Ninite Fields

By
 Dr. Emad Bakr Al-Zangana Seminar at University of Mustansiriyah
 4-9-2017

Questions on Finite Fields

- It is well known that the set on integers module prime number p, Z_{p} is field of order p. Dose there a finite field of order which is not prime?
- If there is a finite field of order not prime, what is the structure of this kind of a field?
- It is well known that Z_{p} has no proper subfield (prime subfield). Dose there a field with proper subfield?

Important Result over Finite Fields

*Every finite field is of prime power order and conversely, for every prime power, there exists a field whose order is exactly that prime power.

Questions about the Roots of a Polynomial

- Example: The polynomial $P(X)=X^{2}-X=X(X-1)$ over Z_{6} has three zeros $0,1,3$, over Z_{12} has four zeros $0,1,4,9$ and over Z_{7} has two roots 0,1 .
- Example: The polynomial $Q(X)=\left(X^{2}+1\right)^{2}$ has no Z_{3} but it is reducible.
- If we have a polynomial $P(X)$ of degree d. How many zeros of P are there?
- Can we find a set containing all zeros of $P(X)$?
- Does for every positive integer n there exists an irreducible polynomial in Z_{p} of degree n ?

Characteristic of a Field

- The smallest positive integer (if there is) n such that

called the characteristic of the field(Ring). If there is no such integer then we say that the field has characteristic zero.
- Theorem:

1-The characteristic of a field is either o or a prime number p.
2- Every finite field has a prime characteristic .
3- The prime subfield is either a copy of Z_{p} or \mathbb{Q}.

- Any field has prime subfield.
- Since any finite field cannot have \mathbb{Q} as subfield, then must have a prime subfield of the form Z_{p} for some p.
- Any finite field may always be viewed as a finite dimensional vector space over its prime subfield. This dimension called the degree of the field.
- Theorem: Any finite field with characteristic p has p^{n} elements where n is the degree of the field. That is, any finite field is prime power.
- *Note that the theorem does not prove the existence of finite fields of these sizes. To prove existence we need to talk about irreducible polynomials.
- Since any field has no zero divisor , then any polynomial of degree d has at most d zeros(roots).

Theorem: Let $Z_{p}[X]$ be a ring of polynomials and Qpolynomial in $Z_{p}[X]$ of degree n. Then the residue class $Z_{p} /\langle Q\rangle$ is field of order $p^{n} \Leftrightarrow$ Qis irreducible over Z_{p}. This field called Galois Field and denoted by GF $\left(p^{n}\right)$.

$$
Z_{p} /\langle Q\rangle=\left\{a_{0}+a_{1} \theta+\cdots+a_{n-1} \theta^{n-1} \mid Q(\theta)=0\right\}=G F\left(p^{n}\right)
$$

Theorem: (1) All the roots of Q are $\theta, \theta^{p}, \theta^{p^{2}}, \ldots, \theta^{p^{n-1}}$.
(2) $\left(G F\left(p^{n}\right) \backslash\{0\},.\right)=\langle\theta\rangle=\left\{1, \theta, \theta^{2}, \ldots, \theta^{n-1}\right\}$. Ocalled primitive and the irreducible polynomial which has θ as root called primitive polynomial.
(3) For every finite field $G F(q)$ and every positive integer n there exists an irreducible polynomial in $G F(q)$ over degree n.

- So, it clear that we need to find a primitive polynomial to construct the Galois field.
- Example: A monic quadratic in $\mathrm{F}_{3}[X]$ is $X^{2}+b X+c$ with $b, c \in\{0,1,-1\}$. The reducible ones are

$$
\begin{aligned}
& X^{2},(X-1)^{2}=X^{2}+X+1,(X+1)^{2}=X^{2}-X+1 \\
& X(X-1)=X^{2}-X, X(X+1)=X^{2}+X,(X-1)(X+1)=X^{2}-1
\end{aligned}
$$

This leaves the $9-6=3$ irreducibles:

$$
X^{2}+1, X^{2}-X-1, X^{2}-X+1
$$

Take $X^{2}+1$ and let $\tau^{2}+1=0$; then $\tau^{2}=-1$, and $\tau^{4}=1$. So $X^{2}+1$ is not primitive since the order of τ is not 8 .

Points of $G F(9)$ using $Q(X)=X^{2}-X-1$

Power form	Polynomial form	Vector form	Order
1	1	$(1,0)$	1
σ	σ	$(0,1)$	8
σ^{2}	$\sigma+1$	$(1,1)$	4
σ^{3}	$-\sigma+1$	$(1,-1)$	8
σ^{4}	-1	$(-1,0)$	8
σ^{5}	$-\sigma$	$(0,-1)$	4
σ^{6}	$-\sigma-1$	$(-1,-1)$	8
σ^{7}	$\sigma-1$	$(-1,1)$	2

- To determined the subfields of the Galois field $G F\left(p^{n}\right)$ it is enough to now the divisor of n.
- Example:

The subfields of the finite field $\mathbf{F}_{2^{30}}$ can be determined by listing all positive divisors of 30 . The containment relations between these various subfields are displayed in the following diagram.

Thank you

for

Your attention

