its inverse, the “discrete logarithm function” can not. Hence, 
the “discrete exponential function” is an example of a “One-Way function”. We will study 
such functions later on this chapter.  
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(5.6.2) Diffie’s search for a public key cryptosystem 
While Hellman was working on the public key exchange algorithm, Diffie continued his 
research. His public key exchange idea is feasible, however, it has one major practical 
limitation: Both parties have to first create their secret key in a mutual process. As a 
consequence, the sender has to wait until the common key is created to send the 
encrypted message. Diffie tried to overcome this deficit as follows: Each party shall 
possess a key pair, a public and a private key. I.e. Alice’s public key is used by Bob to 
encrypt the message for Alice whereas her private key is used to decrypt Bob’s 
encrypted message.  

Although it was not Diffie who actually designed an algorithm that realizes his provoking 
idea of a public and private key, he deserves credit for making the inconceivable 
conceivable. He initiated mathematical research groups worldwide to find an appropriate 
mathematical setting that realizes his vision. The research question was:  

Which mathematical function allows anybody to encrypt a secret message for 
Alice using her publicly known encoding key e and prevents everybody but Alice to 
decrypt such cipher message? 

It requires an experienced mathematician to find such one-way functions since most 
functions are two-way and can thus be reversed. I.e. A Caesar right shift can be 
reversed by a corresponding left shift. Mathematically, since addition can be reversed by 
subtraction it is (the simplest) two-way function.    

 
 

Figure 2: This diagram shows that Public–Key Cryptography  
uses two different keys for en- and decryption.     

 

The winners of the worldwide search for appropriate one-way functions are the 3 
Israelis Ronald Rivest, Adi Shamir and Leonard Adleman. Let’s talk for a moment about 
how the three MIT researchers Rivest, Shamir and Adleman came up with their idea for 
the RSA Ciphers in 1977.   

The irony of the process to create the RSA Cipher is that Rivest, Shamir and Adleman 
originally tried to prove that Diffie’s idea of a public and a private key could NOT be 
realized by showing that there are no appropriate one-way functions. Thus, while being 
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unsuccessful the three Cryptographers became really successful: While Rivest devised 
encryption ideas, Adleman tried to attack them and Shamir contributed to both. The 
final RSA idea was ground-breaking as it simultaneously answers the contemporary quests 
for a public key cipher as well as a scheme to perform digital signatures.  

 
(5.6.3) The RSA cipher is a public-key-cryptosystem 
Given sufficiently large key lengths, RSA realizes the  

Public-Key Property:  

The knowledge of the encoding key does not reveal the knowledge of the decoding key. 
Even the usage of the most powerful computers combined will not suffice to crack the 
secret decoding key based on the knowledge of the publicly known encoding key.      

Although the encoding keys are publicly known, nobody in the world can make use of that 
knowledge in order to crack the secret decoding key. WHY is that? How can the 
knowledge of the encoding key NOT reveal the decoding key? What do we have to 
consider when choosing the encoding key so that its decoding key remains secret? The 
next section will tell you.     

As a consequence: 

Only one key pair per person is needed. Therefore, a total of only n key pairs are needed 
for n communicating people.    

In particular, 100 people communicating just need 100 key pairs. The 100 encoding keys 
are publicly known. Think of them being listed in a directory. These days the internet 
provides the means to locate the public encoding key of any correspondent. Currently, the 
public keys of the most popular encryption software, “Pretty Good Privacy” or simply 
“PGP”, can be looked up at http://pgp.mit.edu . The corresponding 100 private decoding 
keys must be kept absolutely secure (i.e. in a vault) by its respective owner. They should 
not be saved on the hard-drive or other accessible devices.   

 
(5.6.4) An Example for RSA Encryption   
The RSA Cipher is actually quite easy to understand. Don’t be mislead: The fact that a 
cipher can be executed easily does not make it insecure. On the other hand, ciphers that 
are hard to execute are not necessarily secure. The 4 steps involved in the RSA Cipher 
are displayed in the middle column. In the right column I demonstrate how the word 
“SAFE” is en- and decrypted using the RSA Cipher. We use the same letter values as in 
the previous chapters to encrypt: S=18, A=0, F=5, E=4. Again, the choice of the letter 
values is arbitrary. It just matters that sender and recipient use the same letters values. 
Let’s go ahead and perform the RSA encryption.  
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Example for RSA Encryption and Decryption:      

Step: 

Preparation 

a) Choose two primes p and q so 
that their product n=p*q is 
greater than the used alphabet 
length M (i.e. here M=26).  

b) Compute ϕ(n). 

a) Say p=3 and q=11, then n=33 

 

 

b) ϕ(33) = (3-1)*(11-1) = 20 

2. Step: 

Encryption 

uses the 
public key 
(n,e) 

a) Choose a public encoding key e 
that has to be relative prime to 
ϕ(n).   

b) We now encrypt each plain 
letter P by computing  

 

            C=Pe MOD n.  

a) Here, possible values for e are 
3, 7, 9, 11, 13, 17, 19. Let’s pick e=3.  

b) We encrypt as follows: 

 

S =18:   183 = 24 MOD 33 

A = 0:     03 =   0 MOD 33 

F = 5:     53 =  26 MOD 33 

E = 4:     43 =  31 MOD 33 

3. Step: 

Decryption 

uses the 
private key  

(d,n) 

a) The private decoding key d is 
chosen as the inverse of e MOD 
ϕ(n):  e * d = 1  MOD ϕ(n) 

Mathematically, find integers d 
and k that fulfill: e * d = 1  + k * 
ϕ(n) via the Extended Euclidean 
Algorithm. 

 

b) We decrypt by computing P=Cd 
MOD n 

a) d=7 since 3*7 = 1 MOD 20.  

 

b)  

247 = 18 MOD 33,   18=S. 

  07  =  0 MOD 33,    0=A.  

267 =   5 MOD 33,    5=F.  

317 =   4 MOD 33,    4=E. 

 

Remark: I computed the above powers MOD 33 using the Windows XP calculator. Let’s 
verify by hand that i.e. the computation of 317 actually yields 4 MOD 33:  

Since 31= -2 MOD 33 I can just multiply –2 by itself 7 times to compute (-2)7 and obtain 
–128. Now, –128 = -95 = -62 = -29 = 4 MOD 33 which produces the calculator answer.   

(5.6.5) Why does RSA work? – A Proof   
Why does the RSA Cipher work? With other words: for what miraculous reason does the 
final exponentiation Cd MOD n in step 3 yield the correct plain letter P ? Nobody would 
use the RSA encryption to encrypt highly sensitive data if RSA’s encryption scheme is 
not guaranteed to yield the original plain text. Therefore, it is important to 
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mathematically prove its correctness. The proof demonstrates how Rivest, Shamir and 
Adleman took advantage of Euler’s Theorem.  

