1) Find an equation of a line whose slope is 3 and passing through the point of intersection of the lines $x-3 y+12=0$ and $2 x+y+3=0$.
2) Solve the inequality $\frac{2 x-5}{x-2} \leq 1$ and sketch the solution on a coordinate line.
3) Find D_{f+g} and $D_{f / g}$ if, $f(x)=\sqrt{x+1}$ and $g(x)=$ $\sqrt{4-x^{2}}$.
4) Prove or disprove, if f is continuous at a point x, then f is also differentiable at x.
5) Determine open intervals on which $f(x)=x^{2}-$ $4 x+3$ is increasing, decreasing, concave up, concave down and find critical points.
6) Prove that, $\cos ^{-1}\left(\frac{3}{\sqrt{10}}\right)+\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)=\frac{\pi}{4}$.
7) Show that, $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right) \quad(x \geq 1)$.
8) Determine whether the equation $x^{2}+y^{2}-2 x-$ $4 y-11=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
9) Find x and y if the line through $(0,0)$ and (x, y) has slope $\frac{1}{2}$, and the line through (x, y) and $(7,5)$ has slope 2.
10) Solve the inequality $\frac{3}{|2 x-1|} \geq 4$ and sketch the solution on a coordinate line.
11) Find $D_{f+g}, D_{f \cdot g}, D_{f / g}, R_{f}$ and R_{g} if, $f(x)=1+$ $\sqrt{x-2}$ and $g(x)=x-3$.
12) Show that $f(x)=\left\{\begin{array}{r}x^{2}+1, x \leq 1 \\ 2 x, x>1\end{array}\right.$ is continuous and differentiable at $x=1$.
13) Determine open intervals on which $f(x)=x^{3}$ is increasing, decreasing, concave up, concave down and find critical points.
14) Prove that, $\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)=\frac{\pi}{4}$.
15) Show that, $\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right) \quad(|x|>1)$.
16) Determine whether the equation $2 x^{2}+2 y^{2}+4 x-$ $4 y=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
17) Find x if the slope of the line through $(1,2)$ and $(x, 0)$ is the negative of the slope of the line through $(4,5)$ and $(x, 0)$.
18) Solve the inequality $|x+3|<|x-8|$ and sketch the solution on a coordinate line.
19) Find D_{f+g} and $D_{f / g}$ if, $f(x)=\sqrt{5-x}$ and $g(x)=\sqrt{x-3}$.
20) Show that $f(x)=\left\{\begin{aligned} x^{2}+2, & x \leq 1 \\ x+2, & x>1\end{aligned}\right.$ is continuous but not differentiable at $x=1$.
21) Determine open intervals on which $f(x)=x^{3}-$ $3 x^{2}+1$ is increasing, decreasing, concave up, concave down and find critical points.
22) Prove that, $2 \tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}\left(\frac{1}{7}\right)=\frac{\pi}{4}$.
23) Show that, $\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right) \quad(x \neq 0)$.
24) Determine whether the equation $x^{2}+y^{2}+2 x+$ $2 y+2=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
25) Solve the inequality $\frac{1}{|2 x-3|}>5$ and sketch the solution on a coordinate line.
26) Find an equation for the line that passes through the point $(2,7)$ and is perpendicular to the line $3 y-$ $2 x+6=0$.
27) Determine whether the equation $x^{2}+y^{2}+2 x+$ $2 y+2=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
28) Find $D_{f}, D_{g}, D_{f / g}, D_{f+g}, D_{f \cdot g}, R_{f}, R_{g}$ if,

$$
f(x)=1+\sqrt{x-2} \text { and } g(x)=x-3
$$

Lecture Notes in Calculus I By Dr. Najm Al-Seraji

29) Sketch the graph of the function defined by the formula

$$
f(x)=\left\{\begin{array}{cc}
0, & x \leq-1 \\
\sqrt{1-x^{2}}, & -1<x<1 \\
x, & x \geq 1
\end{array}\right.
$$

