
 I

 II

Disclaimer

Excel VBA Made Easy is an independent publication and is not affiliated with,

nor has it been authorized, sponsored, or otherwise approved by Microsoft

Corporation.

Trademarks

Microsoft, Visual Basic, Excel and Windows are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries.

Liability

The purpose of this book is to provide basic guideline for people interested in

Excel VBA programming. Although every effort and care has been taken to

make the information as accurate as possible, the author shall not be liable for

any error, harm or damage arising from using the instructions given in this book.

ISBN: 1449959628

Copyright© Liew Voon Kiong 2009. All rights reserved. No part of this book may

be reproduced or transmitted in any form or by any means, without permission

in writing from the author.

 III

Acknowledgement

I would like to express my sincere gratitude to many people who have made

their contributions in one way or another to the successful publication of this

book.

My special thanks go to my children Xiang, Yi and Xun. My daughter Xiang

edited this book while my sons Yi and Xun contributed their ideas and even

wrote some of the sample programs for this book. I would also like to appreciate

the support provided by my beloved wife Kim Huang and my youngest daughter

Yuan. I would also like to thank the million of visitors to my VBA Tutorial

website at http://www.vbtutor.net/VBA/vba_tutorial.html for their support and

encouragement.

About the Author

Dr. Liew Voon Kiong holds a bachelor degree in Mathematics(BSc), a master

degree in management (MM) and a doctoral degree in business

administration(DBA). He has been involved in programming for more than 15

years. He created the popular online Visual Basic Tutorial at www.vbtutor.net

in 1996 and since then the web site has attracted millions of visitors and it is

one of the top searched Visual Basic websites in many search engines

including Google. In order to provide more support for Excel VBA hobbyists, he

has written this book based on his online VBA tutorial at

http://www.vbtutor.net/VBA/vba_tutorial.html. He is also the author of Visual

Basic 6 Made Easy and Visual Basic 2008 Made Easy

 IV

CONTENTS

Chapter 1 Introduction to Excel VBA 1

Chapter 2 Working with Variables in Excel VBA 7

Chapter 3 Using Message box and Input box in Excel VBA 16

Chapter 4 Using If….Then….Else in Excel VBA 25

Chapter 5 For……Next Loop 32

Chapter 6 Do……Loop 40

Chapter 7 Select Case.........End Select 44

Chapter 8 Excel VBA Objects Part 1–An Introduction 46

Chapter 9 Excel VBA Objects Part 2 –The Workbook Object 55

Chapter 10 Excel VBA Objects Part 3 –The Worksheet Object 60

Chapter 11 Excel VBA Objects Part 4–The Range Object 66

Chapter 12 Working with Excel VBA Controls 75

Chapter 13 VBA Procedures Part 1-Functions 86

Chapter 14 VBA Procedures Part 2-Sub Procedures 96

Chapter 15 String Handling Functions 99

Chapter 16 Date and Time Functions 102

Chapter 17 Sample Excel VBA Programs 109

 1

Chapter 1

Introduction to Excel VBA

1.1 The Concept of Excel VBA

VBA is the acronym for Visual Basic for Applications. It is an integration of the

Microsoft's event-driven programming language Visual Basic with Microsoft Office

applications such as Microsoft Excel, Microsoft Word, Microsoft PowerPoint and

more. By running Visual Basic IDE within the Microsoft Office applications, we can

build customized solutions and programs to enhance the capabilities of those

applications.

Among the Visual Basic for applications, Microsoft Excel VBA is the most popular.

There are many reasons why we should learn VBA for Microsoft Excel, among them

is you can learn the fundamentals of Visual Basic programming within the MS Excel

environment, without having to purchase a copy of Microsoft Visual Basic software.

Another reason is by learning Excel VBA; you can build custom made functions to

complement the built-in formulas and functions of Microsoft Excel. Although MS

Excel has many built-in formulas and functions, they are not enough for certain

complex calculations and applications. For example, it is very dificult to calculate

monthly payment for a loan taken using Excel's built-in formulas, but it is relatively

easier to write VBA code for such calculation. This book is written in such a way that

you can learn VBA for MS Excel at your own pace.

You can write Excel VBA code in every version of Microsoft Office, including MS

Office 97, MS Office2000, MS Office2002, MS Office2003, MS Office XP , MS Office

2007 and MS Offce 2010. By using VBA, you can build some very powerful tools in

 2

MS Excel, including financial and scientific applications that can perform financial

calculations and programs that can perform statistical analyses.

1.2 The Visual Basic Editor in MS Excel

There are two ways which you can start VBA programming in MS Excel. The first is

to place a command button on the spreadsheet and start programming by clicking the

command button to launch the Visual Basic Editor. The second way is to launch the

Visual Basic Editor by clicking on the Tools menu then select Macro from the drop-

down menu and choose Visual Basic Editor. Lets start with the command button first.

In order to place a command button on the MS Excel spreadsheet, you click the View

item on the MS Excel menu bar and then click on toolbars and finally select the

Control Toolbox after which the control toolbox bar will appear, as shown in Figure

1.1. ,then click on the command button and draw it on the spreadsheet, as shown in

Figure 1.2.

Figure 1.1: Displaying Control Toolbox in MS Excel.

 3

Figure 1.2: The Command Button in Design Mode

Now you select the command button and make sure the design button on the far left

of the control toolbox is depressed. Next, click on the command button to launch the

Visual Basic Editor. Enter the statements as shown in figure 1.3. Let’s write out the

code here:

Example 1.1

Private Sub CommandButton1_Click ()

Range (“A1:A10).Value=”Visual Basic “

Range (“C11”).Value=Range (“A11”).Value +Range (“B11”).Value

End Sub

 4

The first statement will fill up cell A1 to cell A10 with the phrase "Visual Basic" while

the second statement add the values in cell A11 and cell B11 and then display the

sum in cell C11. To run the program, you need to exit the Visual Basic Editor by

clicking the Excel button on the far left corner of the tool bar. When you are in the MS

Excel environment, you can exit the design mode by clicking the design button, then

click on the command button.

Figure 1.3: The Visual Basic Editor IDE in MS Excel

Running the above VBA will give you the output as shown in Figure 1.4

 5

Figure 1.4:

1.3 The Excel VBA Code

Writing Excel VBA code is almost exactly the same as writing code in Visual Basic,

which means you have to use syntaxes similar to Visual Basic. However, there are

codes specially designed for use in MS Excel, such as the use of the object or

function called Range. It is the function that specifies the value of a cell or a range of

cells in MS Excel spreadsheet. The format of using Range is as follows:

Range(“cell Name”).Value=K or Range(“Range of Cells”).Value=K

Where Value is the property of Range and K can be a numeric value or a string

 6

Example 1.2

Private Sub CommandButton1_Click ()

Range (“A1”).Value= “VBA”

End Sub

The above example will enter the text “VBA” into cell A1 of the MS Excel spreadsheet

when the user presses the command button. You can also use Range without the

Value property, as shown in Example 1.3:

Example 1.3

Private Sub CommandButton1_Click ()

Range ("A1") = 100

End Sub

In the above example, clicking the command button with enter the value of 100 into

cell A1 of the MS Excel spreadsheet. The follow example demonstrates how to input

values into a range of cells:

Example 1.4

Private Sub CommandButton1_Click ()

Range ("A1:A10") = 100

End Sub

 7

Chapter 2

Working with Variables in Excel VBA

2.1 The Concept of Variables

Variables are like mail boxes in the post office. The contents of the variables change

every now and then, just like the mail boxes. In Excel VBA, variables are areas

allocated by the computer memory to hold data. Like the mail boxes, each variable

must be given a name. To name a variable in Excel VBA, you have to follow a set of

rules, as follows:

a) Variable Names

The following are the rules when naming the variables in VBA

� It must be less than 255 characters

� No spacing is allowed

� It must not begin with a number

� Period is not permitted

Examples of valid and invalid variable names are displayed in Table 2.1

Table 2.1: Examples of valid and invalid variable names

Valid Name Invalid Name

My_Car My.Car

this year 1NewBoy

Long_Name_Can_beUSE He&HisFather *& is not acceptable

Group88 Student ID * Space not allowed

 8

b) Declaring Variables

In VBA, we need to declare the variables before using them by assigning names and

data types. There are many VBA data types, which can be grossly divided into two

types, namely the numeric data types and the non-numeric data types.

i) Numeric Data Types

Numeric data types are types of data that consist of numbers, which can be

computed mathematically with various standard arithmetic operators such as addition,

subtraction, multiplication, division and more. In VBA, the numeric data are divided

into 7 types, which are summarized in Table 2.2.

Table 2.2: Numeric Data Types

Type Storage Range of Values

Byte 1 byte 0 to 255

Integer 2 bytes -32,768 to 32,767

Long 4 bytes -2,147,483,648 to 2,147,483,648

Single 4 bytes
-3.402823E+38 to -1.401298E-45 for negative values

1.401298E-45 to 3.402823E+38 for positive values.

Double 8 bytes

-1.79769313486232e+308 to -4.94065645841247E-324 for

negative values

4.94065645841247E-324 to 1.79769313486232e+308 for

positive values.

Currency 8 bytes -922,337,203,685,477.5808 to 922,337,203,685,477.5807

Decimal 12 bytes
+/- 79,228,162,514,264,337,593,543,950,335 if no decimal is use

+/- 7.9228162514264337593543950335 (28 decimal places).

 9

ii) Non-numeric Data Types

Nonnumeric data types are summarized in Table 2.3

Table 2.3: Nonnumeric Data Types

Data Type Storage Range

String(fixed length) Length of string 1 to 65,400 characters

String(variable length) Length + 10 bytes 0 to 2 billion characters

Date 8 bytes January 1, 100 to December 31, 9999

Boolean 2 bytes True or False

Object 4 bytes Any embedded object

Variant(numeric) 16 bytes Any value as large as Double

Variant(text) Length+22 bytes Same as variable-length string

You can declare the variables implicitly or explicitly. For example, sum=text1.text

means that the variable sum is declared implicitly and ready to receive the input in

textbox1. Other examples of implicit declaration are volume=8 and label=”Welcome”.

