Coding Theory

Sheet 2 Solutions

Spring and Summer 2010

1. For a q-ary (n, M, d) code with $d=2 e+2$, the same argument as before shows that

$$
M\left\{\sum_{i=0}^{e}\binom{n}{i}(q-1)^{i}\right\} \leq q^{n}
$$

2. For $q=2$, the Sphere Packing Bound for an $(n, M, 2 e+1)$ code is

$$
M\left\{1+\binom{n}{1}+\ldots+\binom{n}{e}\right\} \leq 2^{n}
$$

Here $n=5, d=3, e=1$. So

$$
M\left\{1+\binom{5}{1}\right\} \leq 2^{5}
$$

Hence $6 M \leq 32$, whence $M \leq 5$.
3. Choose two words in C as $a_{1}=00000, a_{2}=11100$. Since $d\left(x, a_{1}\right) \geq 3$ for any x in C the only other possible elements of C are the 9 words with three 1's, apart from a_{2}, the 5 words with four 1's, and $u=11111$. As $d\left(u, a_{2}\right)=2$, so $u \notin C$.
Three 1's: 11010, 11001, 10110, 10101, 10011, 01110, 01101, 01011, 00111;
Four 1's: 11110, 11101, 11011, 10111, 01111.
The words with three 1's and two of the first three coordinates 1 are at distance 2 from a_{2}. This leaves

$$
b_{1}=10011, \quad b_{2}=01011, \quad b_{3}=00111 .
$$

Similarly, the first two words with four 1's are at distance 1 from a_{2}. This leaves

$$
c_{1}=11011, \quad c_{2}=10111, \quad c_{3}=01111 .
$$

Now, $d\left(b_{i}, b_{j}\right)=2, d\left(c_{i}, c_{j}\right)=2$ for $i \neq j$. So there can only be one b_{i} and one c_{j} in C. Hence $|C| \leq 4$.
In fact, taking $b_{1} \in C$, the only possibility is c_{3}. This gives $C=\left\{a_{1}, a_{2}, b_{1}, c_{3}\right\}$ as a $(5,4,3)$ code.
4. Let C be a binary $(8, M, 5)$ code with $M \geq 4$. Calling the number of 1 's in a word the weight, without loss of generality, let $a_{1}=00000000, a_{2}=11111000 \in C$. There can be no word of weight 7 or 8 in C as they are too close to a_{2}. Also, there can be at most one word of weight 6 , since two words of weight 6 , such as 11111100 and 00111111, are the maximum distance apart namely 4 . So, there must be another word of weight 5 in C. This must have 1's in the last three places, as otherwise it is at distance at most 4 from a_{2}; so let it be $a_{3}=00011111$. Now, the only possible word than can be added to C is $a_{4}=11100111$.

5 . Let e be the packing radius and ρ the covering radius.

$$
\begin{array}{lll}
C_{1}=\{00,01,10,11\}: & e=0, \quad \rho=0 ; \\
C_{2}=\{000,011,101,110\}: & e=0, \quad \rho=1 ; \\
C_{3}=\left\{00000, a_{1}=01101, a_{2}=10110, a_{3}=11011\right\}: & e=1, \quad \rho=2 .
\end{array}
$$

For C_{3}, all the words with four 1's are either a_{3} or at distance 2 from this codeword, since they can be obtained by an interchange of two symbols from it.

There are 10 words with three 1's; apart from a_{1}, a_{2}, they are as follows:

x	11100	11010	11001	10101
	$d\left(x, a_{1}\right)=2$	$d\left(x, a_{2}\right)=2$	$d\left(x, a_{3}\right)=2$	$d\left(x, a_{2}\right)=2$
x	10011	01110	01011	00111
	$d\left(x, a_{2}\right)=2$	$d\left(x, a_{1}\right)=2$	$d\left(x, a_{1}\right)=2$	$d\left(x, a_{1}\right)=2$

6. The code $C=\left\{a_{0}=000 \ldots 0, a_{1}=111 \ldots 1\right\}$ is of of length n. Any vector x in $\left(F_{2}\right)^{n}$ has t coordinates 1 , and $n-t$ coordinates 0 . So $d\left(x, a_{0}\right)=t$ and $d\left(x, a_{1}\right)=n-t$. Hence, if $t<n / 2$, then x is uniquely decoded as a_{0}, whereas, if $t>n / 2$, then x is uniquely decoded as a_{1}. So C is perfect and corrects $\lfloor n / 2\rfloor=(n-1) / 2$ errors.
This can also be done using the Sphere Packing Bound.
7. $C=\{000000,111111,222222\}$. So $e=2$ since two errors will be corrected but three will not; for example, 000111. However, $\rho=4$, since if a received message as three digits the same, it is at distance 3 from a codeword, but if it has only two digits the same, such as 012012 , it is at distance 4 from a codeword.
8. Here is the geometry with $P_{i}=i$.