30) Let $f(x)=\left\{\begin{array}{ll}x^{2}+a x+b, & x>2 \\ x^{3}, & x \leq 2\end{array}\right.$. Find a and b such that f is differentiable at $x=2$.
31) Determine open intervals on which $f(x)=x^{4}$ is increasing, decreasing, concave up, concave down, and find critical points, maximum and minimum points, inflection points.
32) Prove that, $\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right) \quad(x \neq 0)$.
33) Find the value of x, if $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}(x)=$ $\tan -1(4 x)$.
34) Does $f(x)=x^{3}-12 x$ satisfy the conditions of Rolle's Theorem on $[0,2 \sqrt{3}]$ (explain your answer).
35) Find
a) $\lim _{x \rightarrow \infty}\left(\sqrt{\mathrm{x}^{6}+5}-\mathrm{x}^{3}\right) \quad$ b)
$\lim _{x \rightarrow 4} \frac{2-x}{(x-4)(x+2)}$.
36) Solve the inequality $\frac{1}{|x-1|}<2$ and sketch the solution on a coordinate line.
37) In each part classify the lines as parallel, perpendicular or neither
a) $y=4 x-7 \quad$ and $\quad y=4 x+9$
b) $y=2 x-3 \quad$ and $\quad y=7-\frac{1}{2} x$
c) $5 x-3 y+6=0$ and $10 x-6 y+7=0$
d) $y-2=4(x-3) \quad$ and $\quad y-7=\frac{1}{4}(x-3)$
e) $y=\frac{1}{2} x$
and $\quad x=\frac{1}{2} y$
f) $y=x$
and $\quad y=-x$
g) $y=3$
and $\quad y=1$
38) Determine whether the equation $x^{2}+y^{2}-2 x-$ $4 y-11=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
39) Find $D_{f}, D_{g}, D_{f / g}, D_{f+g}, D_{f \cdot g}, R_{f}, R_{g}$ if,

$$
f(x)=\sqrt{5-x} \text { and } g(x)=\sqrt{x-3}
$$

40) Sketch the graph of $f(x)=\left\{\begin{array}{r}-x, \\ x, \\ x \geq 0\end{array}\right.$.
41) Prove or disprove, if f is continuous at a point x_{1}, then f is differentiable at x_{1}.
42) Determine open intervals on which $f(x)=x^{3}-$ $3 x+3$ is increasing, decreasing, concave up, concave down, and find critical points, maximum and minimum points, inflection points.
43) Prove that, $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)(x \geq 1)$.
44) Does $f(x)=|x|-1$ satisfy the conditions of Rolle's Theorem on $[-1,1]$ (explain your answer).
45) Find
a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5 x^{3}}-x^{3}\right)$
b) $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$.
46) Find the value of x, if $\tan \left(\frac{\pi}{4}+\tan ^{-1}(x)\right)=$ $\tan -1(3)$.
47) Solve the inequality $|5-2 x| \geq 4$ and sketch the solution on a coordinate line.

Lecture Notes in Calculus I By Dr. Najm Al-Seraji

48) Find an equation of a line whose slope is 3 and passing through the point of intersection of the lines $x-3 y+12=0$ and $2 x+y+3=0$.
49) Determine whether the equation $x^{2}+y^{2}+10 y+$ $26=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
50) Find $D_{f}, D_{g}, D_{f / g}, D_{f+g}, D_{f \cdot g}, R_{f}, R_{g}$ if,

$$
f(x)=\sqrt{x+1} \text { and } g(x)=\sqrt{4-x^{2}}
$$

51) Sketch the graph of $y=\left\{\begin{aligned}-1 & , x<0 \\ 0 & , x=0 \\ 1 & , x>0\end{aligned}\right.$
52) Prove or disprove, if f is differentiable at a point x_{1}, then f is continuous at x_{1}.
53) Determine open intervals on which $f(x)=\frac{2}{3} x^{3}-$ $\frac{1}{2} x^{2}-6 x+3$ is increasing, decreasing, concave up, concave down, and find critical points, maximum and minimum points, inflection points.
54) Find a) $\lim _{x \rightarrow \infty} \sqrt[3]{\frac{3 x+5}{6 x-8}}$ b) $\lim _{h \rightarrow 0} \frac{(2-h)^{3}-8}{h}$.
55) Prove that, $\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right) \quad(|x|>1)$.
56) Find the value of x, if $\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=$ $\pi 4$.
57) Does $f(x)=x^{3}-4 x$ satisfy the conditions of Rolle's Theorem on $[-2,2]$ (explain your answer).
58) Find an equation of a line whose slope is 3 and passing through the point of intersection of the lines $x-3 y+12=0$ and $2 x+y+3=0$.
59) Solve the inequality $\frac{2 x-5}{x-2} \leq 1$ and sketch the solution on a coordinate line.
60) Sketch the graph of the function defined by the formula

$$
f(x)=\left\{\begin{array}{cc}
0, & x \leq-1 \\
\sqrt{1-x^{2}} & ,-1<x<1 \\
x, & x \geq 1
\end{array}\right.
$$

