Coding Theory

Sheet 6

Spring 2014

1. Which Hamming codes are MDS (maximum distance separable) ?
2. Write out a parity-check matrix and a corresponding generator matrix for
(a) $\operatorname{Ham}(2,3)$;
(b) $\operatorname{Ham}(2,4)$;
(c) $\operatorname{Ham}(3,3)$;
(d) $\operatorname{Ham}(3,4)$;
(e) $\operatorname{Ham}(3,5)$;
(f) $\operatorname{Ham}(4,2)$.
3. * Use a parity-check matrix for $\operatorname{Ham}(4,2)$, with the columns in lexicographical order, and syndrome decoding to decode
(a) 0000000000 11111;
(b) 0000011111 11111;
(c) 111111111111111 .
4. * Let $\mathbf{F}_{4}=\left\{0,1, \omega, \bar{\omega} \mid \bar{\omega}=\omega+1=\omega^{2}\right\}$. Use $\operatorname{Ham}(3,4)$, with a parity-check matrix having columns in lexicographical order, to decode
(a) 111111111111111111111 ;
(b) $1111111 \omega \omega \omega \omega \omega \omega \omega \bar{\omega} \bar{\omega} \bar{\omega} \bar{\omega} \bar{\omega} \bar{\omega} \bar{\omega}$.
5. For $x, y \in V(n, 2)$, let

$$
x \cap y=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)
$$

Show that $w(x+y)=w(x)+w(y)-2 w(x \cap y)$.
6. If a binary $[n, k]$ code C has parity-check matrix H, show that the extended code C^{\prime} constructed in Exercise 8 of Sheet 4 has parity check matrix H^{\prime}, where

$$
H^{\prime}=\left[\begin{array}{cc}
H & z^{T} \\
u & 1
\end{array}\right]
$$

with $z=00 \cdots 0$ of length $n-k$ and $u=11 \cdots 1$ of length n.
7. If $C=\operatorname{Ham}(r, 2)$, show that every non-zero word of C^{\perp} has weight 2^{r-1}. (Hint: Let $H=\left[h_{1}, \ldots, h_{r}\right]^{\mathrm{T}}$ be a parity check matrix of C with rows h_{1}, \ldots, h_{r}, and let $h=\sum \lambda_{i} h_{i}$ be an element of C^{\perp}; consider the j-th coordinate of h.)

As part of the course assessment, hand in at the School Office solutions to the starred questions, namely 3 and 4, by 2.00 p.m. on Thursday, 20th March. Solutions to all questions will be placed online on Friday, 21st March.

