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2.1 Vibrations and Waves 

In our world of macroscopic bodies, water waves and sound waves 

are produced by moving masses of considerable size. Earthquakes 

produce waves as the result of sudden shifts in land masses. Water waves 

are produced by the wind or ships as they pass by. Sound waves are the 

result of quick movements of objects in the air. Any motion that repeats 

itself in equal intervals of time is periodic motion. The swinging of a 

clock pendulum, the vibrations of the prongs of a tuning fork, and a mass 

dancing from the lower end of a coiled spring are but three examples. 

These particular motions and many others like them that occur in nature 

are referred to as simple harmonic motion (SHM). 

2.2 Waves 

when disturbance passes through a medium, a series of point are affected. 

a local displacement fro equilibrium caused in one part of the medium is 

transmitted successively to next by interaction among particles, and such 

displacement together make up a wave. simple harmonic vibration of 

particles in the medium generates a simple harmonic wave. a wave is any 

disturbance , which travels through the medium due to the repeated 

periodic motion of the particles (of the medium) about their mean 

position. 

 

2.3 Transverse Waves 

All light waves are classified as transverse waves. Transverse waves are 

those in which each small part of the wave vibrates along a line 

perpendicular to the direction of propagation and all parts are vibrating 

in the same plane. 

A wave machine for  demonstrating transverse waves is shown in 

Fig. 1. When the handle His turned  clockwise the small white balls at the 



Chapter Two: Waves                                                         Dr.Muayyed Jabar Zoory 
 

  
Page 2 

 
  

top of the vertical rods move up and down with SHM. As each ball 

moves along a vertical line, the wave form ABCDEFG moves to the 

right. When the handle is turned counterclockwise, the wave form moves 

to the left. In either case each ball performs the exact same motion along 

its line of vibration, the difference being that each ball is slightly behind 

or ahead of its neighbor. 

 

FIGURE 1: Machine for demonstrating transverse waves. 

 

2.4 Wave Front and The Ray 

wave front is defined as the locus of points, all of which are in 

the same phase. The electromagnetic waves radiated by a point  

light source may be represented by spherical surface concentric 

with the source as in figure  
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At a sufficiently great distance from the source, where the radius 

of the spheres have become very large, the spherical surface can 

be considered plan and we have a train of plane wave as in 

figure. 

                   

 

 

a train of light waves may often be represented more simply by 

means of rays than by wave fronts. 

2.5 Examples of Waves 

Waves cane be classified according to the source that generates 

them: 

1. Mechanical waves: mechanical waves or elastic waves are 

governed by Newton’s laws and require a material medium 

for their propagation. sound waves, seismic waves, water 

waves in bodies of water such as ocean, river, and ponds are 

examples of mechanical waves. 

2. Electromagnetic waves: Visible light, radio waves, 

microwaves, x-rays and γ- rays belong to this category. 

Electromagnetic waves consist of oscillating electric and 

magnetic field and do not require a material medium for 

their propagation. They all travel in free space with same 

speed ( c ). 
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3. Matter waves: Atomic particles exhibit wave properties 

under certain condition. The laws of quantum mechanics 

govern such matter waves. 

4. Gravitational waves: It is suggested that the cosmic bodies 

such as galaxies, stars produce gravitational waves and 

interact with each other through these waves. The 

gravitational waves are believed to with the velocity of light. 

2.6 The Spectrum of Electromagnetic Waves 

The various types of electromagnetic waves are listed in Figure 1, which 

shows the electromagnetic spectrum. Note the wide ranges of 

frequencies and wavelengths. No sharp dividing point exists between one 

type of wave and the next. Remember that all forms of the various types 

of radiation are produced by the same phenomenon— accelerating 

charges. The names given to the types of waves are simply for 

convenience in describing the region of the spectrum in which they lie. 
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Figure 1: The electromagnetic spectrum. Note the overlap between adjacent wave 

types. The expanded view to the right shows details of the visible spectrum. 
 

 

Radio waves, whose wavelengths range from more than 10
4
 m to 

about 0.1 m, are the result of charges accelerating through conducting 

wires. They are generated by such electronic devices as LC oscillators 

and are used in radio and television communication systems. 

Microwaves have wavelengths ranging from approximately 0.3 m 

to 10
-4

 m and are also generated by electronic devices. Because of their 

short wavelengths, they are well suited for radar systems and for studying 
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the atomic and molecular properties of matter. Microwave ovens are an 

interesting domestic application of these waves. It has been suggested 

that solar energy could be harnessed by beaming microwaves to the Earth 

from a solar collector in space. 