61) Find D_{f+g} and $D_{f / g}$ if, $f(x)=\sqrt{x+1}$ and

$$
g(x)=\sqrt{4-x^{2}}
$$

62) Let $f(x)=\left\{\begin{array}{ll}x^{2}+a x+b, & x>2 \\ x^{3}, & x \leq 2\end{array}\right.$. Find a and b such that f is differentiable at $x=2$.
63) Determine open intervals on which $f(x)=x^{2}-$ $4 x+3$ is increasing, decreasing, concave up, concave down and find critical points.
64) Does $f(x)=x^{3}-4 x$ satisfy the conditions of Rolle's Theorem on [-2,2]?(explain your answer).
65) Find a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5}-x^{3}\right)$ b) $\lim _{x \rightarrow 4} \frac{2-x}{(x-4)(x+2)}$
66) Show that, $\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right) \quad(|x|>1)$.
67) Find x and y if the line through $(0,0)$ and (x, y) has slope $\frac{1}{2}$, and the line through (x, y) and $(7,5)$ has slope 2.
68) Solve the inequality $\frac{3}{|2 x-1|} \geq 4$ and sketch the solution on a coordinate line.
69) Sketch the graph of $y=x^{2}-4 x+5$.
70) Find D_{f+g} and $D_{f / g}$ if, $f(x)=1+\sqrt{x-2}$ and $g(x)=x-3$.
71) Prove or disprove, if f is continuous at a point x_{1}, then f is also differentiable at x_{1}.
72) Determine open intervals on which $f(x)=x^{3}$ is increasing, decreasing, concave up, concave down and find critical points.
73) Does $f(x)=|x|-1$ satisfy the conditions of Rolle's Theorem on $[-1,1] ?($ explain your answer).
74) Find
a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5 x^{3}}-x^{3}\right)$
b) $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$.
75) Show that, $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right) \quad(x \geq 1)$.
76) Find x if the slope of the line through $(1,2)$ and $(x, 0)$ is the negative of the line through $(4,5)$ and $(x, 0)$.
77) Solve the inequality $|x+3|<|x-8|$ and sketch the solution on a coordinate line.
78) Sketch the graph of $y=x^{2}+6 x$.
79) Find D_{f+g} and $D_{f / g}$ if, $f(x)=\sqrt{5-x}$ and $g(x)=\sqrt{x-3}$.
80) Show that $f(x)=\left\{\begin{array}{r}x^{2}+2, x \leq 1 \\ x+2, x>1\end{array}\right.$ is continuous but not differentiable at $x=1$.
81) Determine open intervals on which $f(x)=x^{3}-$ $3 x^{2}+1$ is increasing, decreasing, concave up, concave down and find critical points.
82) Does $f(x)=x^{3}-12 x$ satisfy the conditions of Rolle's Theorem on $[0,2 \sqrt{3}]$?(explain your answer).