Proof of Correctness of the RSA Cipher 

We saw in the above example that the decryption yields the proper plain text SAFE. Will 
it always – for any given plain text – work ? To be sure, we have to prove that the final 
exponentiation in the decryption process, Cd, is guaranteed to yield the proper plain 
letter P. In order to do so we have to distinguish two cases:  

I) The vast majority of plain letters values P are relative prime to the modulus n. For this 
case we take advantage of Euler’s Theorem to prove the correct functioning of RSA.   

II) We also have to prove the correctness of RSA for the rare instances when P is not 
relative prime to n. i.e. P and n possess a common divisor that is greater than 1. 

 

I) RSA-proof when P and n are relative prime  

We establish that Cd actually yields P by using a chain of identities that involves simple 
exponent rules and Euler’s Theorem. Verify each step in the proof.       

  Cd The cipher letter C was encrypted by raising the original 
plain letter P to the power of e: C=Pe. We substitute: 

= (Pe)d  MOD n When raising a power to a power, we multiply the exponents:  

=  Pd*e   MOD n The decoding key d was chosen to be relative prime to the 
encoding key e which can be stated as:  

d*e = 1 + k * ϕ(n). Therefore, 

= P 1 + k * ϕ(n)   MOD n Adding exponents allows to multiply powers:  

= P1 * Pk * ϕ(n)  MOD n Multiplying exponents allows raising a power to a power: 

= P * (Pϕ(n))k MOD n What is the purpose of setting up (Pϕ(n)) ? Answer: To make 
use of Euler’s Theorem: Pϕ(n) = 1 MOD n when P and n are 
relative prime. If P and n don’t happen to be relative prime 
RSA still works properly. I will prove this case in part II) of 
the proof.   

= P * (1)k MOD n Raising 1 to any power yields 1. Guaranteed. 

= P   MOD n The proof is complete. We verified that Cd yields P in 
case P and n are relative prime. 
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II) RSA-proof when P and n are not relative prime  

In that case P and n have a common divisor. Consequently, either p or q must be a divisor 
of P. This results from the choice of n as the product of the primes p and q.  In other 
words, p and q are the only divisors of n and any divisor that n has in common with P must 
be either p or q or a multiple of p or q. Without limiting the generality of our proof, we 
assume that p is a divisor of P. That means that there exists an integer x such that 
P=x*p. 

In the first proof, we made use of Euler’s Theorem. We now make use of its simplified 
version, the so-called “Fermat’s Little Theorem”. If the modulus is a prime number p, the 
exponent simplifies to ϕ(p) = p-1. Why is that? Recall that Euler’s ϕ-function ϕ(n) gives 
the number of integers less than n that are relative prime to n.   

Fermat’s Little Theorem    

 Given a prime p, then  

ap-1 = 1 MOD p 

holds true for any integer a.  

We start with Fermat’s Little Theorem to prove that Pde = P MOD n. I will simultaneously 
show you an example in the 3rd column. 

Fermat’s Little Theorem with 
the prime q holds true for any 
integer P. We manipulate the 
exponent by raising both sides 
to the power of (p-1)*k for 
some integer k.  

Pq-1 = 1 MOD q 

If p=5 and q=7 then 
n=p*q=35. Let’s encrypt  
the message P=10. Then 

107-1 = 106 = 1 MOD 7 is 

guaranteed true because of 
Fermat’s Little Theorem. 

Raising powers to powers allows 
multiplying exponents.  (Pq-1)(p-1)*k = 1(p-1)*k MOD q (106)4*k = 14*k = 1 MOD 7 

Why did we do so? Because  

(p-1)*(q-1)*k  

= ϕ(p*q) * k   

= ϕ(n) * k    

= de –1    

when choosing d and e to be 
inverse mod ϕ(n) .  

We may therefore write  

P(q-1)*(p-1)*k = 1 MOD q 106*4*k = 1 MOD 7 

We choose d=5 and e=5 so 
that they are inverse MOD 
24 where 24 = ϕ(35) = (7-
1)*(5-1)  since 5 * 5 = 25 = 1 
MOD 24.   
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Subtracting 1 on both sides 
yields 

 

Pde-1  = 1 MOD q With k=1: 

106*4*k =  

10d*e-1 = 

105*5-1 = 1 MOD 7 

(Adjusting the modulus)  

If  Pde-1 - 1 is a multiple of q 
then  p* (Pde-1-1) must be a 
multiple of p*q. Consider a 
simple example with p=2: If 15 
is a multiple of 5 then 30 is a 
multiple of 10. 

Pde-1 - 1 = 0 MOD q 105*5-1 –1 = 0 MOD 7 

 

Can you finish the proof 
without looking at the remaining 
proof? Try it, it is not difficult.  

 

p*(Pde-1 - 1) = 0 MOD p*q 

 

5* (105*5-1–1) =0 MOD 7* 5 

(Obtaining Pde =P ) Since P is a 
multiple of p 

P*(Pde-1 - 1) must also be a 
multiple of p*q. Continuing   our 
example P=7*p: If 30 is a 
multiple of 10 then 7*30 = 210 
is also a multiple of 10.  

 

p*(Pde-1 - 1) = 0 MOD p*q 

 

5* (105*5-1 –1) = 0 MOD 35 

Distributing yields P*(Pde-1 - 1) = 0 MOD p*q 10* (105*5-1–1) = 0 MOD 35 

Adding P on both sides and 
substituting n for p*q concludes 
our proof. 

 

Pde - P = 0 MOD p*q 

 

105*5 – 10 = 0 MOD 35 

We verified that P’ = P when P 
and n are not relative prime. 
Combining the proofs I) and 
II), we understand why the 
RSA encryption works properly 
in any case.  

 

Pde  = P MOD n 

 

105*5 = 10 MOD 35 

We considered already an example when P and n are relative prime. Let’s now consider 
two simple examples for the case that P is a multiple of p.   
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Example: Say we choose p=3 and q =5 as two small distinct primes. Then: n = p*q = 15  
(allowing us to only encrypt 15 letters) and ϕ(15) = 2*4 = 8. We may therefore choose the 
keys to be e = 3 and d = 3 since their product yields 9 and 9 = 1 MOD 8 where  8 = ϕ(15). 
It is coincidence that the encryption key equals the decryption key. Instead, we could 
have also chosen e = 3 and d = 11 (since 33 = 1 MOD 8) or e = 3 and d = 19 (since 57=1 
MOD 8). Or e = 5 and d = __ ? Do not miss to fill in the answer. Then continue!  

Let’s now select a plain letter P such that it has a common divisor with n = 15, say we have 
to encrypt letter P = 6. We have to verify that Pde = P MOD n (here 69 = 6 MOD 15).  