Infrared waves have wavelengths ranging from approximately  

10
-3

 m to the longest wavelength of visible light, 7 ×10
-7

 m. These waves, 

produced by molecules and room-temperature objects, are readily 

absorbed by most materials. The infrared(IR) energy absorbed by a 

substance appears as internal energy because the energy agitates the 

atoms of the object, increasing their vibrational or translational motion, 

which results in a temperature increase. Infrared radiation has practical 

and scientific applications in many areas, including physical therapy, IR 

photography, and vibrational spectroscopy. 

Visible light, the most familiar form of electromagnetic waves, is 

the part of the electromagnetic spectrum that the human eye can detect. 

Light is produced by the rearrangement of electrons in atoms and 

molecules. The various wavelengths of visible light, which correspond to 

different colors, range from red (λ =7 × 10
-7

 m) to violet   (λ =4 × 10
-7

 m). 

The sensitivity of the human eye is a function of wavelength, being a 

maximum at a wavelength of about 5.5× 10
-7

 m. With this in mind, why 

do you suppose tennis balls often have a yellow-green color? 

Ultraviolet waves cover wavelengths ranging from approximately  

4 × 10
-7

 m to 6 × 10
-10

 m. The Sun is an important source of ultraviolet 

(UV) light, which is the main cause of sunburn. Sunscreen lotions are 

transparent to visible light but absorb most UV light. The higher a 

sunscreen’s solar protection factor (SPF), the greater the percentage of 
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UV light absorbed. Ultraviolet rays have also been implicated in the 

formation of cataracts, a clouding of the lens inside the eye. 

Most of the UV light from the Sun is absorbed by ozone (O3) 

molecules in the Earth’s upper atmosphere, in a layer called the 

stratosphere. This ozone shield converts lethal high-energy UV radiation 

to infrared radiation, which in turn warms the stratosphere. Recently, a 

great deal of controversy has arisen concerning the possible depletion of 

the protective ozone layer as a result of the chemicals emitted from 

aerosol spray cans and used as refrigerants. 

X-rays have wavelengths in the range from approximately 10
-8

 m 

to 10
-12

 m. The most common source of x-rays is the stopping of high-

energy electrons upon bombarding a metal target. X-rays are used as a 

diagnostic tool in medicine and as a treatment for certain forms of cancer. 

Because x-rays damage or destroy living tissues and organisms, care must 

be taken to avoid unnecessary exposure or overexposure. X-rays are also 

used in the study of crystal structure because x-ray wavelengths are 

comparable to the atomic separation distances in solids (about 0.1 nm). 

Gamma rays are electromagnetic waves emitted by radioactive 

nuclei (such as 
60

Co and 
137

Cs) and during certain nuclear reactions. 

High-energy gamma rays are a component of cosmic rays that enter the 

Earth’s atmosphere from space. They have wavelengths ranging from 

approximately 10
-10

 m to less than 10
-14

 m. They are highly penetrating 

and produce serious damage when absorbed by living tissues. 

Consequently, those working near such dangerous radiation must be 

protected with heavily absorbing materials, such as thick layers of lead. 
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2.7 Characteristics of a Waves 

Any waves is characterized by the following parameters: 

1. Time period T: the period is the time interval required for two 

identical points (such as the crests) of adjacent waves to pass by a 

point. 

2. wavelength λ: the wavelength is the minimum distance between 

any two identical points (such as the crests) on adjacent waves, as 

shown in Figure 2a. 

3. frequency ν: the frequency of a periodic wave is the number of 

crests (or troughs, or any other point on the wave) that pass a given 

point in a unit time interval. 

  
 

 
 

4. Amplitude A: The maximum displacement in a waveform is 

known as the amplitude. 

5. Velocity υ: Each time the source (of disturbance) vibrates one, the 

wave moves forward at distance (λ) . If there are (ν) vibrations in 

one second, the waves moves forward at a distance of. These 

distance that the wave moves in one second is the velocity of        

(ν λ )the wave. Thus,  

     

  
 

 
 

6. Phase angle Φ : The extent of displacement of particles in the 

medium and direction of their displacement change from point to 

point along the wave. The quantity, which represents the 
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displacement , is called phase of the vibration, Φ . The phase may 

be expressed in terms of degrees or radians; or as the ratio of time t 

to the time period T. or as the ratio of the distance x to the 

wavelength, . The ratio t/T and x/λ are fractional numbers and have 

a maximum value of 1. When expressed in terms of radians         

(or degrees), the maximum value that phase can take is 2π radians 

(or 360). 

