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Electromagnetism

Textbooks

• “Introduction to electrodynamics”, David J. Griffiths (1999, 3rd edition)
• “Classical electromagnetism” R.H. Good (1999)
• “Electromagnetic fields and waves”, P. Lorrain, D.R. Corson, F. Lorrain (1987, 3rd edition)
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History of Electromagnetism

• Static electricity

• du Fay(France, 1698–1739), Franklin (United States, 1706-1790), Priestly, Cavendish, Coulomb (France, 1736-1806), 

Maxwell (Scotland, 1831-1879)
Independently, Franklin (1747) and Watson (1746) stated the principle of conservation of the quantity of electrical charge.

• Static magnetism

• Gilbert (England, 1540-1603), Descartes, Coulomb, Poisson (France, 1781-1840), Green, Gauss (Germany, 1777-1855)

• Electromagnetism

• Oersted (Denmark, 1777-1851), Arago, Ampere (France, 1775-1836), Davy, Fresnel, Faraday (England, 1791-1867), 

Maxwell, Tesla

• Classical field theory

• Non-relativistic and relativistic

• Quantum mechanics

• Microscopic understanding
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Magnetism

Magnets exert forces on each other just like charges. You can

draw magnetic field lines just like you drew electric field

lines.

Magnetic north and south pole’s behaviour is not unlike

electric charges. For magnets, like poles repel and opposite

poles attract.
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Magnetic poles about our planet

Which one is correct?
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Magnetic Field

Electric field:

A distribution of electric charge at rest creates an electric field E in the surrounding space.1)

2) The electric field exerts a force                    on any other charges in presence of that field.

Magnetic field:

A moving charge or current creates a magnetic field in the surrounding space (in addition to E).1)

2) The magnetic field exerts a force Fm on any other moving charge or current present in that field.

- The magnetic field is a vector field →vector quantity associated with each point in space.

- Fm is always perpendicular to B and v.
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Magnetic Field

- The moving charge interacts with the fixed magnet. The force between them is at a maximum when the velocity of the 

charge is perpendicular to the magnetic field.

Interaction of magnetic force and charge
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Right Hand Rule

Negative charge →F direction

contrary to right hand rule.

Positive charge moving in magnetic field →

direction of force follows right hand rule

8



If charged particle moves in region where both, E and B are present: 
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Measuring Magnetic Fields with Test Charges

Ex: electron beam in a cathode X-ray tube.

- In general, if a magnetic field (B) is present, the electron beam is deflected.

However this is not true if the beam is // to B (φ = 0, π →F=0 →no deflection).
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Magnetic Flux

Consider a uniform magnetic field passing through a surface S, as shown in Figure below.

The magnetic flux through the surface is given by

Magnetic flux through

a non-planar surface

- Magnetic flux is a scalar quantity.

- If B is uniform:

Units: 1 Weber (1 Wb = 1 T m2 = 1 N m / A)

- Difference with respect to electric flux → the total magnetic flux through a closed 

surface is always zero. This is because there is no isolated magnetic charge 

(“monopole”) that can be enclosed by the Gaussian surface.

- The magnetic field is equal to the flux per unit area across an area at right angles

the magnetic field = magnetic flux density. 11



Q/ A uniform magnetic field (B) pointed horizontal. Its magnitude is 1.5 (w/m2). If a proton with energy 5 (Mev) 

moves vertically through this field, what is the Force that acts on this proton?   

φ = 90

Q/ Prove that Wb=V.S?
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Q/ A uniform magnetic field (B=1.2T), find the magnetic flux that inter a plane surface of area (2 

m2) if:

1. The surface is perpendicular to the direction of the field.

2. The direction of the surface make an angle 30o with the field.

3. The surface is parallel to the magnetic field. 

1- when the surface is perpendicular to the field  

B n

A

𝜃 = 0

2- when θ = 30̊

n
B

𝜃

A
A

n

B

𝜃

3- 𝜃 = 90
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Motion of Charged Particles in a Magnetic Field

- Motion of a charged particle under the action of a magnetic field alone is always motion with constant speed.

Radius of circular orbit in magnetic field:

+ particle →counter-clockwise rotation.

- particle →clockwise rotation.

- Magnitudes of F and v are constant (v perp. B) →uniform circular motion.

- F does not have a component parallel to particle’s motion →cannot do work.

