Coding Theory

Sheet 7 Solutions

Spring 2014

1. Let C^{\prime} be the set of words of even weight in the binary linear code C. Then, by Sheet 6 , Exercise 5, the sum of two words of even weight also has even weight, and so C^{\prime} is a linear code. Let x be any word of odd weight in C, if it exists. Then, if y is any other word of odd weight, $x+y$ has even weight and so is in C^{\prime}; that is, $y \in x+C^{\prime}$. Hence

$$
C=C^{\prime} \cup\left(x+C^{\prime}\right)
$$

in which case $|C|=2\left|C^{\prime}\right|$. So, either $C^{\prime}=C$ or $\left|C^{\prime}\right|=\frac{1}{2}|C|$.
2. Let C be a binary $[n, k]$ code. Since

$$
W_{C^{\perp}}(T)=2^{-k}(1+T)^{n} W_{C}\left(\frac{1-T}{1+T}\right)
$$

so replacing C by C^{\perp} gives

$$
W_{C}(T)=2^{-(n-k)}(1+T)^{n} W_{C^{\perp}}\left(\frac{1-T}{1+T}\right)
$$

3. (a) Since

$$
H=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

so

$$
G=\left[\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1
\end{array}\right]
$$

(b) The elements of C and their weights are as follows:

$$
\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 3 \\
0 & 1 & 0 & 0 & 1 & 1 & 3 \\
0 & 0 & 1 & 1 & 0 & 1 & 3 \\
1 & 1 & 0 & 1 & 0 & 1 & 4 \\
0 & 1 & 1 & 1 & 0 & 1 & 4 \\
1 & 0 & 1 & 0 & 1 & 1 & 4 \\
1 & 1 & 1 & 0 & 0 & 0 & 3
\end{array}\right] .
$$

So $W_{C}(T)=1+4 T^{3}+3 T^{4}$.
(c) Applying the MacWilliams theorem gives

$$
\begin{aligned}
W_{C}(T) & =2^{-3}(1+T)^{6} W_{C^{\perp}}\left(\frac{1-T}{1+T}\right) \\
& =\frac{1}{8}(1+T)^{6}\left\{1+4\left(\frac{1-T}{1+T}\right)^{3}+3\left(\frac{1-T}{1+T}\right)^{4}\right\} \\
& =\frac{1}{8}\left\{(1+T)^{6}+4(1+T)^{3}(1-T)^{3}+3(1+T)^{2}(1-T)^{4}\right\}
\end{aligned}
$$

Now, this can be evaluated in various ways. Write the coefficients of the various terms:

$$
\begin{array}{r}
(1+T)^{6} \\
4(1+T
\end{array} 6
$$

Similarly,

$3(1+T)^{2}(1-T)^{4}$	1	-4	6	-4	1		
		2	-8	12	-8	2	
			1	-4	6	-4	1
	1	-2	-1	4	-1	-2	1
	3	-6	-3	12	-3	-6	3
	4	0	-12	0	12	0	-4
	1	6	15	20	15	6	1
	8	0	0	32	24	0	0
	1	0	0	4	3	0	0

Hence

$$
W_{C}^{\perp}(T)=1+4 T^{3}+3 T^{4}
$$

As a check, $W_{C \perp}(1)=8=2^{3}$.
(d) The elements of C^{\perp} and their weights are as follows:

0	0	0	0	0	0	0
1	0	1	1	0	0	3
1	1	0	0	1	0	3
0	1	1	0	0	1	3
0	1	1	1	1	0	4
1	1	0	1	0	1	4
1	0	1	0	1	1	4
0	0	0	1	1	1	3

So $W_{C}^{\perp}(T)=1+4 T^{3}+3 T^{4}$, in agreement with the previous calculation.
(e) Thus $W_{C}^{\perp}(T)=W_{C}(T)$. However, $C^{\perp} \neq C$; but C^{\perp} is equivalent to C as the columns of H are a permutation of the columns of G.
4. Since C is a $[10,7]$ code, so C^{\perp} is a $[10,3]$ code. Its elements with their weights are as follows:

