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Introduction: 

When waves encounter obstacles (or openings), they bend round the edges of 

the obstacles, if the dimensions of the obstacles are comparable to the wavelength 

of the waves. The bending of waves around the edges of an obstacle is called 

diffraction. 

Fig. 1 illustrates the passage of waves through an opening. When the opening is 

large compared to the wavelength, the waves do not bend round the edges. When 

the opening is small, the bending round the edges is noticeable. When the opening 

is very small, the waves spread over the entire surface behind the opening. The 

opening acts an independent source of waves, which propagate in all directions. 

The diffraction effect is observable quite close to the opening when the size of the 

opening is very small. When the opening is large, diffraction effect is observed at 

greater distances from the opening. In general diffraction of waves becomes 

noticeable only when the size of the obstacle is comparable to a wavelength.  

 

Figure 1: A plane wave of wavelength λ is incident on a barrier in which 

there is an opening of diameter d. (a) When λ << d, the rays continue in a straight-line 

path and the ray approximation remain valid. (b) When λ ≈ d, the rays spread out 

after passing through the opening. (c) When λ >> d, the opening behaves as a point 

source emitting spherical waves. 

However, diffraction phenomenon is not readily apparent in case of light 

waves. It becomes significant when the aperture size is of the order of one 

wavelength wide. Diffraction and interference are basically equivalent. 

 Huygens-Fresnel Theory: 

According to Huygen's wave theory of light, each progressive wave produces 

secondary waves, the envelope of which forms the secondary wave front. In figure 

2(a). S is a source of monochromatic light and MN is a small aperture. XY is the 
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screen placed in the path of light. AB is the illuminated portion of the screen and 

above A and below B is the region of the geometrical shadow. Considering MN as 

the primary wave front. According to Huygen's construction, if secondary wave 

fronts are drawn, one would expect encroachment of light in the geometrical 

shadow. Thus, the shadows formed by small obstacles are not sharp. This bending 

of light round the edges of an obstacle or the encroachment of light within the 

geometrical shadow is known as diffraction. Similarly, if an opaque obstacle MN 

is placed in the path of light [Figure 2 (b)], there should be illumination in the 

geometrical shadow region AB also. But the illumination in the geometrical 

shadow of an obstacle is not commonly observed because the light sources are not 

point sources and secondly the obstacles used are of very large size compared to 

the wavelength of light. If a shadow of an obstacle is cast by an extended source, 

say a frosted electric bulb, light from every point on the surface of the bulb forms 

its own diffraction pattern (bright and dark diffraction bands) and these overlap 

such that no single pattern can be identified. The term diffraction is referred to 

such problems in which one considers the resultant effect produced by a limited 

portion of a wave front. 

 

 

 

 

 

 

Figure 2 

Diffraction phenomena are part of our common experience. The luminous 

border that surrounds the profile of a mountain just before the sun rises behind it, 

the light streaks that one sees while looking at a strong source of light with half 

shut eyes and the colored spectra (arranged in the form of a cross) that one sees 

while viewing a distant source of light through a fine piece of cloth are all 

examples of diffraction effects. 

Augustine Jean Fresnel in 1815, combined in a striking manner Huygens' 

wavelets with the principle of interference and could satisfactorily explain the 

bending of light round obstacles and also the rectilinear propagation of light. 
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Fresnel's Assumptions: 

According to Fresnel, the resultant effect at an external point due to a wave 

front will depend on the factors discussed below: 

In figure 3, S is a point source of monochromatic light and MN is a small 

aperture. XY is the screen and SO is perpendicular to XY. MCN is the incident 

spherical wave front due to the point source S. To obtain the resultant effect at a 

point P on the screen, Fresnel assumed the following: 

 

Figure 3 

 (1) A wave front can be divided into a large number of strips or zones 

called Fresnel's zones of small area and the resultant effect at any point will 

depend on the combined effect of all the secondary waves emanating from the 

various zones; 

(2) The effect at a point due to any particular zone will depend on the 

distance of the point from the zone; 

(3) The effect at P will also depend on the obliquity of the point with 

reference to the zone under consideration, e.g. due to the part of the wave front at 

C. the effect will be a maximum at O and decreases with increasing obliquity. It is 

a maximum in a direction radially outwards from C and it decreases in the 

opposite direction. The effect at a point due to the obliquity factor is proportional 

to (1+ cosƟ) where     ∠PCO = Ɵ. considering an elementary wave front at C, the 

effect is maximum at O because Ɵ = 0 and cosƟ = 1. Similarly, in a direction 

tangential to the primary wave front at C (along CQ) the resultant effect is one half 

of that along CO because Ɵ = 90˚ and cos 90˚ = 0. In the direction CS, the 

resultant effect is zero since Ɵ = 180˚ and cos180˚ = - 1 and I + cos180˚ = 1-1 = 0. 

