
Chapter 2

The Main Coding Theory Problem

A code (n, M, d) has the following desirable properties:

1. small n: fast transmission;

2. large M : many messages;

3. large d: correct many errors.

These are conflicting aims. The main coding theory problem is to find codes optimising one
parameter with the other two fixed.

Let Aq(n, d) be the maximum value of M for which there exists a q-ary (n, M, d)-code.

Theorem 2.1.

(i) Aq(n, 1) = qn.

(ii) Aq(n, n) = q.

Proof (i) If d(C) = 1, all codewords are different. So the largest code is C = (Fq)
n and

has M = qn.
(ii) Let C be a q-ary (n, M, n)-code. So all M codewords are distinct in every coordinate.

Consider the first coordinate; hence M ≤ q. The existence of a q-ary repetition code shows
that M = q. �

Recall that
(

n

k

)

=
n(n − 1)(n − 2) · · · (n − k + 1)

k!
=

n!

(n − k)! k!

= number of ways of choosing k objects out of n.

Note 2.2. 0! = 1.

Example 2.3.
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Notation 2.4. S(x, r) is the ball with centre x and radius r; that is,

S(x, r) = {y ∈ (Fq)
n | d(x, y) ≤ r}.

Lemma 2.5. A ball of radius r in (Fq)
n, 0 ≤ r ≤ n, contains exactly

(

n

0

)

+

(

n

1

)

(q − 1) + · · · +

(

n

r

)

(q − 1)r

vectors.

Proof This is an exercise.
Hint: find the number of vectors at precisely distance 0, 1, . . . , r from a vector x. �

Theorem 2.6. (The sphere packing or Hamming bound)
A q-ary (n, M, 2e + 1)-code C satisfies

M

{(

n

0

)

+

(

n

1

)

(q − 1) + · · ·+

(

n

e

)

(q − 1)e

}

≤ qn.

Proof Consider each codeword x in C and a ball S(x, e) of radius e. As in Theorem 4.19,
the balls are disjoint. So we have M disjoint balls of radius e in (Fq)

n which has qn elements.
Hence

M |S(x, e)| ≤ qn.

By Lemma 2.5,

|S(x, e)| =
e

∑

i=0

(

n

i

)

(q − 1)i,

whence the result. �

Corollary 2.7. A binary (n, M, 2e + 1) code satisfies

M

{

1 +

(

n

1

)

+

(

n

2

)

+ · · ·+

(

n

e

)}

≤ 2n.

Definition 2.8. An e-error-correcting code C in (Fq)
n is perfect if any vector in (Fq)

n is at
distance at most e from exactly one codeword; that is, every received message is corrected!

Corollary 2.9. A q-ary (n, M, 2e + 1) code C is perfect if and only if equality holds in

Theorem 2.6.

Corollary 2.10. If d = 2e + 1,

Aq(n, d) ≤ qn/
e

∑

i=0

(

n

i

)

(q − 1)i.

In Example 4.7, C3 is not perfect since 11000 is at distance 2,3,3,2 from the codewords.
However, {000,111} is perfect!

Definition 2.11. If a code C can correct at most e errors, then e is the packing radius. The
packing radius of C is e if it is the largest integer such that the S(x, e) are all disjoint as x
varies in C.
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Definition 2.12. The covering radius of the code C in (Fq)
n is the smallest integer ρ = ρ(C)

such that
⋃

x∈C

S(x, ρ) = (Fq)
n.

Example 2.13. For C3 = {00000, 01101, 10110, 11011}, the packing radius is e = 1, whereas
the covering radius is ρ = 2. Verify this!

Example 2.14. When C = {0000, 1111}, the packing radius e = 1, since d = 4 and
e = ⌊1

2
(d−1)⌋. The covering radius ρ = 2 since every 4-letter word is at distance 0, 1, 2 from

a codeword.

Theorem 2.15. The code C is perfect if and only if ρ = e.

Example 2.16. A perfect code

Projective plane → finite projective plane πq → plane of order two π2

→ incidence matrix → perfect code.

This provides an example of links between coding theory and other combinatorial structures.

Definition 2.17. A projective plane π = (P,L), where P is a set of points, L is a set of
lines, with each line a set of points, satisfying the following:

(i) through every two points there is a unique line;

(ii) every two lines meet in a unique point;

(iii) there exists a quadrangle; that is, a set of four points no three on a line.

Definition 2.18. The plane π = πq has order q if some line contains exactly q + 1 points.

In that case, it follows that π has

(i) q2 + q + 1 points,

(ii) q2 + q + 1 lines,

(iii) q + 1 points on a line,

(iv) q + 1 lines through a point.

Here is the unique plane π2 = PG(2, 2) of order 2. Its points are Pi = i and its lines
are ℓi, i = 1, . . . , 7.

The plane π2 has an incidence matrix A = (aij),where

aij =

{

1 if Pj ∈ ℓi,
0 if Pj 6∈ ℓi.

It is
P1 P2 P3 P4 P5 P6 P7

ℓ1 1 1 0 1 0 0 0
ℓ2 0 1 1 0 1 0 0
ℓ3 0 0 1 1 0 1 0
ℓ4 0 0 0 1 1 0 1
ℓ5 1 0 0 0 1 1 0
ℓ6 0 1 0 0 0 1 1
ℓ7 1 0 1 0 0 0 1
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The projective plane of order 2

Let
u = 1 1 1 1 1 1 1,
z = 0 0 0 0 0 0 0,

mi = u + ℓi.

That is,
m1 = 0 0 1 0 1 1 1,
m2 = 1 0 0 1 0 1 1,
m3 = 1 1 0 0 1 0 1,
m4 = 1 1 1 0 0 1 0,
m5 = 0 1 1 1 0 0 1,
m6 = 1 0 1 1 1 0 0,
m7 = 0 1 0 1 1 1 0.

Then
C = {z, u, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6, ℓ7, m1, m2, m3, m4, m5, m6, m7}.

Note that d(li, lj) = number of points on exactly one of li or lj. Then

d(z, li) = 3, d(z, mi) = 4;

d(u, li) = 4, d(u, mi) = 3;

d(li, lj) = 4, d(mi, mj) = 4, for i 6= j;

d(li, mi) = 7; d(li, mj) = 3, for i 6= j;

d(u, z) = 7.

Note that a line determines the complementary quadrangle and conversely. Hence C is a
(7,16,3)-code, and

16

{(

7

0

)

+

(

7

1

)}

= 16(1 + 7) = 16 . 8 = 24 . 23 = 27.

Therefore C is perfect.

Theorem 2.19. A2(7, 3) = 16.

Note 2.20. If x and y are two sets in π2 with |x| = a, |y| = b and |x ∩ y| = c, then
d(x, y) = a + b − 2c.
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