Chapter 8

Hamming Codes

To define the Hamming codes $\operatorname{Ham}(r, q)$ over \mathbf{F}_{q}, where

$$
n=\frac{q^{r}-1}{q-1}, \quad r=n-k \text { for } r=1,2, \ldots
$$

a parity-check matrix H is specified. First, consider the case $q=2$.
Definition 8.1. For any positive integer r, let H be an $r \times n$ matrix, $n=2^{r}-1$, whose columns are the elements of $V(r, 2) \backslash\{0\}$.

Example 8.2. (i) $r=2, n=3, k=1$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \longrightarrow H=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]} \\
& \Longrightarrow G=[111] \Longrightarrow \operatorname{Ham}(2,2)=\{000,111\}
\end{aligned}
$$

the binary repetition code of length 3 .
(ii) $r=3, n=7, k=4$

$$
\begin{aligned}
& {\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \rightarrow H=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]} \\
& \Longrightarrow G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Hence $\operatorname{Ham}(3,2)$ is equivalent to the perfect $[7,4,3]_{2}$ code.
Theorem 8.3. $\operatorname{Ham}(r, 2)$ is a perfect $\left[2^{r}-1,2^{r}-1-r, 3\right]$-code.
Proof By definition, $\operatorname{Ham}(r, 2)^{\perp}$ is a $\left[2^{r}-1, r\right]$-code, whence $\operatorname{Ham}(r, 2)$ is a $\left[2^{r}-1,2^{r}-1-r\right]$ code. Also, by definition, no two columns of H are linearly dependent but there are many sets of 3 dependent columns; for example, $(10 \ldots, 0)^{T},(0,1,0, \ldots, 0)^{T},(1,1,0, \ldots, 0)^{T}$. This gives the following:

$$
n=2^{r}-1, \quad M=2^{n-r}, \quad d=3, \quad e=1 .
$$

Hence, in Theorem 2.6 or Corollary 2.7,

$$
\begin{aligned}
& M\left\{\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{e}\right\} \leq 2^{n} \\
& \text { LHS }=2^{n-r}(1+n)=2^{n-r} \cdot 2^{r}=2^{n}=\text { RHS }
\end{aligned}
$$

So the code is perfect.

Decoding with a binary Hamming code

$C=\operatorname{Ham}(r, 2)$ is a $\left[2^{r}-1,2^{r}-1-r, 3\right]$-code, with

$$
V=V(n, 2),|V|=2^{n}, n=2^{r}-1,|C|=2^{n-r}
$$

The number of cosets is $|V| /|C|=2^{n} / 2^{n-r}=2^{r}$. The coset leaders are $n=2^{r}-1$ vectors of weight 1 and one of weight zero. The syndrome of $l_{i}=0 \ldots 010 \ldots 0$, where the 1 is in the i-th place, is the i-th column of H.
I. If the received vector is y, calculate the syndrome $y H^{T}$.
II. If $y H^{T}=0$, then y is a codeword.
III. If $y H^{T} \neq 0$, then find the column of H containing $y H^{T}$; suppose it is the i-th column.
IV. The corrected vector is $x=y+l_{i}$, where l_{i} is a vector with 1 in the i-th place and 0 elsewhere; that is, change the i-th coordinate of y,

Example 8.4. $\operatorname{Ham}(3,2): \quad r=3, n=7, k=4, d=3$.

$$
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

$$
\begin{align*}
& y=0011111, \tag{i}\\
& s_{H}(y)=y H^{T}=011 ;
\end{align*}
$$

so the error is in the 3rd coordinate and

$$
y+l_{3}=0001111
$$

(ii)

$$
\begin{aligned}
& y=1100011 \\
& s_{H}(y)=010
\end{aligned}
$$

so the error is in the 2nd coordinate, and

$$
y+l_{2}=1000011
$$

Construction of $\operatorname{Ham}(r, q)$

Given any non-zero vector in $V(r, q)$, write $x \sim y$ if $y=\lambda x$ for some non-zero $\lambda \in \mathbf{F}_{q}$. It is immediate that this is equivalence relation. The equivalence classes are the 1-dimensional supspaces are the 1-dimensional subspaces withpout the zero.