On the other hand, for explicit declaration, variables are normally declared in the

general section of the code window using the Dim statements. Here is the syntax:

Dim variableName as DataType

Example 2.1

Dim password As String
Dim yourName As String
Dim firstnum As Integer
Dim secondnum As Integer
Dim total As Integer
Dim BirthDay As Date

 10

You may also combine them into one line, separating each variable with a comma, as

follows:

Dim password As String, yourName As String, firstnum As Integer.

If the data type is not specified, VBE will automatically declare the variable as a

Variant. For string declaration, there are two possible formats, one for the variable-

length string and another for the fixed-length string. For the variable-length string, just

use the same format as Example 2.1 above. However, for the fixed-length string, you

have to use the format as shown below:

Dim VariableName as String * n

Where n defines the number of characters the string can hold. For example, Dim

yourName as String * 10 mean yourName can hold no more than 10 Characters.

Example 2.2

In this example, we declared three types of variables, namely the string, date and

currency.

Private Sub CommandButton1_Click()

 Dim YourName As String, BirthDay As Date, Income As Currency

YourName = "Alex"

BirthDay = "1 April 1980"

Income = 1000

Range("A1") = YourName

Range("A2") = BirthDay

Range("A3") = Income

End Sub

 11

Figure 2.1: Output screen for Example 2.2

2.2 The use of Option Explicit

The use of Option Explicit is to help us to track errors in the usage of variable names

within a program code. For example, if we commit a typo, VBE will pop up an error

message “Variable not defined”. Indeed, Option Explicit forces the programmer to

declare all the variables using the Dim keyword. It is a good practice to use Option

Explicit because it will prevent us from using incorrect variable names due to typing

errors, especially when the program gets larger. With the usage of Option Explicit, it

will save us time in debugging our programs.

When Option Explicit is included in the program code, we have to delare all variables

with the Dim keyword. Any variable not declared or wrongly typed will cause the

program to popup the “Variable not defined” error message. We have to correct the

error before the program can continue to run.

 12

Example 2.3

This example uses the Option Explicit keyword and it demonstrates how a typo is

being tracked.

Option Explicit

Private Sub CommandButton1_Click()
Dim YourName As String, password As String
YourName = "John"
password = 12345
Cells(1, 2) = YourNam
Cells(1, 3) = password

End Sub

The typo is YourNam and the error message ‘variable not defined” is displayed .

Figure 2.2: Error message due to typo error

 13

2.3 Assigning Values to the Variables

After declaring various variables using the Dim statements, we can assign values to

those variables. The general format of an assignment is

Variable=Expression

The variable can be a declared variable or a control property value. The expression

could be a mathematical expression, a number, a string, a Boolean value (true or

false) and more. Here are some examples:

firstNumber=100

secondNumber=firstNumber-99

userName="John Lyan"

userpass.Text = password

Label1.Visible = True

Command1.Visible = false

ThirdNumber = Val(usernum1.Text)

total = firstNumber + secondNumber+ThirdNumber

2.4 Performing Arithmetic Operations in Excel VBA

In order to compute input from the user and to generate results in Excel VBA, we can

use various mathematical operators. In Excel VBA, except for + and -, the symbols

for the operators are different from normal mathematical operators, as shown in

Table 2.3.

 14

Table 2.3: Arithmetic Operators

Operator Mathematical function Example

^ Exponential 2^4=16

* Multiplication 4*3=12

/ Division 12/4=3

Mod
Modulus (return the remainder from an

integer division)
15 Mod 4=3

\ Integer Division (discards the decimal places) 19\4=4

+ or & String concatenation
"Visual"&"Basic"="Visual

Basic"

Example 2.4

Option Explicit

Private Sub CommandButton1_Click ()

Dim number1, number2, number3 as Single

Dim total, average as Double

number1=Cells (1, 1).Value

number1=Cells (2, 1).Value

number3= Cells (3, 1).Value

 Total=number1+number2+number3

Average=Total/3

Cells (5, 1) =Total

Cells (6, 1) =Average

End Sub

 15

In example 2.4, three variables are declared as single and another two variables are

declared as variant. Variant means the variable can hold any numeric data type. The

program computes the total and average of the three numbers that are entered into

three cells in the Excel spreadsheet.

Example 2.5

Option Explicit

Private Sub CommandButton1_Click()

Dim secondName As String, yourName As String

firstName = Cells(1,1).Value

secondName = Cells(2,1).Value

yourName = firstName + " " + secondName

 Cells(3,1) = yourName

End Sub

In the above example, three variables are declared as string. The variable firstName

and the variable secondName will receive their data entered by the user into

Cells(1,1) and cells(2,1) respectively. The variable yourName will be assigned the

data by combining the first two variables. Finally, yourName is displayed on Cells (3,

1). Performing addition on strings will result in concatenation of the strings, as shown

in figure 2.3 below. Names in A1 and A2 are joined up and displayed in A3.

Figure 2.3: Concatenation of Strings

 16

Chapter 3

Using Message box and Input box

There are many built-in functions available in Excel VBA which we can use to

streamline our VBA programs. Among them, message box and input box are most

commonly used. These two functions are useful because they make the Excel VBA

macro programs more interactive. The input box allows the user to enter the data

while the message box displays output to the user.

3.1 The MsgBox () Function

The objective of the MsgBox function is to produce a pop-up message box and

prompt the user to click on a command button before he or she can continue. The

code for the message box is as follows:

 yourMsg=MsgBox(Prompt, Style Value, Title)

The first argument, Prompt, displays the message in the message box. The Style

Value determines what type of command button that will appear in the message box.

Table 3.1 lists the command button that can be displayed. The Title argument

displays the title of the message box.

 17

 Table 3.1: Style Values and Command Buttons

Style Value Named Constant Button Displayed

0 vbOkOnly Ok button

1 vbOkCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons.

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

We can use the named constant in place of integers for the second argument to

make the programs more readable. In fact, VBA will automatically show a list of

named constants where you can select one of them. For example,

yourMsg=MsgBox("Click OK to Proceed", 1, "Startup Menu") and

yourMsg=Msg("Click OK to Proceed". vbOkCancel,"Startup Menu") are the

same. yourMsg is a variable that holds values that are returned by the MsgBox ()

function. The values are determined by the type of buttons being clicked by the users.

It has to be declared as Integer data type in the procedure or in the general

declaration section. Table 3.2 shows the values, the corresponding named constants

and the buttons.

 18

Table 3.2: Returned Values and Command Buttons

 Value Named Constant Button Clicked

1 vbOk Ok button

2 vbCancel Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

6 vbYes Yes button

7 vbNo No button

Example 3.1

In this example, the message in cell (1,2) “Your first VBA program” will be displayed

in the message box. As no named constant is added, the message will simply display

the message and the “OK” button, as shown in Figure 3.1

Private Sub CommandButton1_Click()

Dim YourMsg As String

Cells(1, 2) = "Your first VBA program"

YourMsg = Cells(1, 2)

MsgBox YourMsg

End Sub

 19

Figure 3.1: Message box with the OK button

Example 3.2

In this Example, the named constant vbYesNoCancel is added as the second

argument, so the message box will display the Yes, No and the Cancel buttons, as

shown in Figure 3.2.

Private Sub CommandButton1_Click()

Dim YourMsg As String

Cells(1, 2) = "Your first VBA program"

YourMsg = Cells(1, 2)

MsgBox YourMsg, vbYesNoCancel

End Sub

 20

Figure 3.2: Message box with the Yes, No and Cancel buttons

To make the message box looks more sophisticated, you can add an icon beside the

message. There are four types of icons available in VBE, as shown in Table 11.3.

 Table 3.3

 21

Value Named Constant Icon

16 vbCritical

32 vbQuestion

48 vbExclamation

64 vbInformation

Example 3.3

The code in this example is basically the same as Example 3.2, but the named

vbExclamation is added as the third argument. The two name constants can be

joined together using the “+” sign. The message box will now display the exclamation

icon, as shown in Figure 3.3.

Private Sub CommandButton1_Click()

Dim YourMsg As String

Cells(1, 2) = "Your first VBA program"

YourMsg = Cells(1, 2)

MsgBox YourMsg, vbYesNoCancel + vbExclamation

End Sub

 22

Figure 3.3: Message box with the exclamation icon.

You can even track which button is clicked by the user based on the returned values

shown in Table 3.2. In Example 3.4, the conditional operators If….Then…Else are

used. You do not have to really understand the program logics yet, they will be

explained in later chapter.

Example 3.4

 23

Private Sub CommandButton1_Click()

Dim testMsg As Integer

testMsg = MsgBox("Click to Test", vbYesNoCancel + vbExclamation, "Test

Message")

If testMsg = 6 Then

Cells(1,1).Value = "Yes button was clicked"

ElseIf testMsg = 7 Then

Cells(1,1).Value = "No button was clicked"

Else

Cells(1,1).Value = "Cancel button was clicked"

End If

End Sub

3.2 The InputBox() Function

An InputBox() is a function that displays an input box where the user can enter a

value or a message in the form of text. The format is

 myMessage=InputBox(Prompt, Title, default_text, x-position, y-position)

myMessage is a variant data type but typically it is declared as a string, which

accepts the message input by the users. The arguments are explained as follows:

• Prompt - The message displayed in the inputbox.

• Title - The title of the Input Box.

• default-text - The default text that appears in the input field where users can

use it as his intended input or he may change it to another message.

• x-position and y-position - the position or the coordinates of the input box.

Example 3.5

 24

 The Interface of example 3.5 is shown in Figure 3.4

Private Sub CommandButton1_Click()

Dim userMsg As String

userMsg = InputBox("What is your message?", "Message Entry Form", "Enter

your messge here", 500, 700)

Cells(1,1).Value=userMsg

End Sub

When the user clicks the OK button, the input box as shown in Figure 3.4 will appear.

Notice that the caption of the input box is "Message Entry Form" and the prompt

message is “What is your message”. After the user enters the message and clicks

the OK button, the message will be displayed in cell A1

Figure 3.4: The input box

 25

Chapter 4

Using If….Then….Else in Excel VBA

Visual Basic Editor (VBE) in MS Excel is just as powerful as the stand alone Visual

Basic compiler in the sense that you can use the same commands in programming.

