Coding Theory

Sheet 8 Solutions

Spring 2014

1. Let \mathcal{A}_{i} be the set of words of weight i. Then the map from \mathcal{A}_{i} to \mathcal{A}_{n-i} given by

$$
v \mapsto v+u
$$

where $u=(1,1, \ldots, 1)$, is a bijection, since it is both surjective and injective; it is surjective since $w+y \mapsto w$ and injective since $v_{1}+y=v_{2}+y$ implies that $v_{1}=v_{2}$. Hence $A_{i}=A_{n-i}$.
2. If $v \in C$ has weight i, then $\lambda v \in C$ for $\lambda \in \mathbf{F}_{q}$ also has weight i. So the words of weight $i \neq 0$ come in sets of size $q-1$. Hence, $q-1$ divides A_{i} for $i=1,2, \ldots, n$.
3. For $2 \leq r \leq q$, let $\mathbf{F}_{q}=\left\{0, t_{1}, \ldots, t_{q-1}\right\}$ and let

$$
M=\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
t_{1} & t_{2} & \ldots & t_{q-1} \\
& \vdots & \ldots & \vdots \\
t_{1}^{r-1} & t_{2}^{r-1} & \ldots & t_{q-1}^{r-1}
\end{array}\right]
$$

Let $M_{i_{1} i_{2} \ldots i_{r}}$ be the $r \times r$ matrix formed from columns $i_{1}, i_{2}, \ldots, i_{r}$. Then

$$
M_{12 \ldots .}=\left[\begin{array}{llll}
1 & 1 & \ldots & 1 \\
t_{1} & t_{2} & \ldots & t_{r} \\
& \vdots & \ldots & \vdots \\
t_{1}^{r-1} & t_{2}^{r-1} & \ldots & t_{r}^{r-1}
\end{array}\right]
$$

so

$$
\operatorname{det} M_{12 \ldots r}=\prod_{\substack{i>j \\ i, j=1, \ldots, r}}\left(t_{i}-t_{j}\right) \neq 0
$$

Similarly, det $M_{i_{1} i_{2} \ldots i_{r}} \neq 0$ for any choice of $i_{1}, i_{2}, \ldots, i_{r}$. So $\mathcal{N}_{q-1}(r, q)$ is MDS. The codes $\mathcal{N}_{q}(r, q)$ and $\mathcal{N}_{q+1}(r, q)$ are checked similarly. First,

$$
\left[\begin{array}{lllll}
M & e_{1}^{T}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
t_{1} & t_{2} & \ldots & t_{q-1}
\end{array}\right] 0 .\left[\begin{array}{ccc}
& \vdots & \ldots \\
& & \vdots \\
t_{1}^{r-1} & t_{2}^{r-1} & \ldots \\
t_{q-1}^{r-1} & 0
\end{array}\right]
$$

Then

$$
M^{\prime}=\left[M_{12 \ldots r-1} e_{1}^{T}\right]=\left[\begin{array}{ccccc}
1 & 1 & \ldots & 1 & 1 \\
t_{1} & t_{2} & \ldots & t_{r-1} & 0 \\
& \vdots & \ldots & & \vdots \\
t_{1}^{r-1} & t_{2}^{r-1} & \ldots & t_{r-1}^{r-1} & 0
\end{array}\right]
$$

and
$\operatorname{det} M^{\prime}= \pm \operatorname{det}\left[\begin{array}{llll}t_{1} & t_{2} & \ldots & t_{r-1} \\ & \vdots & \ldots & \vdots \\ t_{1}^{r-1} & t_{2}^{r-1} & \ldots & t_{r-1}^{r-1}\end{array}\right]= \pm t_{1} t_{2} \ldots t_{r-1} \prod_{\substack{i>j \\ i, j=1, \ldots, r-1}}\left(t_{i}-t_{j}\right) \neq 0$.
This shows that every r columns in $\left[M e_{1}^{T}\right]$ are linearly independent; so $\mathcal{N}_{q}(r, q)$ is MDS. To check that $\mathcal{N}_{q+1}(r, q)$ is MDS, it is now only necessary to consider r columns of the generator matrix [$M e_{1}^{T} e_{r}^{T}$], where either e_{r}^{T} is one of them or both e_{1}^{T}, e_{r}^{T} are included. So. let

$$
M^{\prime \prime}=\left[\begin{array}{lllll}
M_{12 \ldots r-1} & e_{r}^{T}
\end{array}\right]=\left[\begin{array}{lllll}
1 & 1 & \ldots & 1 & 0 \\
t_{1} & t_{2} & \ldots & t_{r-1} & 0 \\
& \vdots & \ldots & \vdots & \vdots \\
& & \ldots & & 0 \\
t_{1}^{r-1} & t_{2}^{r-1} & \ldots & t_{r-1}^{r-1} & 1
\end{array}\right]
$$

then

$$
\operatorname{det} M^{\prime \prime}= \pm \prod_{\substack{i>j \\ i, j=1, \ldots, r-1}}\left(t_{i}-t_{j}\right) \neq 0
$$