This property of the secondary waves eliminates one of the difficulties experienced 

with the simpler form of Huygens principle viz... That if the secondary waves 



Optics 

Dr. .Muayyed Jabar Zoory                                                                                                   
 

  

 

4 

spread out in all directions from each point on the primary wave front. They 

should give a wave traveling forward as well as backward. Now, as the amplitude 

at the rear of the wave is zero there will evidently be no back wave. 

Rectilinear Propagation of Light: 

ABCD is a plane wave front perpendicular to the plane of the paper [Figure 4 

(a)] and P is an external point at a distance b perpendicular to ABCD. To find the 

resultant intensity at P due to the wave front ABCD, Fresnel's method consists in 

dividing the wave front into a number of half period elements or zones called 

Fresnel's zones and to find the effect of all the zones at the point P. 

If spheres are constructed with P as centre and radii equal to b+λ/2. b+2λ/2. b+3 

λ/2etc.. they will cut out circular areas of radii OM1, OM2,OM3, etc.. on the wave 

front. These circular zones are called half period zones or half period elements. 

Each zone differs from its neighbour by a phase difference of π or path difference 

of λ /2. Thus the secondary waves starting from the point O and M1 and reaching P 

will have a phase difference of π or a path difference λ /2. A Fresnel half period 

zone with respect to an actual point P is a thin annular zone of the primary wave 

front in which the secondary waves from any two corresponding points of 

neighboring zones differ in path by λ /2. 

 

Figure (4) 

In Fig. 4 (b) O is the pole of the wave front XY with reference to the external 

point P. OP is perpendicular to XY. In Fig. 4 (c) 1.2.3 etc are the half period zones 

constructed on the primary wave front XY. OM1 is the radius of the first zone. 

OM2 is the radius of the second zone and so on. P is the point at which the 

resultant intensity has to be calculated. 
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Figure (4) 

 

                               

And 

      
 

 
       

  

 
       

  

 
      

The area of the first half period zone is  
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]                      (1) 

As λ is small, λ2
 term is neglected. 

The radius of the first half period zone is,         √   

The radius of the second half period zone is,     [   
     ]  ⁄  

                                                                   [(   )    ]  ⁄  

                                           √    

The area of the second half period zone,   [       
 ] 

                    [      ] 

                                                                                                                      (2) 

Thus, the area of each half period zone is equal to    . Also the radii of the 1
st
, 

2
nd

, 3
td

, etc. half period zones are √     √     √    etc. Therefore, the radii are 

proportional to the square roots of the natural numbers. However, it should be 

remembered that the areas of the zones are not constant but are dependent on - (i) 

λ, the wavelength of light and (ii) b, the distance of the point from the wave front. 
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The area of the zone increases with increase in the wavelength of light and with 

increase in the distance of the point P from the wave front. 

As discussed in Fresnel's Assumptions the effect at a point will depend on (i) 

the distance of P from the wave front, (ii) the area of the zone and (iii) the 

obliquity factor. Here, the area of each zone is the same. The secondary waves 

reaching the point P are continuously out of phase and in phase with reference to 

the central or the first half period zone. Let m1, m2, m3, etc. represent the 

amplitudes of vibration of the ether particles at P due to secondary waves from the 

1
st
, 2

nd
, 3

td
, etc. half period zones (see Figure 5). As we consider the zones 

outwards from O, the obliquity increases and hence the quantities m1, m2, m3, etc. 

are of continuously decreasing order. Thus, m1 is slightly greater than m2; m2 is 

slightly greater than m3 and so on. Due to the phase difference of π between any 

two consecutive zones, if the displacements of the ether particles due to odd 

numbered zones are in the positive direction, then due to the even numbered zones 

the displacement will be in the negative direction at the same instant. As the 

amplitudes are of gradually decreasing magnitude, the amplitude of vibration at P 

due to any zone can be approximately taken as the mean of the amplitudes due to 

the zones preceding and succeeding it.  

           
     

 
 

The resultant amplitude at P, at any instant is given by, 

                                   

(If n is even, the last quantity is -  ). 
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If the whole wave front ABCD is unobstructed, the number of half period zones 

that can be constructed with reference to the point P is infinite i.e. n → ∞. As the 

amplitudes are of gradually diminishing order,    and     , tend to be zero. 

Therefore, the resultant amplitude at P due to the whole wave front    
  

 
  (3) 

The intensity at a point is proportional to the square of the amplitude. 

