Coding Theory

Sheet 4 Solutions

Spring and Summer 2010

1. In each case, use row operations to get the matrix in upper-triangular form with 1's as far as possible down the main diagonal.
(a)

Hence the subspace has dimension 3 .
(b)
\(\left.$$
\begin{array}{llll}1 & 2 & 1 & 0 \\
1 & 0 & 2 & 1 \\
1 & 0 & 1 & 1 \\
0 & 2 & 1 & 2\end{array}
$$ \rightarrow $$
\begin{array}{llll}1 & 2 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 2 & 1 & 2\end{array}
$$ \rightarrow \begin{array}{llll}1 \& 2 \& 1 \& 0

0 \& 1 \& 1 \& 1

0 \& 0 \& 2 \& 0

0 \& 0 \& 2 \& 0\end{array}\right]\)| 1 | 2 | 1 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 |

Hence the subspace has dimension 3.
2. To choose a k-dimensional subspace, choose k linearly independent vectors to form a basis $\left\{v_{1}, \ldots, v_{k}\right\}$.
(a) A non-zero vector v_{1} in $V(n, q)$ can be chosen in $q^{n}-1$ ways.
(b) To choose v_{2} independent of this, no vector λv_{1} can be chosen. Hence there are $q^{n}-q$ choices for v_{2}.
(c) A vector independent of these can be chosen in $q^{n}-q^{2}$ ways.
(d) Continue with this as far as v_{k} which can be chosen in $q^{n}-q^{k-1}$ ways.

So the number of ordered sets of k linearly independent vectors is

$$
\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{k-1}\right)
$$

However, the number of ordered sets of k vectors that will give the same subspace is, in the same way,

$$
\left(q^{k}-1\right)\left(q^{k}-q\right) \ldots\left(q^{k}-q^{k-1}\right)
$$

Hence the number of k-dimensional subspaces is

$$
\begin{aligned}
& \frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \ldots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \ldots\left(q^{k}-q^{k-1}\right)} \\
& \quad=\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \ldots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \ldots(q-1)} .
\end{aligned}
$$

3. Take the first four rows of the incidence matrix of the projective plane of order 2 :

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

by row operations only.
4.

$$
\begin{aligned}
G= & {\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

using only row operations.
5. For the ternary $[7,4]$ code,

$$
\begin{aligned}
G= & {\left[\begin{array}{lllllll}
2 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 \\
2 & 1 & 0 & 2 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 & 0 & 2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lllllll}
2 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 2 & 2 & 0 \\
0 & 2 & 0 & 1 & 1 & 2 & 1
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{lllllll}
2 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 1 & 2 & 1 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 \\
0 & 0 & 0 & 1 & 2 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllllll}
2 & 1 & 0 & 0 & 2 & 1 & 0 \\
0 & 2 & 0 & 0 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 2 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lllllll}
2 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 2 & 0 & 0 & 2 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 2 & 2 & 2 \\
0 & 1 & 0 & 0 & 1 & 0 & 2 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 2 & 0
\end{array}\right]
\end{aligned}
$$