Similarly, let

$$
M^{\prime \prime \prime}=\left[M_{12 \ldots r-2} e_{1}^{T} e_{r}^{T}\right]=\left[\begin{array}{cccccc}
1 & 1 & \ldots & 1 & 1 & 0 \\
t_{1} & t_{2} & \ldots & t_{r-2} & 0 & 0 \\
& \vdots & \ldots & \vdots & \vdots & \vdots \\
& & \ldots & & 0 & 0 \\
t_{1}^{r-1} & t_{2}^{r-1} & \ldots & t_{r-2}^{r-1} & 0 & 1
\end{array}\right] ;
$$

then

$$
\operatorname{det} M^{\prime \prime \prime}= \pm t_{1} t_{2} \ldots t_{r-2} \prod_{\substack{i>j \\ i, j=1, \ldots, r-2}}\left(t_{i}-t_{j}\right) \neq 0
$$

Hence $\mathcal{N}_{q+1}(r, q)$ is MDS as well.
4. The parity-check matrix of $\mathcal{N}_{q+2}(3, q)$ is

$$
H=\left[\begin{array}{ccccccc}
1 & 1 & \ldots & 1 & 1 & 0 & 0 \\
t_{1} & t_{2} & \ldots & t_{q-1} & 0 & 0 & 1 \\
t_{1}^{2} & t_{2}^{2} & \ldots & t_{q-1}^{2} & 0 & 1 & 0
\end{array}\right]
$$

It is necessary to check the determinant D of any three columns of H. If the columns are i_{1}, i_{2}, i_{3} among the first $q-1$, then $D=\left(t_{i_{3}}-t_{i_{2}}\right)\left(t_{i_{3}}-t_{i_{1}}\right)\left(t_{i_{2}}-t_{i_{1}}\right) \neq 0$. Taking the first two and c_{0} gives $D=t_{1} t_{2}\left(t_{2}-t_{1}\right) \neq 0$. Taking the first two and c_{1} gives $D=t_{2}-t_{1} \neq 0$. Taking the first two and c_{2} gives $D=t_{2}^{2}-t_{1}^{2}$; so, if q is even, $D \neq 0$. However, if q is odd, then $D=0$ when $t_{2}=-t_{1}$. So $\mathcal{N}_{q+2}(3, q)$ is not MDS for q odd.
To complete the result for q even, taking either the last three columns or any two of the last three and the first, $D=1, t_{1}, t_{1}^{2} \neq 0$. Hence $\mathcal{N}_{q+2}(3, q)$ is MDS for q even.
5. By definition, $\mathcal{N}_{5}(3,5)^{\perp}$ is a $[5,3,3]_{5}$ code and $\mathcal{N}_{5}(3,5)$ is a $[5,2,4]_{5}$ code. Then a generator matrix H for $\mathcal{N}_{5}(3,5)^{\perp}$ is

$$
H=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & -2 & -1 & 0 \\
1 & -1 & -1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr}
1 & -2 & 1 & 0 & 0 \\
2 & 2 & 0 & 1 & 0 \\
-2 & 1 & 0 & 0 & 1
\end{array}\right]
$$

by row operations. So, a generator matrix G for $\mathcal{N}_{5}(3,5)$ is

$$
G=\left[\begin{array}{rrrrr}
1 & 0 & -1 & -2 & 2 \\
0 & 1 & 2 & -2 & -1
\end{array}\right]
$$

For H, the three 2×2 determinants are

$$
\left|\begin{array}{rr}
1 & -2 \\
2 & 2
\end{array}\right|=1, \quad\left|\begin{array}{rr}
1 & -2 \\
-2 & 1
\end{array}\right|=2, \quad\left|\begin{array}{rr}
2 & 2 \\
-2 & 1
\end{array}\right|=1 .
$$