Consider the set of equivalence classes: write the set as $\operatorname{PG}(r-1, q)$. Pick one vector in each equivalence class. Note that

$$
|P G(r-1, q)|=\frac{|V(r, q)|-1}{q-1}
$$

The equivalence class of $\left(x_{1}, \ldots, x_{r}\right)$ is $\left[x_{1}, \ldots, x_{r}\right]$.

Projective space $P G(r-1, q)$ over a finite field \mathbf{F}_{q}

Definition 8.5. The subspaces of $P G(r-1, q)$ are the subspaces other than $\{0\}$ of $V(r, q)$.

$V(r, q)$	$P G(r-1, q)$	proj. dim
1-dimensional subspace	point	0
2-dimensional subspace	line	1
3-dimensional subspace	plane	2
4-dimensional subspace	solid	3
i-dimensional subspace	projective $(i-1)$-diml subspace	$i-1$
$(r-1)$-dimensional subspace	hyperplane	$r-2$

Theorem 8.6. The space $\operatorname{PG}(r-1, q)$ contains
(i) $\left(q^{r}-1\right) /(q-1)$ points,
(ii) $\frac{\left(q^{r}-1\right)\left(q^{r-1}-1\right)}{\left(q^{2}-1\right)(q-1)}$ lines,
(iii) $q+1$ points on a line,
(iv) $\left(q^{r-1}-1\right) /(q-1)$ lines through a point.

Proof (i) This is the number of 1-dimensional subspaces in $V(r, q)$.
(ii) This is the number of 2-dimensional subspaces in $V(r, q)$.
(iii) This is the number of 1-dimensional subspaces in a 2-dimensional subspace in $V(r, q)$.
(iv) This is the number of 2-dimensional subspaces through a 1-dimensional subspace in $V(r, q)$.

Corollary 8.7. (i) $P G(2, q)$ contains
(a) $q^{2}+q+1$ points and lines,
(b) $q+1$ points on a line, lines through a point.
(ii) (a) The points are $(x, y, z) \neq(0,0,0)$ where $(\lambda x, \lambda y, \lambda z)=(x, y, z)$.
(b) The lines are $u X+v Y+w Z=\{[x, y, z] \mid u x+v y+w z=0\}$.

Example 8.8. $q=2$.
The points are $(x, y, z), \quad x, y, z \in \mathbf{F}_{2}$, not all zero.
The lines are $u X+v Y+w Z, \quad u, v, w \in \mathbf{F}_{2}$, not all zero.

Example 8.9. $|V(2,5)|=5^{2}, \quad|P G(1,5)|=\left(5^{2}-1\right) /(5-1)=5+1=6$

$$
V(2,5) \backslash\{0\}=\begin{array}{llll}
(1,0), & (2,0), & (3,0), & (4,0) \\
(0,1), & (0,2), & (0,3), & (0,4) \\
(1,1), & (2,2), & (3,3), & (4,4) \\
(1,2), & (2,4), & (3,1), & (4,3) \\
(1,3), & (2,1), & (3,4), & (4,2) \\
(1,4), & (2,3), & (3,2), & (4,1)
\end{array}
$$

$P G(1,5)$ is the first column.

The construction of $\operatorname{Ham}(r, q)$

Let H be an $r \times\left(q^{r}-1\right) /(q-1)$ matrix whose columns give an element from each equivalence class, that is, the distinct points in $P G(r-1, q)$ or equivalently one vector for each 1 dimensional subspace of $V(r, q)$.

