Coding Theory

Sheet 3 Solutions

Spring and Summer 2010

1. Let $\mathbf{F}_{4}=\left\{0,1, \omega, \bar{\omega}=\omega^{2}=\omega+1\right\}$.

+	0	1	ω	$\bar{\omega}$
0	0	1	ω	$\bar{\omega}$
1	1	0	$\bar{\omega}$	ω
ω	ω	$\bar{\omega}$	0	1
$\bar{\omega}$	$\bar{\omega}$	ω	1	0

\times	0	1	ω	$\bar{\omega}$
0	0	0	0	0
1	0	1	ω	$\bar{\omega}$
ω	0	ω	$\bar{\omega}$	1
$\bar{\omega}$	0	$\bar{\omega}$	1	ω

2. An element is primitive in \mathbf{F}_{q} if it generates the cyclic group; that is, it has order $q-1$. Note, also, that the order of x divides $q-1$ and the order of x^{-1} is the same as the order of x. As a check, the number of generators of a cyclic group of order $q-1$ is $\phi(q-1)$, where $\phi(n)$ is the Euler function that counts the number of positive integers coprime to n.
(a) $\operatorname{In} \mathbf{F}_{5}$,

x	1	2	-2	-1
order of x	1	4	4	2

So the primitive elements are $2,-2$.
(b) $\operatorname{In} \mathbf{F}_{7}$,

x	1	2	3	-3	-2	-1
order of x	1	3	6	3	6	2

So the primitive elements are 3, -2 .
(c) $\operatorname{In} \mathbf{F}_{13}$,

x	1	2	3	4	5	6	-6	-5	-4	-3	-2	-1
order of x	1	12	3	6	4	12	12	4	3	6	12	2

So the primitive elements are $2,6,-6,-2$.
(d) $\operatorname{In} \mathbf{F}_{17}$,

x	1	2	3	4	5	6	7	8	-8	-7	-6	-5	-4	-3	-2	-1
order of x	1	8	16	4	16	16	16	8	8	16	16	16	4	16	8	2

So the primitive elements are $\pm 3, \pm 5, \pm 6, \pm 7$.
3. By the Binomial Theorem,

$$
(x+y)^{p}=x^{p}+\binom{p}{1} x^{p-1} y+\cdots+\binom{p}{r} x^{p-r} y^{r}+\cdots+\binom{p}{p-1} x y^{p-1}+y^{p} .
$$

For $1 \leq r \leq p-1$,

$$
\binom{p}{r}=\frac{p(p-1) \cdots(p-r+1)}{r(r-1) \cdots 3 \cdot 2}
$$

As p is prime and $p>r$, so none of $r, r-1, \ldots, 2$ divide p. Hence p divides $\binom{p}{r}$, which is therefore zero in \mathbf{F}_{p} and \mathbf{F}_{q}. So

$$
(x+y)^{p}=x^{p}+y^{p} .
$$

4. A monic quadratic in $\mathbf{F}_{3}[X]$ is $X^{2}+b X+c$ with $b, c \in\{0,1,-1\}$. The reducible ones are

$$
\begin{aligned}
& X^{2},(X-1)^{2}=X^{2}+X+1,(X+1)^{2}=X^{2}-X+1 \\
& X(X-1)=X^{2}-X, X(X+1)=X^{2}+X,(X-1)(X+1)=X^{2}-1
\end{aligned}
$$

This leaves the $9-6=3$ irreducibles:

$$
X^{2}+1, X^{2}-X-1, X^{2}-X+1
$$

Take $X^{2}+1$ and let $\tau^{2}+1=0$; then $\tau^{2}=-1$, and $\tau^{4}=1$. So $X^{2}+1$ is not primitive since the order of τ is not 8 .
Take $X^{2}-X-1$ and let $\sigma^{2}-\sigma-1=0$. Then the elements of \mathbf{F}_{9} are $0,1, \sigma$,

$$
\begin{aligned}
& \sigma^{2}=\sigma+1, \quad \sigma^{3}=\sigma^{2}+\sigma=-\sigma+1, \\
& \sigma^{4}=-\sigma^{2}+\sigma=-1, \quad \sigma^{5}=-\sigma, \quad \sigma^{6}=-\sigma^{2}=-\sigma-1, \\
& \sigma^{7}=-\sigma^{2}-\sigma=\sigma-1, \quad \sigma^{8}=\sigma^{2}-\sigma=1 .
\end{aligned}
$$

So $X^{2}-X-1$ is primitive. Similarly, $X^{2}+X-1$ is primitive.
(a)

x	1	σ	σ^{2}	σ^{3}	$-\sigma^{3}$	$-\sigma^{2}$	$-\sigma$	-1
order of x	1	8	4	8	8	4	8	2

