Chapter 3

Finite Fields

3.1 Construction

Definition 3.1. A field F is a set closed under two operations,$+ \times$ such that
(i) $(F,+)$ is an abelian group with identity 0 ;
(ii) $(F \backslash\{0\}, \times)$ is an abelian group with identity 1 ;
(iii) For all $x, y, z \in F$,

$$
x(y+z)=x y+x z, \quad(x+y) z=x z+y z .
$$

Example 3.2. Examples of fields:

\mathbf{R}	$=$ the real numbers;
\mathbf{Q}	$=$ the rational numbers;
\mathbf{C}	$=$ the complex numbers;
$\mathbf{Z}_{p}=\mathbf{F}_{p}$	$=$ the integers modulo the prime p.

Lemma 3.3. (i) A field has no zero divisors.
(ii) If the positive integer n is composite, \mathbf{Z}_{n} is not a field.

Proof (i) If $m_{1} m_{2}=0$ with $m_{1}, m_{2} \neq 0$, then $m_{1}^{-1} m_{1} m_{2}=0$ and so $m_{2}=0$, a contradiction.
(ii) Suppose $n=m_{1} m_{2}$ with $m_{1}>1, m_{1}>1$. Then, in \mathbf{Z}_{n}, it follows that $m_{1} m_{2}=0$, again a contradiction by (i).

Lemma 3.4. If p is a prime, then \mathbf{Z}_{p} is a field.
Proof If $1 \leq n<p$, then $n \neq 0$ in \mathbf{Z}_{p}. So there exist $a, b \in \mathbf{Z}$ such that

$$
a n+b p=1
$$

In \mathbf{Z}_{p}, it follows that $a n=1$ and $n^{-1}=a$.
Example 3.5. (i) $\mathbf{Z}_{2}, \mathbf{Z}_{3}, \mathbf{Z}_{5}, \mathbf{Z}_{7}$ are fields;
(ii) $\mathbf{Z}_{4}, \mathbf{Z}_{6}$ are not fields.

In $\mathbf{Z}_{4}, 2 \times 2=4=0$. In $\mathbf{Z}_{6}, 2 \times 3=6=0$.

Definition 3.6. In any field F, the smallest positive integer p such that

$$
\underbrace{1+1+\cdots+1}_{p}=0
$$

is the characteristic.
If there is no such integer, then F has characteristic zero.
Lemma 3.7. In a finite field F,
(i) the characteristic p is a prime;
(ii) F is a vector space over \mathbf{F}_{p}.

Proof (i) If $p=p_{1} p_{2}$ with $1<p_{i}<p$, then $p_{1} p_{2} 1=0$, whence $p_{2} 1=0$, a contradiction.
(ii) This follows from the axioms of a vector space.

Theorem 3.8. If a finite field F has $|F|=q$, then $q=p^{h}$ with p a prime and $h \in \mathbf{N}$.
Proof Let $\left\{\alpha_{1}, \ldots, \alpha_{h}\right\}$ be a basis for F over \mathbf{F}_{p}. Then, if $x \in F$, there exist unique $t_{1}, \ldots, t_{h} \in \mathbf{F}_{p}$ such that

$$
x=t_{1} \alpha_{1}+t_{2} \alpha_{2}+\cdots+t_{h} \alpha_{h}
$$

As there are p choices for each t_{i}, so $|F|=p^{h}$.
Theorem 3.9. Any two fields of the same order q are isomorphic; that is, if F_{1}, F_{2} are fields with $\left|F_{1}\right|=\left|F_{2}\right|=q$, then there exists a bijection

$$
\theta: F_{1} \rightarrow F_{2}
$$

with $\theta(x+y)=\theta(x)+\theta(y), \theta(x y)=\theta(x) \theta(y)$ for all $x, y \in F_{1}$.
Notation 3.10. If $|F|=q$, write $F=\mathbf{F}_{q}$ or $F=\mathrm{GF}(q)$; here GF stands for Galois field.
Definition 3.11. A ring ($=$ commutative ring with 1) is a set with two operations,$+ \times$ satisfying all the axioms of a field except perhaps the existence of a multiplicative inverse for all non-zero elements.

