Chapter 9

Constructions of Codes

Theorem 9.1. Let d be odd. Then a binary (n, M, d)-code exists if and only if a binary $(n+1, M, d+1)$-code exists.

Proof (i) Adding an overall parity-check
Let C be an (n, M, d)-code and C^{\prime} be an $\left(n+1, M, d^{\prime}\right)$-code. If $x \in C, x=x_{1} x_{2} \cdots x_{n}$, then $x^{\prime}=x_{1} x_{2} \cdots x_{n} x_{n+1} \in C^{\prime}$, where

$$
x_{n+1}= \begin{cases}1 & \text { if } w(x) \text { is odd } \\ 0 & \text { if } w(x) \text { is even }\end{cases}
$$

Hence, $w\left(x^{\prime}\right)$ is even.
From Sheet 6, Exercise 6,

$$
d(x, y)=w(x)+w(y)-2 w(x \cap y)
$$

Since $w\left(x^{\prime}\right)$ is even, for all x^{\prime} in C^{\prime}, so is $d\left(x^{\prime}, y^{\prime}\right)$, for all $x^{\prime}, y^{\prime} \in C^{\prime}$. Now,

$$
d\left(C^{\prime}\right) \geq d
$$

Since d is odd and $d\left(x^{\prime}, y^{\prime}\right)$ is even, so $d\left(C^{\prime}\right)$ is even. As $d \leq d\left(C^{\prime}\right) \leq d+1$, so $d\left(C^{\prime}\right)=d+1$.
(ii) Shortening a code

Suppose C^{\prime} is an $(n+1, M, d+1)$-code with odd d. Let $x^{\prime}, y^{\prime} \in C$ with $d\left(x^{\prime}, y^{\prime}\right)=d+1$. If $x_{i}^{\prime} \neq y_{i}^{\prime}$ delete the i-th coordinate from each word in C^{\prime}. The result is an (n, M, d)-code C.

Corollary 9.2. $\operatorname{Ham}(r, 2)^{\prime}$ is a $\left[2^{r}, 2^{r}-1-r, 4\right]$-code.
Proof By Sheet 4, Exercise 8, the code is linear.
Theorem 9.3. (Adding an overall parity-check) $A n[n, k]_{q}$-code C with parity check matrix H can be extended to an $[n+1, k]_{q}$-code C^{\prime} with parity check matrix H^{\prime}, where

$$
H^{\prime}=\left[\begin{array}{cc}
H & 0^{\perp} \\
1 & 1
\end{array}\right]
$$

Proof $x \in C \Rightarrow x^{\prime} \in C$ with $x^{\prime}=x_{1} \cdots x_{n+1}$ and $x_{1}+\cdots+x_{n}+x_{n+1}=0$.

Example 9.4. The ternary $[2,2]$ code C extends to a ternary $[3,2]$ code C^{\prime} as follows:

| 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 2 |
| 0 | 2 | 1 |
| 1 | 0 | 2 |
| 2 | 0 | 1 |
| 1 | 1 | 1 |
| 1 | 2 | 0 |
| 2 | 1 | 0 |
| 2 | 2 | 2 |
| | $H^{\prime}=\left[\begin{array}{lll}1 & 1\end{array}\right] \quad G=I_{2}$ | |

$C^{\prime \perp}$ is a $[3,1]$ code.
Theorem 9.5. (Shortening by taking a cross-section) If C is a q-ary $[n, k, d]$-code with no coordinate position all zero and C_{i} is the code obtained by taking those codewords of C with 0 in the i-th position and deleting this zero, then C_{i} is a q-ary $\left[n-1, k-1, d^{\prime}\right]$-code with $d^{\prime} \geq d$.

Proof The codewords with 0 in the i-th position form a subspace of C of codimension 1, that is, of dimension $\operatorname{dim} C-1$.

Note 9.6. A parity-check matrix H_{i} of C_{i} is obtained by deleting the i-th column of a parity-check matrix H of C.

Example 9.7. (i) $C=\operatorname{Ham}(3,2)$ is a $[7,4,3]$ code.

$$
H=\left[\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \quad G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& C \quad 0 \begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& C^{\prime} \quad \begin{array}{lllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array} \\
& \begin{array}{llllllll}
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1
\end{array} \\
& \begin{array}{llllllll}
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1
\end{array} \\
& \begin{array}{llllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array} \\
& \begin{array}{llllllll}
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array} \\
& \begin{array}{llllllll}
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array} \\
& \begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array} \\
& \begin{array}{llllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array} \\
& \begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
& C_{1}=\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0
\end{array} \quad H_{1}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

C_{1} is a $[6,3,3]$-code.

$$
\begin{aligned}
& \begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{lllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0
\end{array} \\
& \left(C^{\prime}\right)_{8}=\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array} \\
& \begin{array}{lllllll}
1 & 0 & 1 & 1 & 0 & 1 & 0
\end{array} \\
& \begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0
\end{array} \\
& \left(C^{\prime}\right)_{87}=\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1 & 0
\end{array} \\
& \left(C^{\prime}\right)_{870}=\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0
\end{array} \quad[5,1,4] \text { code } \\
& \left(C^{\prime}\right)_{8705}=\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array} \quad[4,1,4] \text { code } \\
& {[7,3,4] \text { code, } \quad \operatorname{Ham}(3,2)^{\perp}} \\
& {[6,2,4] \text { code }}
\end{aligned}
$$

(ii)

$$
C_{11}=\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 1
\end{array} \quad H_{11}=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

C_{11} is a $[5,2,3]$ code.

$$
C_{111}=\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array} \quad H_{111}=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]
$$

C_{111} is a $[4,1,4]$ code.
Theorem 2.3 gives a necessary condition for the existence of an $[n, k, d]_{q}$ code, with $d=2 e+1$ or $2 e+2$; namely,

$$
1+(q-1)\binom{n}{1}+\cdots+(q-1)^{e}\binom{n}{e} \leq q^{n-k}
$$

Theorem 9.8. (Gilbert-Varshamov bound) There exists an $\left[n, k, d^{\prime}\right]$-code over $G F(q)$ with d^{\prime} at least d providing

$$
\begin{equation*}
1+(q-1)\binom{n-1}{1}+\cdots+(q-1)^{d-2}\binom{n-1}{d-2}<q^{n-k} \tag{9.1}
\end{equation*}
$$

Proof It suffices to construct, by Theorem 9.19, an $r \times n$ matrix, where $r=n-k$, with no $d-1$ columns linearly dependent.

Choose the first column as any vector in $V(r, q) \backslash\{0\}$. Now proceed by induction. Suppose the first i columns have been chosen so that no $d-1$ are linearly dependent.

The sum of the numbers of distinct linear combinations, taken one at a time, two at a time, $\ldots, d-2$ at a time, is

$$
N=(q-1)\binom{i}{1}+(q-1)^{2}\binom{i}{2}+\cdots+(q-1)^{d-2}\binom{i}{d-2} .
$$

Provided $N<q^{r}-1$, another column may be added so that no $d-1$ columns of the augmented $r \times(i+1)$ are linearly dependent. Now, $i=n-1$ gives the required result.

Example 9.9. Does a $[7,4,3]_{2}$ code exist? In (9.1),

$$
\mathrm{LHS}=1+\binom{6}{1}=7<8=2^{7-4}=\text { RHS }
$$

So such a code exists.