7. Intensity, I : The energy transferred on an average by a wave in 

unit time, through a unit area perpendicular to is propagation 

direction, is known as the intensity of the wave. It is established 

that the intensity of a wave is directly proportional to the square of 

the amplitude of wave . Thus, 

  | |  

 

  

Figure 2: (a) The wavelength λ of a wave is the distance between adjacent crests 

or adjacent troughs. (b) The period T of a wave is the time interval required for the 

wave to travel one wavelength. 
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2.8 Mathematical Representation of Travelling Waves 

Consider a pulse traveling to the right on a long string, as shown in 

Figure 3. Figure 3a represents the shape and position of the pulse at 

time t = 0. At this time, the shape of the pulse, whatever it may be, can 

be represented by some mathematical function which we will write as 

y(x, 0) =f(x). This function describes the transverse position y of the 

element of the string located at each value of x at time t = 0. Because 

the speed of the pulse is v, the pulse has traveled to the right a distance 

vt at the time t(Fig. 3b). We assume that the shape of the pulse does 

not change with time. Thus, at time t, the shape of the pulse is the 

same as it was at time t = 0, as in Figure 3a. 

 

 

Figure 3 A one-dimensional pulse traveling to the right with a speed v. (a) At t = 0, 

the shape of the pulse is given by y = f (x). (b) At some later time t, the shape remains 

unchanged and the vertical position of an element of the medium any point P is given 

by y = f (x - vt). 
 

 

Consequently, an element of the string at x at this time has the 

same y position as an element located at x - vt had at time t = 0: 

y(x, t) =y(x - vt, 0) 
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In general, then, we can represent the transverse position y for all 

positions and times, measured in a stationary frame with the origin at O, 

as 

y(x, t) =y(x - vt)                                                                                     (2.1)                           

Similarly, if the pulse travels to the left, the transverse positions of 

elements of the string are described by 

y(x, t) =y(x + vt)                                                                                     (2.2) 

The function y, sometimes called the wave function, depends on 

the two variables x and t. For this reason, it is often written y(x, t), which 

is read “y as a function of x and t.” 

It is important to understand the meaning of y. Consider an element 

of the string at point P, identified by a particular value of its x coordinate. 

As the pulse passes through P, the y coordinate of this element increases, 

reaches a maximum, and then decreases to zero. The wave function y(x, 

t) represents the y coordinate—the transverse position—of any 

element located at position x at any time t. Furthermore, if t is fixed 

(as, for example, in the case of taking a snapshot of the pulse), then the 

wave function y(x), sometimes called the waveform, defines a curve 

representing the actual geometric shape of the pulse at that time. 

Consider the sinusoidal wave in Figure 2a, which shows the 

position of the wave at t = 0. Because the wave is sinusoidal, we expect 

the wave function at this instant to be expressed as y(x, 0) = A sin ax, 

where A is the amplitude and a is a constant to be determined. At x = 0, 

we see that y(0, 0) = A sin a(0) = 0, consistent with Figure2a. The next 

value of x for which y is zero is x = λ/2. Thus, 

y(λ/2, 0) = A sin a(λ/2) = 0 
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For this to be true, we must have a(λ/2) = π, or a = 2 π / λ. Thus, 

the function describing the positions of the elements of the medium 

through which the sinusoidal wave is traveling can be written 

y(x, 0) = A sin (2 π / λ x)                                                                       (2.3) 

where the constant A represents the wave amplitude and the 

constant λ is the wavelength. We see that the vertical position of an 

element of the medium is the same whenever x is increased by an integral 

multiple of λ. If the wave moves to the right with a speed v, then the wave 

function at some later time t is 

              [
   

 
           ]                                                         (2.4) 

If the wave were traveling to the left, the quantity x - vt would be 

replaced by x + vt, as we learned when we developed Equations (2.1) and 

(2.2). 

 

By definition, the wave travels a distance of one wavelength in one 

period T. Therefore, the wave speed, wavelength, and period are related 

by the expression 

  
 

 
 

Substituting this expression for v into Equation 4, we find that 

         [       
 

 
   

 

 
 ]                                                                    (2.5) 

This form of the wave function shows the periodic nature of y. (We 

will often use y rather than y(x, t) as a shorthand notation.) At any given 

time t, y has the same value at the positions x, x + λ, x + 2 λ, and so on. 
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Furthermore, at any given position x, the value of y is the same at times t, 

t + T, t + 2T, and so on. 