Example 3.12. (i) \mathbf{Z}, the integers;

$$
\begin{align*}
F[X] & =\left\{a_{0}+a_{1} X+\cdots+a_{n} X^{n} \mid a_{i} \in F ; n \in \mathbf{N} \cup\{0\}\right\} \tag{ii}\\
& =\text { ring of polynomials over } F \text { in the indeterminate } X .
\end{align*}
$$

Definition 3.13. The polynomial $f(X)$ in $F[X]$ is irreducible if $f=f_{1} f_{2}$ with $f_{1}, f_{2} \in F[X]$ implies that either f_{1} or f_{2} is a constant.

Example 3.14. The polynomial $X^{2}+1$ is irreducible over \mathbf{R} but reducible over \mathbf{C}.
Lemma 3.15 (Remainder Theorem). Over a field F, the linear polynomial $X-\alpha$ divides $f(X)$ if and only if $f(\alpha)=0$.

Proof First,

$$
f(X)=(X-\alpha) g(X)+R
$$

with $R \in F$. Put $X=\alpha$; then $R=f(\alpha)$. So $R=0$ if and only if $f(\alpha)=0$.
Example 3.16. (i) If $F=\mathbf{F}_{2}$, then $X^{2}+1$ is reducible but $X^{2}+X+1$ is irreducible, since 1 is a zero of the first but 0,1 are not zeros of the second.
(ii) If $F=\mathbf{F}_{3}$, then $X^{2}-X+1$ is reducible but $X^{2}-X-1$ is irreducible, since -1 is a zero of the first but $0,1,-1$ are not zeros of the second.
(iii) If $F=\mathbf{F}_{5}$, then $X^{2}+X-1$ is reducible but $X^{2}-X+1$ is irreducible, since 2 is a zero of the first but $0,1,-1,2,-2$ are not zeros of the second.

Example 3.17. Construction of a field of order p^{2}

 First,$$
\mathbf{C}=\mathbf{R}[X] /\left(X^{2}+1\right)=\left\{x+y i \mid x, y \in \mathbf{R} ; i^{2}+1=0\right\} .
$$

Similarly, let $X^{2}-b X-c$ be irreducible over \mathbf{F}_{p}. Write

$$
\alpha^{2}-b \alpha-c=0
$$

Then

$$
\begin{aligned}
\mathbf{F}_{p^{2}}=\operatorname{GF}\left(p^{2}\right) & =\mathbf{F}_{p}[X] /\left(X^{2}-b X-c\right) \\
& =\left\{a_{0}+a_{1} \alpha \mid a_{i} \in \mathbf{F}_{p} ; \alpha^{2}=b \alpha+c\right\}
\end{aligned}
$$

Example 3.18. (i) To construct \mathbf{F}_{4}, take $X^{2}+X+1$, which is irreducible over \mathbf{F}_{2}, and let $\omega^{2}+\omega+1=0$. Then

$$
\mathbf{F}_{4}=\left\{a+b \omega \mid a, b \in \mathbf{F}_{2}\right\}=\left\{0,1, \omega, 1+\omega=\omega^{2}\right\} .
$$

(ii) To construct \mathbf{F}_{9}, take $X^{2}-X-1$, which is irreducible over $\mathbf{F}_{3}=\{0,1,-1=2\}$, and let $\tau^{2}-\tau-1=0$. Then

$$
\mathbf{F}_{9}=\left\{a+b \tau \mid a, b \in \mathbf{F}_{3} ; \tau^{2}=\tau+1\right\}=\{0, \pm 1, \pm \tau, \pm 1 \pm \tau\} .
$$

