Definition 3.2.12. Inverse of a Relation

Suppose $R \subseteq A \times B$ is a relation between A and B then the inverse relation $R^{-1} \subseteq$ $B \times A$ is defined as the relation between B and A and is given by

$$
b R^{-1} a \quad \text { if and only if } \quad a R b .
$$

That is, $R^{-1}=\{(b, a) \in B \times A:(a, b) \in R\}$.
Example 3.2.13. Let R be the relation between \mathbb{Z} and \mathbb{Z}^{+}defined by $m R n$ if and only if $m^{2}=n$.
Then

$$
R=\left\{(m, n) \in \mathbb{Z} \times \mathbb{Z}^{+}: m^{2}=n\right\}
$$

and

$$
R^{-1}=\left\{(n, m) \in \mathbb{Z}^{+} \times \mathbb{Z}: m^{2}=n\right\} .
$$

For example, $-3 R 9,-4 R 16,16 R^{-1} 4,9 R^{-1} 3$, etc.

Remark 3.2.14.

If R is partial order relation on $A \neq \emptyset$, then R^{-1} is also partial order relation on A.

Proof.

(i) Reflexive. Let $x \in A$.
$\Rightarrow(x, x) \in R$ (Reflexivity of $A) \Rightarrow(x, x) \in R^{-1} \quad\left(\right.$ Def of $\left.R^{-1}\right)$
(ii) Antisymmetric. Let $(x, y) \in R^{-1}$ and $(y, x) \in R^{-1}$. To prove $x=y$.
$\Rightarrow(y, x) \in R \wedge(x, y) \in R\left(\right.$ Def of $\left.R^{-1}\right)$
$\Rightarrow y=x$ (since R is antisymmetric).
(iii) Transitive. Let $(x, y) \in R^{-1}$ and $(y, z) \in R^{-1}$. To prove $(x, z) \in R^{-1}$.
$\Rightarrow(y, x) \in R \wedge(z, y) \in R\left(\operatorname{Def}\right.$ of $\left.R^{-1}\right)$
$\Rightarrow(z, x) \in R$ (since R is transitive) $\Rightarrow(x, z) \in R^{-1}$ (Def of R^{-1}).

Definition 3.2.15. Partitions

Let A be a set and let $A_{1}, A_{2}, \ldots, A_{n}$ be subsets of A such
(i) $A_{i} \neq \emptyset$ for all i,
(ii) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$,
(iii) $A=\bigcup_{i=1}^{n} A_{i}=A_{1} \cup A_{2} \cup \ldots \cup A_{n}$. Then the sets A_{i} partition the set A and these sets are called the classes of the partition.
Remark 3.2.16. An equivalence relation on A leads to a partition of A, and vice versa for every partition of A there is a corresponding equivalence relation.

Definition 3.2.17. The Composition of Two Relations

The composition of two relations $R_{1}(A, B)$ and $R_{2}(B, C)$ is given by R_{2} o R_{1} where
$(a, c) \in R_{2} o R_{1}$ if and only there exists $b \in B$ such that $(a, b) \in R_{1}$ and $(b, c) \in$ R_{2}.

Remark 3.2.18. The composition of relations is associative; that is,

$$
\left(R_{3} o R_{2}\right) o R_{1}=R_{3} o\left(R_{2} o R_{1}\right)
$$

Example 3.2.19.

(i) Let sets $A=\{a, b, c\}, B=\{d, e, f\}, C=\{g, h, i\}$ and relations $R(A, B)=$ $\{(a, d),(a, f),(b, d),(c, e)\}$ and $S(B, C)=\{(d, h),(d, i),(e, g),(e, h)\}$. Then we graph these relations and show how to determine the composition pictorially S o R is determined by choosing $x \in A$ and $y \in C$ and checking if there is a route from x to y in the graph. If so, we join x to y in $S o R$.

So R

For example, if we consider a and h we see that there is a path from a to d and from d to h and therefore (a, h) is in the composition of S and R.
(ii) Let $R^{-1}=\{(b, a) \mid(a, b) \in R\}$. The composition of R and R^{-1} yields: R^{-1} o $R=\{(a, a) \mid a \in \operatorname{dom} R\}=i_{A}$ and R o $R^{-1}=\left\{(b, b) \mid b \in \operatorname{dom} R^{-1}\right\}=i_{B}$.

Definition 3.2.19. Union and Intersection of Relations

(i) The union of two relations $R_{1}(A, B)$ and $R_{2}(A, B)$ is subset of $A \times B$ and defined as

$$
(a, b) \in R_{1} \cup R_{2} \text { if and only if }(a, b) \in R_{1} \text { or }(a, b) \in R_{2}
$$

(ii) The intersection of two relations $R_{1}(A, B)$ and $R_{2}(A, B)$ is subset of $A \times B$ and defined as

$$
(a, b) \in R_{1} \cap R_{2} \text { if and only if }(a, b) \in R_{1} \text { and }(a, b) \in R_{2} .
$$

Remark 3.2.20. The relation R_{1} is a subset of $R_{2}\left(R_{1} \subseteq R_{2}\right)$ if whenever $(a, b) \in$ R_{1} then $(a, b) \in R_{2}$.