For example, you can use If…Then...Else structure to control program flow in VBE

that execute an action based on certain conditions. To control the program flow, we

need to use the conditional operators as well as the logical operators, which are

discussed in the following sections.

4.1 Conditional Operators

To control the VBA program flow, we can use various conditional operators. Basically,

they resemble mathematical operators. Conditional operators are very powerful tools

which let the VBA program compare data values and then decide what action to take.

For example, it can decide whether to execute or terminate a program. These

operators are shown in Table 4.1.

 Table 4.1: Conditional Operators

Operator Meaning

= Equal to

> More than

< Less Than

>= More than and equal

<= Less than and equal

<> Not Equal to

 26

* You can also compare strings with the above operators. However, there are certain

rules to follows: Upper case letters are lesser than lowercase letters,

"A"<"B"<"C"<"D".......<"Z" and numbers are lesser than letters.

4.2 Logical Operators

In addition to conditional operators, there are a few logical operators that offer added

power to the VBA programs. They are shown in Table 4.2.

 Table 4.2: Logical Operators

Operator Meaning

And Both sides must be true

or One side or other must be true

Xor One side or other must be true but not both

Not Negates truth

4.3 Using If.....Then.....Elseif….Else Statements with Operators

To effectively control the VBA program flow, we shall use the If...Then...Else

statement together with the conditional operators and logical operators.

The general format for If...Then...Elseif….Else statement is as follows:

If conditions Then

VB expressions

 27

Elseif

VB expressions

Else

VB expressions

End If

* Any If...Then...Else statement must end with End If. Sometime it is not necessary to

use Else.

Example 4.1

 Private Sub CommandButton1_Click()

 Dim firstnum, secondnum As Single

firstnum = Cells(1,1).Value

secondnum = Cells(1,2).Value

If firstnum>secondnum Then

MsgBox “ The first number is greater than the second number”

If firstnum<secondnum Then

MsgBox “ The first number is less than the second number”

Else

MsgBox “ The two numbers are equal ”

End If

End Sub

In this example, the program compares the values in cells (1, 1) and cells (1, 2) and

displays the appropriate comment in a message box. For example, If the first number

 28

is less than the second number, it will show the message “The first umber is less than

the second number”, as shown in Figure 4.1.

Figure 4.1

Example 4.2

In this program, you place the command button on the MS Excel spreadsheet and

go into the VBE by clicking the button. At the VBE, key in the program code as

shown below:

Private Sub CommandButton1_Click()

 29

Dim mark As Integer
Dim grade As String
Randomize Timer
mark = Int(Rnd * 100)
Cells(1, 1).Value = mark
If mark < 20 And mark >= 0 Then
grade = "F"
Cells(2, 1).Value = grade
ElseIf mark < 30 And mark >= 20 Then
grade = "E"
Cells(2, 1).Value = grade
ElseIf mark < 40 And mark >= 30 Then
grade = "D"
Cells(2, 1).Value = grade
ElseIf mark < 50 And mark >= 40 Then
grade = "C-"
Cells(2, 1).Value = grade
ElseIf mark < 60 And mark >= 50 Then
grade = "C"
Cells(2, 1).Value = grade
ElseIf mark < 70 And mark >= 60 Then
grade = "C+"
Cells(2, 1).Value = grade
ElseIf mark < 80 And mark >= 70 Then
grade = "B"
Cells(2, 1).Value = grade
ElseIf mark <= 100 And mark > -80 Then
grade = "A"
Cells(2, 1).Value = grade
End If

End Sub

We use randomize timer and the Rnd function to generate random numbers. In order

to generate random integers between 0 and 100, we combined the Int and Rnd

 30

functions, Int(Rnd*100). For example, when Rnd=0.6543, then Rnd*100=65.43, and

Int(65.43)=65. Using the statement cells (1,1).Value=mark will place the value of 65

into cell(1,1).

Now, based on the mark in cells(1,1), I use the If.......Then....Elseif statement to put

the corresponding grade in cells(2,1). So, when you click on command button 1, it will

generate a random number between 1 and 100 and places it in cells (1, 1) and the

corresponding grade in cells (2,1). The output is shown in Figure 4.2.

Figure 4.2

Example 4.3

This example demonstrates the use of the Not operator.

 31

Private Sub CommandButton1_Click()

Dim x, y As Integer

x = Int(Rnd * 10) + 1

y = x Mod 2

If Not y = 0 Then

MsgBox " x is an odd number"

Else

MsgBox " x is an even number"

End If

End Sub

In the above example, Rnd is a randomize function that produces random number

between 0 and 1. So Rnd*10 produces a random number between 0 and 9. Int is a

function in VBA that returns an integer. Therefore, Int(Rnd*10)+1 generates random

numbers between 1 and 10. Mod is the operator that returns the remainder when a

number is divided by another number. If x is an even number, x Mod 2 will produce a

zero. Based on this logic, if x Mod 2 is not zero, it is an odd number; otherwise it is an

even number.

 32

Chapter 5

For……Next Loop

Looping is a very useful feature of Excel VBA because it makes repetitive works

easier. There are two kinds of loops in VB, the For.......Next loop and the Do...Loop.

In this chapter, we will discuss the For....Next loop. The format of a For…..Next loop

is

For counter=startNumber to endNumber (Step increment)

 One or more VB statements

Next

We will demonstrate the usage of the For….Next loop with a few examples.

Example 5.1

Private Sub CommandButton1_Click()

Dim i As Integer

For i = 1 To 10

Cells(i, 1).Value = i

Next

End Sub

In this example, you place the command button on the spreadsheet then click on it to

go into the Visual Basic editor. When you click on the button , the VBA program will

fill cells(1,1) with the value of 1, cells(2,1) with the value of 2, cells(3,1) with the value

of 3......until cells (10,1) with the value of 10. The position of each cell in the Excel

 33

spreadsheet is referenced with cells (i,j), where i represents row and j represent

column.

Figure 5.1: For….Next loop with single step increment

Example 5.2

In this example, the step increment is used. Here, the value of i increases by 2 after

each loop. Therefore, the VBA programs will fill up alternate cells after each loop.

When you click on the command button, cells (1, 1) will be filled with the value of 1,

cells (2, 1) remains empty, cells (3, 1) filled with value of 3 and etc.

 34

Private Sub CommandButton1_Click()

Dim i As Integer

For i = 1 To 15 step 2

Cells(i, 1).Value = i

Next

End Sub

Figure 5.2: For….Next loop with step increment

 35

If you wish to exit the For ….Next loop after a condition is fulfilled, you can use the

Exit For statement, as shown in Example 5.3.

Example 5.3

In this example, the program will stop once the value of I reaches the value of 10.

Private Sub CommandButton1_Click()
Dim i As Integer
For i = 1 To 15
Cells(i, 1).Value = i
If i >= 10 Then
Exit For
End If
Next i

End Sub

Figure 5.3: The output of Example 5.3

 36

In previous examples, the For…Next loop will only fill up values through one column

or one row only. To be able to fill up a range of values across rows and columns, we

can use the nested loops, or loops inside loops. This is illustrated in Example 5.4.

Example 5.4

Private Sub CommandButton1_Click ()
Dim i, j As Integer
For i = 1 To 10
For j = 1 To 5
Cells (i, j).Value = i + j
Next j
Next i

End Sub

In this example, when i=1, the value of j will iterate from 1 to 5 before it goes to the

next value of i, where j will iterate from I to 5 again. The loops will end when i=10 and

j=5. In the process, it sums up the corresponding values of i and j. The concept can

be illustrated in the table below:

 j

 i

1 2 3 4 5

1 (1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

2 (2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

3 (3, 1) (3, 2) (3, 3) (3, 4) (3, 5)

4 (4, 1) (4, 2) (4, 3) (4, 4) (4, 5)

5 (5, 1) (5, 2) (5, 3) (5, 4) (5, 5)

6 (6, 1) (6, 2) (6, 3) (6, 4) (6, 5)

7 (7, 1) (7, 2) (7, 3) (7, 4) (7, 5)

8 (8, 1) (8, 2) (8, 3) (8, 4) (8, 5)

9 (9, 1) (9, 2) (9, 3) (9, 4) (9, 5)

10 (10, 1) (10, 2) (10, 3) (10, 4) (10, 5)

 37

Figure 5.4: The output of Example 5.4

Example 5.5

This is a simple VBA counter that can count the number of passes and the number of

failures for a list of marks obtained by the students in an examination. The program

also differentiates the passes and failures with blue and red colors respectively. Let’s

examine the code below:

Private Sub CommandButton1_Click()

 38

Dim i, counter As Integer

For i = 1 To 20

If Cells(i, 2).Value > 50 Then

counter = counter + 1

Cells(i, 2).Font.ColorIndex = 5

Else

'do nothing

Cells(i, 2).Font.ColorIndex = 3

End If

Next i

Cells(21, 2).Value = counter

Cells(22, 2).Value = 20 - counter

End Sub

This program combines the For..Next and the If ...Then...Else statements to control

the program flow. If the value in that cell is more than 50, the value of counter is

increased by 1 and the font color is changed to blue (colorIndex = 5) , otherwise

there is no increment in the counter and the font color is changed to red

(ColorIndex=3). We will discuss more about the Color property in a later chapter. The

output is shown in Figure 5.5.

 39

Figure 5.5: The VBA counter

 40

Chapter 6

Do……Loop

In the previous chapter, you have learned how to use the For........Next loop to

execute a repetitive process. In this chapter, you will learn about another looping

method known as the Do Loop. There are four ways you can use the Do Loop as

shown below :

The formats are

a) Do While condition

 Block of one or more VB statements

 Loop

b) Do

 Block of one or more VB statements

 Loop While condition

c) Do Until condition

 Block of one or more VB statements

 Loop

d) Do

 Block of one or more VB statements

 Loop Until condition

 41

Example 6.1

Private Sub CommandButton1_Click()

Dim counter As Integer

Do

counter = counter + 1

Cells(counter, 1) = counter

Loop While counter < 10

End Sub

In this example, the program will keep on adding 1 to the preceding counter value as

long as the counter value is less than 10. It displays 1 in cells (1,1), 2 in cells(2,1)…..

until 10 in cells (10,1).

