Chapter Two Sets

2.1. Definitions

Definition 2.1.1. A set is a collection of (objects) things. The things in the collection are called elements (member) of the set.

A set with no elements is called empty set and denoted by \emptyset; that is, $\varnothing=\{ \}$. A set that has only one element, such as $\{x\}$, is sometimes called a singleton set.

List of the symbols we will be using to define other terminologies:
| or: : such that
$\in \quad:$ an element of
$\notin \quad$: not an element of
\subset or \subsetneq : a proper subset of
$\subseteq \quad:$ a subset of
$\nsubseteq \quad:$ not a subset of
$\mathbb{N} \quad$: Set of all natural numbers
$\mathbb{Z} \quad$: Set of all integer numbers
$\mathbb{Z}^{+} \quad$: Set of all positive integer numbers
$\mathbb{Z}^{-} \quad$: Set of all negative integer numbers
$\mathbb{Z}_{o} \quad$: Set of all odd numbers
$\mathbb{Z}_{e} \quad$: Set of all even numbers
$\mathbb{Q} \quad:$ Set of all rational numbers
$\mathbb{R} \quad$: Set of all real numbers

Set Descriptions 2.1.2.
(i) Tabulation Method

The elements of the set listed between commas, enclosed by braces.
(1) $\{1,2,37,88,0\}$
(2) $\{a, e, i, o, u\}$ Consists of the lowercase vowels in the English alphabet.
(3) $\{\ldots,-4,-2,0,2,4,6\}$ Continue from left side
$\{-4,-2,0,2,4,6, \ldots\}$ Continue from right side
$\{\ldots,-4,-2,0,2,4,6, \ldots\}$ Continue from left and right sides.
(4) $B=\{\{2,4,6\},\{1,3,7\}\}$

(ii) Rule Method

Describe the elements of the set by listing their properties writing as

$$
S=\{x \mid A(x)\},
$$

where $A(x)$ is a statement related to the elements x. Therefore,

$$
\mathrm{x} \in S \Leftrightarrow A(x) \text { is hold }
$$

(1) $A=\{x \mid x$ is a positive integers and $x>10\}$
$A=\left\{x \mid x \in \mathbb{Z}^{+}\right.$and $\left.x>10\right\}$.
(2) $\mathbb{Z}_{o}=\{x \mid x=2 n-1$ and $n \in \mathbb{Z}\}$

$$
=\{2 n-1 \mid n \in \mathbb{Z}\} .
$$

(3) $\{x \in \mathbb{Z}||x|<4\}=\{-3,-2,-1,0,1,2,3\}$.
(4) $\left\{x \in \mathbb{Z} \mid x^{2}-2=0\right\}=\emptyset$.

Examples 2.1.3.

(i) $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$ Integer numbers.
(ii) $\mathbb{Z}_{e}=\{x \mid x=2$ and $n \in \mathbb{Z}\}$
$=\{2 n \mid n \in \mathbb{Z}\}$. Even numbers
Note that 2 is an element of \mathbb{Z}_{e} so, we write $2 \in \mathbb{Z}$. But, $5 \notin \mathbb{Z}_{e}$.
(iii) Let C be the set of all natural numbers which are less than 0 .

In this set, we observe that there are no elements. Hence, C is an empty set; that is,

$$
C=\emptyset .
$$

Definition 2.1.4.

(i) A set A is said to be a subset of a set B if every element of A is an element of B and denote that by $A \subseteq B$. Therefore,

$$
A \subseteq B \Leftrightarrow \forall x(x \in A \Longrightarrow x \in B)
$$

(ii) If A is a nonempty subset of set B and B contains an element which is not a member of A, then A is said to be proper subset of B and denoted this by $A \subset B$ or $A \subsetneq B$.

We use the expression $A \nsubseteq B$ means that A is not a subset of B.

Examples 2.1.5.

(i) An empty set \varnothing is a subset of any set B. If this were not so, there would be some element $x \in \emptyset$ such that $x \notin B$. However, this would contradict with the definition of an empty set as a set with no elements.
(ii) Let B be the set of natural numbers. Let A be the set of even natural numbers. Clearly, A is a subset of B. However, B is not a subset of A, for $3 \in B$, but $3 \notin A$.

Theorem 2.1.6. (Properties of Sets)

Let A, B, and C be sets.
(i) For any set $A, A \subseteq A \quad$ (Reflexive Property)
(ii) If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$ (Transitive Property)

Proof.

(ii)
$1(A \subseteq B) \Leftrightarrow \forall x(x \in A \Rightarrow x \in B) \quad$ Hypothesis and Def.
$2(B \subseteq C) \Leftrightarrow \forall x(x \in B \Rightarrow x \in C) \quad$ Hypothesis and Def.

$$
\begin{array}{ll}
\Rightarrow \forall x(x \in A \Rightarrow x \in C) & \text { Inf(1),(2) Syllogism Law } \\
\Leftrightarrow A \subseteq C & \text { Def. }
\end{array}
$$

Definition 2.1.7 If X is a set, the power set of X is another set, denoted as $P(X)$ and defined to be the set of all subsets of X. In symbols,

$$
P(X)=\{A \mid A \subseteq X\} .
$$

That is, $A \subseteq X$ if and only if $A \in P(X)$.

Example 2.1.8.

(i) $\quad \varnothing$ and a set X are always members of $P(X)$.
(ii) suppose $X=\{a, b, c\}$. Then

$$
P(X)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\}, X\} .
$$

The way to finding all subsets of X is illustrated in the following figure.

From the above example, if a finite set X has n elements, then it has 2^{n} subsets, and thus its power set has 2^{n} elements.
(iii) $P(\{1,2,4\})=\{\varnothing,\{0\},\{1\},\{4\},\{0,1\},\{0,4\},\{1,4\},\{1,2,4\}\}$.
(iv) $P(\varnothing)=\{\varnothing\}$.
(v) $P(\{\varnothing\})=\{\varnothing,\{\varnothing\}\}$.
(vi) $P(\{\mathbb{Z}, \mathbb{R}\})=\{\varnothing,\{\mathbb{Z}\},\{\mathbb{R}\},\{\mathbb{Z}, \mathbb{R}\}\}$.

The following are wrong statements.
(v) $P(1)=\{\varnothing,\{1\}\}$.
(vi) $P(\{1,\{1,2\}\})=\{\varnothing,\{1\},\{1,2\},\{1,\{1,2\}\}\}$.
(vii) $P(\{1,\{1,2\}\})=\{\varnothing,\{\{1\}\},\{\{1,2\}\},\{1,\{1,2\}\}\}$.