Alternatively, take $X^{2}+1$, which is also irreducible over \mathbf{F}_{3} and let $\iota^{2}+1=0$. Then

$$
\mathbf{F}_{9}=\left\{a+b \iota \mid a, b \in \mathbf{F}_{3} ; \iota^{2}=-1\right\}=\{0, \pm 1, \pm \iota, \pm 1 \pm \iota\}
$$

Example 3.19. Construction of \mathbf{F}_{q} with $q=p^{h}$
Let $f(X)=X^{h}-b_{h-1} X^{h-1}-\cdots-b_{1} X-b_{0}$ and let $f(\alpha)=0$, where $f \in \mathbf{F}_{p}[X]$ and irreducible. Then

$$
\mathbf{F}_{q}=\left\{a_{0}+a_{1} \alpha+\cdots+a_{h-1} \alpha^{h-1} \mid a_{i} \in \mathbf{F}_{p} ; f(\alpha)=0\right\}
$$

is a field of order $q=p^{h}$.
Theorem 3.20. Let $q=p^{h}$. The field \mathbf{F}_{q} has the following properties.
(i) $(x+y)^{p}=x^{p}+y^{p}$ for all $x, y \in \mathbf{F}_{q}$.
(ii) $t^{q}=t$ for all $t \in \mathbf{F}_{q}$.
(iii) There exists $\alpha \in \mathbf{F}_{q}$ such that

$$
\mathbf{F}_{q}=\left\{0,1, \alpha, \ldots, \alpha^{q-2} \mid \alpha^{q-1}=1\right\} .
$$

(iv) Under multiplication, $\mathbf{F}_{q} \backslash\{0\}$ is a cyclic group of order $q-1$:

$$
\mathbf{F}_{q} \cong \mathbf{Z}_{q-1}
$$

(v) Under addition,

$$
\mathbf{F}_{q} \cong \underbrace{\mathbf{Z}_{p} \times \cdots \times \mathbf{Z}_{p}}_{h}
$$

(vi) If F_{1}, F_{2} are finite fields such that $F_{1} \subset F_{2}$, then $\left|F_{1}\right|$ divides $\left|F_{2}\right|$.
(vii) The automorphism group of \mathbf{F}_{q} is

$$
\operatorname{Aut}\left(\mathbf{F}_{q}\right)=\left\{1, \varphi, \ldots, \varphi^{h-1}\right\} \cong \mathbf{Z}_{h}
$$

where $\varphi(x)=x^{p}, \varphi^{i}(x)=x^{p^{i}}$.
Definition 3.21. If α is as in Theorem 3.20 (iii), it is primitive. The irreducible polynomial over \mathbf{F}_{p} that α satisfies is also primitive.
Note 3.22. A primitive element in \mathbf{F}_{q} has order $q-1$, where the order of x is the smallest positive integer n such that $x^{n}=1$. The order n divides $q-1$ for any $x \in \mathbf{F}_{q} \backslash\{0\}$.

Corollary 3.23.

$$
\prod t=-1
$$

where the product is taken over all $t \in \mathbf{F}_{q} \backslash\{0\}$.

3.2 Irreducible polynomials

Theorem 3.24. $X^{p^{n}}-X$ is the product of all monic irreducible f in $\mathbf{F}_{p}[X]$ such that deg f divides n.

Let N_{d} be the number of polynomials over \mathbf{F}_{p} which are monic and irreducible of degree d.

Corollary 3.25. $p^{n}=\sum_{d \mid n} d N_{d}$.
Definition 3.26 (The Möbius function). If the integer $m=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$, then

$$
\mu(m)=\left\{\begin{array}{cl}
1 & \text { if } r_{1}=r_{2}=\ldots=r_{k}=0 \\
0 & \text { if } r_{i}>1 \text { for some } i \\
(-1)^{k} & \text { if } r_{1}=r_{2}=\cdots=r_{k}=1
\end{array}\right.
$$