Example 6.2

Private Sub CommandButton1_Click()

Dim counter As Integer

Do Until counter = 10

counter = counter + 1

Cells(counter, 1) = 11 - counter

Loop

End Sub

 42

Example 6.3

Private Sub CommandButton1_Click ()

Dim counter As Integer

Do Until counter = 10

counter = counter + 1

Cells(counter, 1) = 11 - counter

Loop

End Sub

In this example, the program will keep on adding 1 to the preceding counter value

until the counter value reaches 10. It displays 10 in cells (1, 1), 9 in cells (2, 1)…..

until 1 in cells (10,1).

Examle 6.3

Private Sub CommandButton1_Click()

Dim counter , sum As Integer

'To set the alignment to center

Range("A1:C11").Select

With Selection

.HorizontalAlignment = xlCenter

End With

Cells(1, 1) = "X"

Cells(1, 2) = "Y"

 43

Cells(1, 3) = "X+Y"

Do While counter < 10

counter = counter + 1

Cells(counter + 1, 1) = counter

Cells(counter + 1, 2) = counter * 2

sum = Cells(counter + 1, 1) + Cells(counter + 1, 2)

Cells(counter + 1, 3) = sum

Loop

End Sub

The above program will display the values of X in cells(1,1) to cells(11,1). The values

of Y are X2 and the values are displayed in column 2, i.e. from cells(2,1) to cells(2,11).

Finally, it shows the values of X+Y in column 3, i.e. from cells(3,1) to cells(3,11)

 44

Chapter 7

Select Case.........End Select

Normally it is sufficient to use the conditional statement If....Then....Else for multiple

options or selections programs. However, if there are too many different cases, the

If...Then...Else structure could become too bulky and difficult to debug if problems

arise. Fortunately, Visual Basic provides another way to handle complex multiple

choice cases, that is, the Select Case.....End Select decision structure. The general

format of a Select Case...End Select structure is as follow:

Select Case variable

Case value 1

 Statement

Case value 2

 Statement

Case value 3

 Statement

.

Case Else

End Select

In the following example, the program will process the grades of students according

to the marks given.

 45

Example 7.1

Private Sub CommandButton1_Click()
Dim mark As Single
Dim grade As String
mark = Cells(1, 1).Value
'To set the alignment to center
Range("A1:B1").Select
With Selection
.HorizontalAlignment = xlCenter
End With
Select Case mark
Case 0 To 20
grade = "F"
Cells(1, 2) = grade
Case 20 To 29
grade = "E"
Cells(1, 2) = grade
Case 30 To 39
grade = "D"
Cells(1, 2) = grade
Case 40 To 59
grade = "C"
Cells(1, 2) = grade
Case 60 To 79
grade = "B"
Cells(1, 2) = grade
Case 80 To 100
grade = "A"
Cells(1, 2) = grade
Case Else
grade = "Error!"
Cells(1, 2) = grade
End Select

End Sub

 46

Chapter 8

Excel VBA Objects Part 1–An Introduction

8.1: Objects

Most programming languages today deal with objects, a concept called object

oriented programming. Although Excel VBA is not a truly object oriented

programming language, it does deal with objects. VBA object is something like a tool

or a thing that has certain functions and properties, and can contain data. For

example, an Excel Worksheet is an object, a cell in a worksheet is an object, a range

of cells is an object, the font of a cell is an object, a command button is an object, and

a text box is an object and more.

In order to view the VBA objects, you can insert a number of objects or controls into

the worksheet, and click the command button to go into the code window. The upper

left pane of the code window contains the list of objects you have inserted into the

worksheet; you can view them in the dropdown dialog when you click the down arrow.

The right pane represents the events associated with the objects.

Figure 8.1: Some common Excel VBA objects.

 47

To view all the available objects, you can click on the objects browser in the code

window.

Figure 8.2: Objects browser that lists the entire Excel VBA objects.

 48

8.2: Properties and Methods

8.2.1 Properties

An Excel VBA object has properties and methods. Properties are like the

characteristics or attributes of an object. For example, Range is an Excel VBA object

and one of its properties is value. We connect an object to its property by a period (a

dot or full stop). The following example shows how we connect the property value to

the Range object.

Example 8.1

Private Sub CommandButton1_Click()

Range("A1:A6").Value = 10

End Sub

In this example, by using the value property, we can fill cells A1 to A6 with the value

of 10. However, because value is the default property, it can be omitted. So the

above procedure can be rewritten as

Example 8.2

Private Sub CommandButton1_Click()

Range("A1:A6")= 10

End Sub

Cell is also an Excel VBA object, but it is also the property of the range object. So an

object can also be a property, it depends on the hierarchy of the objects. Range has

higher hierarchy than cells, and interior has lower hierarchy than Cells, and color has

lower hierarchy than Interior, so you can write

 49

Range("A1:A3").Cells(1, 1).Interior.Color = vbYellow

This statement will fill cells (1, 1) with yellow color. Notice that although the Range

object specifies a range from A1 to A3, but the cells property specifies only cells(1,1)

to be filled with yellow color, it sort of overwrites the range specified by the Range

object.

Font is an object which belongs to the Range object. Font has its own properties. For

example, Range(“A1:A4”).Font.Color=vbYellow , the color property of the object Font

will fills all the contents from cell A1 to cell A4 with yellow color.

Sometime it is not necessary to type the properties, Excel VBA IntelliSense will

display a drop-down list of proposed properties after you type a period at the end of

the object name. You can then select the property you want by double clicking it or by

highlighting it then press the Enter key. The IntelliSense drop-down is shown in

Figure 8.3.

Figure 8.3: The IntelliSense Drop-Down List

 50

Count is also a property of the Range object. It shows the number of cells in the

specified range. For example, Range (“A1:A10”).Count will return a value of 10. In

order to display the number of cells returned, you can write the following code.

Example 8.3

Private Sub CommandButton1_Click()

Dim tcount As Integer

tcount = Range("A1:A6").count

Range("A10") = tcount

End Sub

8.2.2 Methods

Besides having properties, Excel VBA objects also have methods. Methods normally

do something or perform certain operations. For example, ClearContents is a method

of the range object. It clears the contents of a cell or a range of cells. You can write

the following code to clear the contents:

Example 8.4

Private Sub CommandButton1_Click()

Range(“A1:A6”).ClearContents

End Sub

You can also let the user select his own range of cells and clear the contents by

using the InputBox function, as shown in Example 8.5

 51

Example 8.5

Private Sub CommandButton1_Click()

Dim, selectedRng As String

selectedRng = InputBox("Enter your range")

Range(selectedRng).ClearContents

End Sub

In order to clear the contents of the entire worksheet, you can use the following code:

Sheet1.Cells.ClearContents

However, if you only want to clear the formats of an entire worksheet, you can use

the following syntax:

Sheet1.Cells.ClearFormats

To select a range of cells, you can use the Select method. This method selects a

range of cells specified by the Range object. The syntax is

Range(“A1:A5”).Select

Example 8.6: The code to select a range of cells

Private Sub CommandButton1_Click()

Range("A1:A5").Select

End Sub

 52

Example 8.7

This example allows the user to specify the range of cells to be selected.

Private Sub CommandButton1_Click()

Dim selectedRng As String

selectedRng = InputBox("Enter your range")

Range(selectedRng).Select

End Sub

To deselect the selected range, we can use the Clear method.

Range(“CiRj:CmRn”).Clear

Example 8.8

In this example, we insert two command buttons, the first one is to select the range

and the second one is to deselect the selected range.

Private Sub CommandButton1_Click()

Range("A1:A5").Select

End Sub

Private Sub CommandButton2_Click()

Range("A1:A5").Clear

End Sub

 53

Instead of using the Clear method, you can also use the ClearContents method.

Another very useful method is the Autofill method. This method performs an autofill

on the cells in the specified range with a series of items including numbers, days of

week, months of year and more. The format is

Expression.AutoFill (Destination, Type)

Where Expression can be an object or a variable that returns and object. Destination

means the required Range object of the cells to be filled. The destination must

include the source range. Type means type of series, such as days of week, months

of year and more. The AutoFill type constant is something like xlFillWeekdays,

XlFillDays, XlFillMonths and more.

Example 8.9:

Private Sub CommandButton1_Click()

Range(“A1”)=1

Range(“A2”)=2

Range("A1:A2").AutoFill Destination:=Range("A1:A10")

End Sub

In this example, the source range is A1 to A2. When the user clicks on the command

button, the program will first fill cell A1 with 1 and cell A2 will 2, and then

automatically fills the Range A1 to A10 with a series of numbers from 1 to 10.

 54

Example 8.10

Private Sub CommandButton1_Click()

Cells(1, 1).Value = "Monday"

Cells(2, 1).Value = "Tuesday"

Range("A1:A2").AutoFill Destination:=Range("A1:A10"), Type:=xlFillDays

End Sub

In this example, when the user clicks on the command button, the program will first fill

cell A1 with “Monday” and cell A2 wilh “Tuesday”, and then automatically fills the

Range A1 to A10 with the days of a week.

Example 8.11

This example allows the user to select the range of cells to be automatically filled

using the Autofill method. This can be achieved with the use of the InputBox. Since

each time we want to autofill a new range, we need to clear the contents of the entire

worksheet using the Sheet1.Cells.ClearContents statement.

Private Sub CommandButton1_Click()

Dim selectedRng As String

Sheet1.Cells.ClearContents

selectedRng = InputBox("Enter your range")

Range("A1") = 1

Range("A2") = 2

Range("A1:A2").AutoFill

Destination:=Range(selectedRng)

End Sub

 55

Chapter 9

Excel VBA Objects Part 2 –The Workbook Object

In the previous chapter, we have learned about Excel VBA objects and their

properties and methods. In this chapter, we shall learn specifically about the

Workbook object as it is one of the most important Excel VBA objects. It is also at the

top of the hierarchy of the Excel VBA objects. We will deal with properties and

methods associated the Workbook object.

9.1 The Workbook Properties.

When we write VBA code involving the Workbook object, we use Workbooks. The

reason is that we are dealing with a collection of workbooks most of the time, so

using Workbooks enables us to manipulate multiple workbooks at the same time.