Lecture Notes in Calculus I By Dr. Najm Al-Seraji

83) Find a) $\lim _{x \rightarrow \infty} \sqrt[3]{\frac{3 x+5}{6 x-8}}$
b) $\lim _{h \rightarrow 0} \frac{(2-h)^{3}-8}{h}$.
84) Show that, $\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right) \quad(x \neq 0)$.
85) Find $\lim _{x \rightarrow \infty} \frac{2 x^{4}+3 x^{2}+20}{3 x^{4}+5}$.
86) Evaluate $\int \frac{x^{2}-3 x+1}{x+1} d x$.
87) Find D_{f} and R_{f} if, $y=f(x)=\sqrt{4-x^{2}}$.
88) Does $f(x)=9-x^{2}$ satisfy the conditions of Rolle's Theorem on $\quad[-2,2]$? (explain your answer).
89) Show that $f(x)=\left\{\begin{aligned} x^{2}+2, & x \leq 1 \\ x+2, & x>1\end{aligned}\right.$ is continuous at $x=1$.
90) Solve the inequality $|x-5| \leq 9$.
91) Find x if the slope of the line through $(1,2)$ and $(x, 0)$ is the negative of the line through $(4,5)$ and $(x, 0)$.
92) Solve the inequality $|x+3|<|x-8|$ and sketch the solution on a coordinate line.
93) Sketch the graph of $y=x^{2}+6 x$.
94) Find D_{f+g} and $D_{f / g}$ if, $f(x)=\sqrt{5-x}$ and $g(x)=\sqrt{x-3}$.
95) Show that $f(x)=\left\{\begin{aligned} x^{2}+2, & x \leq 1 \\ x+2, & x>1\end{aligned}\right.$ is continuous but not differentiable at $x=1$.
96) Find
a) $\lim _{x \rightarrow \infty} \sqrt[3]{\frac{3 x+5}{6 x-8}}$
b) $\lim _{h \rightarrow 0} \frac{(2-h)^{3}-8}{h}$.
97) Show that, $\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right) \quad(x \neq 0)$.
98) Find x and y if the line through $(0,0)$ and (x, y) has slope $\frac{1}{2}$, and the line through (x, y) and $(7,5)$ has slope 2.
99) Solve the inequality $\frac{3}{|2 x-1|} \geq 4$ and sketch the solution on a coordinate line.
100) Sketch the graph of $y=x^{2}-4 x+5$.
101) Prove or disprove, if f is continuous at a point x_{1}, then f is also differentiable at x_{1}.

> 102) Find a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5 x^{3}}-x^{3}\right)$ $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$.
b)
103) Show that, $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$ $(x \geq 1)$.
104) Find D_{f+g} and $D_{f / g}$ if, $f(x)=1+\sqrt{x-2}$ and $g(x)=x-3$.
105) Solve the inequality $|5-2 x| \geq 4$ and sketch the solution on a coordinate line.
106) Find an equation of a line whose slope is 3 and passing through the point of intersection of the lines $x-3 y+12=0$ and $2 x+y+3=0$.
107) Determine whether the equation $x^{2}+y^{2}+10 y+$ $26=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
108) Sketch the graph of $y=\left\{\begin{array}{cl}-1 & , x<0 \\ 0 & , x=0 . \\ 1 & , x>0\end{array}\right.$
109) Prove or disprove, if f is differentiable at a point x_{1}, then f is continuous at x_{1}.

Lecture Notes in Calculus I By Dr. Najm Al-Seraji

110) Find a) $\lim _{x \rightarrow \infty} \sqrt[3]{\frac{3 x+5}{6 x-8}} \quad$ b) $\lim _{h \rightarrow 0} \frac{(2-h)^{3}-8}{h}$.
111) Prove that, $\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right) \quad(|x|>1)$.
112) Solve the inequality $\frac{1}{|2 x-3|}>5$ and sketch the solution on a coordinate line.
113) Find an equation for the line that passes through the point $(2,7)$ and is perpendicular to the line $3 y-$ $2 x+6=0$.
114) Determine whether the equation $x^{2}+y^{2}+2 x+$ $2 y+2=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
115) Find $D_{f}, D_{g}, D_{f / g}, D_{f+g}, D_{f \cdot g}, R_{f}, R_{g}$ if,

$$
f(x)=1+\sqrt{x-2} \text { and } g(x)=x-3
$$

116) Sketch the graph of the function defined by the formula

$$
f(x)=\left\{\begin{array}{cc}
0, & x \leq-1 \\
\sqrt{1-x^{2}} & ,-1<x<1 \\
x, & x \geq 1
\end{array}\right.
$$