Since 62 = 36 = 6 MOD 15, we deduce that 68 = 62 * 62 * 62 * 62 = 6 * 6 * 6 * 6 = 62 * 62 = 
6 * 6 = 62 = 6 MOD 15. 

Thus, 69 = 68 * 6 = 6 * 6 = 6 which shows that the RSA scheme decrypts the correct plain 
letter P = 6.  

Exercise: (Test your understanding) Why would it be incorrect to argue as follows: 
Euler’s Theorem yields 6ϕ(15) = 68 = 1 MOD 15 and therefore 69 =  68 * 6 = 1 * 6 = 6 MOD 
15. Even though the final answer is correct, where is a mistake in my argument? We 
computed correctly in example 1 that 68 = 6 MOD 15.    

Example: Let’s now verify that RSA decrypts the plain letter P = 12 correctly. For that, 
we have to verify that  129 = 12 MOD 15. Since 122 = 144 = 9 MOD 15 and 124 = (122)2 = 92 
= 81 = 6 MOD 15, we know that 128 = (124)2 = 62 = 36 = 6 MOD 15. This leads us to the 
final result: 129 = 128 *12 = 6 *12 = 72 = 12 . Correct.  

 

(5.6.6) Why is RSA secure?  
You may say now: RSA does not fulfill the above mentioned Public-Key-Property since we 
could derive the decoding key d=7 from the encoding key e=3 and ϕ(33)=20. I admit, you 
are right. However, the crux of the RSA cryptosystem is that it can be upgraded so that 
even though everybody knows the modulus n, not even the best eavesdropper is able to 
compute ϕ(n).   
How can the RSA Cipher be upgraded to a secure cipher? 
Answer: Choose the two primes p and q to be at least 100-digit numbers.  
 
Why does that make RSA secure? Because no eavesdropper (not even the NSA or the 
FBI) is able to compute ϕ(n) from the publicly known modulus n since its factors p and q – 
required to compute ϕ(n) as ϕ(p*q) = (p-1) * (q-1) - can not be derived from n. As 
experienced computer experts, Rivest, Shamir and Adleman knew that the multiplication 
of two large numbers is not difficult, however, finding the factors of a given large 
integer is a difficult computer problem. 
I.e. we easily find that 
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      35 =      7 * 5   or 
      70 =      7 * 5 * 2 or  
      69 =      3 * 23 or  
    221 =    13 * 17  and using some trial and error even  
11413 =  113 * 101  

 
A factoring program quickly finds the factors of 20-digits numbers such as 

10726291417797115873 = 1223233789 * 8768799157 
However, even today’s best factoring programs can not find the factors of 196-digit 
numbers such as 
1072629139784206448651876669948737985105534479415491719546499789238601
95309909991719546489160623556900202902061728413351851858054814816308432
0989148925926075485185203509876558141111112930000042837 
Exercise: Realize that the multiplication of large numbers can easily be performed by a 
computer. Verify that the product of the following two 98-digit numbers 
122323378977777777788888888893333333334444444444555555555566666666667
77777777888888888900000000327 
and  
87687991351111111111222222222233333333334444444444555555555566666666677
777777778888888890000000131 
yields the above 196-digit number by using the java applet prime.htm .   
 
Reflection on the Security of the RSA Cipher:  
Among the many possible ways of attacking the RSA Cipher, factoring is the most 
promising one. Fact is that sufficiently large integers can not be factored, even when 
using the best factoring algorithms on the fastest computers in the world. Consequently, 
if n is chosen sufficiently large nobody is able to find the factors p and q of n and thus 
nobody can compute ϕ(n) in order to then identify the decoding key d. I will show you 
mathematically that the ability to find the factors of n is equivalent to the ability to 
compute ϕ(n). The equivalence is based on the following two facts: 
 
I) Knowing the factors p and q is sufficient to compute ϕ(n) since ϕ(n) = ϕ(p*q) = (p-1) 

* (q-1). I showed you already that if p=3 and q=5 then ϕ(15) = ϕ(5)* ϕ(3) = 4 * 2 = 8.  
II) “Knowing ϕ(n) and the publicly known value n is sufficient to find the factors p and 

q” can be seen as follows:  
We know that n = p*q and that ϕ(n) = (p-1)*(q-1). How could Mr. X use the two identities 
to compute p and q? We know how to solve two equations with two variables if only we can 
set up two equations that allow us to eliminate either p or q. Here is how: 
  ϕ(n)  = (p-1)*(q-1)  

    =  (p*q - p - q + 1)  
=  (p*q – [p + q] + 1)  
= (n  – [p + q] + 1)   
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Solving for p+q yields:   
p+q = n - ϕ(n) +1      (1) 

We managed to express p + q in terms of n and ϕ(n). If additionally we manage to express 
the difference of the two primes, p – q, in terms of n and ϕ(n) we can use those two 
equations to compute p and q. So, let’s express p – q in terms of n and ϕ(n).  

  
(p-q)2 = (p-q) * (p-q) =  p2 – 2*p*q + q2.    

(p+q)2 = (p+q) * (p+q) =  p2 + 2*p*q + q2.  
(p-q)2 - (p+q)2 = - 4*p*q .  This equation stems from subtracting the 

two previous equations. We add (p+q)2 on 
both sides.  

  (p-q)2 = (p+q)2  - 4*p*q 
 

Taking the square root yields. 

  p-q = [(p+q)2  - 4*p*q]1/2      We are done since we can express (p+q) as 
(n - ϕ(n) +1) replace and p*q as n 

  p-q = [( n - ϕ(n) +1)2  - 4*n]1/2          (2) Combining the equations (1) and (2) yields  
       p+q  =  n - ϕ(n) +1                                 
       p -q   =  [( n - ϕ(n) +1)2  - 4*n ]1/2          

 p and q can be derived by solving a 2 by 2 
system.    

 
Example: Say an eavesdropper knows that ϕ(n) = 30600 in addition to the publicly known 
n = 31003. To find p and q, he uses the identities (1) and (2) to set up the 2 by 2 system    
  p + q =  n - ϕ(n) +1 = 31003 – 30600 + 1  =  404                                    (1) 
  p - q =  [( n - ϕ(n) +1)2  - 4*n]1/2  =  (404)2  - 4*31003 =  198         (2)  
He just has to solve the 2 by 2 system for p and q.  