If f is a function $\mathbf{N} \rightarrow \mathbf{Z}$ such that

$$
g(n)=\sum_{d \mid n} f(d),
$$

then

$$
f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d)
$$

Corollary 3.27. $N_{n}=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^{d}$.
Proof Put $g(n)=p^{n}, f(n)=n N_{n}$.
Corollary 3.28. If $N(n, q)$ is the number of irreducible monic polynomials of degree n over \mathbf{F}_{q}, then

$$
N(n, q)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^{d}
$$

Corollary 3.29. $N(n, q)>0$.
Proof

$$
N(n, q)>\frac{1}{n}\left(q^{n}-q^{n-1} \ldots-q\right)=\frac{1}{n}\left(q^{n}-\frac{q^{n}-q}{q-1}\right)>0 .
$$

Hence $\mathbf{F}_{p^{h}}$ can be constructed from an irreducible polynomial of degree h and such a polynomial always divides $X^{p^{h}}-X$.

Example 3.30. Construct \mathbf{F}_{8} over \mathbf{F}_{2}

$$
\begin{aligned}
X^{8}+X & =X\left(X^{7}+1\right) \\
& =X(X+1)\left(X^{6}+X^{5}+X^{4}+X^{3}+X^{2}+X+1\right) \\
& =X(X+1)\left(X^{3}+X^{2}+1\right)\left(X^{3}+X+1\right)
\end{aligned}
$$

Using $X^{3}+X^{2}+1$, let $\epsilon^{3}+\epsilon^{2}+1=0$. Then

$$
\mathbf{F}_{8}=\left\{0,1, \epsilon, \epsilon^{2}, \epsilon^{3}, \epsilon^{4}, \epsilon^{5}, \epsilon^{6} \mid \epsilon^{7}=1\right\} .
$$

Note that $\epsilon^{6}+\epsilon^{4}+1=0, \epsilon^{5}+\epsilon+1=0$. Hence, for example,

$$
\begin{aligned}
& \epsilon+\epsilon^{3}=\epsilon\left(1+\epsilon^{2}\right)=\epsilon \cdot \epsilon^{3}=\epsilon^{4} \\
& \epsilon^{2}+\epsilon^{6}=\epsilon^{2}\left(1+\epsilon^{4}\right)=\epsilon^{2} \cdot \epsilon^{6}=\epsilon^{8}=\epsilon
\end{aligned}
$$

3.3 Applications

3.3.1 Old ISBN numbers, also known as ISBN-10

Example 3.31. F_{11}

x	1	2	3	4	5	6	7	8	9	10
x^{-1}	1	6	4	3	9	2	8	7	5	10
x	1	2	3	4	5	-5	-4	-3	-2	-1
x^{-1}	1	-5	4	3	-2	2	-3	-4	5	-1

Example 3.32. Examples of old International Standard Book Numbers

$$
\begin{aligned}
& 0-19-853537-6 \\
& 0-19-850295-8
\end{aligned}
$$

Here, 0 indicates the language, namely English; 19 is the publisher, Oxford University Press; 850295 is the book number; and 8 is the check digit.

Definition 3.33.

$$
x_{1} x_{2} \cdots x_{10}
$$

is an old ISBN number if
(i) each of the first nine digits is in $\{0,1, \ldots, 9\}$;
(ii) the last digit may also be X ;
(iii)

$$
\sum_{i=1}^{10} i x_{i}=0
$$

in \mathbf{F}_{11}.
For example,

x_{i}	0	1	9	8	5	3	5	9	2	9				
i	1	2	3	4	5	6	7	8	9	10				
$i x_{i}$	0	2	5	-1	3	-4	2	-5	-4	2	$=$	$14-14$	$=$	0

Theorem 3.34. (i) An old ISBN number $x_{1} x_{2} \cdots x_{10}$ has

$$
x_{10}=\sum_{i=1}^{9} i x_{i} \quad \text { in } \mathbf{F}_{11} .
$$

(ii) The old ISBN code detects (a) a single error or (b) a double error created by interchanging two digits.
(iii) The old ISBN code corrects an error in a given place.

