Q1) Show that every finite integral domain is a field.

Q2) (a) Show that the set $K=\left\{\left(\begin{array}{cc}a & b \\ -3 b & a\end{array}\right): a, b \in \mathbb{Q}\right\}$ is a field with respect to matrix addition and multiplication.
(b) Show that K is isomorphic to the field $\mathbb{Q}(i \sqrt{3})=\{a+$ $b i \sqrt{3}: a, b \in \mathbb{Q}\}$.

Q3) Let D be an integral domain, let φ be the monomorphism from D into $Q(D)$ such that $\varphi(a)=\frac{a}{1}$, and let K be a field with the property that there is a monomorphism θ from D into K. Prove that, there exists a monomorphism $\psi: Q(D) \rightarrow K$ such that $\psi \circ \varphi=\theta$.

Q4) Consider the group G of order 8 given by the multiplication table

\cdot	e	a	b	c	p	q	r	s
e	e	a	b	c	p	q	r	s
a	a	b	c	e	q	r	s	p

b	b	c	e	a	r	s	p	q
c	c	e	a	b	s	p	q	r
p	p	s	r	q	e	c	b	a
q	q	p	s	r	a	e	c	b
r	r	q	p	s	b	a	e	c
s	s	r	q	p	c	b	a	e

(a) Show that $B=\{e, b\}$ and $Q=\{e, q\}$ are subgroups.
(b) List the left and right cosets of B and of Q, and deduce that B is normal and Q is not.
(c) Let H be the group given by the table

\cdot	e	x	y	z
e	e	x	y	z
x	x	e	z	y

y	y	z	e	x
z	z	y	x	e

Describe a homomorphism φ from G onto H with kernel B.

Q5) Prove that, every Euclidean domain is a principal ideal domain.

Q6) Let $R=\{a+b i \sqrt{3}: a, b \in \mathbb{Z}\}$.
(a) Show that R is a subring of \mathbb{C}.
(b) Show that the map $\varphi: R \rightarrow \mathbb{Z}$ given by $\varphi(a+b i \sqrt{3})=a^{2}+3 b^{2}$ preserves multiplication: for all u, v in $R, \varphi(u v)=\varphi(u) \varphi(v)$. Show also that $\varphi(u)>3$ unless $u \in\{0,1,-1\}$.
(c) Show that the units of R are 1 and -1 .
(d) Show that $1+i \sqrt{3}$ and $1-i \sqrt{3}$ are irreducible, and deduce that R is not a unique factorization domain.

Q7) Show that, even if K is a field, $K[X, Y]$ is not a principal ideal domain.

Q8) Show that $3 X^{4}-7 X+5$ is irreducible over \mathbb{Q}.

Q9) Let $L: K$ be a field extension such that $[L: K]$ is a prime number.

Show that there is no subfield E of L such that $K \subset E \subset L$.

Q10) Let α be a root in \mathbb{C} of the polynomial $X^{2}+2 X+5$. Express the element $\frac{\alpha^{3}+\alpha-2}{\alpha^{2}-3}$ of $\mathbb{Q}(\alpha)$ as a linear combination of the basis $\{1, \alpha\}$.

Q11) Show that the polynomial $X^{3}+X+1$ is irreducible over
$\mathbb{Z}_{2}=\{0,1\}$, and let α be the element $X+\left\langle X^{3}+X+1\right\rangle$ in the field $K=\mathbb{Z}_{2}[X] /\left\langle X^{3}+X+1\right\rangle$. List the 8 elements of K, and show that $K \backslash\{0\}$ is a cyclic group of order 7, generated by α.

Q12) Describe a ruler and compasses construction for the bisection of an angle.

Q13) Describe ruler and compasses constructions for the angle $\frac{\pi}{3}$.

Q14) Show that splitting field of $X^{4}+3$ over \mathbb{Q} is $\mathbb{Q}(i, \alpha \sqrt{2})$, where $\alpha=\sqrt[4]{3}$. What is its degree over \mathbb{Q} ?

Q15) Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a finite subset of a commutative ring R. Then the set $R a_{1}+R a_{2}+\cdots+R a_{n}$ is the smallest ideal of R containing A.

Q16) Let D be a principal ideal domain, let p be an irreducible element in D, and let $a, b \in D$. Show that, if $p \backslash a b$ implies that $p \backslash a$ or $p \backslash b$.

Q17) Let $L: K$ and $M: L$ be field extensions, and [$M: K$] be finite. Show that, if $[M: K]=[L: K]$, then $M=L$.

Q18) Show that $f(X)=X^{3}+X+1$ is irreducible over \mathbb{Q}. let α be a root of f in \mathbb{C}. Express $\frac{1}{\alpha}$ and $\frac{1}{\alpha+1}$ as linear combinations of $\left\{1, \alpha, \alpha^{2}\right\}$.

Q19) Let K be a field of characteristic 0 , and suppose that $X^{4}-$ $16 X^{2}+4$ is irreducible over K. Let α be the element $X+$ $\left\langle X^{4}-16 X^{2}+4\right\rangle$ in the field $L=K[X] /\left\langle X^{4}-16 X^{2}+4\right\rangle$. Determine the minimum polynomial $\alpha^{3}-14 \alpha$.

Q20) Show how to construct a square equal in area to a given parallelogram.

Q21) Describe ruler and compasses constructions for the angle $\frac{\pi}{4}$.

Q22) Determine the splitting fields over \mathbb{Q} of $X^{4}-5 X^{2}+6$, and find their degree over \mathbb{Q}.

Q23) Let n be a positive integer. Prove that, the residue class ring $\mathbb{Z}_{n}=\mathbb{Z} /\langle n\rangle$ is a field if and only if n is prime.

Q24) Show that $g=7 X^{4}+10 X^{3}-2 X^{2}+4 X-5$ is irreducible over \mathbb{Q}.

Q25) Let $L: K$ and $M: L$ be field extensions, and [$M: K$] be finite. Show that, if $[M: L]=[M: K]$, then $L=K$.

Q26) Determine the minimum polynomial of $\sqrt{1+\sqrt{2}}$ over \mathbb{Q}. What is its minimum polynomial over $\mathbb{Q}[\sqrt{2}]$?

Q27) Let K be a field of characteristic 0 , and suppose that $X^{4}-$ $16 X^{2}+4$ is irreducible over K. Let α be the element $X+$ $\left\langle X^{4}-16 X^{2}+4\right\rangle$ in the field $L=K[X] /\left\langle X^{4}-16 X^{2}+4\right\rangle$. Determine the minimum polynomial $\alpha^{3}-18 \alpha$.

Q28) Construct a square equal in area to a given rectangle.

Q29) Describe ruler and compasses constructions for the angle $\frac{\pi}{6}$.

Q30) Determine the splitting fields over \mathbb{Q} of $X^{4}-1$, and find their degree over \mathbb{Q}.