		0	0	0	1	0		1	1	1	1	1			7
	0	1	0	0	1	1		1	1	0	0	1			7
	0	0	1	1	0	1		1	0	1	1	1			5
C^{\perp}	1	1	0	0	0	1		0	0		1	0			4
		0	1		1	1		0	1	0	0	0			6
		1	1	1	1	0		0	1		1	0			6
		1	1	1	0	0		1	0		0	1			5
		0	0		0	0		0	0	0	0	0		0	0

Hence

$$
W_{C^{\perp}}(T)=1+T^{4}+2 T^{5}+2 T^{6}+2 T^{7} .
$$

Applying the MacWilliams theorem gives

$$
\begin{aligned}
W_{C}(T)= & 2^{-3}(1+T)^{10} W_{C^{\perp}}\left(\frac{1-T}{1+T}\right) \\
= & \frac{1}{8}(1+T)^{3}\left\{(1+T)^{7}+(1+T)^{3}(1-T)^{4}+2(1+T)^{2}(1-T)^{5}\right. \\
& \left.\quad+2(1+T)(1-T)^{6}+2(1-T)^{7}\right\}
\end{aligned}
$$

The last four terms sum to

$$
\begin{aligned}
& (1-T)^{4}\left\{(1+T)^{3}+2(1+T)^{2}(1-T)+2(1+T)(1-T)^{2}+2(1-T)^{3}\right\} \\
= & (1-T)^{4}\left(7-3 T+5 T^{2}-T^{3}\right)
\end{aligned}
$$

Now, just writing the coefficients gives

1	-4	6	-4	1			
7	-28	42	-28	7			
	-3	12	-18	12	-3		
		5	-20	30	-20	5	
			-1	4	-6	4	-1
7	-31	59	-67	53	-29	9	-1

Putting in the term $(1+T)^{7}$:

1	7	21	35	35	21	7	1
8	-24	80	-32	88	-8	16	0

Dividing by 8 :

1	-3	10	-4	11	-1	2	0

Multiply this by $(1+T)^{3}$:

1	-3	10	-4	11	-1	2	0	0	0	0
	3	-9	30	-12	33	-3	6	0	0	
		3	-9	30	-12	33	-3	6	0	
			1	-3	10	-4	11	-1	2	0
1	0	4	18	26	30	28	14	5	2	0

Hence

$$
W_{C}(T)=1+4 T^{2}+18 T^{3}+26 T^{4}+30 T^{5}+28 T^{6}+14 T^{7}+5 T^{8}+2 T^{9}
$$

As a check, $W_{C}(1)=128=2^{7}$.
The weight distribution of C is $(1,0,4,18,26,30,28,14,5,2,0)$.
5. (a) From Sheet 6, Exercise 7, all non-zero elements of to C^{\perp} have weight $2^{r-1}=(n+1) / 2$. As C^{\perp} is a $\left[2^{r}-1, r\right]$ code, so

$$
W_{C^{\perp}}(T)=1+\left(2^{r}-1\right) T^{2^{r-1}}=1+n T^{(n+1) / 2}
$$

(b)

$$
\begin{aligned}
W_{C}(T) & =2^{-r}(1+T)^{n} W_{C^{\perp}}\left(\frac{1-T}{1+T}\right) \\
& =\frac{1}{n+1}(1+T)^{n}\left\{1+n\left(\frac{1-T}{1+T}\right)^{(n+1) / 2}\right\} \\
& =\frac{1}{n+1}\left\{(1+T)^{n}+n(1+T)^{(n-1) / 2}(1-T)^{(n+1) / 2}\right\}
\end{aligned}
$$

