Action of Group on The Projective Plane Over Finite Fields

Introduction

1. $G F(q)$ denote the Galois field of q elements.
2. $V(3, q)=\left\{\left(a_{1}, a_{2}, a_{3}\right) \mid a_{i} \in G F(q)\right\}$ be the respective vector space of row vectors of length three with entries in $G F(q)$.
3. $P G(2, q)$ be the projective plane over the field $G F(q)$.

The number of points.
The number of lines in $P G(2, q)$ is $q^{2}+q+1$.
There are $q+1$ points on every line.
There are $q+1$ lines passes through a point.
Companion Matrix

$$
T=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
a_{0} & a_{1} & a_{2}
\end{array}\right]
$$

The points are $P(i)=[1,0,0] T^{i-1}$ and the lines are $\ell_{i}=\ell_{1} T^{i-1}, i=1, \ldots, q^{2}+q+1$ where $\ell_{1}=V\left(X_{2}\right)$ be the line passing through points $P\left(X_{0}, X_{1}, X_{2}\right)$ with $X_{2}=0$

Definition An n-arc K or arc of degree 2 in $P G(2, q)$ with $n \geq 3$ is a set of n points with property that every lines meets K in at most two points and there is some lines meeting K in exactly two points.

Definition A line ℓ of $P G(2, q)$ is an i-secant of an n-arc K if $|\ell \cap K|=i$. A 2 -secant is called a bisecant, a 1 -secant a unisecant and a 0 -secant is an external line.
$A_{n}=$ Alternating group of degree n.
$D_{n}=$ Dihedral group of order $2 n=\left\langle r, s \mid r^{n}=s^{2}=(r s)^{2}=1\right\rangle$.
For details and full descriptions about above groups of order less than 32 see [3].

* Pentastigm with Collinearities of its Diagonal Points

Definition An n-stigm K in $P G(2, q)$ is a set of n points, no three of which are collinear, together with the $\frac{1}{2} n(n-1)$ lines that are joins of pairs of the points. The points and lines are called vertices and sides of K.

The intersection points of two sides of K which do not pass through the same vertex is called diagonal points.

* Since the vertices of K form an n-arc, so, to construct a 5 -stigm, started with unique projectively 4-arc, $\Gamma_{41}=\left\{U_{0}, U_{1}, U_{2}, U\right\}$ (standard frame) in the projective plane which has stabilizers group isomorphic to S_{4}, where $U_{0}=[1,0,0], U_{1}=[0,1,0], U_{2}=[0,0,1], U=[1,1,1]$.

The condition to existence a pentastigm with five diagonal points are collinear in $P G(2, q)$ is that $x^{2}-x-1=0$ has solution in F_{q}.

1. If $q=19$, the equation $x^{2}-x-1=0$ has two solutions $5,-4$.
2. If $q=29$, the equation $x^{2}-x-1=0$ has two solutions $6,-5$.
3. If $q=31$, the equation $x^{2}-x-1=0$ has two solutions $13,-12$.
4. If $q=41$, the equation $x^{2}-x-1=0$ has two solutions α^{21}, α^{39}

Theorem In $P G(2, q)$, the pentastigm which has the $5-\operatorname{arc} \mathcal{A}_{i}$

1. $\quad \mathcal{A}_{19}=\Gamma_{41} \cup\{P(-5,-4,1)\}$,
2. $\mathcal{A}_{29}=\Gamma_{41} \cup\left\{P\left(v^{22}, v^{16}, 1\right)\right\}$,
3. $\mathcal{A}_{31}=\Gamma_{41} \cup\left\{P\left(w^{4}, w^{27}, 1\right)\right\}$,
4. $\mathcal{A}_{41}=\Gamma_{41} \cup\left\{P\left(\alpha^{39}, \alpha, 1\right)\right\}$,
as vertices has five diagonal points which are collinear on the line
5. If $q=19, \ell=V\left(-\mathrm{X}_{0}+5 \mathrm{X}_{1}+\mathrm{X}_{2}\right)$,
6. If $q=41, \ell=V\left(\mathrm{X}_{0}-\mathrm{X}_{1}-5 \mathrm{X}_{2}\right)$,
7. If $q=41, \ell=V\left(\mathrm{X}_{0}+19 \mathrm{X}_{1}+12 \mathrm{X}_{2}\right)$,
8. If $q=41, \ell=V\left(\alpha^{21} \mathrm{X}_{0}-\mathrm{X}_{1}+\mathrm{X}_{2}\right)$.