Then $\ell_{i}+\ell_{j}=a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7}$, where

$$
\begin{aligned}
& a_{r}=1 \Longleftrightarrow P_{r} \text { lies on precisely one of } \ell_{i}, \ell_{j}, \\
& a_{r}=0 \Longleftrightarrow P_{r} \text { lies on the third line through } \ell_{i} \cap \ell_{j}
\end{aligned}
$$

Hence $\ell_{i}+\ell_{j}=u+\ell_{k}=m_{k}$ for some k, where $u=1111111$. Then

$$
\begin{aligned}
& m_{i}+\ell_{j}=u+\ell_{i}+\ell_{j}=u+m_{k}=\ell_{k} \\
& m_{i}+m_{j}=u+\ell_{i}+u+\ell_{j}=\ell_{i}+\ell_{j}=m_{k} .
\end{aligned}
$$

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3
ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	ℓ_{5}	ℓ_{6}	ℓ_{7}

Figure 1: The projective plane of order 2
9. The Sphere Packing Bound for a binary $(n, M, 7)$ code says that

$$
M\left\{\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}\right\}=2^{n}
$$

So,

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\binom{n}{3}=2^{r} ;
$$

that is,

$$
\begin{align*}
1+n+\frac{1}{2} n(n-1)+\frac{1}{6} n(n-1)(n-2) & =2^{r}, \\
6(n+1)+3 n(n-1)+n(n-1)(n-2) & =3 \times 2^{r+1}, \\
6(n+1)+n(n-1)\{3+(n-2)\} & =3 \times 2^{r+1}, \\
(n+1)\left\{n^{2}-n+6\right\} & =3 \times 2^{r+1}, \\
(n+1)\left\{(n+1)^{2}-3(n+1)+8\right\} & =3 \times 2^{r+1} . \tag{1}
\end{align*}
$$

If 16 divides $n+1$, then the second term on the LHS is divisible by 8 but not by 16 ; so it is 8 or 24 . If it is 8 , then

$$
(n+1)^{2}-3(n+1)=0
$$

which is impossible, since $n \geq 7$; if it is 24 , then

$$
(n+1)^{2}-3(n+1)-16=0
$$

which is also impossible, as the discriminant is 73 .
Therefore, $n+1$ divides 24 , whence $n=7,11,23$. Now, $n=11$ does not satisfy Equation (1). So, $n=7$ or 23. In fact, perfect codes of these lengths exist, the repetition code of length 7 and the Golay code, respectively.
10. (a) $\operatorname{In} \mathbf{F}_{5}$,

x	1	2	-2	-1
x^{-1}	1	-2	2	-1

(b) $\operatorname{In} \mathbf{F}_{7}$,

$$
\begin{array}{c|rrrrrr}
x & 1 & 2 & 3 & -3 & -2 & -1 \\
\hline x^{-1} & 1 & -3 & -2 & 2 & 3 & -1
\end{array}
$$

(c) $\operatorname{In} \mathbf{F}_{13}$,

x	1	2	3	4	5	6	-6	-5	-4	-3	-2	-1
x^{-1}	1	-6	-4	-3	-5	-2	2	5	3	4	6	-1

(d) $\operatorname{In} \mathbf{F}_{17}$,

x	1	2	3	4	5	6	7	8	-8	-7	-6	-5	-4	-3	-2	-1
x^{-1}	1	-8	6	-4	7	3	5	-2	2	-5	-3	-7	4	-6	8	-1

11. The equations $2 x+y=1, x+2 y=1$ have the solution $x=y=1 / 3$ in all four fields. Now, from Question 10,

$$
1 / 3=\left\{\begin{aligned}
2 & \text { in } \mathbf{F}_{5}, \\
-2 & \text { in } \mathbf{F}_{7}, \\
-4 & \text { in } \mathbf{F}_{13}, \\
6 & \text { in } \mathbf{F}_{17} .
\end{aligned}\right.
$$