- Magnetic force perpendicular to v →it cannot change the magnitude of the velocity, only its direction.
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Angular speed: ω = v/R 

Cyclotron frequency: f = ω/2π

A charged particle will move in a plane

perpendicular to the magnetic field.

- If v is not perpendicular to B → v// (parallel to B) constant because F// = 0 →

particle moves in a helix. (R same as before, with v = v┴).

Since the time of one rotation T=1/f then:

𝑇 =
2𝜋𝑚

𝑞𝐵
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Q/ An electron with energy 10 ev is circulating in a plane at right angles to a uniform magnetic field of 1x10-4 Tesla. 

What is

a) The orbital radius of the electron? 

b) The frequency of the electron?

c) Period of rotation?
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Applications of Motion of Charged Particles

Velocity selector

- Only particles with speed E/B can pass through

without being deflected by the fields.

- Particles of a specific speed can be selected from

the beam using an arrangement of E and B fields.

- Fm (magnetic) for + charge towards right (q v B).

- FE (electric) for + charge to left (q E).

- Fnet = 0 if Fm = FE -qE + q v B = 0 
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Thomson’s e/m Experiment

e/m does not depend on the cathode material or residual gas on tube →particles in the 

beam (electrons) are a common basic of all matter.

The deflection (d) can be given by:

𝑑 =
𝑒𝐸𝐿𝐷

𝑚𝑣2

Where:
e: charge of electron 
E: electric field
L: length of metal
m: mass of electron

v: velocity of electron

L D

d

𝑒

𝑚
=

𝐸𝑑

𝐿𝐷𝐵2
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Mass Spectrometer

- Using the same concept as Thompson, Bainbridge was able to construct a 

device that would only allow one mass in flight to reach the detector.

- Velocity selector filters particles with v = E/B.

After this, in the region of B’ particles with m2 >m1 travel with radius (R2 > R1).
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Magnetic Force on a Current-Carrying Conductor

Magnetic force on a straight wire segment:

Magnetic force on an infinitesimal wire section:

In general:

Force on one charge

- Total force:

n = number of charges per unit volume 

A l = volume

𝑣𝑑 =
𝐼

𝑛𝐴𝑞

𝑞 = 𝑛𝐴𝐿𝑞

𝐼 =
𝑞

𝑡
=
𝑛𝐴𝐿𝑞

𝑡
𝐿

𝑡
= 𝑣𝑑
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- Current is not a vector. The direction of the current flow is given by dl, not I. 

dl is tangent to the conductor.
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Force and Torque on a Current Loop

- The net force on a current loop in a uniform magnetic field is zero.

Right wire of length “a” F = I a B (B ┴ I)

Left wire of length “b” F’ = I b B sin (90º - φ) (B forms 90º-φ angle with I)

F’ = I b B cos φ

Fnet = F – F + F’ - F’ = 0

- Net torque ≠ 0 (general).
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φ is angle between a vector perpendicular to loop and B

Torque is zero, φ = 0º

A = a b

Torque on a current loop
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Magnetic dipole moment:

Direction: perpendicular to plane of loop (direction of 

loop’s vector area → right hand rule)

Magnetic torque:

Potential Energy for a Magnetic Dipole:

Electric dipole moment:

Electric torque:

Potential Energy for an Electric Dipole:
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Magnetic Torque: Loops and Coils

Solenoid

N= number of turns

φ is angle between axis of solenoid and B

Max. torque: solenoid axis ┴ B.

Torque rotates solenoid to position where its axis is parallel to B.
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Q/ A wire with length 1m carrying a current 10A placed in a uniform magnetic field of 1.5T. Find the magnitude of 

the force on the wire if: 

wire is placed normally to the field(a)

Wire makes an angle of (b) 30o with the field
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The magnetic field caused by a short segment dl of a current-carrying 

conductor can be obtained by a short derivation:

We know that the magnetic field of a single point charge q moving 

with a constant velocity v is given by:

where dQ is the element of charge in the short segment of current-carrying 

conductor and vd is the drift velocity of the charge carriers in the conductor.

Hence

We need to calculate dQ:
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Magnetic Field of a Current and a moving Charge



Hence

or

The above equation is known as Biot-Savart Law.

The Principle of superposition of magnetic fields states that the total magnetic field caused by several moving charges 

is the vector sum of the fields caused by the individual charges.