Action of D_{5} on $P G(2,41)$

$$
C_{\mathcal{A}_{41}}=V\left(X_{0} X_{1}+\alpha^{20} X_{0} X_{2}-\alpha^{20} X_{1} X_{2}\right)
$$

The Dihedral group D_{5} generated by

$$
r=\left[\begin{array}{ccc}
\alpha & 0 & 0 \\
1 & 1 & 1 \\
\alpha^{19} & \alpha^{12} & \alpha^{20}
\end{array}\right], s=\left[\begin{array}{ccc}
0 & \alpha^{22} & 0 \\
\alpha^{19} & \alpha^{21} & \alpha^{20} \\
1 & 1 & 1
\end{array}\right]
$$

which stabilized the $5-\operatorname{arc} \mathcal{A}_{41}$ has the following effects on the points of $\operatorname{PG}(2,41)$.
1- Fixes the conic $C_{\mathcal{A}_{41}}$.
2- Acts transitively on \mathcal{A}_{41} since

$$
\begin{aligned}
\left(U_{0}, r s\right) & \mapsto U_{1} \\
\left(U_{0}, r s^{3}\right) & \mapsto U_{2} \\
\left(U_{0}, r s^{4}\right) & \mapsto U \\
\left(U_{0}, r s^{2}\right) & \mapsto P\left(\alpha^{39}, \alpha, 1\right)=112
\end{aligned}
$$

3- The elements of D_{5} divided into two classes according to fixing points of $P G(2,41)$ by sending each point to itself as illustrated bellow.

Class 1: The five elements $r, r s, r s^{2}, r s^{3}, r s^{4}$ of order two fixes 43 points if acts on $P G(2,41)$ which is exactly line plus the diagonal point of \mathcal{A}_{41}

	$\ell_{i} \cup P_{j}$
r	$\ell_{320} \cup P\left(1, \alpha^{2}, 1\right)$
$r s$	$\ell_{3} \cup P\left(\alpha^{19}, 1,0\right)$
$r s^{2}$	$\ell_{375} \cup P(\alpha, \alpha, 1)$
$r s^{3}$	$\ell_{807} \cup P\left(\alpha^{39}, 0,1\right)$
$r s^{4}$	$\ell_{292} \cup P(0,1,1)$

Class 2: Each of the four element s, s^{2}, s^{3}, s^{4} of order five fixes three points one of the points is $P\left(\alpha^{38}, \alpha^{39}, 1\right)$ which is intersection point of the five lines $\ell_{i}, i=$ 3,292,320,375,807.

4- The lines $\ell_{i}, i=3,292,320,375,807$ have the property that unisecant to \mathcal{A}_{41} and bisecant to C_{41}.

* The unique 6 -arc K with stabilizer group A_{5} is just \mathcal{A}_{41} union the intersection point of the lines $\ell_{i}, i=3,292,320,375,807$. The arc K in numeral form is $K=\{1,2,3,323,112,443\}$,

* Conclusion

1- There is an arc of degree five $\xi=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}\right\}$ which has stabilizer group $G(\xi)$ of type D_{5}.

2- The pentastigm which has ξ as a vertex has collinear diagonal points.

3- The effect of the group Dihedral group $G(\xi)$ on points of $\operatorname{PG}(2, q), q=$ $19,29,31,41$ depends on the order of its elements. Let G^{2} be the set of five elements of $G(\xi)$ of order two and G^{5} be the set of four elements of $G(\xi)$ of order five.
(i) Each elements of G^{2} fixes five a subset of the plane of length $q+2$ by sending it to itself. Each of this set, is a line ℓ_{i}^{*} with extra point $P_{i}^{*}, i=1,2,3,4,5$. The five extra points P_{i}^{\prime} are exactly the diagonal points of ξ. Also, these lines are the bisecant to the conic C_{ξ} which passes through ξ and unisecants to ξ.
(ii) Each elements of G^{5} fixes a point \mathbf{P}^{*} which is the intersection point of the five lines $\ell_{i}^{*}, i=1,2,3,4,5$.

4- The unique six arc with stabilizer group of type A_{5} is constructed by adding the point \mathbf{P}^{*} to ξ. So, the following figure is fixed by the group $G(\xi)$.