(c) $C=\operatorname{Ham}(r, q)$ is an

$$
\left[n=\frac{q^{r}-1}{q-1}, k=n-r, 3\right]
$$

code.
Let $H=\left[h_{1}, \ldots, h_{r}\right]^{\mathrm{T}}$ be a parity-check matrix of C with rows h_{1}, \ldots, h_{r}, and let $h=\sum \lambda_{i} h_{i}$ be an element of C^{\perp}. If $\left(x_{1}, \ldots, x_{r}\right)^{\mathrm{T}}$ is the j-th column of H, then the j-th coordinate of h is zero if $\sum \lambda_{i} x_{i}=0$. However, the number of columns $\left(x_{1}, \ldots, x_{r}\right)$ that are solutions of $\sum \lambda_{i} x_{i}=0$ is the number N of points of $P G(r-1, q)$ in a subspace of dimension $r-2$. Hence $N=\frac{q^{r-1}-1}{q-1}$. So

$$
\begin{aligned}
w(h)=n-N & =\frac{q^{r}-1}{q-1}-\frac{q^{r-1}-1}{q-1} \\
& =\frac{q^{r}-q^{r-1}}{q-1} \\
& =q^{r-1}
\end{aligned}
$$

So

$$
\bar{W}_{C^{\perp}}(X, Y)=X^{\frac{q^{r}-1}{q-1}}+\left(q^{r}-1\right) X^{\frac{q^{r-1}-1}{q-1}} Y^{q^{r-1}}
$$

and

$$
\begin{aligned}
& \bar{W}_{C}(X, Y)=q^{-r} \bar{W}_{C^{\perp}}(X+(q-1) Y, X-Y) \\
& \quad=q^{-r}\left\{[X+(q-1) Y]^{\frac{q^{r}-1}{q-1}}+\left(q^{r}-1\right)[X+(q-1) Y]^{\frac{q^{r-1}-1}{q-1}}(X-Y)^{q^{r-1}}\right\}
\end{aligned}
$$

6. (a) The eight codewords $y, x+t y$ of C for $t \in \mathbf{F}_{7}$ are as follows:

1	0	4	2	3	6	x	5
0	1	4	6	5	2	y	5
1	1	1	1	1	1	$x+y$	6
1	2	5	0	6	3	$x+2 y$	5
1	3	2	6	4	5	$x+3 y$	6
1	4	6	5	2	0	$x+4 y$	5
1	5	3	4	0	2	$x+5 y$	5
1	6	0	3	5	4	$x+6 y$	5

(b) Every non-zero word in C is $\lambda x+\mu y=\lambda[x+(\mu / \lambda) y]$, when $\lambda \neq 0$, or μy when $\lambda=0$. Hence every non-zero word in C is a multiple of one of the words in (a). So

$$
A_{0}=1, \quad A_{5}=6 \times 6=36, \quad A_{6}=6 \times 2=12 .
$$

(c) From (b), $\bar{W}_{C}(X, Y)=X^{6}+36 X Y^{5}+12 Y^{6}$.
(d) By the MacWilliams formula,

$$
\begin{aligned}
\bar{W}_{C^{\perp}}(X, Y) & =\frac{1}{49} \bar{W}_{C}(X+6 Y, X-Y) \\
& =\frac{1}{49}\left[(X+6 Y)^{6}+36(X+6 Y)(X-Y)^{5}+12(X-Y)^{6}\right] \\
& =X^{6}+120 X^{3} Y^{3}+360 X^{2} Y^{4}+972 X Y^{5}+948 Y^{6}
\end{aligned}
$$

Note that $\bar{W}_{C^{\perp}}(1,1)=2401=7^{4}$.
In more detail,

$$
6^{2}=36, \quad 6^{2}=36, \quad 6^{3}=216, \quad 6^{4}=1296, \quad 6^{5}=7776, \quad 6^{6}=46656
$$

$(X+Y)^{6}$	1	6	15	20	15	6	1
$(X+6 Y)^{6}$	1	36	540	4320	19440	46656	46656
$(X-Y)^{5}$	1	-5	10	-10	5	-1	
$(X+6 Y)(X-Y)^{5}$	1	-5	10	-10	5	-1	0
		6	-30	60	-60	30	-6
	1	1	-20	50	-55	29	-6
$\times 36$	36	36	-720	1800	-1980	1044	-216
$12(X-Y)^{6}$	12	-72	180	-240	180	-72	12
$(X+6 Y)^{6}$	1	36	540	4320	19440	46656	46656
	49	0	0	5880	18140	47628	46452
49	1	0	0	120	360	972	948