When will deal with multiple workbooks, we can use indices to denote different

workbooks that are open, using the syntax Workbooks (i), where i is an index. For

example, Workbooks (1) denotes Workbook1, Workbooks (2) denotes Workbook2

and more.

A workbook has a number of properties. Some of the common properties are Name,

Path and FullName Let’s look at the following example:

Example 9.1

Private Sub CommandButton1_Click()

MsgBox Workbooks(1).Name

End Sub

 56

The program will cause a message dialog box to pop up and displays the first

workbook name, i.e. workbook_object1.xls as shown in Figure 9.1 below:

Figure 9.1: The name of the Excel workbook

If we have only one open workbook, we can also use the syntax ThisWorkbook in

place of Workbook (1), as follows:

Private Sub CommandButton1_Click ()

MsgBox ThisWorkbook.Name

End Sub

Example 9.2

Private Sub CommandButton1_Click ()

MsgBox ThisWorkbook.Path

End Sub

Or you can use the following code

Private Sub CommandButton1Click ()

MsgBox Workbooks ("workbook_object1.xls").Path

End Sub

The output is shown below:

 57

Figure 9.2: The path of the opened workbook

Example 9.3

This example will display the path and name of the opened workbook. The code is:

Private Sub CommandButton1_Click ()

MsgBox ThisWorkbook.FullName

End Sub

Or

Private Sub CommandButton1Click()

MsgBox Workbooks("workbook_object1.xls").Fullname

End Sub

The output is shown in Figure 9.3.

Figure 9.3

 58

9.2 The Workbook Methods

There are a number of methods associated with the workbook object. These methods

are Save, SaveAs, Open, Close and more.

Example 9.4

In this example, when the user clicks on the command button, it will open up a dialog

box and ask the user to specify a path and type in the file name, and then click the

save button, not unlike the standard windows SaveAs dialog, as shown in Figure 9.5.

Private Sub CommandButton1_Click()
fName = Application.GetSaveAsFilename
ThisWorkbook.SaveAs Filename:=fName

End Sub

Figure 9.4: The SaveAs dialog

 59

Another method associated with the workbook object is open. The syntax is

Workbooks.Open ("File Name")

Example 9.5

In this example, when the user click on the command button, it wil open the file

workbook_object1.xls under the path C:\Users\liewvk\Documents\

Private Sub CommandButton1_Click()

 Workbooks.Open ("C:\Users\liewvk\Documents\workbook_object1.xls")

End Sub

The close method is the command that closes a workbook. The syntax is

Workbooks (i).Close

Example 9.6

In this example, when the user clicks the command button, it will close Workbooks (1).

Private Sub CommandButton1_Click()

Workbooks (1).Close

End Sub

 60

Chapter 10

Excel VBA Objects Part 3 –The Worksheet Object

10.1 The Worksheet Properties

Similar to the Workbook Object, the Worksheet has its own set of properties and

methods. When we write VBA code involving the Worksheet object, we use

Worksheets. The reason is that we are dealing with a collection of worksheets most

of the time, so using Worksheets enables us to manipulate multiple worksheets at the

same time.

Some of the common properties of the worksheet are name, count, cells, columns,

rows and columnWidth.

Example 10.1

Private Sub CommandButton1_Click()

MsgBox Worksheets(1).Name

End Sub

The above example will cause a pop-up dialog that displays the worksheet name as

sheet 1, as shown below:

Figure 10.1

 61

The count property returns the number of worksheets in an opened workbook.

Example 10.2

Private Sub CommandButton1_Click()

MsgBox Worksheets.Count

End Sub

The output is shown in Figure 10.2.

Figure 10.2

Example 10.3

The count property in this example will return the number of columns in the

worksheet.

Private Sub CommandButton1_Click()

MsgBox Worksheets(1).Columns.Count

End Sub

* It is suffice to write MsgBox Columns.Count as the worksheet is considered the

active worksheet. The output is shown below:

 62

Figure 10.3

Example 10.4

The count property in this example will return the number of rows in the worksheet.

Private Sub CommandButton1_Click()

MsgBox Worksheets(1).Rows.Count

End Sub

Figure 10.4

10.2 The Worksheet Methods

Some of the worksheet methods are add, delete, select, SaveAs, copy, paste and

more.

 63

Example 10.5

In this example, when the user clicks the first command button, it will add a new

sheet to the workbook. When the user clicks the second command button, it will

delete the new worksheet that has been added earlier.

Private Sub CommandButton1_Click()

Worksheets. Add

End Sub

Private Sub CommandButton2_Click()

Worksheets(1).Delete

End Sub

Example 10.6

The select method associated with worksheet let the user select a particular

worksheet. In this example, worksheet 2 will be selected.

Private Sub CommandButton1_Click()

 ‘Worksheet 2 will be selected

Worksheets(2).Select

End Sub

The select method can also be used together with the Worksheet’s properties Cells,

Columns and Rows as shown in the following examples.

Example 10.5

 64

Private Sub CommandButton1_Click()

 ‘Cell A1 will be selected

Worksheets (1).Cells (1).Select

End Sub

Example 10.6

Private Sub CommandButton1_Click()

 ‘Column 1 will be selected

Worksheets (1).Columns (1).Select

End Sub

Example 10.7

Private Sub CommandButton1_Click()

 ‘Row 1 will be selected

Worksheets (1).Rows (1).Select

End Sub

Excel VBA also allows us to write code for copy and paste. Let’s look at the following

Example:

Example 10.8

 65

Private Sub CommandButton1_Click()

‘To copy the content of a cell 1

Worksheets(1).Cells(1).Select

Selection.Copy

End Sub

Private Sub CommandButton2_Click()

‘To paste the content of cell 1 to cell 2

Worksheets(1).Cells(2).Select

ActiveSheet.Paste

End Sub

 66

Chapter 11

Excel VBA Objects Part 4–The Range Object

11.1 The Range Properties

As an Excel VBA object, the range object is ranked lower than the worksheet object

in the hierarchy. We can also say that worksheet is the parent object of the range

object. Therefore, the Range object also inherits the properties of the worksheet

object. Some of the common properties of the range object are Columns, Rows,

Value and Formula

11.1.1 Formatting Font

There are many Range properties that we can use to format the font in Excel. Some

of the common ones are Bold, Italic, Underline, Size, Name, FontStyle, ColorIndex

and Color. These properties are used together with the Font property.

The Bold, Italic, Underline and FontStyle properties are used to format the font style.

The syntax for using Bold, Italic and Underline are similar, as shown below:

Range (“YourRange”).Font.Bold=True

Range (“YourRange”).Font.Italic=True

Range (“YourRange”).Font.Underline=True

The FontStyle property can actually be used to replace all the properties above to

achieve the same formatting effects. The syntax is as follows:

Range (“YourRange”).Font.FontStyle=”Bold Italic Underline”

 67

The Name property is used to format the type of font you wish to display in the

designated range. The syntax is as follows:

Range ("A1:A3").Font. Name = "Time News Roman"

The formatting code is illustrated in Example 11.1.

Example 11.1

Private Sub CommandButton1_Click()

Range("A1:A3").Font.Bold = True

Range("A1:A3").Font.Italic = True

Range("A1:A3").Font.Underline = True

Range("A1:A3").Font.Size = 20

Range("A1:A3").Font.FontStyle = "Bold Italic Underline"

Range("A1:A3").Font.Name = "Time News Roman"

End Sub

The Font and ColorIndex properties are used together to format the font color. You

can also use the color property to display the font color,

 68

Example 11.2

Private Sub CommandButton2_Click()

Range("A4:B10").Font.ColorIndex = 4

End Sub

.In this example, the font color will be displayed in green (Corresponding with

ColorIndex =4):

Range("A4:B10").Font.Color = VbRed

Example 11.2

Private Sub CommandButton1_Click()

Range("A1:B3").Columns(3).Formula = "=A1+B1"

End Sub

In this example, the formula A1+B1 will be copied down column 3 (column C) from

cell C1 to cell C3. The program automatically sums up the corresponding values

down column A and column B and displays the results in column C, as shown in

Figure 11.1.

Figure 11.1

 69

The above example can also be rewritten and produces the same result as below:

Range("A1:B3").Columns(3).Formula = "=Sum(A1:B1)"

There are many formulas in Excel VBA which we can use to simplify and speed up

complex calculations. The formulas are categorized into Financial, Mathematical,

Statistical, Date ,Time and others. For example, in the statistical category, we have

Average (Mean), Mode and Median

Example 11.3

In this example, the program computes the average of the corresponding values in

column A and column B and displays the results in column C. For example, the mean

of values in cell A1 and Cell B1 is computed and displayed in Cell C1. Subsequent

means are automatically copied down Column C until cell C3.

Private Sub CommandButton1_Click()

Range("A1:B3").Columns(3).Formula = "=Average(A1:B1)”

End Sub

Example 11.4: Mode

In this example, the program computes the mode for every row in the range A1:E4

and displays them in column F. It also makes the font bold and red in color, as shown

in Figure 11.2.

Private Sub CommandButton1_Click()

Range("A1:E4").Columns(6).Formula = "=Mode(A1:E1)”

Range("A1:E4").Columns(6).Font.Bold = True

Range("A1:E4").Columns(6).Font.ColorIndex = 3

End Sub

 70

Figure 11.2: Mode for each row displayed in column F

Example 11.5: Median

In this example, the program computes the median for every row in the range A1:E4

and displays them in column F. It also makes the font bold and red in color, as shown

in Figure 11.3.

Private Sub CommandButton1_Click()

Range("A1:E4").Columns(6).Formula = "=Median(A1:E1)”

Range("A1:E4").Columns(6).Font.Bold = True

Range("A1:E4").Columns(6).Font.ColorIndex = 3

End Sub

 71

Figure 11.3: Median for each row displayed in column F

Example 11.6

In this example, the Interior and the Color properties will fill the cells in the range

A1:A3 with yellow color.

Private Sub CommandButton1_Click()

Range("A1:A3").Interior.Color = vbYellow

End Sub

11.2 The Range Methods

The range methods allow the range object to perform many types of operations.

They enable automation and perform customized calculations that greatly speed up

otherwise time consuming work if carried out manually.

There are many range methods which we can use to automate our works. Some of

the methods are Autofill, Clear, ClearContents, Copy, cut, PasteSpecial, and Select.