For G, they have the same values.
6. Let G be a generator matrix for the $[n, k]_{q} \operatorname{MDS}$ code C. Since the first k columns are linearly independent, row operations give the matrix G^{\prime} in standard form

$$
G^{\prime}=\left[\begin{array}{ll}
I_{k} & A
\end{array}\right],
$$

which is another generator matrix for C with $a_{i, j} \neq 0$ for all i, j. Hence the number of words of C with 0 in the first $k-1$ positions, and so weight $n-(k-1)$, is $q-1$; these words are just multiples of the last row of G^{\prime}. However, there is nothing special about these positions. Hence the number of words of weight $n-(k-1)$ is

$$
(q-1)\binom{n}{k-1}=(q-1)\binom{n}{n-k+1} .
$$

7. Over \mathbf{F}_{2},

$$
\begin{aligned}
X^{3}+1 & =(X+1)\left(X^{2}+X+1\right) \\
X^{4}+1 & =(X+1)^{4} ; \\
X^{5}+1 & =(X+1)\left(X^{4}+X^{3}+X^{2}+X+1\right) \\
X^{6}+1 & =(X+1)^{2}\left(X^{2}+X+1\right)^{2} \\
X^{7}+1 & =(X+1)\left(X^{3}+X+1\right)\left(X^{3}+X^{2}+1\right) \\
X^{8}+1 & =(X+1)^{8} ; \\
X^{9}+1 & =(X+1)\left(X^{2}+X+1\right)\left(X^{6}+X^{3}+1\right)
\end{aligned}
$$

Note that $X^{6}+X^{3}+1$ is irreducible, since if it had a quadratic factor, this would be $X^{2}+X+1$, but

$$
X^{6}+X^{3}+1=\left(X^{2}+X+1\right)\left(X^{4}+X^{3}\right)+1
$$

if it had a cubic factor, $X^{6}+X^{3}+1$ would be the square of $X^{3}+X+1$ or $X^{3}+X^{2}+1$ or it would be $\left(X^{3}+X+1\right)\left(X^{3}+X^{2}+1\right)$, none of which hold.
8. In $R_{7}=\mathbf{F}_{2}[X] /\left(X^{7}+1\right)$,

$$
\begin{aligned}
& \left(1+X^{3}+X^{6}\right)(1+X) \\
& \quad=1+X^{3}+X^{6}+X+X^{4}+X^{7} \\
& \quad=1+X^{3}+X^{6}+X+X^{4}+1 \\
& =X+X^{3}+X^{4}+X^{6} ; \\
& \left(1+X^{4}+X^{5}\right)\left(1+X^{3}+X^{4}\right) \\
& \quad=1+X^{4}+X^{5}+X^{3}+X^{7}+X^{8}+X^{4}+X^{8}+X^{9} \\
& =1+X^{4}+X^{5}+X^{3}+1+X+X^{4}+X+X^{2} \\
& =X^{2}+X^{3}+X^{5} .
\end{aligned}
$$

9. (a) $X^{3}+1=(X+1)\left(X^{2}+X+1\right)$. So generator polynomials, generator matrices and parameters are as follows:

$$
\begin{array}{ccc}
1 & I_{3} & k=3, d=1 \\
1+X & {\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]} & k=2, d=2 \\
1+X+X^{2} & {\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right]} & k=1, d=3 \\
1+X^{3} & {\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]} & k=0, d=0
\end{array}
$$

(b) $X^{4}+1=(X+1)^{4}$. So generator polynomials, generator matrices and parameters are as follows:

$$
\begin{array}{ccc}
1 & I_{4} & k=4, d=1 \\
1+X & {\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]} & k=3, d=2 \\
1+X^{2} & {\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]} & k=2, d=2 \\
1+X+X^{2}+X^{3} & {\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]} & k=1, d=4 \\
1+X^{4} & {\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]} & k=0, d=0
\end{array}
$$

(c) $X^{5}+1=(X+1)\left(X^{4}+X^{3}+X^{2}+X+1\right)$. So generator polynomials, generator matrices and parameters are as follows:

$$
\begin{array}{ccc}
1 & I_{5} & k=5, d=1 \\
1+X \\
1+X+X^{2}+X^{3}+X^{4} & {\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]} & k=4, d=2 \\
1+X^{5} & 1 & 1
\end{array} 1
$$

10. Over \mathbf{F}_{3},

$$
X^{5}-1=(X-1)\left(X^{4}+X^{3}+X^{2}+X+1\right) .
$$

So generator polynomials, generator matrices and parameters are as follows:

$$
\begin{array}{ccc}
1 & I_{5} & k=5, d=1 \\
-1+X \\
1+X+X^{2}+X^{3}+X^{4} & {\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]} & \\
-1+X^{5} & {\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1
\end{array}\right]} & k=4, d=2 \\
& {\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]} & k=0, d=0
\end{array}
$$