117) Let $f(x)=\left\{\begin{array}{ll}x^{2}+a x+b, & x>2 \\ x^{3}, & x \leq 2\end{array}\right.$. Find a and b such that f is differentiable at $x=2$.
118) Find
a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5}-x^{3}\right)$
b)
$\lim _{x \rightarrow 4} \frac{2-x}{(x-4)(x+2)}$.
119) Solve the inequality $\frac{1}{|x-3|}-\frac{1}{|x+4|} \geq 0$ and sketch the solution on a coordinate line.
120) Find an equation of a line whose slope is 3 and passing through the point of intersection of the lines $x-3 y+12=0$ and $2 x+y+3=0$.
121) Determine whether the equation $x^{2}+y^{2}+2 x+$ $2 y+2=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
122) Find $D_{f}, D_{g}, D_{f / g}, D_{f+g}, D_{f \cdot g}, R_{f}, R_{g}$ if,

$$
f(x)=1+\sqrt{x-2} \text { and } g(x)=x-3
$$

122) Sketch the graph of the function defined by the formula

$$
f(x)=\left\{\begin{array}{cc}
0, & x \leq-1 \\
\sqrt{1-x^{2}}, & -1<x<1 \\
x, & x \geq 1
\end{array}\right.
$$

123) Let $f(x)=\left\{\begin{array}{ll}x^{2}+a x+b, & x>2 \\ x^{3}, & x \leq 2\end{array}\right.$. Find a and b such that f is differentiable at $x=2$.
124) Determine open intervals on which $f(x)=x^{4}$ is increasing, decreasing, concave up, concave down, and find critical points, maximum and minimum points, inflection points.
125) Prove that, $\operatorname{csch}^{-1} x=\ln \left(\frac{1}{x}+\frac{\sqrt{1+x^{2}}}{|x|}\right) \quad(x \neq 0)$.
126) Find the value of x, if $\tan ^{-1}\left(\frac{1}{3}\right)+\tan ^{-1}(x)=$ $\tan -1(4 x)$.
127) Does $f(x)=x^{3}-12 x$ satisfy the conditions of Rolle's Theorem on $[0,2 \sqrt{3}]$ (explain the answer).
128) Find
a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5}-x^{3}\right)$
b)
$\lim _{x \rightarrow 4} \frac{2-x}{(x-4)(x+2)}$.
129) Prove that, if $y=\cosh ^{-1} x$, then $\frac{d y}{d x}=\frac{1}{\sqrt{x^{2}-1}}$ $(x>1)$.
130) Solve the inequality $\frac{1}{|2 x-3|}>5$ and sketch the solution on a coordinate line.
131) In each part classify the lines as parallel, perpendicular or neither
a) $y=4 x-7 \quad$ and $\quad y=4 x+9$
b) $y=2 x-3 \quad$ and $\quad y=7-\frac{1}{2} x$
c) $5 x-3 y+6=0$ and $10 x-6 y+7=0$
d) $y-2=4(x-3) \quad$ and $\quad y-7=\frac{1}{4}(x-3)$
e) $y=\frac{1}{2} x$
and $\quad x=\frac{1}{2} y$
f) $y=x$
and $\quad y=-x$
g) $y=3$
and $\quad y=1$
132) Determine whether the equation $9 x^{2}+9 y^{2}=1$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
133) Find $D_{f}, D_{g}, D_{f / g}, D_{f+g}, D_{f \cdot g}, R_{f}, R_{g}$ if,

$$
f(x)=\sqrt{5-x} \text { and } g(x)=\sqrt{x-3}
$$

Lecture Notes in Calculus I By Dr. Najm Al-Seraji

135) Sketch the graph of $f(x)=\left\{\begin{array}{r}-x, \\ x, \\ x \geq 0\end{array}\right.$.
136) Prove or disprove, if f is continuous at a point x_{1}, then f is differentiable at x_{1}.
137) Determine open intervals on which $f(x)=x^{3}-$ $3 x+3$ is increasing, decreasing, concave up, concave down, and find critical points, maximum and minimum points, inflection points.
138) Prove that, $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)(x \geq 1)$.
139) Does $f(x)=|x|-1$ satisfy the conditions of Rolle's Theorem on $[-1,1]$ (explain the answer).
140) Find a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5 x^{3}}-x^{3}\right)$ b) $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$.
141) Find the value of x, if $\tan \left(\frac{\pi}{4}+\tan ^{-1}(x)\right)=$ $\tan -1(3)$.
142) Prove that, if $y=\tanh ^{-1} x$, then $\frac{d y}{d x}=\frac{1}{1-x^{2}}$ $(|x|<1)$.
143) Solve the inequality $\frac{1}{|x-1|}<2$ and sketch the solution on a coordinate line.
144) Find x if the slope of the line through $(1,2)$ and $(x, 0)$ is the negative of the slope of the line through $(4,5)$ and $(x, 0)$.
145) Determine whether the equation $x^{2}+y^{2}+10 y+$ $26=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
146) Find $D_{f}, D_{g}, D_{f / g}, D_{f+g}, D_{f \cdot g}, R_{f}, R_{g}$ if,

