Coding Theory

Sheet 7

Spring 2014

1. In a binary linear code, show that either all or precisely half the words have even weight.
2. Let C be a binary $[n, k]$ code. Given $W_{C^{\perp}}(T)$, find an expression for $W_{C}(T)$.
3. Let C be the binary $[6,3]$ code with parity-check matrix

$$
H=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(a) Find a generator matrix G for C.
(b) Find the weight enumerator $W_{C}(T)$ by writing out all the elements of C.
(c) Apply MacWilliams' theorem to $W_{C}(T)$ to obtain the weight enumerator $W_{C^{\perp}}(T)$.
(d) Find the weight enumerator $W_{C^{\perp}}(T)$ by writing out all the elements of C^{\perp}.
(e) What phenomenon do you observe?
4. Let C be the binary $[10,7]$ code with parity-check matrix

$$
H=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

Find the weight enumerator $W_{C}(T)$ by first finding $W_{C^{\perp}}(T)$ and then applying the MacWilliams' theorem. Hence, write down the weight distribution of C.
5. (a) For $C=\operatorname{Ham}(r, 2)$, use the result of Sheet 6 , Exercise 7 to write down $W_{C^{\perp}}(T)$.
(b) Deduce $W_{C}(T)$.
(c) Use the same technique to do the previous parts of this question for $C=\operatorname{Ham}(r, q)$, but here with the homogeneous weight enumerator $\bar{W}_{C}(X, Y)$. (Harder)
6. Let C be the $[6,2]_{7}$ code with generator matrix

$$
G=\left[\begin{array}{llllll}
1 & 0 & 4 & 2 & 3 & 6 \\
0 & 1 & 4 & 6 & 5 & 2
\end{array}\right]
$$

(a) If the rows of G are x and y, find the weights of the eight codewords $y, x+t y$ for $t \in \mathbf{F}_{7}$.
(b) Deduce the weight distribution of C.
(c) Write down $\bar{W}_{C}(X, Y)$.
(d) Calculate $\bar{W}_{C^{\perp}}(X, Y)$.

