1.6. Method To Construct DNF

To construct DNF of a logical proposition we use the following way.
Construct a truth table for the proposition.
(i) Use the rows of the truth table where the proposition is True to construct minterms

- If the variable is true, use the propositional variable in the minterm.
- If a variable is false, use the negation of the variable in the minterm.
(ii) Connect the minterms with V 's.

Example 1.6.1. Find the disjunctive normal form for the following logical proposition
(i) $\mathrm{p} \rightarrow \mathrm{q}$.
(ii) $(p \rightarrow q) \wedge \sim r$.

Solution. (i) Construct a truth table for $\mathrm{p} \rightarrow \mathrm{q}$:

p	q	$\mathrm{p} \rightarrow \mathrm{q}$	
T	T	T	\leftarrow
T	F	F	
F	T	T	\leftarrow
F	F	T	\leftarrow

$\mathrm{p} \rightarrow \mathrm{q}$ is true when either
p is true and q is true, or
p is false and q is true, or
p is false and q is false.
The disjunctive normal form is then

$$
(\mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \wedge \mathrm{q}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q}) .
$$

(ii) Write out the truth table for $(p \rightarrow q) \wedge \sim r$

p	q	r	$\mathrm{p} \rightarrow \mathrm{q}$	$\sim \mathrm{r}$	$(\mathrm{p} \rightarrow \mathrm{q}) \wedge \sim \mathrm{r}$
T	T	T	T	F	F

T	T	F	T	T	T	\leftarrow
T	F	T	F	F	F	
T	F	F	F	T	F	
F	T	T	T	F	F	
F	T	F	T	T	T	\leftarrow
F	F	T	F	F	F	
F	F	F	T	T	T	\leftarrow

The disjunctive normal form for $(p \rightarrow q) \wedge \sim r$ is

$$
(\mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q} \wedge \sim \mathrm{r})
$$

Remark 1.6.2. If we want to get the conjunctive normal form of a logical proposition, construct
(1) the disjunctive normal form of its negation,
(2) negate again and apply De Morgan's Law.

Example 1.6.3. Find the conjunctive normal form of the logical proposition

$$
(\mathrm{p} \wedge \sim \mathrm{q}) \vee \mathrm{r} .
$$

Solution.

(1) Negate: $\sim[(p \wedge \sim q) \vee r] \equiv(\sim p \vee q) \wedge \sim r$.
(2) Find the disjunctive normal form of $(\sim p \vee q) \wedge \sim r$.

| p | q | r | $\sim \mathrm{p}$ | $\sim \mathrm{r}$ | $\sim \mathrm{p} \vee \mathrm{q}$ | $(\sim \mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | T | T | F | F | T | F |
| T | T | F | F | T | T | T |
| T | F | T | F | F | F | F |
| T | F | F | F | T | F | F |
| F | T | T | T | F | T | F |

Foundation of Mathematics 1
Mustansiriyah University

F	T	F	T	T	T	T	\leftarrow
F	F	T	T	F	T	F	
F	F	F	T	T	T	T	\leftarrow

The disjunctive normal form for $(\sim \mathrm{p} \vee \mathrm{q}) \wedge \sim \mathrm{r}$ is

$$
(\mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{p} \wedge \mathrm{q} \wedge \sim \mathrm{r}) \vee(\sim \mathrm{p} \wedge \sim \mathrm{q} \wedge \sim \mathrm{r})
$$

(3) The conjunctive normal form for $(p \wedge \sim q) \vee r$ is then the negation of this last expression, which, by De Morgan's Laws, is

$$
(\sim \mathrm{p} \vee \sim \mathrm{q} \vee \mathrm{r}) \wedge(\mathrm{p} \vee \sim \mathrm{q} \vee \mathrm{r}) \wedge(\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}) .
$$

Remark 1.6.4.

(1) $p \vee q$ can be written in terms of \wedge and \sim.
(2)We can write every compound logical proposition in terms of \wedge and \sim.