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− 198

404
11

11
q
p

 

and the answer should be p=301 and q=103.  
This section can be summarized as follows:  

SECURITY OF THE RSA-CIPHER: 
Since finding the factors of a huge integer n [without knowing ϕ(n)] is difficult, the RSA 
encryption is secure.  
The inability to crack RSA is based mathematically on the inability to factor the product 
n into the two huge primes p and q. However, the reverse process, computing the product 
given the two primes was easy as I showed you above. A function with such property is 
called a one-way function. 
Definition of a one-way function:  
A one-way function is a function that computes the result (i.e. the product of two primes) 
easily. However, given the result it is practically impossible to compute the original values.  
Mathematically stated: Given x, f(x) can be computed easily. However, given f(x), 
computing x is practically impossible.  
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Example: RSA’s one-way function is f(p,q) =  p*q = n  since n does not yield p and q if 
chosen sufficiently large.  
Among other conceivable one-way functions, Rivest, Shamir and Adleman’s choice turned 
out to be a good one since no Mathematician has been able to design a fast factoring 
algorithm to make the one-way function “Multiplication of large numbers” a two way 
function. Nevertheless, if somebody devises an algorithm to factor huge integers quickly 
the RSA encryption is not secure anymore. Believe me: Designing fast factoring 
algorithms is a hot topic in current mathematics research, particularly to assess the 
security of RSA. Although there has not been a major breakthrough, the combination of 
refining the existing factoring algorithms (such as the number field sieve to name the 
currently best factoring algorithm for numbers consisting of 110 digits and more) with 
the ever-increasing power of computers yields new factoring records.  
(5.7) Digital Signatures and RSA 
How can a sender prove his authenticity? Besides eliminating the key exchange, proving 
that authenticity was a major quest that RSA realized in the late 70’s. Understanding 
how the RSA encryption scheme works and why it properly decrypts cipher messages will 
help you understand how to digitally sign documents. In fact, you may be able to discover 
it for yourself since RSA’s digital signature uses both the public and private keys that 
are used for the RSA encryption.  
Hint: The RSA encryption requires you to use the publicly known encryption key (eR,nR) of 
the recipient, however, the RSA signature requires the sender to use his private 
decryption key (dS,nS).  
 
An additional reason for the popularity of the RSA cryptosystem is the following: Not 
only can we encrypt or digitally sign a document; we can even do both for the same 
document! We first encrypt using the recipient’s encryption key (eR,nR) to afterwards sign 
the encrypted message using our private decryption key (dS,nS). In this section I will 
demonstrate to you how this can be achieved.  
 
(5.7.1)  How to Sign a Digital Document using RSA   
Recall one of the quests of cryptography: How can a sender prove his authenticity?  

A hand-written text is signed by pen to document the authenticity of the sender. 
Observe that the sender uses unique personal information - a secret that only he 
possesses to prove his authenticity. Similarly, in order to digitally sign a document the 
sender has to possess a unique information that nobody else is able to figure out or copy. 
Now it is your turn: How can RSA be used to digitally sign a document? What does an 
RSA user possess that nobody else knows about? Of course, it is his private decryption 
key (dS,nS). Again, if only the modulus n is chosen sufficiently large nobody and no 
computer in the world is capable to compute the private key (dS,nS) based on the publicly 
known encryption key (eS,nS). In fact, since private keys can not be forged whereas pen-
signatures can, digital signatures are even more trustworthy than traditional signatures. 
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It is now time to sign a document. Say Alice wants to send a signed letter to Bob.  

Example of the RSA Digital Signature scheme: 

                     The RSA Digital Signature                  Example:      
1. Step: 
Preparation:  

Alice has to generate a key pair (as 
explained previously). As before, he 
has to keep the private key (d,n) 
secret and makes the public key (e,n) 
publicly known. 

Using the key pair in the 
introductory example we have 
(d,n) = (7,33) 
(e,n) = (3,33) 

2. Step: 
Signing the 
document P 
uses the 
private key 
(d,n) 

The sender applies his private key to 
the document P in S = Pd Mod n to 
obtain the signature S which is sent 
to the recipient. Additionally, the 
original message P is sent to the 
recipient as well. 

SAFE is signed with d=7: 
S =18:   187 =   6 MOD 33 
A = 0:     07 =   0 MOD 33 
F = 5:     57 =  14 MOD 33 
E = 4:     47 =  16 MOD 33 
 

3. Step: 
Verifying the 
authenticity 
of the sender 
by applying 
the public key 
(e,n) 

Bob verifies the authenticity of the 
sender by computing Se MOD n. He 
then matches Se with P. If they are 
not equal, the document is not 
authentic. Attention: fraud or a 
possible computation error has 
occurred!! 

The authenticity of the 
message is verified by the 
recipient using the senders 
public encoding key e=3 
  63 = 18 MOD 33,   18=S. 
  03  =  0 MOD 33,    0=A.  
143 =   5 MOD 33,    5=F.  
163 =   4 MOD 33,    4=E. 

Exercise: Say you are Alice. You want to digitally sign the document “FRAUD” using 
n=5*7 = 35. First you will have to generate a key pair, secondly you sign FRAUD and send 
“FRAUD” together with the signed version of “FRAUD”. Now, pretend you are the 
recipient Bob. Firstly, you un-sign Alice’s signed message. Secondly, you check the 
authenticity of Alice’s message simply by matching the un-signed message with the 
original message “FRAUD”. For the necessary MOD calculations make use of the windows 
calculator. 

 
(5.7.2)  How to Encrypt AND Digitally Sign with RSA   
In the previous section, we learned how Alice may sign a document that can be sent i.e. as 
an email to the recipient. Since she did encrypt “FRAUD”, it was like sending a signed 
postcard to authenticate the sender. What if she wants to add security and decides to 
sign and encrypt her message? Sending an encrypted and signed letter electronically 
corresponds to signed postcard that is mailed in a sealed envelope. How can Alice 
accomplish this electronically?   

Example: 
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1) Devise a scheme with which a sender can encrypt and sign a message before 
sending it?  

2) How does the recipient of the message decrypt and verify the authentication?  
Before you start complete the following diagram.  

 
 
 
  Encrypts with (eB,nB)  Digitally signs with____?____ 
 
 
    

      Bob verifies authenticity with (eA,nA)   
 

and   __?____ with (dB,nB).    

 

The combined RSA scheme: Encryption and Digital Signature 

                     The combined RSA scheme                         Example:      
1. Step: 
Preparation:  

a) Alice has to generate a key 
pair (as explained previously). She 
has to keep her private key 
(dA,nA) secret and makes her 
public key (eA,nA) publicly known.  

b) She has to know Bob’s public 
encoding key (eB,nB) . 

Alice wants to encrypt and sign 
“FRAUD”. 
Alice uses the key pair  
(dA,nA) = (5,35) and (eA,nA) = (5,35) 
Since n = 35 = 5 * 7 we obtain 
ϕ(35)= (5-1)*(7-1) = 24 and choose 
e=5 (which is relative prime to 24) 
and d=5. 
Bob’s key pair is  
(dB,nB)=(7,33) and (eB,nB) = (3,33) 

2. Step: 
Encrypting 
the document 
P 
uses the 
public 
encoding key 
(eR,nR) of the 
recipient. 

Alice uses Bob’s public encoding 
key (eB,nB) to encrypt the 
document P:  C = Pe MOD nB   

She encrypts FRAUD using (eB,nB) 
= (3,33):    C =  Pe MOD nB   
F =  5:       53 =  26 MOD 33 
R =17:    173 =   29 MOD 33 
A =  0:      03 =    0 MOD 33 
U =19:    193 =  28 MOD 33 
D = 3:       33 =  27 MOD 33 
 

BOB ALICE 
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3. Step: 
Signing the 
document C 
Uses the 
private key 
(dS,nS). 