The total magnetic field at any point in space due to the current in a complete circuit will be:
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We know that

where n is the number of charge carriers per unit volume
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Consider a straight conductor with length 2a carrying a current I. Find the magnetic field at point P which is located 

at a distance x from the conductor on its perpendicular bisector.

From Biot-Savart Law, we have:

First, we will need to work out what is

Hence,

Substituting that into the Biot-Savart Law, we have:

Magnetic Field of a Long Straight Wire
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Notice that both and          can be replaced with:   

We have:

The magnitude of the magnetic field is:
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What if the current carrying conductor is long (assumed to be infinite in length)?

From the above equation, we have:

For infinite length of wire,                                , We have:

x is normally denoted by r, which is the distance from the conductor to the point.

Hence,
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Magnetic Field for a Circular Wire

The figure shows a circular wire of radius (R) carrying a current (I). In order to 

find the magnetic field at point (P) located at distance (x) from the centre of the 

wire, we choose a differential element of the wire (dL). According to Biot_Savart

law:

𝑑𝐿 × Ԧ𝑟 = 𝑑𝐿 sin 90 = 𝑑𝐿

dLدائما عمودي على rلان 

The vector ( Ԧ𝑟) is usually perpendicular to (dL) and the direction of (dB) is 

perpendicular to (r) 

𝑑𝐵𝑥 = 𝑑𝐵 sin 𝜃 𝑑𝐵𝑦 = 𝑑𝐵 cos 𝜃

From symmetry dBy=0, so the magnitude of B will be: 

𝐵 = න𝑑𝐵𝑥 =
𝜇0𝐼

4𝜋
න
𝑑𝐿 sin 𝜃

𝑟2
sin 𝜃 =

𝑅

𝑟
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L=2πR

𝐵 =
𝜇0𝐼𝑅

2

2𝑟3
𝑟 = 𝑥2 + 𝑅2 𝑟3 = 𝑥2 + 𝑅2 3/2

𝐵 =
𝜇0𝐼𝑅

2

2 𝑥2 + 𝑅2 3/2

1) If point (P) is too far from the centre x>>R, so,  

𝐵 =
𝜇0𝐼𝑅

2

2𝑥3
=
𝜇0𝐼𝜋𝑅

2

2𝜋𝑥3
𝜋𝑅2 = 𝐴

𝐵 =
𝜇0𝐼𝐴

2𝜋𝑥3 IA= m (magnetic moment)

𝐵 =
𝜇0𝑚

2𝜋𝑥3

At the centre of the wire (x=0) 

𝐵 =
𝜇0𝐼

2𝑅
If the wire is a coil of (N) turns then 𝐵 =

𝜇0𝐼𝑁

2𝑅
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It is experimentally established fact that two current carrying conductors

attract each other when the current is in same direction and repel each

other when the current are in opposite direction.

Figure shows two long parallel wires separated by distance d and

carrying currents I1 and I2

Consider wire 1 will produce a field B1 at all near by points .The

magnitude of B1 due to current I1 at a distance d i.e. on wire 2 is

Force between parallel current currying conductor

B1=μ0I1/2πd

The direction of B1 is according to the right hand rule

Consider length L of wire 2 and the force experienced by it will be (I2LB) whose magnitude is

1 2

L

Direction of F2 can be determined using vector rule .F2 Lies in the plane of the wires and points to the left.

Force per unit length of wire B is
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The force between current-carrying wires is used as part of the operational definition of the Ampere. For parallel wires placed one 

meter away from one another, each carrying one ampere, the force per meter is:

𝐹

𝐿
=
(4𝜋 × 10−7𝑇.𝑚/𝐴) (1𝐴)2

2 × 3.14 × 1𝑚
= 2 × 10−7 𝑁/𝑚

Incidentally, this value is the basis of the operational definition of the ampere. This means that one ampere of current through two

infinitely long parallel wires (separated by one meter in empty space and free of any other magnetic fields) causes a force of

2×10-7 N/m on each conductor.

Ex. Two horizontal parallel wires are separated by a distance (R). Calculate the magnetic field at midpoint between the two wires:

1- if the wires carrying current (I) in opposite direction.

2- if the wires carrying current (I) in same direction.