    
  

 

 
                                                                                                         (4) 

Thus, the intensity at P is only one-fourth of that due to the first half period 

zone alone. Here, only half the area of the first half period zone is effective in 

producing the illumination at the point P. A small obstacle of the size of half the 

area of the first half period zone placed at will screen the effect of the whole wave 

front and the intensity at P due to the rest of the wave front will be zero. While 
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considering the rectilinear propagation of light, the size of the obstacle used is far 

greater than the area of the first half period zone and hence the bending effect of 

light round corners (diffraction effects) cannot be noticed. In the case of sound 

waves, the wavelengths are far greater than the wavelength of light, and hence the 

area of the first half period zone for a plane wave front of sound is very large. If 

the effect of sound at a point beyond an obstacle is to be shadowed, an obstacle of 

very large size has to be used to get no sound effect. if the size of the obstacles 

placed in the path of light is comparable to the wavelength of light, then it is 

possible to observe illumination in the region of the geometrical shadow also. 

Thus, rectilinear propagation of light is only approximately true. 

 

Figure 5 

Zone Plate: 

A zone plate is a specially constructed screen such that light is obstructed from 

every alternate zone. It can be designed so as to cut off light due to the even 

numbered zones or that due to the odd numbered zones. The correctness of 

Fresnel's method in dividing a wave front into half period zones can be verified 

with its help. 

To construct a zone plate, concentric circles are drawn on white paper such that the 

radii are proportional to the square roots of the natural numbers [as shown in 

(Rectilinear Propagation of Light) the radii are proportional to the square roots of 

the natural numbers]. The odd numbered zones (i.e. 1
st
, 3

td
, 5

th
 etc.) are covered 

with black ink and a reduced photograph is taken. The drawing appears as shown 

in   figure 6 (b). The negative of the photograph will be as shown in figure 6 (a). In 

the developed negative, the odd zones are transparent to incident light and the even 

zones will cut off light. 

 
Figure 6 
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If such a plate is held perpendicular to an incident beam of light and a 

screen is moved on the other side to get the image, it will be observed that 

maximum brightness is possible at some position of the screen say b cm from the 

zone plate (Figure 7) XO is the upper half of the incident plane wave front. P is the 

point at which the light intensity is to be considered. The distance of the point P 

from the wave front is b.                    are the radii of the zones. 

    √                  √                                              

    √                 
  
 

  
                                                                                     (5) 

If the source is at a large distance from the zone plate, a bright spot will be 

obtained at P. As the distance of the source is large, the incident wave front can be 

taken as a plane one with respect to the small area of the zone plate. The even 

numbered zones cut off the light and hence resultant amplitude at P = A = m1 + m2 

+ m3 + etc. In this case the focal length of the zone plate fn is given by 

     
  
 

  
                                                                                                            (6) 

Thus, a zone plate has different foci for different wavelengths. The radius of the 

n
th

 zone increases with increasing value of λ. It is very interesting to note that as 

the even numbered zones are opaque, the intensity at P is much greater than that 

when the whole wave front is exposed to the point P. 

In the first case the resultant amplitude is given by 

                (         ) 

 

When the whole wave front is unobstructed, the amplitude is given by 

                      

      
  
 
(                             )  

If a parallel beam of white light is incident on the zone plate, different colours 

come to focus at different points along the line OP. Thus, the function of a zone 

plate is similar to that of a convex (converging) lens and a formula connecting the 

distance of the object and image points can be obtained for a zone plate also. 

 
Figure 7 
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Action of a Zone Plate for an Incident Spherical Wave Front: 

Let XY represent the section of the zone plate perpendicular to the plane of the 

paper. S is a point source of light. P is the position of the screen for a bright image, 

'a' is the distance of the source from the zone plate and b is the distance of the 

screen from the plate.              (         )      are the radii of 1
st
, 2

nd
, 3

td
, 

etc. half period zones. The position of the screen is such that from one zone to the 

next there is an increasing path difference of  
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Similarly for     i.e. the radius of the n
th

 zone, the relation can be written as 
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]                                                                                                   (8) 

Applying the sign convention, 

 

 
 
 

 
 

  

   
 

 

  
                                                                                               (9) 

Figure 8 
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Equation (9) is similar to the equation [
 

 
 
 

 
]  

 

 
 in the case of lenses with a and 

b as the object and image distances and     the focal length. Thus, a zone plate acts 

as a converging lens. A zone plate has a number of foci which depend on the 

number of zones used as well as the wavelength of light employed. 