Alice applies her private key 
(dA,nA) to the document C:  
S = Cd MOD nA  
and sends the signature S to the 
recipient Bob. Additionally, the 
encrypted message C is sent to 
Bob. (Why not P ?) 

To sign the document C she uses 
her private key (dA,nA) = (5,35): 
  Cd  =    S MOD nA

 265 =  31 MOD 35 
 295 =  29 MOD 35 
   05 =    0 MOD 35 
 285 =  28 MOD 35 
 275 =  27 MOD 35 

4. Step: 
Verifying the 
authenticity 
of the sender 
by applying 
the public key 
(eB,nB) of the 
recipient. 

Bob may verify the authenticity 
of the sender by computing  
Se MOD nA  
and checking if Se = C. If they 
don’t match, the document is not 
authentic. Attention: fraud or a 
possible computation error has 
occurred!! 
 

Bob verifies the authenticity of 
the document with (eA,nA) = (5,35). 

  Se  =  C  MOD nA

 315 =  26 MOD 35 
 295 =  29 MOD 35 
   05 =    0 MOD 35 
 285 =  28 MOD 35 
 275 =  27 MOD 35 
We observe that C’=C which 
authenticates the sender. 

5. Step: 
Decryption 
The recipient 
uses his 
private key  
(dB,nB) . 

The recipient finally decrypts the 
cipher C by computing P’ = Cd 
MOD nB. We proved already that 
P’ = P for all P.  

Bob decrypts using (dB,nB) = (7,33).  
 Cd  =    P’ MOD nB

 267 =   5 MOD 33           5 = F 
 297 = 17 MOD 33          17 = R 
   07 =   0 MOD 33           0 = A 
 287 =  19 MOD 33         19 = U 
 277 =    3 MOD 33          3 = D 

The encryption and authentication process is straightforward and does not seem to cause 
any trouble - even if the recipient's modulus nR turns out to be larger than the modulus 
of the sender nA. I.e. imagine we switch the above moduli to nB = 35 and nA= 33. When 
reaching the signing stage (step 3) we handle the 33 integers 0-32 and after the 
encrypting stage (step 2) we may obtain the 35 integers between 0-34. Here, the 
integers 0 and 33, 1 and 34 as well as 2 and 35 are signed in the same manner so that C' = 
C allowing a proper digital signature. 
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Figure 3: Ciphering using RSA. 

 

 
Figure 4: Digital signature using RSA. 

 

 
Figure 5: Ciphering and Digital signature using RSA. 
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(5.8) Knapsack algorithm 
The knapsack problem is a simple one. Given a pile of items, each with different weights, 
is it possible to put some of those items into a knapsack so that the knapsack weighs a 
given amount? More formally: Given a set of values M1, M2,…, Mn, and a sum S. Compute 
the values of bi such that 

S=b1M1+b2M2+…+bnMn

The values of bi can be either zero or one. A One indicates that the item is in the 
Knapsack; a zero indicates that it isn't. 

For example, the items might have weights of 1, 5, 6, 11. 14. And 20. You could Pack a 
knapsack that weighs 22, use weights 5, 6. And 11. You could not pack a knapsack that 
weighs 24. In general, the time required to solve this problem seems to grow 
exponentially with the number of items in the pile. 

The idea behind the Merkle-Hellman knapsack algorithm is to encode a message as a 
solution to a series of knapsack problems. A block of plaintext equal in length to the 
number of items in the pile would select the items in the knapsack (plaintext bits 
corresponding to the b values), and the ciphertext would be the resulting sum. Figure 6 
shows a plaintext encrypted with a sample knapsack problem. 

The trick is that there are actually two different knapsack problems, one solvable in 
linear time and the other believed not to be. The easy knapsack can be modified to crate 
the hard knap sack. The public key is the hard knapsack, which can easily be used to 
encrypt but cannot be used to decrypt messages, the private key is the easy knapsack, 
which gives an easy way to decrypt messages. People who don't know the private key are 
forced to try to solve the hard Knapsack problem. 

 
(5.8.1) Superincreasing Knapsacks 
What is the easy knapsack problem? If the list of weights is a superincreasing sequence, 
then the resulting knapsack problem is easy to solve. A superincreasing sequence is a 
sequence in which every term is greater than the sum of all the previous terms. For 
example, {1,3,6,13,27,52} is a superincreasing sequence, but {1,3,4,9,15,25} is not. 
The solution 10 a superincreasing knapsack is easy to find. Take the local weight and 
compare it with the largest number in the sequence. If the total weight is less than the 
number, then it is not in the knapsack. If the total weight is greater than or equal to the 
number, then it is in the knapsack. Reduce the weight of the knapsack by the value and 
move to the next largest number in the sequence. Repeat until finished. If the total 
weight has been brought to zero, then there is a solution. If the total weigh has not, 
there isn't. 
For example, consider a total knapsack weight of 70 and a sequence of weights or 
{2,3,6,13,27,52). The largest weight, 52, is less than 70, so 52 is in the Knapsack. 
Subtracting 52 from 70 leaves 18, the next weight, 27, is greater than 18 so 27 is not in 
the knapsack. The next weight, 13, is less than 18, so 13 is in the knapsack. Subtracting 13 
from 18 leaves 5. The next weight, 6, is greater than 5, so 6 is not in the Knapsack. 
Continuing this process will show, that both 2 and 5 are in the knapsack and the total 
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weight is brought to 0. Which indicates that a solution has been found. Were this a 
Merkle-Hellman knapsack encryption block, the plaintext that resulted from a ciphertext 
value of 70 would be 110101. 
Non-superincreasing, or normal, knapsacks are hard problems; they have no known quick 
algorithm. The only known way to determine which items are in the knapsack is to 
methodically test possible solution until you stumble on the correct one.  
 