(b)

x	1	-1	τ	$-\tau$	$1+\tau$	$1-\tau$	$-1+\tau$	$-1-\tau$
order of x	1	2	4	4	8	8	8	8

(c) From Theorem 3.9, the automorphisms of \mathbf{F}_{9} are the identity and $x \mapsto x^{3}$. The zeros of $X^{2}-X-1$ are σ, σ^{3}. For an automorphism of \mathbf{F}_{9}, the element σ must map to another element that has order 8 and is a zero of $X^{2}-X-1$. Now,

$$
(-1+\tau)^{2}=1-2 \tau+\tau^{2}=\tau=(-1+\tau)+1
$$

So $-1+\tau$ is a zero of $X^{2}-X-1$; the other is therefore $-1-\tau$.
Therefore an isomorphism between these two representations of \mathbf{F}_{9} is either $\sigma \mapsto-1+\tau$ or $\sigma \mapsto-1-\tau$.
If in (a) the polynomial $X^{2}-X+1$ is chosen, let a zero be ρ. Then an isomorphism would be $\rho \mapsto 1+\tau$ or $\rho \mapsto 1-\tau$.
5. A cubic in $\mathbf{F}_{2}[X]$ is $X^{3}+b X^{2}+c X+d$ with $b, c, d \in\{0,1\}$. Recall that the only irreducible quadratic is $X^{2}+X+1$. Hence the reducible cubics are

$$
\begin{aligned}
& X^{3},(X+1)^{3}=X^{3}+X^{2}+X+1, X^{2}(X+1)=X^{3}+X^{2}, X(X+1)^{2}=X^{3}+X, \\
& X\left(X^{2}+X+1\right)=X^{3}+X^{2}+X,(X+1)\left(X^{2}+X+1\right)=X^{3}+1
\end{aligned}
$$

This leaves the $8-6=2$ irreducibles:

$$
X^{3}+X+1, \quad X^{3}+X^{2}+1
$$

As 7 is a prime, a zero of one of these can only have order 7. So, both are primitive.
6. Since $X^{4}+1$ has no zeros in \mathbf{F}_{3}, it has no linear factors. So, if it is reducible it can only be the product of two irreducible quadratics; the latter were found in Question 3. In fact,

$$
X^{4}+1=\left(X^{2}+X-1\right)\left(X^{2}-X-1\right)
$$

7. Similarly to Question 4, there are three irreducible quartics in $\mathbf{F}_{2}[X]$:

$$
X^{4}+X+1, \quad X^{4}+X^{3}+1, \quad X^{4}+X^{3}+X^{2}+X+1
$$

The first two are primitive; the third is not. With $\alpha^{4}+\alpha+1=0$, the elements of \mathbf{F}_{16} are $0,1, \alpha, \alpha^{2}, \alpha^{3}$,

$$
\begin{aligned}
\alpha^{4} & =\alpha+1, \\
\alpha^{5} & =\alpha^{2}+\alpha, \\
\alpha^{6} & =\alpha^{3}+\alpha^{2}, \\
\alpha^{7} & =\alpha^{4}+\alpha^{3}=\alpha^{3}+\alpha+1, \\
\alpha^{8} & =\alpha^{4}+\alpha^{2}+\alpha=\alpha^{2}+1, \\
\alpha^{9} & =\alpha^{3}+\alpha, \\
\alpha^{10} & =\alpha^{4}+\alpha^{2}=\alpha^{2}+\alpha+1, \\
\alpha^{11} & =\alpha^{3}+\alpha^{2}+\alpha, \\
\alpha^{12} & =\alpha^{4}+\alpha^{3}+\alpha^{2}=\alpha^{3}+\alpha^{2}+\alpha+1, \\
\alpha^{13} & =\alpha^{4}+\alpha^{3}+\alpha^{2}+\alpha=\alpha^{3}+\alpha^{2}+1, \\
\alpha^{14} & =\alpha^{4}+\alpha^{3}+\alpha=\alpha^{3}+1, \\
\alpha^{15} & =\alpha^{4}+\alpha=1 .
\end{aligned}
$$