Difference Between a Zone Plate and a Convex Lens: 

For a given wavelength of light, a convex lens has only one focal length given by 

 

 
 (   ) [

 

  
 
 

  
] 

Where   is the focal length of the lens,   is the refractive index of the material 

of the lens and    and    are the radii of curvature. In a convex lens, the violet 

rays of light come to focus nearer the lens than the red rays of light because for a 

given material the refractive index for violet rays of light is more than for red rays 

of light. 

In the case of a zone plate, there are a number of foci between the point O and P 

(Figure 8). Each focus corresponds to the position where, with reference to P an 

odd number of half period elements can be constructed on each zone. As the 

screen is moved nearer the zone plate, the area of the half period elements 

decreases and more half period elements can be present on each zone. If Pm is the 

position on the image when (2m - 1) half period elements can be present on each 

zone.    the focal length of the zone plate is given by 

   
  
 

(    )  
                                                                                         (10)     

Putting m = 1, 2. 3... etc., the different positions of the screen for a bright image 

can be obtained. In equation (10),    is the radius of the n
th

 zone of the wave front. 

λ is the wavelength of light and (2m - 1 ) is the number of odd half period elements 

present on each zone. For example, if the position of the screen is such that with 

reference to the point P. three half period elements can be constructed on each 

zone, then the focal length of the zone plate    is given by 

   
  
 

   
 

With the decrease in the focal length of the zone plate, the brightness of the 

image decreases. Let the first zone contain only one period element. Then, the 

amplitude at P due to this zone is my If the first zone contains three half period 
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elements for a particular position of the screen, then the amplitude at P due to the 

first zone 

          
  
 
 [
  
 
    

  
 
]  

  
 
 
  
 
 
  
 

 

       
     

 
 is less than   , because      . Further, in a zone plate (for the 

same number of odd half period elements contained in each zone) the focal length 

for violet light is more than for red light, which is reverse in the case of a convex 

lens. 

Comparison between a Zone Plate and a Convex Lens: 

1. Both the zone plate and convex lens form a real image of the object and 

the equations connecting the conjugate distances are similar. 

2. The local lengths of both depend on the wavelength, λ and hence suffer 

from chromatic aberration. The chromatic aberration in a zone plate is 

much more severe than in a convex lens. 

3. A zone plate acts simultaneously as a convex lens and as a concave lens. 

In addition to a real image, a virtual image is also formed simultaneously. 

A convex lens forms only a real image. 

4. In case of zone plate the image is formed by the diffraction phenomenon. 

In case of a convex lens the image is formed due to refraction of light. 

5. The zone plate has got multiple foci on either side of the plate. Hence, the 

intensity of the image formed will be much less. Convex lens has only 

one focus. As all the light is focused at one point, the intensity of the 

image will be more. 

6. In a zone plate, waves reaching the image point through any two alternate 

zones differ in path by λ and in phase by 2π. In case of a convex lens all 

the rays reaching the image point have zero path or phase difference. 

7. A zone plate can be used over a wide range of wavelengths from 

microwaves to x-rays. Glass lens cannot be used beyond the visible 

region. 
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Distinction between Interference and Diffraction: 

Fresnel and Fraunhoflfer types of Diffraction: 

The diffraction phenomena are broadly classified into two types: Fresnel 

diffraction and Fraunhoffer diffraction. 

1. Fresnel diffraction: In this type of diffraction, the source of light and the 

screen are effectively at finite distances from the obstacle (Figure 9a). 

Observation of Fresnel diffraction phenomenon does not require any lenses. 

The incident wave front is not planar. As a result, the phase of secondary 

wavelets is not the same at all points in the plane of the obstacle. The 

resultant amplitude at any point of the screen is obtained by the mutual 

interference of secondary wavelets from different elements of unblocked 

portions of wave front. It is experimentally simple but the analysis proves to 

be very complex. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 

INTERFERENCE DIFFRACTION 

1. Interference is the result of 
interaction of light coming from 
different wave fronts originating 
from the source. 

1. Diffraction is the result of interaction 
of light coming from different parts of 
the same wave front. 

2.  Interference fringes may or may 
not be of the same width. 

2. Diffraction fringes are not of the 
same width. 

3. Regions of minimum intensity are 
perfectly dark. 

3. Regions of minimum intensity are not 
perfectly dark. 

4. All bright bands are of same 

intensity. 