Answer:

1- The wires carrying current (I) in opposite direction B1 and B2 are in the same direction 

B=B1+B2

2- The wires carrying current (I) in same direction B1 and B2 are in the opposite direction 

P
I

B1
B2

I

R

P
I

B1
B2

I

R
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Classification of Magnetic Materials

Materials can be classified according to their reaction to an external magnetic field. The relationship between the 

magnetisation of a material and an external applied field can be described by the following equation

where 𝜒 is the dimensionless magnetic susceptibility, 𝜇0 is the permeability of vacuum, M is the sample magnetisation

and H is the magnetic field. Depending upon the magnetic susceptibility materials fall into the following categories.

1- Diamagnetic Materials

Diamagnetic materials have negative magnetic susceptibility. Diamagnetic atoms and ions have completely filled

electron shells. Application of a magnetic field induces changes in the electrons’ orbital motion that leads to a magnetic

moment of opposite orientation to that of the magnetic field. Classically this can be thought of as a consequence of

Lenz’s law. For a diamagnetic material, the susceptibility is independent of temperature. Examples of diamagnetic

materials include the monoatomic gases (He, Ne and Ar), molecules such as NaCl, and solids such as C, Si, Ge.
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2- Paramagnetic Materials

Paramagnetic materials have unpaired electrons in incomplete sub-shells, which gives a non-zero magnetic

moment. The magnetic moment of the paramagnetic material can be aligned with an external magnetic field, while in

the absence of an external magnetic field the magnetic moments are randomly oriented, which gives rise to an

average magnetisation of zero. Paramagnetic materials have a susceptibility that is positive and small. The

relationship between temperature T and susceptibility is expressed by Curie’s law:

where C is Curie’s constant. Examples of paramagnetic materials are the rare earth and transition metal ions.
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3- Ferromagnetic Materials

A ferromagnetic material has unpaired electron spins aligned parallel with each other, giving long range ordering of

the magnetic moments in the absence of an external magnetic field. Ferromagnetic materials have higher values of

magnetic susceptibility compared with the paramagnetic and diamagnetic materials and the susceptibility depends

upon on temperature. At higher temperature, the susceptibility decreases until a ferromagnetic material undergoes a

transition to a paramagnetic state.

Ferromagnetic materials have strong magnetism because of the strong coupling of the spin vectors of adjoining

atoms forming regions called domains. In 1906, P. Weiss introduced a first attempt to describe the classical origin of

ferromagnetism within these domains, which is called molecular field theory or Weiss theory. His idea based on the

existence of an internal molecular field Bin, which acts to align the magnetic moments, with an externally applied

magnetic field Bex. However, he developed his theory by assuming that the field was proportional to the magnetisation

in the ferromagnetic material as:

𝐁𝑖𝑛 = 𝜆 𝐌

where 𝜆 is the molecular field constant. 
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Then it is possible to treat a ferromagnet as a paramagnet subject to a field. So, the total field for the ferromagnetic

material can be written as:

𝐁𝑡𝑜𝑡 = 𝐁𝑒𝑥 + 𝐁𝑖𝑛

where Bin is the Weiss field. Hence, the above equation can be rewritten in the new form:

𝐁𝑡𝑜𝑡 = 𝐁𝑒𝑥 + 𝜆 𝐌

Using Curie’s law of paramagnetism the magnetic susceptibility can be re-written by combining equations as: 

The final form of the magnetic susceptibility of a ferromagnetic material is written in terms of temperature T, Curie

temperature Tc and the Curie constant (𝐶 = 𝜇°𝑁𝑚
2/3𝑘𝐵), where N is the number of magnetic atoms per unit volume,

as:

𝜒 =
𝐶

𝑇 − 𝑇𝑐
.
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This equation, known as the Curie-Weiss law, describes the behaviour of ferromagnetic materials above the Curie

temperature, where 𝑇𝑐 = 𝐶𝜆. The Curie temperature, for iron is roughly 1000 K, therefore the internal molecular field

