Coding Theory

Sheet 1 Solutions

Spring and Summer 2010

1. The code is $C=\left\{a_{1}=11000, a_{2}=01101, a_{3}=10110, a_{4}=00011\right\}$.
(a) $d\left(a_{1}, a_{2}\right)=3, d\left(a_{1}, a_{3}\right)=3, d\left(a_{1}, a_{4}\right)=4$, $d\left(a_{2}, a_{3}\right)=4, d\left(a_{2}, a_{4}\right)=3, d\left(a_{3}, a_{4}\right)=3$.
(b) The minimum distance $d(C)=3$?
(c) Decode the following received words using nearest neighbour decoding:
(i) $01111 \rightarrow a_{2}$;
(ii) $10110 \rightarrow a_{3}$;
(iii) $11011 \rightarrow a_{1}$ or a_{4};
(iv) $10011 \rightarrow a_{4}$.
2. The code $C=\{0000,1111,2222\}$. Hence C corrects $\lfloor(4-1) / 2\rfloor=1$ error. However, some words at distance 2 from a codeword are also corrected.
(a) The received words decoded as 1111 are as follows:

1111;
0111, 2111, 1011, 1211, 1101, 1121, 1110, 1112;
0211, 2011, 0121, 2101, 0112, 2110, 1021, 1201, 1012, 1210, 1102, 1120.
(b) First, note that $P(1$ being received $)=1-t$ and $P(0$ or 2 being received $)=t$; so $P(0$ being received $)=P(2$ being received $)=\frac{1}{2} t$. Hence, the probability of correct decoding of the word 1111 is

$$
\begin{aligned}
P_{c} & =(1-t)^{4}+8\left(\frac{1}{2} t\right)(1-t)^{3}+12\left(\frac{1}{2} t\right)^{2}(1-t)^{2} \\
& =(1-t)^{2}\left\{(1-t)^{2}+4 t(1-t)+3 t^{2}\right\} \\
& =(1-t)^{2}(1+2 t) .
\end{aligned}
$$

Hence the probability of a word being incorrectly decoded is

$$
P_{e}=1-(1-t)^{2}(1+2 t)=t^{2}(3-2 t) .
$$

(c) When $t=0.05$, then $P_{e}=0 \cdot 0025 \times 2 \cdot 9=0 \cdot 00725$.
3. Here $C=\{00000,11111\}$. So the words decoded as 11111 and their probabilities are

11111,		$(1-t)^{5} ;$
01111,	$(5$ like this $)$	$5 t(1-t)^{4} ;$
00111,	(10 like this)	$10 t^{2}(1-t)^{3}$.

Hence

$$
\begin{aligned}
P_{c} & =(1-t)^{5}+5 t(1-t)^{4}+10 t^{2}(1-t)^{3} \\
& =(1-t)^{3}\left\{(1-t)^{2}+5 t(1-t)+10 t^{2}\right\} \\
& =(1-t)^{3}\left(1+3 t+6 t^{2}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
P_{e} & =1-(1-t)^{3}\left(1+3 t+6 t^{2}\right) \\
& =t^{3}\left(10-15 t+6 t^{2}\right)
\end{aligned}
$$

For $t=0 \cdot 05$, the word error probability $P_{e}=0 \cdot 00116$.
4. If $x \neq x^{\prime}$ and $y \neq y^{\prime}$, then

$$
d\left((x \mid y),\left(x^{\prime} \mid y^{\prime}\right)\right)=d\left(x, x^{\prime}\right)+d\left(y, y^{\prime}\right) \geq d_{1}+d_{2}
$$

But,

$$
d\left((x \mid y),\left(x^{\prime} \mid y\right)\right)=d\left(x, x^{\prime}\right) \geq d_{1}
$$

with equality for some $x, x^{\prime} \in C_{1}$; similarly,

$$
d\left((x \mid y),\left(x \mid y^{\prime}\right)\right)=d\left(y, y^{\prime}\right) \geq d_{2}
$$

with equality for some $y, y^{\prime} \in C_{2}$. So $d\left(C_{3}\right)=\min \left\{d_{1}, d_{2}\right\}$.
By definition the length of C_{3} is $m+n$.
To form $(x \mid y)$, any x in C_{1} and any y in C_{2} may be chosen. Hence

$$
\left|C_{3}\right|=\left|C_{1}\right| \times\left|C_{2}\right|=M_{1} M_{2} .
$$

5. Let $s_{i}=\left|\left\{y \in\left(\mathbf{F}_{q}\right)^{n} \mid d(x, y)=i\right\}\right|$. If precisely i given positions in the word x are changed, this can be done in $(q-1)^{i}$ ways, since each symbol can be changed in $q-1$ ways. The i positions can be chosen in $\binom{n}{i}$ ways. Hence

$$
s_{i}=\binom{n}{i}(q-1)^{i} .
$$

However,

$$
|S(x, r)|=\sum_{i=0}^{r} s_{i}
$$

which gives the result.