8. (i) Any monic quadratic in $\mathbf{F}_{q}[X]$ has the form $X^{2}+b X+c$; so there are q^{2} of them. If it is reducible, it has the form

$$
(X-\alpha)(X-\beta)
$$

If $\alpha \neq \beta$, there are $\binom{q}{2}$ of them. If $\alpha=\beta$, there are q of them. So the number of reducibles is

$$
\frac{1}{2} q(q-1)+q=\frac{1}{2} q(q+1)
$$

and so the number of irreducibles is

$$
q^{2}-\frac{1}{2} q(q+1)=\frac{1}{2} q(q-1)
$$

Alternatively, the elements of $\mathbf{F}_{q^{2}} \backslash \mathbf{F}_{q}$ split into $\frac{1}{2}\left(q^{2}-q\right)$ pairs of zeros of irreducible quadratics in $\mathbf{F}_{q}[X]$.
(ii) This is a similar argument. The number of monic cubics is q^{3}. The number reducible to three linear factors is

$$
\begin{array}{lll}
q & \text { like } & (X-\alpha)^{3} \\
q(q-1) & \text { like } & (X-\alpha)(X-\beta)^{2}
\end{array} \quad \text { with } \alpha \neq \beta,
$$

totalling $\frac{1}{6} q\left(q^{2}+3 q+2\right)$.
The number of cubics that are the product of a linear factor and an irreducible quadratic is

$$
q \times \frac{1}{2} q(q-1)=\frac{1}{2} q^{2}(q-1)
$$

Hence the number of irreducible cubics is

$$
q^{3}-\frac{1}{6} q\left(q^{2}+3 q+2\right)-\frac{1}{2} q^{2}(q-1)=\frac{1}{3}\left(q^{3}-q\right)
$$

9. (i) $x_{1} \ldots x_{10}=3411021756$ implies that

$$
\begin{aligned}
\sum i x_{i} & =3+8+3+4+0+12+7+56+45+60 \\
& =3-3+3+4+0+1-4+1+1+5=0 \text { in } \mathbf{F}_{11}
\end{aligned}
$$

So, it is an ISBN.
(ii) $x_{1} \ldots x_{10}=285036008 \mathrm{X}$ implies that

$$
\begin{aligned}
\sum i x_{i} & =2+16+15+0+15+36+0+0+72+100 \\
& =2+5+4+4+3+6+1=25=3 \text { in } \mathbf{F}_{11}
\end{aligned}
$$

So, it is not an ISBN-10.
10. $x_{1} \ldots x_{10}=0521283 t 87$ implies that

$$
\begin{aligned}
\sum i x_{i} & =0+10+6+4+10+48+21+8 t+72+70 \\
& =8 t-1 \text { in } \mathbf{F}_{11}
\end{aligned}
$$

So, if it is an ISBN-10, then $8 t-1=0$, whence $t=7$.
11. As 9 digits determine the tenth in an ISBN-10, the minimum distance is greater than 1. If one of the first nine digits in an ISBN-10 is changed, then the check digit can be calculated to make a new ISBN-10; so the minimum distance of the ISBN-10 code is 2 . Alternatively, $00 \ldots 0$ and $150 \ldots 0$, say, are at distance 2 .
12.

$$
\begin{array}{llllllllllllll}
9 & 7 & 8 & 8 & 8 & 4 & 7 & 0 & 0 & 5 & 3 & 9 & 6 & \\
1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & 3 & 1 & \\
\hline 9 & 1 & 8 & 4 & 8 & 2 & 7 & 0 & 0 & 5 & 3 & 7 & 6 & =60
\end{array}
$$

So it is a valid ISBN-13.
13. (i)

$$
\begin{array}{cccccccccccccccc}
4 & 5 & 3 & 9 & 2 & 7 & 8 & 6 & 4 & 1 & 3 & 2 & 1 & 2 & 7 & x \\
2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
\hline 8 & 5 & 6 & 9 & 4 & 7 & 6 & 6 & 8 & 1 & 6 & 2 & 2 & 2 & 4 & x
\end{array}
$$

Positions 7,15 have digits at least 5 . So

$$
76+x+2 \equiv 0 \quad(\bmod 10) \Rightarrow x=2
$$

So the codabar number is 4539278641321272 .
(ii)

$$
\begin{array}{cccccccccccccccc}
4 & 9 & 2 & 9 & x & 4 & 6 & 2 & 7 & 3 & 4 & 1 & 3 & 4 & 7 & 8 \\
2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 \\
\hline 8 & 9 & 4 & 9 & 2 x & 4 & 2 & 2 & 4 & 3 & 8 & 1 & 6 & 4 & 4 & 8
\end{array}
$$

Positions $7,9,15$ have digits at least 5 . There are two possibilities:
(a) The fifth digit is at least 5; in this case,

$$
76+2 x+4 \equiv 0 \quad(\bmod 10) \Rightarrow x=5
$$

(b) The fifth digit is at most 4 ; in this case,

$$
76+2 x+3 \equiv 0 \quad(\bmod 10), \quad \text { impossible. }
$$

So the codabar number is 4929546273413478.