4. The different maxima are of varying 
intensities with maximum intensity for 
central maximum. 

 

The main differences between interference and diffraction are as follows : 
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2. Fraunhoffer diffraction: In this type of diffraction, the source of light and 

the screen are effectively at infinite distances from the obstacle. Fraunhoffer 

diffraction pattern can be easily observed in practice. The conditions 

required for Fraunhoffer diffraction are achieved using two convex lenses, 

one to make the light from the source parallel and the other to focus the 

light after diffraction on to the screen (Figure 9b). The diffraction is thus 

produced by the interference between parallel rays. The incident wave front 

as such is plane and the secondary wavelets, which originate from the 

unblocked portions of the wave front, are in the same phase at every point 

in the plane of the obstacle. This problem is simple to handle 

mathematically because the rays are parallel. The incoming light is rendered 

parallel with a lens and diffracted beam is focused on the screen with 

another lens.  

Fresnel class of diffraction phenomenon is treated in this chapter. 

Diffraction at a Circular Aperture 

Let AB be a small aperture (say a pin hole) and S is a point source of 

monochromatic light. X Y is a screen perpendicular to the plane of the paper and P 

is a point on the screen. SP is perpendicular to the screen O is the center of the 

aperture and r is the radius of the aperture. Let the distance of a source from the 

aperture be a (SO = a) and the distance of the screen from me aperture be b 

(OP=b). QOQ is the incident spherical wave front and with reference to the point 

P, O is the pole of the wave front (Fig. 10). To consider the intensity at P, half 

period zones can be constructed with P as center and radii  on the 

exposed wave front AOB. Depending on the distance of P from the aperture (i.e. 

the distance b) the number of half period zones that can be constructed may be odd 

or even. If the distance a is such that only one half period zone can be constructed, 

then the intensity at P will be proportional to (where    is the amplitude due to 

the first zone at P). On the other hand, if the whole of wave front is exposed to the 

point P. On the other hand, if the whole of the wave front is exposed to the point P. 

the resultant amplitude is 
  

 
 or the intensity at P will be proportional to 

  
 

 
 the 

position of the screen can be altered so as to construct 2, 3 or more half period 

zones for the same area of the aperture. If only two zones are exposed, the 

resultant amplitude at P = m1 – m2 (minimum) and if 3 zones are exposed, the 

amplitude = m1 – m2 + m3 (maximum) and so on. Thus by continuously altering 

the value of b, the point P becomes alternately bright and dark depending on 

whether odd or even number of zones are exposed by the aperture. 
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Figure 10 

Now let us consider a point P' on the screen XY (Fig. 11). Let S to P' be 

joined. The line SP' meets the wave front at O' .O' is the pole of the wave front 

with reference to the point P'. Now let us construct half period zones with the 

point O' as the pole of the wave front. The upper half of the wave front is cut 

off by the obstacle. If the first two zones are cut off by the obstacle between the 

points O' and A X and if only the 3
rd

, 4
th

 and 5
th

 zones are exposed by the 

aperture AOB, then intensity at P' will be maximum. Thus if odd number of half 

period zones are exposed, point P' will be of maximum intensity and if even 

number of zones are exposed, point P' will be of minimum intensity. As the 

distance of P' from P increases the intensity of maxima and minima gradually 

decreases. It is because with the point P' far removed from P, the most effective 

central half period zones are cut off by the obstacle between the points O' and 

A. With the outer zones the obliquity increases with reference to the point P' 

and hence the intensity of maxima and minima also will be less. If the point P' 

happens to be of maximum intensity, then all the points lying on a circle of 

radius PP' on the screen also will be of maximum intensity. Thus with a circular 

aperture, the diffraction pattern will be concentric bright and dark rings with the 

center P bright or dark depending on the distance b. The width of the rings 

continuously decreases. 

 
 Figure 11 
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Mathematical Treatment of Diffraction at a Circular Aperture: 

 

In Fig. 12 S is a point source of a monochromatic light, AB is the circular aperture 

and P is point on the screen. O is the center of the circular aperture. The line SOP 

is perpendicular to the circular aperture AB and the screen at P. The screen is 

perpendicular to the plane of the paper. 

 

Figure 12 

Let δ be the path difference for the wave reaching P along the paths SAP and SOP. 

  (11a)  

If the position of the screen is such that n full number of half period zones can 

be constructed on the aperture, then the path difference    
  

 
          , 

Substituting the value of    in (11 a), we get, 

 

 
 
 

 
 
   

  
                                                                                               (11b) 

The point P will be of maximum or minimum intensity depending on whether n 

is odd or even. If the S source is at infinite distance (for an incident plane wave 

front), then a = ∞ and 

 

 
 
 

 
 
   

  
                                                                                               (12) 

If n is odd, P will be a bright point. The idea of focus at P does not mean that it 

is always a bright point. 
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   Intensity at a Point Away From the Centre: 

In Fig. 13 AB is a circular aperture and P and P' are two points on the screen. 

PP' = x and OP = b. OP is perpendicular to the screen.  