Bin ≈ 107 Oe. The origin of such a strong field could not be explained by Weiss theory.
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In 1928, Heisenberg explained the origin of this molecular field using a quantum mechanical description of the

exchange interaction in a formulation known as the Heisenberg Hamiltonian. He demonstrated that the electrons of

neighbouring atoms would have a lower energy if their spins are aligned parallel. This interaction is the result of a

combination of the Pauli exclusion principle and the Coulomb repulsion between charges. The Heitler- London model

of the hydrogen molecule is used to describe the concept of direct exchange between two electron spins. This model

considers two hydrogen molecules (the proton ‘a’ has electron ‘1’ and proton ‘b’ has electron ‘2’), where two electrons

are described by 𝜓(𝒓1, 𝑠1) and 𝜓(𝒓2, 𝑠2), where 𝒓1,2 are the spatial coordinates and 𝑠1,2 are the spin states. There is an

attractive and repulsive force between the electrons and protons of the two hydrogen atoms, which is electrostatic in

origin and can be explain classically by Coulomb’s Law. Electrons are indistinguishable fermions. If the distance

between the two hydrogen atoms become closer, the wavefunctions of the electrons overlap so that there is a total

wavefunction representing both electrons. The Pauli exclusion principle prevents two electrons from having the same

spatial wavefunction and the same spin orientation. The total wavefunction must be antisymmetric with respect to

exchange of the electron coordinates and its sign must reverse i.e. 𝜓 𝒓1, 𝒓2 = − 𝜓(𝒓2, 𝒓1).
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The symmetry of the total electron wavefunction to 𝜓 𝑟 = 𝜙 𝑟 𝜒(𝑟) depends upon that of both the spin

function 𝜒(𝑟) and the spatial function 𝜙 𝑟 . This antisymmetry of the function 𝜓 𝑟 can be achieved either by having a

symmetric spatial wave function and anti-symmetric spin wave function, or vice versa. Therefore, there are two

possible states for the hydrogen molecule:

𝜓𝑆 =
1

2
𝜙𝑎 𝒓1 𝜙𝑏 𝒓2 + 𝜙𝑎 𝒓2 𝜙𝑏 𝒓1 𝜒𝑆 ,

where the subscripts S and T refer to the spin singlet (s = 0) and triplet (s =1) respectively. In the singlet state the total

spin quantum number s = 0, while in the symmetric triplet state, s = 1. The degeneracy of the singlet and triplet states

is equal to 2s + 1. The Hamiltonian used to describe the interaction of the two electron systems:
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where 𝑟𝑎𝑏 is the distance between the nuclei in the first term on the right hand side which represents the interaction of

the two nuclei a and b, 𝑟12 is the distance between the electrons which represent the interaction of the two electrons 1

and 2, and 𝑟1𝑏, 𝑟2𝑎 are the distances between a given nucleus and the electron on the other atom which represents the

interaction between an electron with the nucleus of the other hydrogen atom. The interaction energy can be calculated

from the equation as:

𝐸 = න𝜓∗ℋ12𝜓 𝑑𝜏.

Therefore, for the wavefunctions of the singlet and triplet states the energies are:

𝐾12 = න𝜙𝑎
∗ 1 𝜙𝑏

∗ 2 ℋ12 𝜙𝑎 1 𝜙𝑏 2 𝑑𝜏1𝑑𝜏2,
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If 𝐽12 has positive sign then the ground state exhibits parallel spins, while in the hydrogen molecule the electron

spins are antiparallel in the ground state, therefore there is no net spin moment and 𝐽12 has negative sign.

For transition metals, like Fe, Ni, and Co, the 3d and 4s bands overlap at the Fermi level. The exchange interaction

is due to delocalised electrons. Because of the Coulomb repulsion and kinetic energy of the electrons, the bands with

antiparallel spin orientation are exchange split. Therefore, the total magnetic moment is non-zero, which leads to the

appearance of ferromagnetism. The Stoner model can be used to describe itinerant ferromagnetism, where the

exchange splitting energy can be written as ∆Eex = IM, where I is the Stoner exchange parameter and M is the average

magnetisation. According to the Stoner criterion, ferromagnetism occurs when:

where 𝑁 𝐸𝐹 is the density of states at Fermi level. Therefore, magnetic order is favoured in 3d and 4f elements that

have high 𝑁 𝐸𝐹 and strong exchange splitting, because the change in the exchange energy is bigger than the gain in

the kinetic energy when the ferromagnetic state is formed.
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Magnetic domains

Everyday experience tells us that there are permanent magnetic materials, and then others that can sometimes be magnetized. How

are they different?

