3.2 Relations

Definition 3.2.1. Any subset " R " of $A \times B$ is called a relation between \boldsymbol{A} and \boldsymbol{B} and denoted by $R(A, B)$. Any subset of $A \times A$ is called a relation on \boldsymbol{A}.

In other words, if A is a set, any set of ordered pairs with components in A is a relation on A. Since a relation R on A is a subset of $A \times A$, it is an element of the powerset of $A \times A$; that is, $R \subseteq P(A \times A)$.

If R is a relation on A and $(x, y) \in R$, then we write $\boldsymbol{x} \boldsymbol{R} \boldsymbol{y}$, read as " x is in $R-$ relation to $y^{\prime \prime}$, or simply, x is in relation to y, if R is understood.

Example 3.2.2.

(i) Let $A=\{2,4,6,8\}$, and define the relation R on A by $(x, y) \in R$ iff x divides y. Then, $R=$

$$
\{(2,2),(2,4),(2,6),(2,8),(4,4),(4,8),(6,6),(8,8)\} .
$$

(ii) Let $A=\mathbb{N}$, and define $R \subseteq A \times A$ by $x R y$ iff x and y have the same remainder when divided 3.

Since A is infinite, we cannot explicitly list all elements of R; but,
for example $(1,4),(1,7),(1,10), \ldots,(2,5),(2,8), \ldots,(0,0),(1,1), \ldots \in R$. Observe, that $x R x$ for $x \in N$ and, whenever $x R y$ then also $y R x$.
(iii) Let $A=\mathbb{R}$, and define the relation R on \mathbb{R} by $x R y$ iff $y=x^{2}$. Then R consists of all points on the parabola $y=x^{2}$.
(iv) Let $A=\mathbb{R}$, and define R on \mathbb{R} by $x R y$ iff $x \cdot y=1$. Then R consists of all pairs $\quad\left(x, \frac{1}{x}\right)$, where x is non-zero real number.
(v) Let $A=\{1,2,3\}$, and define R on A by $x R y$ iff $x+y=7$. Since the sum of two elements of A is at most 6 , we see that $x R y$ for no two elements of A; hence, $R=\varnothing$.

For small sets we can use a pictorial representation of a relation R on A : Sketch two copies of A and, if $x R y$ then draw an arrow from the x in the left sketch to the y in the right sketch.
(vi) Let $A=\{a, b, c, d, e\}$, and consider the relation

$$
R=\{(a, a),(a, c),(c, d),(d, b),(d, c)\} .
$$

An arrow representation of R is given in Fig.

We observe that \boldsymbol{e} does not appear at all in the elements of R, and that, for example, \boldsymbol{b} is not the first component of any pair in R. In order to give names to the sets of those elements of A which are involved in R, we make the following. (vii) Let A be any set. Then the relation $R=\{(x, x): x \in A\}=i_{A}$ on A is called the identity relation on \boldsymbol{A}. Thus, in an identity relation, every element is related to itself only.

Definition 3.2.3. Let R be a relation on A. Then
(i) $\operatorname{dom} R=\{x \in A$: There exists some $y \in A$ such that $(x, y) \in R\}$. dom R is called the domain of \boldsymbol{R}.
(ii) $\operatorname{ran} R=\{y \in A$: There exists some $x \in A$ such that $(x, y) \in R\}$ is called the range of \boldsymbol{R}.
(iii) Finally, fld $R=\operatorname{dom} R \cup \operatorname{ran} R$ is called the field of \boldsymbol{R}.

Observe that $\operatorname{dom} R$, ran R, and $f l d R$ are all subsets of A.

Example 3.2.4.

(i) Let A and R be as in Example 3.2.2.(vi); then $\operatorname{dom} R=\{a, c, d\}$, ran $=$ $\{a, b, c, d\}, f l d R=\{a, b, c, d\}$.
(ii) Let $A=R$, and define R by $x R y$ iff $y=x^{2}$; then, $\operatorname{dom} R=R$, $\operatorname{ran} R=\{y \in R: y \geq 0\}$, fld $R=R$.
(iii) Let $A=\{1,2,3,4,5,6\}$, and define R by $x R y$ iff $x \supsetneqq y$ and x divides y; $R=\{(1,2),(1,3), \ldots,(1,6),(2,4),(2,6),(3,6)\}$, and $\operatorname{dom} R=\{1,2,3\}$, ran $R=\{2,3,4,5,6\}$, fld $R=A$.
(iv) Let $A=R$, and R be defined as $(x, y) \in R$ iff $x^{2}+y^{2}=1$. Then $(x, y) \in$ $R \mathrm{iff}(x, y)$ is on the unit circle with centre at the origin. So,

$$
\operatorname{dom} R=\operatorname{ran} R=\text { fld } R=\{z \in \mathbb{R}:-1 \leq z \leq 1\}
$$

Definition 3.2.5. Reflexive, Symmetric and Transitive Relations

Let R be a relation on a nonempty set A.
(i) $\quad R$ is reflexive if $(x, x) \in R$ for all $x \in A$.
(ii) $\quad R$ is antisymmetric if for all $x, y \in A,(x, y) \in R$ and $(y, x) \in R$ implies $x=y$.
(iii) $\quad R$ is transitive if for all $x, y, z \in A,(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.
(iv) $\quad R$ is symmetric if whenever $(x, y) \in R$ then $(x, y) \in R$.