 

Figure 13 

Let r be the radius of the aperture. The path difference between the secondary 

waves from A and B and reaching P' can be given by,   

 

 

 

(13) 

 

 

 (14) 

 

 where xn gives the radius of n
th

 dark ring. 

Similarly, if   

then 

or                                                                                                                                

(15) 

where xn gives the radius of the n
th

 bright ring. 

The objective of a telescope consists of an achromatic convex lens and a 

circular aperture is fixed in front of the lens. Let the diameter of the aperture be D 

(= 2r). While viewing distant objects, the incident wave front is plane and the 
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diffraction pattern consists of a bright centre surrounded by dark and bright rings 

of gradually decreasing intensity. The radii of the dark rings are given by 

(16) 

 

 

 

The value of xn measures the distance of the first secondary minimum from the 

central bright maximum. However, according to Airy's theory, the radius of the 

first dark ring is given by 

(17) 

It is interesting to note that the size of the central image depends on λ, the 

wavelength of light f, the focal length of the lens and D, diameter of the lens 

aperture. 

Diffraction at an Opaque Circular Disc: 

S is a point source of monochromatic light. CD is an opaque disc and MN is the 

screen. P is a point on the screen such that SAP is perpendicular to the screen. The 

screen is perpendicular to the plane of the paper. XY is the incident spherical wave 

front. EF is the geometrical shadow. With reference to the point P, the wave front 

can be divided into half period zones taking the center of the disc (A) as the pole 

(Fig. 14). If one half period zone can be constructed on the surface of the disc, 

 

Figure 14 

the rest of the zones are exposed to the point P and the resultant amplitude at 

  
  

 
 approximately, where    is the amplitude due to the second zone [   

       
  
 

 
              ]  Similarly, if two half period zones can be 

constructed on the surface of the disc, the resultant amplitude at P due to the 
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exposed zones will be 
  

 
 and so on. Thus, the point P will always be bright but the 

intensity at P decreases with increase in the diameter of the disc. That is. with a 

large diameter of the disc, the most effective central zones will be cut off by the 

disc and the exposed outer zones are more oblique with reference to the point P. 

Thus (at P) the center of the geometrical shadow will be bright as i f the disc were 

absent. The diffraction pattern consists of a central bright spot surrounded by 

alternate bright and dark rings, as shown in Fig. 14 (b). 

Diffraction Pattern Due to a Straight Edge:  

Let S be narrow slit illuminated by a source of monochromatic light of 

wavelength. X. The length of the slit is perpendicular to the plane of the paper. AD 

is the straight edge and the length of the edge is parallel to the length of slit (Fig. 

15). XY is the incident cylindrical wave front. P is a  

 

 Figure 15 

point on the screen and SAP is perpendicular to the screen. The screen is 

perpendicular to the plane of the paper. Below the point P is the geometrical 

shadow and above P is the illuminated portion. Let the distance AP be b. With 

reference to the point P, the wave front can be divided into a number of half period 

strips, as shown in Fig. 16. XY is the wave front, A is the pole of the wave front 

and AM1, M1M2, M2M3 etc measure of the thickness of the 1
st
, 2

nd
, 3

nd
 etc. half 

period strips. With the increase in the order of the strip, the area of the strip 

decreases (Fig. 16). 

 

 

 

 

Figure 16 
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In Fig. 15, AP = b, 

 

Let P' be a point on the screen in the illuminated portion (Fig. 17). To calculate the 

resultant effect at P' due to the wave front XY, let us join S to P'. This line meets 

the wave front at B. B is the pole of the wave front with reference to the point P' 

and the intensity at P' will depend mainly on the number of half period strips 

enclosed between the points A and B. The effect at P 'due to the wave front above 

B is same at all points on the screen whereas it is different at different points due 

to the wave front between B and A. The point P' will be of maximum intensity, if 

the number of half period strips enclosed between B and A is odd and the intensity 

at P' will be minimum i f the number of half period strips enclosed between B and 

A is even. 

Positions of  Maximum and  Minimum Intensity: 

Let the distance between the slit and the straight edge be a and the distance 

between the straight edge and the screen be b (Fig. 17). Let PP' be x. 

The path difference,  

  

(18) 

 

 

 

 

where xn is the distance of the n
th

 bright band from P. Similarly, P' will be 

of minimum intensity if  
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(19) 

where xn is the distance of the n
th

 dark band from P. Thus, diffraction bands 

of varying intensity (roughly corresponding to maxima and minima) are observed 

above the geometrical shadow i.e. above P and the bands disappear and uniform 

illumination occurs if P' is far away from P. 