A uniformly magnetized material produces a stray magnetic field in which energy is stored - a high energy state

This energy may be reduced by the formation of domains

But an abrupt reversal of neighbouring magnetic moments would greatly increase

the exchange energy, so it is more energetically favorable for the magnetization to

rotate gradually within a domain wall In ultrathin films the magnetization tends to

rotate within the film forming a Néel wall In thicker films the magnetization

rotates out of the plane in a Bloch wall

In permanent magnetic materials domain walls are strongly pinned and so cannot

move to form a demagnetized state
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Total Magnetic Free Energy

The total magnetic free energy (Etot) of a ferromagnet contains a number of terms. The competition between these

energies determines the minimum energy state and can explain many aspects of the material’s behaviour. The most

significant contributions to the free energy are the exchange interaction, the Zeeman interaction, the magnetostatic

energy and the anisotropy energy. The total magnetic energy can be written as:
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1. Exchange energy (Eex)

The exchange interaction energy was formulated by Heisenberg for two neighbouring spins within a magnetic

system. Therefore, this energy is the summation for all pairs of magnetic moments in the magnetic system. However,

this interaction is considered to be short-range, therefore with increasing separation between the neighbouring spins, it

becomes negligible. This energy accounts for the nearest neighbour spins si and sj in the system as:

The exchange integral (J) in ferromagnetic materials has positive sign, giving parallel alignment of neighbouring

spins in the minimum energy configuration.
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2. Zeeman Energy (Ez)

The Zeeman energy results from the interaction between the magnetic system (M) and the external applied field

(H). This energy is a minimum when all the magnetic moments within a sample are aligned parallel with the applied

field and is maximum when the magnetic moments are aligned anti-parallel to the applied field. This energy density is

given by:

3. Magnetostatic Energy (Ems)

The magnetostatic energy, known as the self-energy, originates from the energy of interaction between magnetic

dipoles, which generate an internal field instead of an external applied field. The magnetostatic field direction is

opposite to the magnetisation, and is known as the demagnetisation field (Hd). Therefore, while the magnetostatic

interaction is long range, it is weaker than the exchange interaction. The energy density resulting from this interaction

is:
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The factor of half on the RHS appears so that dipoles are not counted twice. The magnetostatic energy is

minimised when stray fields from the sample are reduced. The magnitude and distribution of the stray field related to

the shape and size of the sample.

4. Anisotropy Energy (Eani)

The magnetic anisotropy energy accounts for the fact that a material is more easily magnetised along one axis than

another. The origins of some common types of magnetic anisotropy are discussed below.
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4.1. Shape Anisotropy

The geometry of the sample plays an important part in increasing or decreasing the anisotropy energy. This is

known as shape anisotropy. Shape anisotropy gives rise to free poles at the edge of the sample that generate a stray

field. For a sample with non-spherical shape, the magnetisation prefers to align along one axis (easy axis) to reduce

the magnetostatic energy of the system, while it costs additional energy for the magnetisation to align along a hard

axis or plane. Shape anisotropy can be described using the demagnetisation field (Hd) which is proportional to the

sample magnetisation (M) as:

where N is the demagnetisation factor. This factor is estimated from the aspect ratio of the sample, and its value is

different depending upon the shape of the sample.
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4.2. Magnetocrystalline anisotropy

The origin of the magnetocrystalline anisotropy can be found in the spin-orbit interaction within the sample. This

effect is considered to be an intrinsic property of the sample because it is related to the structure of the crystal lattice.

The interaction of the spin and orbital angular momenta leads to favourable crystallographic directions in which to

magnetise the sample. These favourable and unfavourable directions for the magnetisation are known as the easy and

hard axes respectively. The realignment of the magnetisation from an easy to hard axis requires an additional energy

known as the magnetocrystalline anisotropy energy.

There are two common types of magnetocrystalline anisotropy known as uniaxial and cubic anisotropy. The energy

associated with the uniaxial anisotropy, like hexagonal cobalt, is a function of the angle between the c-axis and the

magnetisation, θ, and can be written as:

where u=(1/M) M is the unit vector parallel to the magnetisation, and K1 and K2 are the first and second order

anisotropy constants. The constants are sensitive to the temperature.
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The expression for the anisotropy energy of cubic crystals such as iron and nickel is:

The values of the anisotropy constants for Ni, Fe and Co may be either negative or positive. For polycrystalline

samples, there is no net crystalline anisotropy because of the random orientation of the crystallites.