$$
f(x)=\sqrt{x+1} \text { and } g(x)=\sqrt{4-x^{2}}
$$

147) Sketch the graph of $y=\left\{\begin{aligned}-1 & , x<0 \\ 0 & , x=0 \\ 1 & , x>0\end{aligned}\right.$
148) Prove or disprove, if f is differentiable at a point x_{1}, then f is continuous at x_{1}.
149) Determine open intervals on which $f(x)=\frac{2}{3} x^{3}-$ $\frac{1}{2} x^{2}-6 x+3$ is increasing, decreasing, concave up,

Lecture Notes in Calculus I By Dr. Najm Al-Seraji

concave down, and find critical points, maximum and minimum points, inflection points.
150) Find
a) $\lim _{x \rightarrow \infty} \sqrt[3]{\frac{3 x+5}{6 x-8}}$
b) $\lim _{h \rightarrow 0} \frac{(2-h)^{3}-8}{h}$.
151) Prove that, $\operatorname{coth}^{-1} x=\frac{1}{2} \ln \left(\frac{x+1}{x-1}\right) \quad(|x|>1)$.
152) Find the value of x, if $\tan ^{-1}(2 x)+\tan ^{-1}(3 x)=$ $\pi 4$.
153) Does $f(x)=x^{3}-4 x$ satisfy the conditions of Rolle's Theorem on $[-2,2]$ (explain the answer).
154) Prove that, if $y=\operatorname{coth}^{-1} x$, then $\frac{d y}{d x}=\frac{1}{1-x^{2}} \quad(|x|>$ 1)
155) Solve the inequality $\frac{1}{|x-1|}<2$ and sketch the solution on a coordinate line.

Lecture Notes in Calculus I By Dr. Najm Al-Seraji

156) In each part classify the lines as parallel, perpendicular or neither
a) $y=4 x-7$
and
$y=4 x+9$
b) $y=2 x-3$
and

$$
y=7-\frac{1}{2} x
$$

c) $5 x-3 y+6=0$ and $10 x-6 y+7=0$
d) $y-2=4(x-3) \quad$ and

$$
y-7=\frac{1}{4}(x-3)
$$

e) $y=\frac{1}{2} x$
and $\quad x=\frac{1}{2} y$
157) Determine whether the equation $x^{2}+y^{2}-2 x-$ $4 y-11=0$ represents a circle, a point, or no graph. If the equation represents a circle, find the center and radius.
158) Find $D_{f}, D_{g}, D_{f / g}$, if,

$$
f(x)=\sqrt{5-x} \text { and } g(x)=\sqrt{x-3}
$$

159) Sketch the graph of $f(x)=\left\{\begin{array}{ll}4, & x<0 \\ 6, & x \geq 0\end{array}\right.$.
160) Prove or disprove, if f is continuous at a point x_{1}, then f is differentiable at x_{1}.
161) Find a) $\lim _{x \rightarrow \infty}\left(\sqrt{x^{6}+5 x^{3}}-x^{3}\right)$ b) $\lim _{x \rightarrow-3} \frac{|x+3|}{x+3}$.
162) Find an equation of a line whose slope is 3 and passing through the point of intersection of the lines $x-3 y+12=0$ and $2 x+y+3=0$.
163) Solve the inequality $\frac{2 x-5}{x-2} \leq 1$ and sketch the solution on a coordinate line.
164) Find D_{f+g} and $D_{f / g}$ if, $f(x)=\sqrt{x+1}$ and $g(x)=\sqrt{4-x^{2}}$.
165) Prove or disprove, if f is continuous at a point x, then f is also differentiable at x.
166) Determine open intervals on which $f(x)=x^{2}-$ $4 x+3$ is increasing, decreasing, concave up, concave down and find critical points.
167) Prove that, $\cos ^{-1}\left(\frac{3}{\sqrt{10}}\right)+\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)=\frac{\pi}{4}$.
168) Determine whether the equation $x^{2}+y^{2}-2 x-$ $4 y-11=0$ represents a circle, a point, or no graph. If
the equation represents a circle, find the center and radius.