Intensity at a Point Inside the Geometrical  Shadow (Straight Edge): 

 

If P' is a point below P (Fig. 18) and B is the new pole of the wave front with 

reference to the point P', then the half period strips below B are cut off by the 

obstacle and only the uncovered half period strips above B will be effective in 

producing the illumination at P'. As P' moves farther from P. more number of half 

period strips above B is also cut off and the intensity gradually falls. Thus within 

the geometrical shadow, the intensity gradually falls off depending on the position 

of P' with respect to P. The intensity distribution on the screen due to a straight 

edge is shown in Fig. 19. S is the source, AD is the straight edge and MN is the 

screen. In the illuminated portion PM, alternate bright and dark bands of gradually 

diminishing intensity will be observed and the intensity falls off gradually in the 

region of the geometrical shadow. Thus according to the wave theory, the shadows 

cast by obstacles in the path of light are not sharp and hence rectilinear 

propagation of light is only approximately true. In general, there is gradual fading 

of intensity in the region of the geometrical shadow and with monochromatic light 

bright and dark bands (diffraction bands) are observed in the illuminated portion of 

the screen. However, with white light coloured bands will be observed and the 

bands of shorter wavelength are nearer the point P. 

 

 

 

 

 

 

 

 

 

  

 

Fig. 19 Fig. 18 
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Diffraction Pattern Due to a Narrow Slit: 

S is a narrow slit illuminated by monochromatic light. The length of the slit is 

perpendicular to the plane of the paper. AB is a rectangular aperture parallel to the 

slit, MN is the screen and P is a point on the screen such that SOP is perpendicular 

to the plane of the paper; XY is the incident cylindrical wave front (Fig. 20). On 

the screen, EF is the illuminated portion and above E and below F is the region of 

the geometrical shadow. 

 

Fig. 20 

If the slit AB is wide, then with reference to the point P, the cylindrical wave 

front can be divided into a large number of half period strips and the resultant 

amplitude at P will be 
  

 
  where hi, is the amplitude due to the first half period 

strip. Thus, the point P will be illuminated. Even points very near to P will be 

equally illuminated. If the wave front is divided with reference to points nearer P, 

the number of half period strips above and below the new pole in the exposed 

portion of the wave front will be quite large and hence this results in uniform 

illumination. 

Now, let us consider a point P' nearer to the edge of the geometrical shadow 

(see Fig. 20). Let us join S to P'. Here O' is the pole of the wave front with 

reference to the point P'. If the wave front is divided into half period strips, the 

number of half period strips between O' and B will be quite large and the 

illumination at P 'due to the lower portion of the wave front will be the same at all 

points near the edge of the geometrical shadow. But the intensity at P due to the 

exposed portion of the wave front between A and O' will depend on the number of 

half period strips present. If the number of half period elements is odd, the point P' 

will be of maximum intensity and if it is even the point will be of minimum 

intensity. 

Let P" be a point in the region of the geometrical shadow. Let us join S to P". 

Here O" is the pole of the wave front with reference to the point P". If the wave 

front is divided into half period elements, then the upper half of the wave front 
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between X and O" is cut off by the obstacle and only a portion between A and B is 

exposed to the point P". If the number of half period elements exposed by AB is 

odd, then P" will be of maximum intensity and if it is even, it will be of minimum 

intensity. But as the most effective central half period strips between O" and A are 

cut off, the intensity falls off rapidly in the region of the geometrical shadow and 

maxima and minima cannot be distinguished. The intensity distribution due to a 

wide aperture is shown in Fig. 21 (b). 

 

Fig. 21 

On the other hand if the slit is narrow, the intensity at the point P will depend 

on the number of half period strips that can be constructed on the exposed wave 

front between A and B. If the number of half period strips is odd, the intensity at P 

will be maximum and if it is even, the intensity at P will be minimum (Fig. 17.20). 

Thus, the point P can be bright or dark. If we consider a point P' in the illuminated 

portion EF of the screen, the intensity at P will depend on number of half period 

strips that can be constructed between A and O' where O' is the pole of the wave 

front with reference to the point P'. I f the number of half periods strips between A 

and O' is odd, P' will be a point of maximum intensity. Thus, between E and F 

alternate bright and dark bands will be observed and the point P may be bright or 

dark. Now consider a point P" in the region of the geometrical shadow (Fig. 20). 