 72

11.2.1 Autofill Method

This program allows the cells in range A1 to A20 to be filled automatically following

the sequence specified in the range A1 to A2. The Destination keyword is being used

here.

Example 11.7

Private Sub CommandButton1_Click ()

Set myRange = Range ("A1:A2")

Set targetRange = Range ("A1:A20")

myRange.AutoFill Destination: =targetRange

End Sub

11.2.2 Select, Copy and Paste Methods

We use the Select method to select a specified range, copy the values from that

range and then paste them in another range, as shown in the following example:

Example 11.9

Private Sub CommandButton1_Click ()

Range ("C1:C2").Select

Selection.Copy

Range ("D1:D2").Select

ActiveSheet.Paste

End Sub

*We can also use the Cut method in place of Copy in the above example.

 73

11.2.2 Copy and PasteSpecial Methods

The Copy and the PasteSpecial methods are performed together. The copy method

will copy the contents in a specified range and the PasteSpecial method will paste

the contents into another range. However, unlike the paste method, which just pastes

the values into the target cells, the PasteSpecial method has a few options. The

options are PasteValues, PasteFormulas, PasteFormats or PasteAll. The

PasteValues method will just paste the values of the original cells into the targeted

cells while the PasteFormulas will copy the formulas and update the values in the

targeted cells accordingly.

 Example 11.10

Private Sub CommandButton1_Click()

Range("C1:C2").Copy

Range("D1:D2").PasteSpecial Paste:=xlPasteValues

Range("E1:E2").PasteSpecial Paste:=xlPasteFormulas

Range("F1:F2").PasteSpecial Paste:=xlPasteFormats

Range("G1:G2").PasteSpecial Paste:=xlPasteAll

End Sub

The output is displayed in Figure 11.4. The original values are pasted to the range

D1:D2 while the formula is updated in the range E1:E2 but not the formats. The

original formats for the font are bold and red. The formats are reflected in range

F1:F2 but the formulas were not pasted there. Lastly, everything is copied over to the

range G1:G2.

 74

Figure 11.4

We can also modify the code above and paste them according to the Paste Values

option and the Paste Formulas option, as shown in Example 11.10.

Example 11.11

Private Sub CommandButton1_Click()

Range("C1:C2").Select

Selection.Copy

Range("D1:D2").PasteSpecial Paste:=xlPasteValues

Range("E1:E2").PasteSpecial Paste:=xlPasteFormulas

End Sub

 75

Chapter 12

Working with Excel VBA Controls

Excel VBE provides a number of controls that can be used to perform certain tasks

by writing VBA code for them. These controls are also known as Active-X controls.

As these controls are Excel VBA objects, they have their own properties, methods

and events. They can be found on the Excel Control Toolbox, as shown in the

diagram below:

Figure 12.1: Excel VBA Controls

12.1 Check Box

The Check box is a very useful control in Excel VBA. It allows the user to select one

or more items by checking the checkbox or checkboxes concerned. For example, you

may create a shopping cart where the user can click on checkboxes that correspond

to the items they intend to buy, and the total payment can be computed at the same

time.

One of most important properties of the check box is Value. If the checkbox is

selected or checked, the value is true, whilst if it is not selected or unchecked, the

Value is False.

Check Box

Text Box

Command
Button

Option Button

List Box

Combo Box

Toggle Button

Spin Button

Label

Scroll Bar
Image

 76

The usage of check box is illustrated in Example 12.1

Example 12.1

In this example, the user can choose to display the sale volume of one type of fruits

sold or total sale volume. The code is shown in next page.

Private Sub CommandButton1_Click()

If CheckBox1.Value = True And CheckBox2.Value = False

Then

MsgBox "Quantity of apple sold is” & Cells (2, 2).Value

ElseIf CheckBox2.Value = True And CheckBox1.Value = False

Then

MsgBox "Quantity of orange sold is " & Cells(2, 3).Value

Else

MsgBox "Quantity of Fruits sold is” & Cells (2, 4).Value

End If

End Sub

 77

Figure 12.2: Check Boxex

12.2 Text Box

The Text Box is the standard Excel VBA control for accepting input from the user as

well as to display the output. It can handle string (text) and numeric data but not

images.

Example 12.2

In this example, we inserted two text boxes and display the sum of numbers entered

into the two textboxes in a message box. The Val function is used to convert string

into numeric values because the textbox treats the number entered as a string.

 78

Private Sub CommandButton1_Click ()

Dim x As Variant, y As Variant, z As Variant

x = TextBox1.Text

y = TextBox2.Text

z = Val(x) + Val(y)

MsgBox "The Sum of " & x & " and " & y & " is " & z

End Sub

Figure 12.3: Text Boxes

 79

12.3 Option Button

The option button control also lets the user selects one of the choices. However, two

or more option buttons must work together because as one of the option buttons is

selected, the other option button will be deselected. In fact, only one option button

can be selected at one time. When an option button is selected, its value is set to

“True” and when it is deselected; its value is set to “False”.

Example 12.3

This example demonstrates the usage of the option buttons. In this example, the

Message box will display the option button selected by the user. The output interface

is shown in Figure 12.4.

Private Sub OptionButton1_Click ()

MsgBox "Option 1 is selected"

End Sub

Private Sub OptionButton2_Click()

MsgBox "Option 2 is selected"

End Sub

Private Sub OptionButton3_Click()

MsgBox "Option 3 is selected"

End Sub

 80

Figure 12.4: The Option Buttons

Example 12.4

In this example, If …Then….Elseif statements are used to control the action when

an option button is being selected, i.e., changing the background color of the

selected range.

Private Sub CommandButton1_Click()

If OptionButton1.Value = True Then

Range("A1:B10").Interior.Color = vbRed

ElseIf OptionButton2.Value = True Then

Range("A1:B10").Interior.Color = vbGreen

ElseIf OptionButton3.Value = True Then

Range("A1:B10").Interior.Color = vbBlue

End If

End Sub

 81

Figure 12.5: Using Option Buttons

Example 12.5

In this example, the program will change the font color of the item selected.

Private Sub OptionButton1_Click()

Dim i As Integer

For i = 1 To 12

If Cells(i, 2) = "apple" Then

Cells(i, 2).Font.Color = vbGreen

End If

Next

 82

End Sub

Private Sub OptionButton2_Click()

For i = 1 To 12

If Cells(i, 2) = "orange" Then

Cells(i, 2).Font.Color = vbRed

End If

Next

End Sub

Figure 12.6: Changing font color

12.4 List Box

The function of the List Box is to present a list of items where the user can click and

select the items from the list. To add items to the list, we can use the AddItem

method.

 83

To clear all the items in the List Box, you can use the Clear method. The usage of

Additem method and the Clear method is shown Example 12.6.

Example 12.6

Private Sub CommandButton1_Click()
 For x = 1 To 10
 ListBox1.AddItem "Apple"
 Next
End Sub
Private Sub CommandButton2_Click()

 For x = 1 To 10
 ListBox1.Clear
 Next

End Sub

Figure 12.7

 84

12.5 Combo Box

The function of the Combo Box is also to present a list of items where the user can

click and select the items from the list. However, the user needs to click on the small

arrowhead on the right of the combo box to see the items which are presented in a

drop-down list. In order to add items to the list, you can also use the AddItem method.

Example 12.7

Private Sub CommandButton1_Click()

ComboBox1.Text = "Apple"

For x = 1 To 10

 ComboBox1.AddItem "Apple"

Next

End Sub

Private Sub CommandButton2_Click()

 ComboBox1.Clear

 End Sub

 85

Figure 12.8

12.6 Toggle Button

Toggle button lets the user switches from one action to another alternatively. When

the Toggle button is being depressed, the value is true and when it is not depressed,

the value is false. By using the If and Else code structure, we can thus switch from

one action to another by pressing the toggle button repeatedly.

Example 12.8

In this example, the user can toggle between apple and orange as well as font colors.

Private Sub ToggleButton1_Click ()
 If ToggleButton1.Value = True Then
 Cells (1, 1) = "Apple"
 Cells (1, 1).Font.Color = vbRed
 Else
 Cells (1, 1) = "Orange"
 Cells (1, 1).Font.Color = vbBlue
 End If
End Sub

 86

Chapter 13

VBA Procedures Part 1-Functions

13.1 The Concept of Functions

A VBA procedure is a block of code that performs certain tasks. We have actually

learned about VBA procedures in our previous chapters, but all of them are event

procedures. Event procedures are VBA programs that are associated with VBA

objects such as command buttons, checkboxes, and radio buttons. However, we can

also create procedures that are independent from the event procedures. They are

normally called into the event procedures to perform certain tasks. There are two

types of the aforementioned procedures, namely Functions and Sub Procedures. In

this chapter, we will discuss functions. We will deal with Sub Procedures in the next

chapter.

13.2 Types of Functions

There are two types of Excel VBA functions; the built-in functions and the user-

defined functions. We can use built-in functions in Excel for automatic calculations.

Some of the Excel VBA built-in functions are Sum, Average, Min (to find the minimum

value in a range), Max (To find the maximum value in a range), Mode, Median and

more. However, built-in functions can only perform some basic calculations, for more

complex calculations, user-defined functions are often required. User-defined

functions are procedures created independently from the event procedures. A

Function can receive arguments passed to it from the event procedure and then

return a value in the function name. It is usually used to perform certain calculations.

 87

13.3 Writing Function Code

VBA Function begins with a Function statement and ends with an End Function

statement. The program structure of a Function is as follows:

Function FunctionName (arguments) As DataType

Statements

End Function

In Excel VBA, when you type the Function statement, the End Function statement will

automatically appear.

Example 13.1

In this example, we create a function to calculate the area of a rectangle. It comprises

two arguments, one of them is to accept the value of width and the other is to accept

the value of height. Note that the function Area_Rect is called from the event

procedure (clicking the command button) and the values to be passed to the

arguments are enclosed in the parentheses.