again just using row operations to preserve the code.
6. By row operations,

$$
\begin{aligned}
& G=\left[\begin{array}{lllll}
1 & 0 & 3 & 5 & 4 \\
0 & 0 & 2 & 3 & 5 \\
2 & 1 & 0 & 3 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
1 & 0 & 3 & 5 & 4 \\
0 & 0 & 2 & 3 & 5 \\
0 & 1 & 1 & 0 & 6 \\
0 & 1 & 4 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
1 & 0 & 3 & 5 & 4 \\
0 & 1 & 1 & 0 & 6 \\
0 & 0 & 2 & 3 & 5 \\
0 & 1 & 4 & 2 & 3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lllll}
1 & 0 & 3 & 5 & 4 \\
0 & 1 & 1 & 0 & 6 \\
0 & 0 & 2 & 3 & 5 \\
0 & 0 & 3 & 2 & 4
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
1 & 0 & 3 & 5 & 4 \\
0 & 1 & 1 & 0 & 6 \\
0 & 0 & 1 & 5 & 6 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
1 & 0 & 3 & 0 & 4 \\
0 & 1 & 1 & 0 & 6 \\
0 & 0 & 1 & 0 & 6 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 6 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Note In this example, as well as the previous ones, it is easy to check if your answer is correct. Is every row of G a linear combination of the rows of the answer $\left[I_{k} A\right]$?
7. If $G=\left[I_{k} A\right]$ and $G^{\prime}=\left[I_{k} A^{\prime}\right]$, where the rows of A^{\prime} are a permutation of the rows of A, then first permute the rows of G^{\prime} so that A^{\prime} becomes A; that is, we now have $G^{\prime \prime}=[P A]$, where P is a permutation matrix, with a single 1 in each row and column, and other entries 0 . Now permute the columns of P to obtain I_{k}. Thus, by row and column operations G^{\prime} becomes G. Hence the code C^{\prime} generated by G^{\prime} is equivalent to the code C generated by G.
8. Here,

$$
x=x_{1} x_{2} \ldots x_{n} \in C \Longrightarrow x^{\prime}=x_{1} x_{2} \ldots x_{n} x_{n+1} \in C^{\prime}
$$

where

$$
x_{n+1}= \begin{cases}1 & \text { if } w(x) \text { is odd } \\ 0 & \text { if } w(x) \text { is even. }\end{cases}
$$

Let

$$
\begin{aligned}
& C_{0}=\left\{x_{1} x_{2} \ldots x_{n+1} \in V(n+1,2) \mid x_{1} x_{2} \ldots x_{n} \in C ; x_{n+1} \in \mathbf{F}_{2}\right\}, \\
& C_{1}=\left\{x_{1} x_{2} \ldots x_{n+1} \in V(n+1,2) \mid x_{1}+x_{2}+\ldots+x_{n}+x_{n+1}=0\right\} .
\end{aligned}
$$

Then C_{0} and C_{1} are both subspaces of $V(n+1,2)$, and $C^{\prime}=C_{0} \cap C_{1}$. Hence C^{\prime} is a subspace.
Aliter
The weight of x in $V(n, 2)$ is $w(x)=\sum_{1}^{n} x_{i}$. Hence, for $x, y \in V(n, 2)$,

$$
w(x+y)=\sum\left(x_{i}+y_{i}\right)=\sum x_{i}+\sum y_{i}=w(x)+w(y) \quad(\bmod 2) .
$$

To check that C^{\prime} is linear, only one condition is required: $x^{\prime}, y^{\prime} \in C^{\prime} \Rightarrow x^{\prime}+y^{\prime} \in C^{\prime}$. There are three cases.
(a) $w(x)$ even, $w(y)$ even; then $w(x+y)$ is even. So

$$
(x+y)^{\prime}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}, 0\right)=\left(x_{1}, \ldots, x_{n}, 0\right)+\left(y_{1}, \ldots, y_{n}, 0\right)=x^{\prime}+y^{\prime} .
$$

So the mapping is linear in this case.
(b) $w(x)$ odd, $w(y)$ odd; then $w(x+y)$ is even. So

$$
(x+y)^{\prime}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}, 0\right)=\left(x_{1}, \ldots, x_{n}, 1\right)+\left(y_{1}, \ldots, y_{n}, 1\right)=x^{\prime}+y^{\prime} .
$$

So the mapping is also linear in this case.
(c) $w(x)$ odd, $w(y)$ even; then $w(x+y)$ is odd. So

$$
(x+y)^{\prime}=\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}, 1\right)=\left(x_{1}, \ldots, x_{n}, 1\right)+\left(y_{1}, \ldots, y_{n}, 0\right)=x^{\prime}+y^{\prime} .
$$

So the mapping is linear in this final case.