O" is the pole of the wave front with reference to the point P" and the intensity at 

P" will depend on the number of half period strips exposed by the slit AB. The 

upper half of the wave front above O" is obstructed by the obstacle and even the 

most effective central half period strips between O" and A are cut off by the 

obstacle. Thus, at P "which is far away from E, the maxima and minima become 

indistinguishable. There is no marked transition between the diffraction bands 

observed in the geometrical shadow and the illuminated portion. In the intensity 

distribution on the screen due to a narrow slit (say less than the wavelength of 

light), a broad central maximum will be observed in the illuminated portion and 
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the intensity variation cannot be distinguished. The intensity gradually falls off in 

the region of geometrical shadow. 

Diffraction Due to a Narrow Wire: 

In Fig. 22, S is a narrow slit illuminated by monochromatic light, AB is the 

diameter of the narrow wire and MN is the screen. The length of the wire is 

parallel to the illuminated slit and perpendicular to the plane of the paper. The 

screen is also perpendicular to the plane of the paper. XY is the incident 

cylindrical wave front. P is a point on the screen such that SOP is perpendicular to 

the screen. EF is the region of the geometrical shadow and above E and below F, 

the screen is illuminated. 

 

Fig. 22 

Now, let us consider a point P' on the screen in the illuminated portion. Let us 

join S to O'. a point on the wave front. O' is the pole of the wave front with 

reference to P'. The intensity P' due to the wave front above O' is the same at all 

points and the effect due to the wave front BY is negligible. The intensity at P' will 

be a maximum or a minimum depending on whether the number of half period 

strips between O 'and A is odd or even. Thus, in the illuminated portion of the 

screen, diffraction bands of gradually diminishing intensity will be observed. The 

distinction between maxima and minima will become less if P' is far away from 

the edge E of the geometrical shadow. Maxima and minima cannot be 

distinguished if the wire is very narrow, because in that case the portion BY of the 

wave front also produces illumination at P. 

Next let us consider a point P" in the region of the geometrical shadow. 

Interference bands of equal width will be observed in this region due to the fact 

that the points A and B, of the incident wave front, are similar to two coherent 

sources. The point P" will be of maximum or minimum intensity, depending on 

whether the path difference (BP" - AP") is equal to even or odd multiplies of 
 

 
 

.The fringe width β is given by  
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where D is the distance between the wire and the screen, X is the wave length 

of light and d is the distance between the two coherent sources. In this case d=2r 

where 2r is diameter of the wire (AB=2r). 

(19) 

 (20) 

(21) 

 

Here, the fringe width corresponds to the distance between any two 

consecutive maxima. Thus, from equations (20) and 21), knowing the values of 

r or  or r can be determined. In Fig. 23 the bands marked V represent the 

interference bands in the region of the geometrical shadow and the bands 

marked "b" and "c "represent the diffraction bands in the illuminated portion. 

The intensity distribution due to a narrow wire is shown in Fig. 24 (a). The 

center of the geometrical shadow is bright. 

 
Fig. 23 

On the other hand, if the wire is very thick, the interference bands 

cannot be noticed. From equation (19), ; where  is the fringe 

width. As the diameter of the wire increases the fringe width decreases 

and if the wire is sufficiently thick, the width of the interference fringes 

decreases considerably and they cannot be distinguished. The intensity 

falls off rapidly in the geometrical shadow. The diffraction pattern in the 

illuminated portion will be similar to that of a thin wire Fig. 24(b). 

Coloured fringes will be observed with white light. 
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Fig. 24 

 

Example 17.1: What is the radius of the first half period zone in a zone plate 

behaving like a convex lens of focal length 60 cm for light of wavelength 6000 ? 

 

Example 17.2: A circular aperture of 1.2 mm diameter is illuminated by plane 

waves of monochromatic light. The diffracted light is received on a distant screen 

which is gradually moved towards the aperture. The centre of the circular patch of 

light first becomes dark when the screen is 30 cm from the aperture. Calculate the 

wavelength of light. 
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PROBLEMS FOR PRACTICE 

1. The diameter of the first ring of a zone plate is 1.1 mm. If plane waves

 fall on the plate, where should the screen be placed so that light is 

focused to a bright spot?  

2. Find the radii of the first three transparent zones of a zone plate whose first 

focal length is 1 m for  

3. The diameter of the central zone of a zone plate is 3 mm. If a point source of 

light is placed at a distance of 5 m from it. calculate the position of 

the first image. 

4. A parallel beam of monochromatic light of is incident normally on a 

plate having a circular hole of diameter 1mm. The screen is at the farthest 

position for which the axial point is almost black. The screen is moved towards 

the plate so that the axial point is again seen black. How far is the screen 

moved from the first position to the second?                                                    

5. A narrow slit illuminated by light of wave length is placed at a distance 

of 20 cm from a straight edge. Calculate the distance between the second and 

third diffraction maxima formed on a screen placed at a distance of 60 cm from 

straight edge. 