Private Sub CommandButton1_Click()

Dim a As Variant, b As Variant

a = InputBox("Enter Width of Rectangle")

b = InputBox("Enter Height of Rectangle")

MsgBox "The area of the rectangle is” & Area_Rect(a, b)

End Sub

Function Area_Rect(x As Variant, y As Variant) As Variant

Area_Rect = x * y

End Function

 88

We can also create a user-defined function to be used just as the built-in functions by

inserting a module in the Visual Basic Editor and enter the function code there. After

creating the function, we can then return to the spreadsheet and use this function as

any other built-in functions. To insert the module, click on Tool in the menu bar,

select Macro and the click on Visual Basic Editor.

Figure 13.1: Inserting Visual Basic Editor

In the Visual Basic Editor window, insert a module by clicking Insert on the menu bar,

and then click on Module.

Figure 13.2: Inserting Module

In the module environment, key in the function code for the function Area_Rect , as

shown in the diagram below.

 89

Figure 13.3: Key in the VBA code for the function.

Now, you can return to the Excel spreadsheet and enter the function in any cell. In

this Example, the function is entered in cell C1 and the values of width and height are

entered in cell A1 and cell B1 respectively. Notice that the value of area is

automatically calculated and displayed in cell C1.

Figure 13.4

The formula can be copied and updated to other cells by using the autofill method, i.e.

by dragging the place holder on the bottom right corner of the cell, as shown in

Figure 13.5 below.

 90

Figure 13.5: using autofill method to update the formula.

The user-defined function not only calculates numerical values, it can also return a

string, as shown in Example 13.2 below:

Example 13.2

This program computes the grades of an examination based on the marks obtained.

It employed the Select Case…….End Select code structure. The code is shown on

next page.

 91

Function grade(mark As Single) As String

Select Case mark

Case 0 To 20

grade = "F"

Case 20 To 29

grade = "E"

Case 30 To 39

grade = "D"

Case 40 To 59

grade = "C"

Case 60 To 79

grade = "B"

Case 80 To 100

grade = "A"

Case Else

grade = "Error!"

End Select

End Function

In the Excel spreadsheet environment, key in the marks in column A and key in the

grade function in column B. Notice that the grades will be automatically updated in

column B as marks are entered or updated in column A, as shown in Figure 13.6

 92

Figure 13.6: The grade function

Example 13.3

In this example, we create a function that calculates commissions payment based on

the commissions payment table below. We can use the If….Then…Elseif program

structure to write the function code.

Commissions Payment Table

Sales Volume($) Commissions

<500 3%

<1000 6%

<2000 9%

<5000 12%

>5000 15

 93

Function Comm(Sales_V As Variant) as Variant
If Sales_V <500 Then
Comm=Sales_V*0.03
Elseif Sales_V>=500 and Sales_V<1000 Then
Comm=Sales_V*0.06
Elseif Sales_V>=1000 and Sales_V<2000 Then
Comm=Sales_V*0.09
Elseif Sales_V>=200 and Sales_V<5000 Then
Comm=Sales_V*0.12
Elseif Sales_V>=5000 Then
Comm=Sales_V*0.15
End If

End Function

After creating the Comm Function, we can then enter the sales volume in one column

and enter the formula based on the function Comm in another column. The

commissions will be automatically computed and updated accordingly.

Figure 13.7

 94

13.4 Passing variables by reference and by Value in a Function

Variables in a function can be passed by reference or by value, using the keywords

ByRef and ByVal respectively. The main difference between ByRef and ByVal is

ByRef will change the value of the variable while ByVal will retain the original value of

the variable. By default, the function uses ByRef to pass variables.

Example 13.4

Private Sub CommandButton1_Click()

Dim N As Variant

N = 27

Range("A1") = CRoot(N)

Range("A2") = N

Range("A3") = CRoot2(N)

Range("A4") = N

End Sub

Function CRoot(ByRef r As Variant)

r = r ^ (1 / 3)

CRoot = r

End Function

Function CRoot2(ByVal w As Variant)

w = w ^ (1 / 3)

CRoot2 = w

End Function

 95

In this example, we created two similar functions, CRoot and CRoots respectively.

However, the first function uses the ByRef keyword and the second function uses the

ByVal keyword. Notice that the value of N has changed to 3 by the function CRoot,

as shown in cell B3. Now the function CRoot2 compute the cubic root of N based on

the new value of N, i.e. 3, and shows result in cell B4. However, it does not change

the value of N, it remains as 3, as shown in cell B5.

 96

Chapter 14

VBA Procedures Part 2-Sub Procedures

A sub procedure is a procedure that performs a specific task and to return values, but

it does not return a value associated with its name. However, it can return a value

through a variable name. Sub procedures are usually used to accept input from the

user, display information, print information, manipulate properties or perform some

other tasks. It is a program code by itself and it is not an event procedure because it

is not associated with a runtime procedure or a VBA control such as a command

button. It is called by the main program whenever it is required to perform a certain

task. Sub procedures help to make programs smaller and easier to manage.

A Sub procedure begins with a Sub statement and ends with an End Sub statement.

The program structure of a sub procedure is as follows:

Sub ProcedureName (arguments)

Statements

End Sub

Example 14.1

In this example, a sub procedure ResizeFont is created to resize the font in the range

if it fulfills a value greater than 40. There are two parameters or arguments

associated with the sub procedure, namely x for font size and Rge for range. This

sub procedure is called by the event procedure Sub CommandButton1_Click () and

passed the values 15 to x (for font size) and Range (“A1:A10”) to Rge (for range) to

perform the task of resizing the font to 15 for values>40 in range A1 to A10.

Private Sub CommandButton1_Click()

 97

ResizeFont 15, Range("A1:A10")

End Sub

Sub ResizeFont(x As Variant, Rge As Range)

Dim cel As Range

For Each cel In Rge

If cel.Value > 40 Then

cel.Font.Size = x

End If

Next cel

End Sub

Figure 14.1: Output for Example 14.1

To make the program more flexible and interactive, we can modify the above

program to accept input from the user. The values input by the user through the input

 98

boxes will be passed on to the procedure to execute the job, as shown in Example

14.2.

Example 14.2

Private Sub CommandButton1_Click()

Dim rng As String

rng = InputBox("Input range")

x = InputBox("Input Font Size")

ResizeFont x, Range(rng)

End Sub

Sub ResizeFont(x As Variant, Rge As Range)

Dim cel As Range

For Each cel In Rge

If cel.Value > 40 Then

cel.Font.Size = x

End If

Next cel

End Sub

 99

Chapter 15

String Handling Functions

Excel VBA handles strings similar to the stand-alone Visual Basic program. All the

string handling functions in Visual Basic such as Left, Right, Instr, Mid and Len can

be used in Excel VBA. Some of the string handling functions are listed and explained

below:

15.1 InStr

InStr is a function that looks for the position of a substring in a phrase.

InStr (phrase,"ual") will find the substring "ual" from "Visual Basic" and then return its

position; in this case, it is fourth from the left.

15.2. Left

Left is a function that extracts characters from a phrase, starting from the left. Left

(phrase, 4) means four characters are extracted from the phrase, starting from the

leftmost position.

15.3. Right

Right is a function that extracts characters from a phrase, starting from the Right.

Right (phrase, 5) means 5 characters are extracted from the phrase, starting from the

rightmost position.

15.4. Mid

Mid is a function that extracts a substring from a phrase, starting from the position

specified by the second parameter in the bracket. Mid (phrase, 8, 3) means a

substring of three characters are extracted from the phrase, starting from the 8th

position from the left.

 100

15.5. Len

 Len is a function that returns the length of a phrase.

Example 15.1

In this example, we insert five command buttons and change the names to cmdInstr,

cmdLeft, cmdRight, cmdLeft, cmdMid and cmdLen respectively.

Private Sub cmdInstr_Click ()

Dim phrase As String

phrase = Cells (1, 1).Value

Cells (4, 1) = InStr (phrase, "ual")

End Sub

Private Sub cmdLeft_Click ()

Dim phrase As String

phrase = Cells (1, 1).Value

Cells (2, 1) = Left (phrase, 4)

End Sub

Private Sub cmdLen_Click ()

Dim phrase As String

phrase = Cells (1, 1).Value

Cells (6, 1) = Len (phrase)

End Sub

Private Sub cmdMid_Click ()

 101

Dim phrase As String

phrase = Cells (1, 1).Value

Cells (5, 1) = Mid (phrase, 8, 3)

End Sub

Private Sub cmdRight_Click ()

Dim phrase As String

phrase = Cells (1, 1).Value

Cells (3, 1) = Right (phrase, 5)

End Sub

Figure 15.1: The end results after clicking all the command buttons.

Chapter 16

 102

Date and Time Functions

Excel VBA can be programmed to handle Date and Time, adding extra capabilities to

time and date handling by MS Excel. We can use various built-in date and time

handling functions to program Excel VBA date and time manipulating programs.

16.1 Using the Now () Function

The Now () function returns the current date and time according to your computer’s

regional settings. We can also use the Format function in addition to the function Now

to customize the display of date and time using the syntax Format (Now, “style

argument”). The usage of Now and Format functions are explained in the table

below:

Table 16.1: Various Date and Time Formatting with Different Style Arguments

Formatting with various style

arguments

Output

Format(Now, "s") Current Time in seconds

Format(Now, "n") Current Time in minutes

Format(Now, "h") Current Time in hours

Format(Now, "m") Current Month in numeric form

Format(Now, "mmm") Current Month in short form

Format(Now, "mmmm") Current Month in full name

Format(Now, "y") Number of days to date in current year

Format(Now, "yyyy") Current Year

Example 16.1

Private Sub CommandButton1_Click ()

 103

Cells (1, 1).Value = Now ()

Cells (2, 1).Value = Format (Now, "s")

Cells (3, 1).Value = Format (Now, "n")

Cells (4, 1).Value = Format (Now, "h")

Cells (5, 1).Value = Format (Now, "m")

Cells (6, 1).Value = Format (Now, "mmm")

Cells (7, 1).Value = Format (Now, "mmmm")

Cells (8, 1).Value = Format (Now, "y")

Cells (9, 1).Value = Format (Now, "yyyy")

End Sub

Figure 16.1: Output of various date and time formats

16.2 Date, Day, Weekday, WeekdayName, Month, MonthName and Year

Functions

 104

The usage of these functions is illustrated in the following table:

Table 16.2: Various Date and Time functions

Function Output

Date Current date and time

Day(Date) Day part of the current date

Weekday(Date) Weekday of the current week in numeric form.