Proof (i) In $\mathbf{F}_{11}, 10=-1$. So

$$
0=\sum_{1}^{10} i x_{i}=\sum_{1}^{9} i x_{i}+10 x_{10}=\sum_{1}^{9} i x_{i}-x_{10}
$$

Hence $x_{10}=\sum_{1}^{9} i x_{i}$.
(ii) If $y_{j}=x_{j}+t$ is received for x_{j} with $t \neq 0$, but $y_{i}=x_{i}$ for $i \neq j$, then

$$
\sum i y_{i}=\sum i x_{i}+t j=t j \neq 0
$$

in \mathbf{F}_{11}.
(iii) If the number is $x_{1} x_{2} \cdots x \cdots x_{10}$ with x in the j-th place, then

$$
\begin{aligned}
& j x+\sum_{i \neq j} i x_{i}=0 \\
& x=-j^{-1} \sum_{i \neq j} i x_{i} .
\end{aligned}
$$

3.3.2 New ISBN numbers, also known as ISBN-13

Example 3.35. Examples of new International Standard Book Numbers:

$$
\begin{aligned}
& 978-0-691-09679-7 \\
& 978-0-8218-4306-2
\end{aligned}
$$

In the first of these, 978 is always present; 0 indicates the language, namely English; 691 is the publisher Princeton University Press; 09679 is the book number; and 7 is the check digit. In the second, 8218 is the American Mathematical Society.

Definition 3.36.

$$
x_{1} x_{2} \cdots x_{13}
$$

is a new ISBN number if
(i) each digit is in $\{0,1, \ldots, 9\}$;
(iii)

$$
x_{1}+3 x_{2}+x_{3}+3 x_{4}+\cdots+x_{11}+3 x_{12}+x_{13}=0
$$

in \mathbf{Z}_{10}.
For example,

| x_{i} | 9 | 7 | 8 | 0 | 6 | 9 | 1 | 0 | 9 | 6 | 7 | 9 | 7 | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |
| c_{i} | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | |
| $c_{i} x_{i}$ | 9 | 21 | 8 | 0 | 6 | 27 | 1 | 0 | 9 | 18 | 7 | 27 | 7 | |
| $=$ | 9 | 1 | 8 | 0 | 6 | 7 | 1 | 0 | 9 | 8 | 7 | 7 | 7 | $=70$ |

Theorem 3.37. (i) A new ISBN number $x_{1} x_{2} \cdots x_{13}$ has

$$
x_{13}=-\sum_{i=1}^{12} c_{i} x_{i} \quad \text { in } \mathbf{Z}_{10}
$$

where $c_{i}=1$ for i odd and $c_{i}=3$ for i even.
(ii) The new ISBN code corrects an error in a given place.

3.3.3 The Codabar system

Example 3.38. 4929531690489053 is a valid 16-digit credit card number:
4929 is Barclaycard; the next 11 digits form the identifying number; the last digit is a check digit.

Definition 3.39. In general,

$$
x=x_{1} x_{2} \cdots x_{15} x_{16}
$$

is a codabar number if, with $c=2121212121212121$,

$$
c \cdot x+t \equiv 0 \quad(\bmod 10)
$$

where t is the number of x_{i} in odd positions i with $x_{i} \geq 5$.
In the example, $t=4$ as only positions $5,9,13,15$ fulfil this condition. Hence,

$$
\begin{array}{c|llllllllllllllll}
x & 4 & 9 & 2 & 9 & 5 & 3 & 1 & 6 & 9 & 0 & 4 & 8 & 9 & 0 & 5 & 3 \\
c & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
x_{i} c_{i} & 8 & 9 & 4 & 9 & 0 & 3 & 2 & 6 & 8 & 0 & 8 & 8 & 8 & 0 & 0 & 3=76
\end{array}
$$

Now, $76+4=80 \equiv 0(\bmod 10)$.
Note 3.40. As in Theorem 3.34, the codabar system corrects an error in a given place.