Plaintext 1 1 1 0 0 1  0 1 0 1 1 0  0 0 0 0 0 0 
Knapsack 1 5 6 11 14 20  1 5 6 11 14 20  1 5 6 11 14 20 

Ciphertext 1+5+6+20= 
32 

 5+11+14= 
30 

 0= 
0 

Figure 6: Encryption with knapsacks 
 
In knapsack algorithm the private key is a sequence of weights for a superincreasing 
knapsack problem. The public key is a sequence of weights for a normal knapsack problem 
with the same solution. Merkle and Hellman developed a technique for converting a 
superincreasing knapsack problem into a normal knapsack problem. They did this using 
modular arithmetic. 
(5.8.2) Creating the public key from the private key  
To get a normal knapsack sequence, take a superincreasing knapsack sequence, for 
example {2,3,6,13,27,52}, and multiply all of the values by a number n, mod m. The 
modulus should be a number greater than the sum of all the numbers in the sequence: for 
example, 105. The multiplier should have no factors in common with the modulus: for 
example, 31. The normal knapsack sequence would then be 

2*31 mod 105=62 
3*31 mod 105 =93 
6*31 mod 105=81 
13*31 mod 105 =38 
27*31 mod 105 =102 
52*31 mod 105=37 

The knapsack would then be {62,93,81,88,102,37}. 
The superincreasing knapsack sequence is the private key. The normal knapsack sequence 
is the public key. 
 
(5.8.3) Encryption 

To encrypt a binary message, first break it up into blocks equal to the number of items 
in the knapsack sequence. Then, allowing a one to indicate die item is present and a zero 
to indicate that the item is absent, compute the total weights of the knapsacks—one for 
every message block. 
For example, if the message were 011000110101101110 in binary, encryption using the 
previous knapsack would proceed like this: 
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Message =011000   110101   101110 
011000 corresponds to 93 + 81 = 174 
110101 corresponds to 62 + 93 +-38 + 37 = 280 
101110 corresponds to 62 + 81 + 88 + 102 = 333 

The ciphertext would be 
174,280,333 

 
(5.8.4) Decryption 
A legitimate recipient of this message knows the private key: the original superincreasing 
knapsack, as well as the values of n and m used to transform it into a normal knapsack. To 

decrypt the message, the recipient must first determine n-1 such that m) (mod1)( 1 ≡−nn . 
Multiply each of the ciphertext values by n-1 mod m, and then partition with the private 
knapsack to get the plaintext values. 
In our example, the super-increasing knapsack is {2,3,6,13,27,52}, m is equal to 105, and n 
is equal to 31. The ciphertext message is 174,280,333. In this case n-1 is equal to 61, so 
the ciphertext values must be multiplied by 61 mod 105. 

174*61 mod 105 = 9  = 3+6, which corresponds to 011000 
280*61mod 105 = 70 = 2+3+13+52, which corresponds to 110101 
333*61mod 105 = 48 = 2+6+13+27, which corresponds to 101110 

The recovered plaintext is 011000 110101 101110. 
(5.8.5) Additional Knapsack example 
User R: Publishes B = {17, 34, 31, 25, 13} 

Keeps A = {1, 2, 4, 8, 16}, n = 17, n-1 = 24, and m = 37 secret 
User S: wants to send the message M = 12 to User R 
User S: Takes M = 12 = (01100)2

Computes 
C := 0 * 17 +1 * 34 +1 * 31 +0 * 25 +0 * 13 
which gives C = 65 
Send C = 65 to User R 

User R: Receives C = 65 
Computes C’ = 65n-1 = 65 * 24 = 6 mod 37 
Solves the easy knapsack problem: 
6 = 0 * 1 +1 * 2 +1 * 4 +0 * 8 +0 * 16 
This gives the message as (01100)2 = 12 
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Q1) Find 5 numbers that are congruent to  

1) 7 mod 5 
2) 7 mod 25 
3) 17 mod 25 
 

Q2) Reduce the following:  

Attempt all the following exercises  

 
 
 

Exercises 
 

1) 40 mod 12 
2) 50 mod 12 
3) 50 mod 24 
4) 40 mod 24 
5) 100 mod 33 
6) 1000 mod 33 
7) 113 mod 12 
8) 154 mod 17 
9) 5416 mod 55 
10) 827 mod 84 
 

Q3) Compute the following:  
1) 73 + 58 = x mod 12 
2) 1411 - 285 = x mod 141 
3) 74 * 93 = x mod 13 
4) 33 * 266 = x mod 26 
5) 2590 * 5253= x mod 26 
6) 133 * 5202 = x mod 26 
 

Q4) Do these problems: 
1) 7 / 5 = x mod 12  
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2) 7 / 11 = x mod 12   
3) 29 / 7 = x mod 12 
4) x * 7 = 8 mod 12 
5) 7 * x = 9 mod 12 
6) x * 7 = 5 mod 12 
 

Q5) Compute ϕ(21), ϕ(22), ϕ(23), ϕ(25), and ϕ(28) 
 

Q6) Complete 
Say M=90, since 90=____ the prime factors are _______, so that  
ϕ(90) = 90 * (1-1/__) * (1-1/__) * (1-1/__)   
= 90 * ____________________ 
= _______________  
= _______________ 
= ___ 24 
  

Q7) In RSA, prove that the plain letter P = 10 will be decrypted correctly by showing 
that 109 = 10 MOD 15.  

Q8)  In RSA,  prove that the plain letter P = 8 will be decrypted correctly by showing 
that 89 = 8 MOD 15.  

Q10) Use the RSA algorithm to encrypt, sign, authenticate and decrypt the document 
“CODE” using nB=35 and nA=39.  

Q11) You have a superincreasing sequence A={2,4,7,15,29,57}, use it to create a Knapsack 
system. Then use this system to encrypt the plaintext (URUK). 

Q12) Decrypt the result of Q11. 

 

 



Chapter six 

Steganography and case studies 
 
(6.1) Introduction 
Information hiding represents a class of process used to embed data into various forms 
of media such as image, audio, or text. There are two types of information hiding the 
first one is, steganography and the second is digital watermarking.  
Steganography serves to hide secret messages in other messages, such that the secret 's 
very existence is concealed. Generally the sender writes an innocuous message and then 
conceals a secret message on the same piece of paper. 
Steganography has its place in security. It is not intended to replace cryptography but to 
supplement it. Hiding message with steganography reduces the chance of a message being 
detected. 
Steganography and encryption are both used to ensure data confidentiality. However the 
main difference between them is that with encryption anybody can see that both parties 
are communicating in secret. Steganography hides the existence of a secret message and 
in the best case nobody can see that both parties are communicating in secret. 
Adding encrypted copyright information to a file could be easy to remove but embedding 
it within the contents of the file itself can prevent it being easily identified and removed. 
Digital watermarking, some of the objectives of using this techniques are confirmation of 
property, follow up of unauthorized copies, validation of identification and verification of 
integrity, labeling, usage control and protection of contents. 
In other word, we can classify information hiding into two types: steganography and 
digital watermarking. 
 
