Lecture 4

Balanced Motion Part 2

4.1 The Gradient Wind

The gradient wind is defined as the wind existing if the trajectory of a particle (or air parcel) is circular and we have a balance among the pressure gradient force, the Coriolis force and the centrifugal force.

A. Cyclonic flow (low pressure)

In this case, a Coriolis force and the centrifugal force act in the same direction. In order to have a balance, the pressure gradient force must act in the opposite direction and we have a low pressure in the center (see case a in Figure 4.1).

If we take the effect of curvature into account, we have to expand the horizontal momentum equation to include the centrifugal term:

$$
\begin{equation*}
P G F=C F+C e F \tag{4.1}
\end{equation*}
$$

and by using geostrophic balance $f V_{g}=-\frac{1}{\rho} \frac{\partial p}{\partial n}$, equation 4.1 becomes:

$$
\begin{equation*}
\mathrm{f} \mathrm{~V}_{\mathrm{g}}=\mathrm{f} \mathrm{~V}_{\mathrm{G}}+\frac{\mathrm{V}_{\mathrm{G}}^{2}}{\mathrm{R}} \tag{4.2}
\end{equation*}
$$

Here R is the radius of curvature. V_{G} is the Gradient wind.

Fig. 4.1
Four balances in the Northern Hemisphere for the four types of gradient flow.

P is the pressure gradient force (PGF)
Co is Coriolis force (CF)
Ce is the centrifugal force
H is short of High, L short of Low

The gradient wind speed is obtained by solving equation (4.2) for V_{G} to yield:

$$
\mathrm{f} \mathrm{~V}_{\mathrm{g}}=\mathrm{f} \mathrm{~V}_{\mathrm{G}}+\frac{\mathrm{V}_{\mathrm{G}}^{2}}{\mathrm{R}}
$$

Dividing by V_{G}^{2},

$$
\begin{gathered}
f \frac{V_{g}}{V_{G}^{2}}=\frac{f}{V_{G}}+\frac{1}{R} \\
f V_{g}\left(\frac{1}{V_{G}}\right)^{2}-f\left(\frac{1}{V_{G}}\right)-\frac{1}{R}=0
\end{gathered}
$$

By using quadratic formula to solve,

$$
x=\frac{b \mp \sqrt{b^{2}+4 a c}}{2 a}
$$

we get,

$$
\begin{gathered}
a=f V_{g} \quad b=f \quad c=\frac{1}{R} \quad x=\frac{1}{V_{G}} \\
\frac{1}{V_{G}}=\frac{f \mp \sqrt{f^{2}+4 \frac{f V_{g}}{R}}}{2 f V_{g}}
\end{gathered}
$$

Dividing the numerator and the denominator of the right side on $(2 f)$ we get,

$$
\begin{aligned}
\frac{1}{V_{G}} & =\frac{\frac{1}{2} \mp \sqrt{\frac{1}{4}+\frac{V_{g}}{R f}}}{V_{g}} \\
\therefore \quad V_{G} & =\frac{V_{g}}{\frac{1}{2} \mp \sqrt{\frac{1}{4}+\frac{V_{g}}{R f}}}
\end{aligned}
$$

This equation tells us that $V_{G}<V_{g}$ in all cases because the denominator is larger than one. The difference between $V_{G} \& V_{g}$ becomes larger at smaller R , and at smaller f. To illustrate this difference we consider:

$$
\begin{equation*}
\text { At } \quad V_{g}=10 \frac{m}{s} \quad \text { and } \quad f=10^{-4} \mathrm{~s}^{-1} \tag{2-4}
\end{equation*}
$$

if $R=1000 \mathrm{~km}$, we find $V_{G}=9.16 \mathrm{~m} / \mathrm{s}$ and the difference between $V_{G} \& V_{g}$ is small.

When R becomes much smaller the difference between $V_{G} \& V_{g}$ will be large.
If we assume that $f=10^{-4} \mathrm{~s}^{-1}$ and $V_{g}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$ we may calculate the value of R necessary to make $V_{G}=\frac{1}{2} V_{g}$, we find from the equation that the radius of $R=$ 200 km

B. Anticyclonic flow (high pressure)

In this case, a pressure gradient force and the centrifugal force are in the same direction. In order to have a balance the Coriolis force must act in the opposite direction, we have a high pressure in the center (case b and din Fig. 4.1).

$$
\begin{gathered}
P G F+C e F-C F=0 \\
f V_{g}+\frac{V_{G}^{2}}{R}-f V_{G}=0
\end{gathered}
$$

In the same previous manner,

$$
\therefore \quad V_{G}=\frac{V_{g}}{\frac{1}{2}+\sqrt{\frac{1}{4}-\frac{V_{g}}{R f}}}
$$

We see that $V_{G}>V_{g}$ in all cases.
In the special case where $\frac{V_{g}}{R f}=\frac{1}{4}, V_{G}=2 V_{g}$, the maximum wind in the anticyclonic case is therefore twice the geostrophic wind. If we assume that, $f=10^{-4} \mathrm{~s}^{-1}$ and $V_{g}=10 \mathrm{~m} / \mathrm{s}$, the radius of curvature is equal to 400 km , and thus quite small.

4.2The Cyclostrophic Flow

Cyclostrophic balance occurs when the pressure gradient force and centrifugal force are equal and in opposite direction. This is the situation near the equator

$$
G F=C e F
$$

$f V_{g}=\frac{V_{G}^{2}}{R}$
$V_{G}^{2}=f V_{g} R$
$\therefore \quad V_{G}=\sqrt{f V_{g} R}$

4.3 The Inertial Flow

In inertial flow, there is no pressure gradient force, there are two forces only,
Coriolis and centrifugal that may balance each other.
$C F=C e F$
$f V_{G}=\frac{V_{G}^{2}}{R}$
$V_{G}=R f$

