Coding Theory

Sheet 4
Spring 2014

1. What is the dimension of the subspace spanned by
(a) 1011, 1111, 1001, 1101 in $V(4,2)$;
(b) $1210,1021,1011,0212$ in $V(4,3)$?
2. * Show that the number of k-dimensional linear codes of $V(n, q)$ is

$$
\frac{\left(q^{n}-1\right)\left(q^{n-1}-1\right) \cdots\left(q^{n-k+1}-1\right)}{\left(q^{k}-1\right)\left(q^{k-1}-1\right) \cdots(q-1)}
$$

(Hint: Choose a basis.)
3. Find a generator matrix for the perfect $[7,4,3]$ code C derived from the projective plane of order 2 and then find a generator matrix for C in standard form.
4. * Let C be the binary $[6,3]$ code with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Find a generator matrix for C in standard form only using row operations.
5. Let C be the ternary $[7,4]$ code with generator matrix

$$
G=\left[\begin{array}{lllllll}
2 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 2 & 0 \\
2 & 1 & 0 & 2 & 0 & 2 & 0 \\
1 & 1 & 0 & 0 & 0 & 2 & 1
\end{array}\right]
$$

Find a generator matrix for C in standard form only using row operations.
6. * Let C be the $[5,4]$ code over \mathbf{F}_{7} with generator matrix

$$
G=\left[\begin{array}{lllll}
1 & 0 & 3 & 5 & 4 \\
0 & 0 & 2 & 3 & 5 \\
2 & 1 & 0 & 3 & 0 \\
1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Find a generator matrix for C in standard form only using row operations.
7. Let $G=\left[I_{k} A\right]$ be the generator matrix of a code C and let $G^{\prime}=\left[I_{k} A^{\prime}\right]$, where the rows of A^{\prime} are a permutation of the rows of A. Show that G^{\prime} is the generator matrix of a code C^{\prime} equivalent to C.
8. Let C be a binary code of length n. Form a binary code C^{\prime} of length $n+1$ as follows:

$$
x=x_{1} x_{2} \cdots x_{n} \in C \Longrightarrow x^{\prime}=x_{1} x_{2} \cdots x_{n} x_{n+1} \in C^{\prime}
$$

where

$$
x_{n+1}= \begin{cases}1 & \text { if } w(x) \text { is odd } \\ 0 & \text { if } w(x) \text { is even }\end{cases}
$$

Show that, if C is linear, then C^{\prime} is also linear; it is called the extended code.
9. Assign characters to elements of $V(4,2)$ as follows:

$$
\begin{array}{clllllllllll}
\text { space } & \rightarrow & 0000 & \mathrm{D} & \rightarrow & 1000 & \mathrm{M} & \rightarrow & 1001 & \mathrm{~S} & \rightarrow & 1110 \\
\mathrm{~A} & \rightarrow & 0001 & \mathrm{E} & \rightarrow & 0011 & \mathrm{~N} & \rightarrow & 1010 & \mathrm{~T} & \rightarrow & 1011 \\
\mathrm{~B} & \rightarrow & 0010 & \mathrm{~F} & \rightarrow & 0110 & \mathrm{O} & \rightarrow & 0101 & \mathrm{U} & \rightarrow & 1101 \\
\mathrm{C} & \rightarrow & 0100 & \mathrm{R} & \rightarrow & 0111 & \mathrm{G} & \rightarrow & 1100 & \mathrm{Y} & \rightarrow & 1111
\end{array}
$$

Encode these information 4 -tuples in a $[7,4]_{2}$ code using the generator matrix

$$
G=\left[\begin{array}{lllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

Show that the corresponding code C is single-error correcting and decode the following received sequences:

(a)	1110001	1100011	1001100	0100111	0110000	1000011	$0001011 ;$
(b) 1010110	1000011	0000011	0001000	1101111	0000101	1110101	
	0000000	0011110	0100101	1100101	$1011010 ;$		
(c) 0011000	1100001	0000110	0111011	1010011	0001101	0010111	
	0001000	1010110	1110011	1110101	1010000	0000011	1111010
	0010011.						

Do it by inspection; there is no need to write out a standard array.
10. For the code C in Question 4,
(a) write out a standard array;
(b) use the array to correct the messages (i) 011101; (ii) 001011.

As part of the course assessment, hand in at the School Office solutions to the starred questions, namely $2,4,6$, by 2.00 p.m. on Thursday, 20th February. Solutions to all questions will be placed online on Friday, 21st February.