 

Information Hiding 

Digital watermarking Steganography 

 
 
 
 
 
 
 

Figure 1: Information hiding classification 
 
(6.2) History 
One of the earliest uses of steganography was documented in Histories. Herodotus tells 
how around 440 B.C. Histiaeus shaved the head of his most trusted slave and tattooed it 
with a message which disappeared after the hair had regrown. The purpose of this 
message was to instigate a revolt against the Persians. Another slave could be used to 
send a reply. 
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During the American Revolution, invisible ink which would glow over a flame was used by 
both the British and Americans to communicate secretly. 
Steganography was also used in both World Wars. German spies hid text by using invisible 
ink to print small dots above or below letters and by changing the heights of letter-
strokes in cover texts. 
During World War II, the Germans would hide data as microdots. This involved 
photographing the message to be hidden and reducing the size so that that it could be 
used as a period within another document. 
A message sent by a German spy during World War II read: 
“Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit. 
Blockade issue affects for pretext embargo on by-products, ejecting suets and vegetable 
oils.” 
By taking the second letter of every word the hidden message “Pershing sails for NY 
June 1” can be retrieved. 
 
 
(6.3) Terminology 
In this chapter the important terminology used are:- 

1. Embedded  <data-type>: something to be hidden in something else. 
2. Stego-<data-type>: the output of the hiding process; something that has the 

embedded. 
3. Cover <data-type>: An input with "original'' form of the stego-message. In some 

applications such a cover message is given from the outside, in others, it can be 
chosen during the hiding process. The letter is represented by the dashed 
extension to the inner hiding process. 

4. Stego-object: The output from stego-system, sometimes hidden in it. 
 
(6.4) Steganography 
Steganography literally means "covered writing", it is the art of hiding the very existence 
of a message. 
Though steganography is an ancient craft, the onset of computer technology has given it 
new life. Computer-based steganographic techniques introduce changes to digital covers 
to embed information foreign to the native covers. 
Most applications of steganography follow one general principle, as illustrated in Figure 2. 
Sender, who wants to share a secret message m with recipient, randomly chooses (using 
the private random source r) a harmless message C called cover object, which can be 
transmitted to Recipient without raising suspicion, and embeds the secret message into C, 
probably by using key K, called stego-key. Sender therefore changes the cover C to a 
stego-object S. This must be done in a very careful way, so that third party, knowing only 
the apparently harmless message S, can not detect the existence of the secret. 
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Figure 2: General principle of steganography 

 
Cover could be any computer readable data such as image files, digital sound or written 
text. 
Only Recipient should be able to extract the message in the correct way, of course this is 
possible only if there is a shared secret between the sender and the recipinent. 
 

(6.4.1) Steganography Types 
There are three main types of Steganography as illustrated in Figure 3. 
 
 
 
 
 
 

 

Steganography 

Pure Steganography Public Key Steganography Secrete Key Steganography

Figure 3: Steganography Types 
 
(a) Pure Steganography 
We call a Steganography system which does not require the prior exchange of some 
secret information (like a stego-key) pure steganography. Formally, the embedding 
process can be described as a mapping E: C X M →  C, where C is the set of possible 
covers and M the set of possible messages. The extraction process consists of a mapping 
D: C →  M , extracting the secret message out of a cover. 
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(b) Secret Key Steganography 
A secret key Steganography system is similar to a symmetric cipher: the sender chooses 
cover C and embeds the secret message into C using a secret Key K. If the key used in 
the embedding process is known to the receiver, he can reverse the process and extract 
the secret message. 
Anyone who does not known the secret key should not be able to obtain evidence of the 
encoded information. Again, the cover C and the stego-object can be perceptually similar.   
The mapping of process, if K. the set of secret keys, 
Ek : C x M x K  C and D→ k : C x K →  M with the property that Dk(EK(c, m, k), k) = m for 
all m ∈ M, c ∈ C and k ∈ K, is called a secret key steganography system. 
 
(C) Public key Steganography 
Public Key steganography system require the use of two keys, one is private and the other 
one is public key; the public key is stored in a public database whereas the public key is 
used in the embedding process, the secret key is used to reconstruct the secret message. 
In public -key cryptography, it is not necessary for two people to share a secret key to 
establish a secure channel. One only needs to know the other's public key. This suggests a 
possible approach to steganography in which a secret key does not have to be agreed upon 
by sender and recipient prior to imprisonment. 
 
(6.4.2) Steganography in text 
 

• Line sfiift coiling 
In this method, text lines are vertically shifted to encode the document uniquely. 
Encoding and decoding can generally be applied either to the format file of 
document, or the bitmap of page image. 
By moving every second line of document either 1/300 of an inch up or down. The 
line-shift coding worked particularly well, and documents could still be completely 
decoded even after the tenth photocopy. 

• Word-Shift Coding 
In word shift coding, codewords are coded into a document by shifting the 
horizontal locations of words. Within text lines, while maintaining a natural spacing 
appearance. This encoding can also be applied to either the formal file or the page 
image bitmap. The method, of course, is only applicable to documents with variable 
spacing between adjacent words, such as in documents that have been text-justified, 
as result of this variable spacing, it is necessary to have the original image, or to at 
least know the spacing between words in the uncoded document. 
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(6.4.3) Case study: Text in image 
 
Image files 
Digital technology offers new ways to apply steganography techniques, including the 
ability to hide information inside digital images. A digital image is “an array of numbers 
that represent light intensities at various points”. Combined, these light intensities or 
pixels form the image’s raster data. Images with 640 x 480 pixels and 256 colors can 
contain up to 300 kilo-bits of data. But it is more typical to see digital images in sizes of 
eight-bit or 24-bit files. This provides an excellent opportunity for hiding information, 
especially in image sizes of 24-bits. 
Each pixel on a computer monitor selects from three primary color variations: red, blue, 
and green. Each color is represented by a single storage byte. With 24-bit images, three 
bytes are allocated for each primary color (hence eight bits per byte multiplied by three 
bytes). 
Represented in binary values, for instance, a white background is 11111111, 11111111, 
11111111. Pixel representation makes up a file’s size. Thus a 24-bit image displayed in high 
resolution (1,024 x 768) has more than 2 million pixels, producing a file over 2MB in size. 
The larger the file, the greater opportunity there is to apply steganography techniques. 
The downside to this of course is that large file sizes might induce unwanted suspicions. 
To deal with this, file compression is used. There are two kinds available today: lossy and 
lossless. Both methods compress files to save storage space, but do so differently. This 
is important because certain compression applications can interfere with hidden 
messages. Lossy compression is the most efficient space saver, but does not retain the 
original image’s exactness. JPEG (Joint Photographic Experts Group) is an example of 
such compression. A lossless approach, in contrast, retains the integrity of the original 
image. Images saved as GIF (Graphic Interchange Format) or BMP (bitmap file) apply 
lossless compression.  
 
Inserting Hidden Data  
Two files are required for steganography to work. The first file is an innocuous cover 
image that will host the second file containing hidden information. The hidden message 
can be anything that is embeddable into a bit stream such as plain text or cipher text. 
There are several methods to hide information in digital images, from taking advantage of 
noisy areas that draw less attention in an image, to scattering the message randomly 
throughout the image. A brief discussion on each of these approaches is in order before 
continuing. 
 