WeekdayName(Weekday(Date)) Weekday name of the current date

Month(Date) Month of the current year in numeric form

MonthName(Month(Date)) Full name of the current month

Year(Date) Current year in long form

Example 16.2

Private Sub CommandButton1_Click()

Cells(1, 1) = Date

Cells(2, 1) = Day(Date)

Cells(3, 1) = Weekday(Date)

Cells(4, 1) = WeekdayName(Weekday(Date))

Cells(5, 1) = Month(Date)

Cells(6, 1) = MonthName(Month(Date))

Cells(7, 1) = Year(Date)

End Sub

 105

Figure 16.2: Output of various date and time formats.

16.3 DatePart Function

The DatePart function is used together with the Now function to obtain part of date or

time specified by the arguments. The DatePart function is generally written as

DatePart (Part of date to be returned, Now)

Various DatePart expressions and the corresponding outputs are shown in Table

16.3

Table 16.3: DatePart Expressions

DatePart Expression Part of Date /Time Returned

DatePart(“s”,Now) Current second

DatePart(“n”,Now) Current minute

DatePart(“h”,Now) Current hour

DatePart(“w”,Now) Current weekday

DatePart(“m”,Now) Current month

DatePart(“y”,Now) Current day of the year

DatePart(“yyyy”,Now) Current year

 106

Example 16.3

Private Sub CommandButton1_Click ()

Cells (2, 2) = DatePart ("yyyy", Now)

Cells (3, 2) = DatePart ("m", Now)

Cells (4, 2) = DatePart ("d", Now)

Cells (5, 2) = DatePart ("w", Now)

Cells (6, 2) = DatePart ("h", Now)

Cells (7, 2) = DatePart ("n", Now)

Cells (8, 2) = DatePart ("s", Now)

End Sub

Figure 16.3: DatePart Function

 107

16.4 Adding and Subtracting Dates

Dates can be added using the DateAdd function. The syntax of the DateAdd function

is

DateAdd (interval, value to be added, date)

Where interval=part of date to be added. For example, DateAdd (“yyyy”, 3, Now)

means 3 years will be added to the current year. Similarly, Dates can be subtracted

using the DateDiff function. The syntax of the DateDiff function is

DateDiff (interval, first date, second date)

Where interval=part of date to be subtracted. For example, DateDiff (“yyyy”, Now,

“6/6/2012”) means 3 years will be subtracted from the current year. Both the

aforementioned functions use the argument “s” for second, “n” for minute, “h” for hour,

“d” for day,”w” for week, “m” for month and “yyyy” for year.

Example 16.4

Private Sub CommandButton1_Click ()

Cells (1, 1) = Date
Cells (2, 1) = DateAdd ("s", 300, Now)
Cells (3, 1) = DateAdd ("n", 30, Now)
Cells (4, 1) = DateAdd ("h", 3, Now)
Cells (5, 1) = DateAdd ("d", 2, Now)
Cells (6, 1) = DateAdd ("m", 3, Now)
Cells (7, 1) = DateAdd ("yyyy", 2, Now)
Cells (8, 1) = DateDiff ("yyyy", Now, "8/6/2012")
Cells (9, 1) = DateDiff ("d", Now, "13/6/2009")
Cells (10, 1) = DateDiff ("m", Now, "8/10/2011")
Cells (11, 1) = DateDiff ("d", Now, "8/10/2009")
Cells (12, 1) = DateDiff ("n", Now, "8/10/2009")

 108

Cells(13, 1) = DateDiff("s", Now, "8/10/2009")

End Sub

Figure 16.5: DateAdd and DatePart functions

 109

Chapter 17

Sample Excel VBA Programs

17.1 BMI Calculator

Body Mass Index (BMI) is so popular today that it has become a standard measure

for our health status. If your BMI is too high, it means you are overweight and would

likely face a host of potential health problems associated with high BMI, such as

hypertension, heart diseases, diabetics and many others. The formula for calculating

BMI is

BMI=weight / (height) 2

The Excel VBA code for BMI calculator is illustrated below:

Private Sub CommandButton1_Click()
Dim weight, height, bmi, x As Single
weight = Cells(2, 2)
height = Cells(3, 2)
bmi = (weight) / height ^ 2
Cells(4, 2) = Round(bmi, 1)
If bmi <= 15 Then
Cells(5, 2) = "Under weight"
ElseIf bmi > 15 And bmi <= 25 Then
Cells(5, 2) = "Optimum weight"
Else
Cells(5, 2) = "Over weight"
End If

End Sub

 110

The function Round is to round the value to a certain decimal places. It takes the

format Round(x, n), where n is the number to be rounded and n is the number of

decimal places. The second part of the program uses the If...Then…. Else statement

to evaluate the weight level. The output is shown in Figure 17.1

Figure 17.1: BMI Calculator

17.2: Financial Calculator

This is an Excel VBA program that can calculate monthly payment for the loan taken

from the bank. The formula to calculate periodic payment is shown below, where

PVIFA is known as present value interest factor for an annuity.

Payment=Initial Principal/PVIFA,

 111

The formula to compute PVIFA is

 1/i - 1/i (1+i) n

where n is the number of payments. Normally you can check up a financial table for

the value of PVIFA and then calculate the payments manually. The function Format

is to determine the number of decimal places and the use of the $ sign. Below is the

Excel VBA code for the financial calculator:

Private Sub CommandButton1_Click()

Dim N As Integer

Dim p, pmt, rate, I, PVIFA As Double

p = Cells(2, 2)

rate = Cells(3, 2)

N = Cells(4, 2) * 12

I = (rate / 100) / 12

PVIFA = 1 / I - 1 / (I * (1 + I) ^ N)

pmt = p / PVIFA

Cells(5, 2) = Format(pmt, "$#,##0.00")

End Sub

The above financial VBA calculator can also be programmed using the built-in

worksheet function, PMT. It is very much easier to program than the previous one.

 112

The format of this function is

WorksheetFunction.pmt (rate, N, amount)

Where rate is the interest rate, N is the period of payments (of number of periodic

payments) and amount is the amount borrowed.

People usually key in the annual interest rate as an integer rather than in decimal

form, so we need to divide the rate by 100 and then divide again by 12 to get the

monthly rate.

The negative sign is placed in front of the amount borrowed because this is the

amount the borrower owed the financial institute,. If we don't put the negative sign,

the payment will have a negative sign.

The VBA code is shown below:

Private Sub CommandButton1_Click ()

Dim rate, N As Integer

Dim amt, payment As Double

amt = Cells(2, 2)

rate = (Cells(3, 2) / 100) / 12

N = Cells(4, 2) * 12

payment = WorksheetFunction.pmt(rate, N, -amt)

Cells(5, 2) = Format(payment, "$##,###.00")

End Sub

 113

Figure 17.2: Financial Calculator

17.3: Investment Calculator

In order to get one million dollars in the future, we need to calculate the initial

investment based on the interest rate and the length of a period, usually in years.

The formula is

 WorksheetFunction.PV (rate, N, periodic payment, amount, due)

Where rate is the interest rate, N is the length of the period and amount is the amount

borrowed. Below is the Excel VBA code for the investment Calculator:

 114

Private Sub CommandButton1_Click ()

Dim F_Money, Int_Rate, Investment As Double

Dim numYear As Single

F_Money = Cells(2, 2)

Int_Rate = (Cells(3, 2) / 100)

numYear = Cells(4, 2)

Investment = PV(Int_Rate, numYear, 0, F_Money, 1)

Cells(5, 2) = Format(-Investment, "$##,###,##0.00")

End Sub

Figure 17.3: Investment Calculator

17.4: Prime Number Tester

 115

This Excel VBA program will test whether a number entered by the user is a prime

number or not. Prime number is a number that cannot be divided by other numbers

other than itself, it includes 2 but exclude 1 and 0 and all the negative numbers.

 In this program, we use the Select Case End Select statement to determine

whether a number entered by a user is a prime number or not. For case 1, all

numbers that are less than 2 are not prime numbers. In Case 2, if the number is 2, it

is a prime number. In the last case, if the number N is more than 2, we divide this

number by all the numbers from 3,4,5,6,........up to N-1, if it can be divided by any of

these numbers, it is not a prime number, otherwise it is a prime number. We use the

Do......Loop While statement to control the program flow. Besides, we also used a

tag="Not Prime' to identify the number that is not prime, so that when the routine

exits the loop, the label will display the correct answer. Below is the code:

Private Sub CommandButton1_Click ()

Dim N, D As Single

Dim tag As String

N = Cells (2, 2)

Select Case N

Case Is < 2

MsgBox "It is not a prime number"

Case Is = 2

MsgBox "It is a prime number"

Case Is > 2

D = 2

Do

If N / D = Int(N / D) Then

 116

MsgBox "It is not a prime number"

tag = "Not Prime"

Exit Do

End If

D = D + 1

Loop While D <= N - 1

If tag <> "Not Prime" Then

MsgBox "It is a prime number"

End If

End Select

End Sub

17.5 Selective Summation

This is an Excel VBA program that can perform selective summation according to a

set of conditions. For example, you might just want to sum up those figures that have

achieved sales target and vice versa. This VBA program can sum up marks that are

below 50 as well as those marks which are above 50.

In this program, rng is declared as range and we can set it to include certain range of

cells, here the range is from A1 to A10.

Then we used the ForNext loop to scan through the selected range

rng.Cells(i).Value read the value in cells(i) and then passed it to the variable mark.

To do selective addition, we used the statement Select Case....End Select

 117

Finally, the results are shown in a message box

Here is the code:

Private Sub CommandButton1_Click ()

Dim rng As Range, i As Integer

Dim mark, sumFail, sumPass As Single

sumFail = 0

sumPass = 0

Set rng = Range("A1:A10")

For i = 1 To 10

mark = rng.Cells(i).Value

Select Case mark

Case Is < 50

sumFail = sumFail + mark

Case Is >= 50

sumPass = sumPass + mark

End Select

Next i

MsgBox "The sum of Failed marks is" & Str(sumFail) & vbCrLf &

"The sum of Passed marks is" & Str(sumPass)

End Sub