1.7. Logical Implication

Definition 1.7.1. (Logical implication)

We say the logical proposition r implies the logical proposition s (or s logically deduced from r) and write $r \Rightarrow s$ if $r \rightarrow s$ is a tautology.
Example 1.7.2. Show that $(\mathrm{p} \rightarrow \mathrm{t}) \wedge(\mathrm{t} \rightarrow \mathrm{q}) \Rightarrow \mathrm{p} \rightarrow \mathrm{q}$.
Solution. Let P: the proposition $(\mathrm{p} \rightarrow \mathrm{t}) \wedge(\mathrm{t} \rightarrow \mathrm{q})$
Q: the proposition $\mathrm{p} \rightarrow \mathrm{q}$

p	t	q	$\mathrm{p} \rightarrow \mathrm{t}$	$\mathrm{t} \rightarrow \mathrm{q}$	P	Q	$\mathrm{P} \rightarrow \mathrm{Q}$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T

Remark 1.7.3.

Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana

(i) We

T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

use r
imply
that the
statement $\mathrm{r} \rightarrow \mathrm{s}$ is true, while the statement $\mathrm{r} \rightarrow \mathrm{s}$ alone does not imply any particular truth value. The symbol is often used in proofs as shorthand for "implies".
(ii) If $\mathrm{r} \Rightarrow \mathrm{s}$ and $\mathrm{s} \Rightarrow \mathrm{r}$, then we denote that by $\mathrm{r} \Leftrightarrow \mathrm{s}$.

Example 1.7.4. Show that
(i) $r \Rightarrow s$ if and only if $\sim r \vee s$ is tautology.
(ii) $r \Leftrightarrow s$ if and only if $r \equiv s$.

Solution.

(i) $r \Rightarrow s$ if and only if $r \rightarrow s$ is a tautology (by def.)

But $\sim \mathrm{r} \vee \mathrm{s} \equiv \mathrm{r} \rightarrow \mathrm{s}$ is a tautology.
Then, $r \Rightarrow s$ if and only if $\sim r \vee s$ is tautology.
$\begin{aligned} \text { (ii) } r & \Rightarrow \mathrm{~s} \text { if and only if } \mathrm{r} \rightarrow \mathrm{s} \text { is tautology } \\ \mathrm{s} \Rightarrow \mathrm{r} \text { if and only if } \mathrm{s} \rightarrow \mathrm{r} \text { is tautology.) } & \text { (by def.) }\end{aligned}$
Then, $r \rightarrow s \wedge s \rightarrow r$ is tautology. Therefore, $r \equiv s$.

Definition 1.7.5.

The statement $\mathrm{q} \rightarrow \mathrm{p}$ is called the converse of the statement $\mathrm{p} \rightarrow \mathrm{q}$ and the statement $\sim \mathrm{p} \rightarrow \sim \mathrm{q}$ is called the inverse.

Generally, the statement and its converse not necessary equivalent. Therefore, $\mathrm{p} \Rightarrow \mathrm{q}$ does not mean that $\mathrm{q} \Rightarrow \mathrm{p}$.

Example 1.7.6. The statement "the triangle which has equal sides, has two equal legs" equivalent to the statement " the triangle which has not two equal legs has no equal sides".

1.8. Quantifiers

Recall that a formula is a statement whose truth value may depend on the values of some variables. For example,
$" x \leq 5 \wedge x>3 "$ is true for $x=4$ and false for $x=6$.
Compare this with the statement
"For every $x, x \leq 5 \wedge x>3$," which is definitely false and the statement
"There exists an x such that $x \leq 5 \wedge x>3$," which is definitely true.

Definition 1.8.1.

(i) The phrase 'for all \boldsymbol{x} " ('for every \boldsymbol{x} ', ' 'for each \boldsymbol{x} ') is called a universal quantifier and is denoted by $\forall \boldsymbol{x}$.
(ii) The phrase 'for some \boldsymbol{x} " ('there exists an \boldsymbol{x} ') is called an existential quantifier and is denoted by $\exists \boldsymbol{x}$.
(iii) A formula that contains variables is not simply true or false unless each of these variables is bound by a quantifier.
(iv) If a variable is not bound the truth of the formula is contingent on the value assigned to the variable from the universe of discourse.

Definition 1.8.2. (The Universal Quantifier)

Let $f(x)$ be a logical proposition which depend only on x. A sentence $\forall x f(x)$ is true if and only if $f(x)$ is true no matter what value (from the universe of discourse) is substituted for x.

Example 1.8.3.

$\forall x:\left(x^{2} \geq 0\right)$, i.e., "the square of any number is not negative." $\forall x$ and $\forall y,(x+y=y+x)$, i.e., the commutative law of addition.
$\forall x, \forall y$ and $\forall z,((x+y)+z=x+(y+z))$, i.e. the associative law of addition.