Least Significant Bit 
A color byte contains eight bits, each of which varies in terms of impact on the resulting 
color. The least significant bit (or the final bit in a stream) affects the smallest change 
of the eight bits. On the other hand, the first bit of the stream has the largest influence 
on color selection. For instance, as Denning illustrates, the least and most significant bit 
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are similar to the hour and second hand on a clock. While a change in the second hand 
alters time very slightly, a change in the hour hand is extreme.  
If the least significant bit of every bit stream were to be allocated for a hidden 
message, the resulting image file would appear unaltered. Moreover, the larger the bit 
size, the more subtle the change. For example, using the least significant bit in a 24-bit 
image size, the original raster data for three pixels is: 
 

00101100 10101100 10101000 
00101011 01101000 00101011 
00101010 00111001 00101010 

 
Inserting the binary value for A (10000011) would result in: 

00101101 10101100 10101000 
00101010 01101000 00101010
00101010 00111001 00101011

The least significant bit approach is simple to understand and use, but it is largely 
vulnerable to changes in data due to file compression. Since JPEG compression is so 
efficient in reducing file sizes, most image traffic over the Internet utilizes it. However, 
as stated previously, the lossy compression technique JPEG employs may alter the least 
significant bit. 
 
(6.5) Watermarking 
Through the use of advanced computer software, authors of images, music and software 
can place, a hidden "trademark" in their product, allowing them to keep a check on piracy. 
This is commonly known as watermarking. 
Watermarking is typically short in length or bits, once added, a watermarking must be 
robust to removal, and reliably detected even after typical image transformation such as 
rotation, translation, cropping, and quantization. 
The watermarking can be of any nature such as a number, text, or an image. 
 
(6.5.1) Watermarking types 
(a) Visible Watermark 
The Visible watermarking purpose is to discourage unauthorized distribution of digital 
images, By seeing the watermark, a person is less likely, to copy or distribute the image 
without permission. 
(b) Invisible Watermark 
The invisible watermark not revealed until some action is taken upon the source to 
uncover it. 
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(6.5.2) Watermarking technique 
• Simple Watermarking 

A very simple yet widely used technique for watermarking images is to add a pattern on 
top of an existing image. Usually this pattern is an image itself - a logo or something 
similar, which distorts the underlying image. 

 
Figure 4. Visible watermarking. 

 
In the example above, the pattern is the middle image while the portrait picture of Mr.X 
is the image being watermarked. In a standard image editor it is possible to merge both 
images and get a watermarked image. As long as you know the watermark, it is possible to 
reverse any adverse effects so that the original doesn’t need to be kept. This method is 
only really applicable to watermarking, as the pattern is visible and even without the 
original watermark, it is possible to remove the pattern from the watermarked image with 
some effort and skill. 
The equations that can used her is 
 
Additive watermarking: 

C=A+ µ B where µ =0.001 for example. µ  i known as scaling factor. 
 
Or Multiplicative watermarking: 

C=A+ µ *A*B 
 
 

• LSB – Least Significant Bit Hiding (Image Hiding) 
This method is probably the easiest way of hiding information in an image and yet it is 
surprisingly effective. It works by using the least significant bits of each pixel in one 
image to hide the most significant bits of another. So in a JPEG image for example, the 
following steps would need to be taken  

1. First load up both the host image and the image you need to hide. 
2. Next chose the number of bits you wish to hide the secret image in. The 

more bits used in the host image, the more it deteriorates. Increasing the 
number of bits used though obviously has a beneficial reaction on the secret 
image increasing its clarity. 
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3. Now you have to create a new image by combining the pixels from both 
images. If you decide for example, to use 4 bits to hide the secret image, 
there will be four bits left for the host image. (PGM - one byte per pixel, 
JPEG - one byte each for red, green, blue and one byte for alpha channel in 
some image types) 

Host Pixel: 10110001 
Secret Pixel: 00111111 

New Image Pixel: 10110011 
 

4. To get the original image back you just need to know how many bits were 
used to store the secret image. You then scan through the host image, pick 
out the least significant bits according the number used and then use them 
to create a new image with one change - the bits extracted now become the 
most significant bits.  

Host Pixel: 10110011 
Bits used: 4 

New Image: 00110000 
 

 
Figure 5: Least significant bit hiding 
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To show how this technique affects images, Figure 6 shows examples using different bit 
values. Mr.X image on the left is the host image while Mr.Y on the right is the secret one 
we wish to hide. 
This method works well when both the host and secret images are given equal priority. 
When one has significantly more room than another, quality is sacrificed. Also while in 
this example an image has been hidden, the least significant bits could be used to store 
text or even a small amount of sound. All you need to do is change how the least 
significant bits are filled in the host image. However this technique makes it very easy to 
find and remove the hidden data. 
 
(6.6) Difference between Steganography and Digital watermarking 
 
There are many differences between steganography and digital walermarkuig and the 
major differences are: 
 

 Steganography Digital watermarking 
1 It is always invisible.  Sometimes visible and sometimes i 

invisible.  
2  The information hiding by 

steganography just hides any 
information.  

The information hiding by 
watermarking is always associated to 
be digital object you be protected or 
to its owner.  

3  The robustness of steganography 
is mainly concerned with 
detection of the hidden message.  

The robustness of digital 
watermarking concerns potential 
removal by a pirate.  

4  Steganography communication are 
usually point-to-point.  

Watermarking techniques are usually 
one to many.  

 
 
(6.7) Requirements Of Hiding Information Digitally 
 
There are many different protocols and embedding techniques that enable us to hide 
data in a given object. However, all of the protocols and techniques must satisfy a number 
of requirements so that steganography can be applied correctly. The following is a list of 
main requirements that steganography techniques must satisfy: 

• The integrity of the hidden information after it has been embedded inside the 
stego object must be correct. The secret message must not change in any way, 
such as additional information being added, loss of information or changes to the 
secret information after it has been hidden. If secret information is changed 
during steganography, it would defeat the whole point of the process. 
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• The stego object must remain unchanged or almost unchanged to the naked eye. If 
the stego object changes significantly and can be noticed, a third party may see 
that information is being hidden and therefore could attempt to extract or to 
destroy it. 

• In watermarking, changes in the stego object must have no effect on the 
watermark. Imagine if you had an illegal copy of an image that you would like to 
manipulate in various ways. These manipulations can be simple processes such as 
resizing, trimming or rotating the image. The watermark inside the image must 
survive these manipulations, otherwise the attackers can very easily remove the 
watermark and the point of steganography will be broken. 

• Finally, we always assume that the attacker knows that there is hidden information 
inside the stego object. 
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