Definition 8.10. Let $\operatorname{Ham}(r, q)$ be the linear q-ary code with parity-check matrix H.
Theorem 8.11. $\operatorname{Ham}(r, q)$ is a perfect $\left[\frac{q^{r}-1}{q-1}, \frac{q^{r}-1}{q-1}-r, 3\right]$-code.
Proof $n=\frac{q^{r}-1}{q-1}, k=\frac{q^{r}-1}{q-1}-r$ by definition. Again, by definition and Theorem 9.18, $d=3$. $M=q^{k}=q^{n-r}$. In Theorem 5.6,

$$
\begin{aligned}
q^{n-r}(1+n(q-1)) & =q^{n-r}\left\{1+\frac{q^{r}-1}{q-1}(q-1)\right\} \\
& =q^{n-r}\left(1+q^{r}-1\right) \\
& =q^{n-r} \cdot q^{r} \\
& =q^{n}
\end{aligned}
$$

Hence the code is perfect.
Note 8.12. 1. Different H give equivalent codes as they involve either a permutation of columns or the multiplication by a non-zero scalar.
2. To give a canonical H, choose the top non-zero element of each column as 1 .

Lemma 8.13. (i) $|P G(1, q)|=q+1$.
(ii) $|P G(2, q)|=q^{2}+q+1$.
(iii) $|P G(3, q)|=\left(q^{2}+1\right)(q+1)$.

Example 8.14. $\operatorname{Ham}(r, q) \quad \mathbf{F}_{q}=\left\{t_{1}, t_{2}, \ldots, t_{q}\right\}$
(i) $\operatorname{Ham}(2, q), \quad H=\left[\begin{array}{lllll}0 & 1 & 1 & \ldots & 1 \\ 1 & t_{1} & t_{2} & \ldots & t_{q}\end{array}\right]$.
(ii) $\operatorname{Ham}(3, q), \quad H=\left[\begin{array}{c|ccc|cccc|ccc|c|ccc}0 & 0 & \ldots & 0 & 1 & 1 & \ldots & 1 & 1 & \ldots & 1 & \ldots & 1 & \ldots & 1 \\ 0 & 1 & \ldots & 1 & t_{1} & t_{1} & \ldots & t_{1} & t_{2} & \ldots & t_{2} & \ldots & t_{q} & \ldots & t_{q} \\ 1 & t_{1} & \ldots & t_{q} & t_{1} & t_{2} & \ldots & t_{q} & t_{1} & \ldots & t_{q} & \ldots & t_{1} & \ldots & t_{q}\end{array}\right]$.

Decoding with a q-ary Hamming code

$C=\operatorname{Ham}(r, q)$ is a $\left[\frac{q^{r}-1}{q-1}, \frac{q^{r}-1}{q-1}-r, 3\right]$-code. It is perfect single-error correcting. Hence words of weight ≤ 1 form coset leaders.

The number of words of weight 0 is 1 .
The number of words of weight 1 is $(q-1) n=q^{r}-1$.
Hence the number of words of weight ≤ 1 is $q^{r}-1+1=q^{r}$. The number of cosets is $|V(n, q)| /|C|=q^{n} / q^{k}=q^{n} / q^{n-r}=q^{r}$.
I. If the received vector is y, calculate the syndrome $y H^{T}$.
II. If $y H^{T}=0$, then take the correct message as y.
III. If $y H^{T} \neq 0$, then $y H^{T}=\left(\lambda c_{j}\right)^{T}$ for some column c_{j} of H and some λ of $\mathbf{F}_{q} \backslash\{0\}$.
IV. The correct message is $x=y-\lambda e_{j}$, where $e_{j}=(0 \ldots 010 \ldots 0)$ and the 1 is in the j th place; that is, subtract λ from the j-th coordinate of y.

Example 8.15. $\operatorname{Ham}(2,5)$

$$
H=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 2 & 3 & 4
\end{array}\right] \longrightarrow \text { rearrange the columns } \longrightarrow H^{\prime}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 3 & 4 & 0 & 1
\end{array}\right]
$$

Here $n=6, r=2, k=n-r=4, d=3$.