Remark .1.8.4. The "all" form, the universal quantifier, is frequently encountered in the following context: $\quad \forall x(f(x) \Rightarrow Q(x))$,

Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana

which may be read, "For all x satisfying $f(x)$ also satisfy $Q(x)$. " Parentheses are crucial here; be sure you understand the difference between the "all" form and $\forall x f(x) \Rightarrow \forall x Q(x)$ and $(\forall x f(x)) \Rightarrow Q(x)$.

Definition 1.8.5. (The Existential Quantifier)

A sentence $\exists x f(x)$ is true if and only if there is at least one value of x (from the universe discourse of) that makes $f(x)$ is true.

Example 1.8.6.

$\exists x:\left(x \geq x^{2}\right)$ is true since $x=0$ is a solution. There are many others.
$\exists x \exists y:\left(x^{2}+y^{2}=2 x y\right)$ is true since $x=y=1$ is one of many solutions
Negation Rules 1.8.7. When we negate a quantified statement, we negate all the quantifiers first, from left to right (keeping the same order), then we negative the statement.

Definition 1.8.8.

(i) $\forall x f(x)=\sim \exists x \sim f(x)$.
(ii) $\exists x f(x)=\sim \forall x \sim f(x)$.

Example 1.8.9. Express each of the following sentences in symbolic form and then give its negation.
(i) r : The square of every real number is non-negative.

Solution. Symbolically, r can be expressed as $\forall x \in \mathbb{R}, x^{2} \geq 0$.

$$
\sim \mathrm{r}: \sim\left(\forall x \in \mathbb{R}, x^{2} \geq 0\right) \equiv \exists x \in \mathbb{R}, \sim\left(x^{2} \geq 0\right) \equiv \exists x \in \mathbb{R}, x^{2}<0 .
$$

In words, this is " \sim r: There exists a real number whose square is negative".
(ii) r: For all x, there exists y such that $x y=1$.

Solution.

r: $\forall x, \exists y$ such that $x y=1$.
$\sim \mathrm{r}: \sim(\forall x, \exists y$ such that $x y=1) \equiv \exists x, \forall y$ such that $\sim(x y=1) \equiv \exists x, \forall y$ such that $x y \neq 1$.
In words, this is " \sim r: There exists x for all y such that $x y \neq 1$ ".
(iii) p : student who is intelligent will succeed.

Solution.
Let r : student who is intelligent.
s: succeed.
$\mathrm{p}: \mathrm{r} \rightarrow \mathrm{s}$
$\sim \mathrm{p}: \sim(\mathrm{r} \rightarrow \mathrm{s}) \equiv \sim(\sim \mathrm{r} \vee \mathrm{s}) \quad$ Implication Low.

$$
\equiv \mathrm{r} \wedge \sim \mathrm{~s} . \quad \text { De Morgan's Law }
$$

$\sim \mathrm{p}$: student who is intelligent will not succeed.
There are six ways in which the quantifiers can be combined when two variables are present:
(1) $\forall x \forall y f(x, y)=\forall y \forall x f(x, y)=$ For every x, for every $y f(x, y)$.
(2) $\forall x \exists y f(x, y)=$ For every x, there exists a y such that $f(x, y)$.
(3) $\forall y \exists x f(x, y)=$ For every y, there exists an x such that $f(x, y)$.
(4) $\exists x \forall y f(x, y)=$ There exists an x such that for every $y f(x, y)$.
(5) $\exists y \forall x f(x, y)=$ There exists a y such that for every $y f(x, y)$.
(6) $\exists x \exists y f(x, y)=\exists y \exists x f(x, y)=$ There exists an x such that there exists a y $f(x, y)$.

Example 1.8.10. Show that the following are equivalents.
(i) $\sim[\forall x \forall y f(x, y)] \equiv \exists x \exists y \sim f(x, y)$.
(ii) $\sim[\exists x \forall \exists f(x, y)] \equiv \forall x \forall y \sim f(x, y)$.
(iii) $\sim[\forall x \exists y f(x, y)] \equiv \exists x \quad \forall y \sim f(x, y)$.
(iii) $\sim[\exists x \forall y f(x, y)] \equiv \forall x \exists y \sim f(x, y)$.

Solution. Exercise.