We can express the wave function in a convenient form by defining 

two other quantities, the angular wave number k (usually called simply 

the wave number) and the angular frequency w: 

  
   

 
                                                                                                   (2.6) 

  
   

 
                                                                                                  (2.7) 

Using these definitions, we see that Equation( 2.5 )can be written 

in the more compact form 

                                                                                           (2.8) 

Equation (2.8) represents a progressive or travelling wave. 

1. The wave is said to be monochromatic because it has a 

single frequency, ν. 

2. It is an undamped wave since its amplitude A is constant 

along the direction of propagation. It is a plane wave, since 

the amplitude is constant everywhere. 

3. It represents a continuous train of wave stretching from        

x = -∞ to x = +∞. The disturbance is sinusoidal and 

continues forever. 

4. It is a mathematically idealized wave. Such ideal waves do 

not occur in nature. 

For many purposes the light disturbance at any point can be 

represented by the single scalar quantity "y". It is assumed that the 
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variation of y are propagated in the form of a wave motion, and equation 

(2.8) represents the light wave. 

2.9 General Wave Equation 

To know how the displacement y varies as a function of space, x and 

time, t we have to do partial differentiation of y with respect to x and t. 

  

  
    

  

 
   [

  

 
      ]                                                            (2.9) 

  

  
    

   

 
   [

  

 
      ]                                                       (2.10) 

 

Combining both these equations and eliminating equal factors, we get 

  

  
    

 

 
 
  

  
                                                                               (2.11) 

If we take second derivatives, it will hold for any sinusoidal wave, 

independent of the direction of travel, either –x or +x. 

   

   
   

 

  
 
   

   
    

   

   
       

   
                                                                                      (2.12) 

We replace y by the more general term ξ, which stands for any 

disturbance.  

   

   
       

   
                                                                                                                     (2.13) 

 

This is one-dimensional wave equation. It connects the variations of ξ in 

space and time to the velocity of propagation of the wave. 

If we are to include wave propagating in any direction, we need to extend 

the right hand term to the y and z axes, and replace it by 
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Using the Laplacian operator    
  

   
 

  

   
 

  

   
 , we can write the 

equation as 

   

   
                                                                                                                           (2.14) 

This is general three-dimensional wave equation. 

2.10 Phase Velocity  

The wave function given by Equation (2.8) assumes that the 

vertical position y of an element of the medium is zero at x = 0 and t = 0. 

This need not be the case. If it is not, we generally express the wave 

function in the form 

         [             ]                                                          (2.15) 

where   is the initial phase of the wave which is determined by our 

choice the beginning of counting x and t. Let us fix a value of the phase 

by assuming that 

[             ]                                                                  (2.16)        

 This expression determines the relation between the time t and the 

place where the phase has a fixed value. The value  
  

  
 calculated from 

(2.16) gives the velocity with which the given value of the phase 

propagates. 
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   ⁄
                                                                         (2.17)   

Thus, the velocity of wave of wave propagation "  " is the velocity 

of phase propagation and it is therefore called the phase velocity.  

The phase velocity "  " of a wave is the velocity with which the 

wave front moves forward. It is the same as velocity of propagation of 

wave. When the waves are travelling through a non-dispersing medium, 

the common velocity of waves is the phase velocity. 

2.11 Complex Representation of a Plane Wave  

An expression similar to equation (2.8) can be written in terms of cosine 

as 

                                                                                        (2.18) 

We can express equation (2.8) and (2.18) in a single equation, using 

Euler’s formula. 

                 

                    or                                                             (2.19) 

The advantage of the above complex representation as follows. The 

complex quantity used to represent the wave may be split into its space 

and time parts to give     

                  

It is seen to consist complex amplitude             and a harmonic 

factor        . 
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2.12  Wave Packets 

A group of waves of finite length, such as that illustrated in Figure 

4, is produced. The mathematical representation of a wave packet of this 

type is rather more complex.  Since wave packets are of frequent 

occurrence, however, some features of their behavior should be 

mentioned here. In the first place, the wavelength is not well defined. If 

the packet is sent through any device for measuring wavelengths, e.g., 

light through a diffraction grating, it will be found to yield a continuous 

spread over a certain range Δλ. The maximum intensity will occur at the 

value of λ° indicated in Figure 4, but energy will appear in other 

wavelengths, the intensity dying off more or less rapidly on either side of 

λ°. The larger the number N of waves in the group, the smaller the spread 

Δλ, and in fact theory shows that Δλ / λ° is approximately equal to l/N. 

Hence only when N is very large may we consider the wave to have an 

accurately defined wavelength. 

 

 
 

Δλ

λ 
                                                                                                  (2.20)                      

 
Figure 4: Example of a wave packet. 