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & 0 & -1 & -2 \\
0 & 0 & 1 & 0 & -1 & -3 \\
0 & 0 & 0 & 1 & -1 & -4
\end{array}\right]=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 4 & 4 \\
0 & 1 & 0 & 0 & 4 & 3 \\
0 & 0 & 1 & 0 & 4 & 2 \\
0 & 0 & 0 & 1 & 4 & 1
\end{array}\right]
$$

$\operatorname{Ham}(2,5)$ is a $[6,4,3]$ code over \mathbf{F}_{5}; that is, it can send 625 messages.
(i) Decode $y=123123$:

$$
\begin{aligned}
& y H^{\prime T}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 2 & 3
\end{array}\right]\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 2 & 3 & 4 & 0 & 1
\end{array}\right]^{T}=(41)=4(14) \\
& x=y-4 e_{4}=123223=r_{1}+2 r_{2}+3 r_{3}+2 r_{4}
\end{aligned}
$$

where r_{i} is the i-th row of G^{\prime}.
(ii) Decode $y^{\prime}=111111$:

$$
\begin{aligned}
& y^{\prime} H^{\prime T}=01, \\
& x=y-e_{6}=111110=r_{1}+r_{2}+r_{3}+r_{4}
\end{aligned}
$$

If instead of H^{\prime} we had used the equivalent but not the same parity-check matrix H,

$$
\begin{gathered}
H=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 2 & 3 & 4
\end{array}\right] \rightarrow\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llllll}
4 & 4 & 3 & 2 & 1 & 0 \\
1 & 2 & 3 & 4 & 0 & 1
\end{array}\right] \\
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & -4 & -1 \\
0 & 1 & 0 & 0 & -4 & -2 \\
0 & 0 & 1 & 0 & -3 & -3 \\
0 & 0 & 0 & 1 & -2 & -4
\end{array}\right]=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 4 \\
0 & 1 & 0 & 0 & 1 & 3 \\
0 & 0 & 1 & 0 & 2 & 2 \\
r_{1} \\
0 & 0 & 0 & 1 & 3 & 1
\end{array}\right] \begin{array}{l}
r_{2} \\
r_{3} \\
r_{4}
\end{array} \\
y=123123 \Rightarrow s=14 \Rightarrow x=123122=r_{1}+2 r_{2}+3 r_{3}+r_{4} ; \\
y=11111 \Rightarrow s^{\prime}=01 \Rightarrow x=011111=r_{2}+r_{3}+r_{4} .
\end{gathered}
$$

Definition 8.16. The dual of a Hamming code is a simplex code.
Theorem 8.17. The simplex code $\operatorname{Ham}(r, q)^{\perp}$ is a $\left[\frac{q^{r}-1}{q-1}, r, q^{r-1}\right]$ code with every non-zero codeword of weight q^{r-1}.

Proof If H is a parity-check matrix of $\operatorname{Ham}(r, q)$ and so a generator matrix of $\operatorname{Ham}(r, q)^{\perp}$, then, if $x \in \operatorname{Ham}(r, q)^{\perp} \backslash\{0\}$,

$$
x=\sum \lambda_{i} h_{i},
$$

where h_{1}, \ldots, h_{r} are the rows of H and $\lambda_{1}, \ldots, \lambda_{r}$ are not all zero. Now, if j-th column of H is $\left(x_{1} x_{2} \cdots x_{r}\right)^{\perp}$, then the the j-th coordinate of x is 0 if $\sum_{1}^{r} \lambda_{i} x_{i}=0$. As the columns vary over all points of $P G(r-1, q)$, the number of 0 's in x is the number of points in a hyperplane, namely $\left(q^{r-1}-1\right) /(q-1)$. So

$$
w(x)=\frac{q^{r}-1}{q-1}-\frac{q^{r-1}-1}{q-1}=q^{r-1} .
$$

Example 8.18. $C=\operatorname{Ham}(3,2)$ is a $[7,4,3]_{2}$ code and so C^{\perp} is a $[7,3]_{2}$ code. A parity-check matrix H for C is a generator matrix for C^{\perp}. As in Example 8.4, let

$$
H=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right] \begin{aligned}
& h_{1} \\
& h_{2} \\
& h_{3}
\end{aligned}
$$

Then the elements of C^{\perp} are $0, h_{1}, h_{2}, h_{3}, h_{1}+h_{2}, h_{1}+h_{3}, h_{2}+h_{3}, h_{1}+h_{2}+h_{3}$; that is,

$$
0000000,0001111,0110011,1010101,0111100,1011010,1100110,1111000 .
$$

Every non-zero word of C^{\perp} has weight 4.

