Coding Theory

Sheet 8

Spring 2014

1. In a binary linear code of length n containing the codeword $z=11 \cdots 11$, show that the weight distribution $\left(A_{0}, A_{1}, \ldots, A_{n}\right)$ satisfies $A_{i}=A_{n-i}$ for $i=0,1, \ldots, n$.
2. In a linear code of length n over \mathbf{F}_{q} with weight distribution $\left(A_{0}, A_{1}, \ldots, A_{n}\right)$, show that $q-1$ divides A_{i} for $i=1,2, \ldots, n$.
3. Show that, for any q, the Reed-Solomon codes

$$
\mathcal{N}_{q-1}(r, q), \mathcal{N}_{q}(r, q), \mathcal{N}_{q+1}(r, q),
$$

defined over \mathbf{F}_{q}, are all MDS.
4. Show that the Reed-Solomon code $\mathcal{N}_{q+2}(3, q)$ is MDS for q even but not for q odd.
5. ${ }^{\dagger}$ Write out generator matrices for the codes $\mathcal{N}_{5}(3,5)^{\perp}$ and $\mathcal{N}_{5}(3,5)$. Reduce each to a standard form $[I B]$ or $[B I]$ and verify that every minor of B is non-zero.
6. In an $[n, k]_{q}$ MDS code C, show that the number of words of minimum weight $d=n-k+1$ is

$$
(q-1)\binom{n}{d}
$$

(Hint: Given a generator matrix G, put it in standard form and consider the number of words of weight d with 0 in the first $k-1$ positions.)
7. Factorise $X^{n}+1$ into irreducible factors over \mathbf{F}_{2} for $n=3,4,5,6,7,8,9$.
8. In $R_{7}=\mathbf{F}_{2}[X] /\left(X^{7}+1\right)$, calculate $f(X) g(X)$, where
(a) $f(X)=1+X^{3}+X^{6}, g(X)=1+X$;
(b) $f(X)=1+X^{4}+X^{5}, g(X)=1+X^{3}+X^{4}$.
9. * Find a generator polynomial and a generator matrix for all binary cyclic codes of lengths $3,4,5$. In each case, write down d and k.
10. Find a generator polynomial and a generator matrix for all ternary cyclic codes of length 5. In each case, write down d and k.

As part of the course assessment, hand in at the School Office a solution to the daggered question, namely 5 , if you are doing the BSc course, and to the starred question, namely 9 , if you are doing the M-level course, by 2.00 p.m. on Thursday, 3rd April. Solutions to all questions will be placed online on Friday, 4th April.