If the medium through which the packet travels is such that the 

velocity depends on frequency, two further phenomena will be observed. 

The individual wave crests will travel with a velocity different from that 

of the packet as a whole, and the packet will spread out as it progresses. 
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We then have two velocities, the wave (or phase) velocity and the group 

velocity. The relation between these will be derived in this Chapter. 

In light sources, the radiating atoms emit wave trains of finite 

length. Usually, because of collisions or damping arising from other 

causes, these packets are very short. According to the theorem mentioned 

above, the consequence is that the spectrum lines will not be very narrow 

but will have an appreciable width Δλ. A measurement of this width will 

yield the effective "lifetime" of the electromagnetic oscillators in the 

atoms and the average length of the wave packets. 

2.13  Group Velocity 

The wave packet generally has the maximum amplitude at a 

particular value of x and the velocity of this maximum amplitude point 

is called the group velocity see figure 5. Thus, the velocity at which a 

wave packet(or a pulse) travels is the group velocity of the wave packet. 

This velocity also represents the velocity with which energy of the wave 

packet is transmitted. 

 

 

 

 

 

Figure 5: Group velocity 

let each component wave in the wave packet has its own phase 

velocity, (υ=νλ). The wave packet has amplitude that is large in a small 

vg  Group Velocity         

vp  Phase Velocity             
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region and very small outside it. The amplitude of the wave packet varies 

with x and t. Such variation of amplitude is called modulation of the 

wave. The velocity of propagation of the modulation is known as the 

group velocity,     It is given by 

   
  

  
                                                                                               (2.21) 

   
     

  
    

  

  
 

We further write  

  

  
 

  

  
 
  

  
 

  
  

 
  

Differentiating the above expression, we get 

  

  
  

  

  
  

 

 
 

 
  

  
   

  

  
 

      
  

  
                                                                                      (2.22) 

This is the relation that connects phase velocity and group velocity. 

2.14  Real Light Waves 

It is now very easy to see why natural light behaves in different 

way from radio waves or other electromagnetic waves though it belongs 

to the same family of waves. We have been accustomed to regard light 

waves as ideal harmonic waves of infinite extension. Now we have to 
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modify this visualization in view of discreteness in the emission process 

of light. We compare here the features of real light waves with those of 

ideal waves. 

a) Real light waves are of limited extension: 

Ideal waves are of infinite extension in both space and time are of 

constant amplitude. 

Light emitted from common sources is in the form of wave train 

(or wave packet). The amplitude varies from one end of the wave 

packet to the other end. A jumble of such wave packets constitutes 

the real light wave. 

b) Real light waves are not monochromatic: 

Ideal waves are harmonic and posses a single frequency. Hence, 

they are strictly monochromatic. 

In contrast, the wave train emitted by a light source are not 

harmonic but are pulses of short duration. Such non-harmonic 

waves may be regarded as arising due to the superposition of a 

series of harmonic waves having a range of frequencies Δν centred 

about a central frequency   . The degree of monochromaticity  of 

source is given by 

  
  

  
 

Where    is the band width. When     ⁄    the radiation is 

ideally monochromatic. If     ⁄   , the radiation is quasi-

monochromatic. 
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c) Real light waves are non-directional: 

In case of real light waves, there is no definite direction of 

propagation as light is emitted randomly and in all possible 

directions. Therefore the light is divergent and is intensity 

diminishes at large distance from the source. 

d) Real light waves are incoherent: 

Coherence means the coordinated motion of several waves. When 

two or more waves are coherent, they will maintain a fixed and 

predictable phase relationship with each other. Monochromatic 

plane waves are ideally coherent. 

As the emission acts occur without any coordination in the source, 

the resulting  wave trains will not have any correlation in their 

phase of wave trains vary at random from one wave train to 

another wave train and fluctuate irregularly at a rate of about 10
8
 

times per second. 

Consequently, the real light waves are incoherent. 

e) Real light waves are unpolarized: 

Light waves belong to the category of transverse waves. In ideal 

transverse waves, the vibrations are perpendicular to the direction 

of propagation and are confined to a plane perpendicular to it. 

Therefore. The waves are polarized. 

In case of real light waves, each wave train taken alone is 

polarized. However, owing to the haphazardness in the acts of 

emission of wave trains by atoms, the different wave trains posses 

different orientations of planes of polarization. The radiation 
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consists of wave trains with planes of vibration distributed in all 

possible directions about the direction of propagation. Therefore. 

The real light is highly disordered and unpolarized. 

 


