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Lecture 1 
 
Nuclear Sizes and Isotope Shifts 
 
Assume a uniform distribution of charge Ze in a spherical nucleus of radius R. Then 
calculate the potential inside nucleus Vinside. 
 
Einside by Gauss’ law:  

(1.1) 
 
 
Find Vinside by integrating Einside and applying boundary conditions at r=R to match Vinside to 
usual 1/r2 potential: 

(1.2) 
 
 
 
The difference between actual potential and Coulomb: 
 

(1.3) 
 
 
 
Using 1st order perturbation theory to calculate energy shift ∆E: 

(1.4) 
 
 
Inserting approximate Hydrogenic ground state wave function: 

(1.5) 
 
 
 
 
 
 
 
 
 

(1.6) 
 
 
 

Note how ∆E is proportional to Z4 and R2 therefore the most noticeable effect is deep 
inside large Z nuclei. To see the isotope shift, look at transitions from l=1 (no isotope 
shift) to l=0 (large isotope shift), preferably look for transitions at low n. 

 
• Types of isotope shifts in increasing shift order: 

o Isotope shift for optical spectra: ∆E = O(meV) 
o Isotope shift for X-ray spectra (bigger effect then optical because electrons 

closer to nucleus): ∆E = O(0.1 eV) 
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o Isotope shift for X-ray spectra for muonic atoms. Effect greatly enhanced 
because mm~ 207 me and a0 ~1/m. ∆E = O(keV) 

• All data consistent with R = R0A1/3 using R0 = 1.25 fm. 
 
Isotope Shift in Optical Spectra: 
 

• Need to use higher n wave functions to calculate this 
• Use Zeff ≈ Z – n 
• expect (Zeff /Z)4 dependence in ∆E 
• Why is ∆E ~ A2/3? 
• ∆E ~ R2(see before) and R = R0A1/3 

 
Energy shift of an optical transition in Hg at λ = 253.7 nm for different A relative to A = 
198. Data was obtained by Doppler free laser spectroscopy. The effect is about 1 in 107 
(Note the even/odd structure).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Isotope Shift in X-Ray Spectra: 
 
Data on the isotope shift of K X-ray lines in Hg. The effect is about 1 in 10

6
. Again the data 

shows the R2= A2/3 dependence and the even/odd effect. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Two lines for odd and even A 
See SEMF pairing term later 
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Isotope Shift in Muonic Atoms: 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
Because a0  ~ 1/m  the effect is ~ 0.4%, i.e. much larger than for an electron. Changing Rnucl 
by increasing A gives changes in isotope shifts of 2 keV. Data on isotope shift of K X-rays 
from muonic atoms [in which a muon with m = 207me takes the place of the atomic 
electron]. The large peak is 2p3/2 to 1s1/2. The small peak is 2p1/2 to 1s1/2. The size comes 
from the 2j+1 statistical weight.  
 
Isotope Shift Summary: 
 
All types of isotopes shifts show ~ A2/3 as expected for a Rnucl

2 dependence. This holds for 
all types of nuclei. When fitting the slopes we find the same R0 in Rnucl

2= A2/3, this tells us 
that the nuclear density is a universal constant. 
 
Lecture 2 
 
The Semi Empirical Mass Formula - SEMF 
 

• Assumptions: 
 

o Nuclear density is constant (see lecture 1). 
o We can model effect of short range attraction due to strong interaction by a 

liquid drop model. 
o Coulomb corrections can be computed using electromagnetism (even at these 

small scales) 
o Nucleons are fermions at T = 0 in separate wells (Fermi gas model leads to 

the asymmetry term) 
o QM holds at these small scales leading to pairing term. 

 
SEMF = Liquid Drop Model + Fermi Gas Model + phenomenology + QM + EM 
 
Liquid Drop Nucleus: 
 
Phenomenological model is used to understand binding energies. Consider a liquid drop 
with no rotation and no influence of gravity. Can assume that intermolecular forces are 
repulsive at short distances, attractive at intermediate distances and negligible at large 
distances also that the nucleus is of constant density. 
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n=number of molecules, T=surface tension, B=binding energy, E=total energy of the drop, 
a,b=free constants 
   E = -an + 4pR2T    B = an - bn2/3 
 
The liquid drop is analogous to the nucleus, which has constant density. From nucleon-
nucleon scattering experiments we know that nuclear force has short range repulsion and is 
attractive at intermediate distances. Assume charge independence of nuclear force, 
neutrons and protons - have same strong interactions this can be checked with experiment 
(Mirror Nuclei). 
 
Coulomb Term: 
 
The nucleus is electrically charged with total charge Ze. Assuming that the charge 
distribution is spherical and computing the reduction in binding energy due to the Coulomb 
interaction. 
 
 
 
 
 
 
 
 

(2.1) 
 
 
 
However this includes self interaction of last proton with itself. To correct this replace Z2 
with Z(Z-1). Using R = R0A1/3. This leads to the equation below. In principle could take d 
from the above calculation but it is more accurate to take it from the overall fit of the 
SEMF to data (since nuclei not totally spherical or homogeneous) 

(2.2) 
 
 
 
Does the assumption of the drop model of constant binding energy for every constituent of 
the drop actually hold for nuclei? Compare binding energies of mirror nuclei (nuclei with 
n p). Eg 7

3Li and 7
4Be. Then if the assumption holds the mass difference should be due 

to n/p mass difference and Coulomb energy alone.  
 
 
 
 
 
 
 

(2.3) 
 
 
Now lets measure mirror nuclei mass, assuming that the model holds and derive ∆Ecoulomb 
from the measurement. This should show a A2/3 dependence and the scaling factor should 
yield the correct R0 of 1.2 fm if the assumptions were right. 
 
 

00

( )
4

Ze

Coulomb
Q rE dQ

rπε
= ∫

3

2

3

( )

3

rQ r Ze
R

ZerdQ dr
R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

2 5 2

6
0 00

3( ) 3 ( )
4 5 4

R

Coulomb
Ze r ZeE dr

r R Rπε πε
= =∫

1/ 3

( 1)( , )Coulomb
Z ZB Z A d

A
−

= −

[ ]
2

0
2

0

3( , 1) ( 1) ( 1)( 2)
5 4

3 2( 1)
5 4

coulomb
eE Z Z Z Z Z Z

R

e Z
R

πε

πε

∆ − = − − − −

= −

1/ 3
0~ / 2 ;Z A R R A=

2 / 3( , 1)CE Z Z A⇒∆ − ∝



 6

nn and pp interaction same (apart from Coulomb). 
 
 
 

Energy levels of two mirror nuclei for a number of excited states corrected for n/p mass 
difference and Coulomb energy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Mirror nuclei showed that strong interaction is the same for nn and pp. What about np? 
Compare energy levels in “triplets” with same A, different number of n and p. e.g.  
 
 
Find the same energy levels for the same spin states and therefore the strong interaction is 
the same for np as nn and pp. Same spin/parity states should have the same energy. Indeed 
when np=nn=pp this is true. Note that there are far more states in 22

11Na. Because it has 
more np pairs then the others, np pairs can be in any spin-space configuration, but pp or nn 
pairs are excluded from the totally symmetric ones by Pauli’s exclusion principle. Also 
22

11Na has the lowest (most bound) state. (The diagram for the elements is shown on the 
next page) 

22 22 22
10 11 12Ne Na Mg
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We have shown by measurement that if we correct for n/p mass difference and Coulomb 
interaction, then energy levels in nuclei are unchanged under n  p exchange and we 
must change nothing else i.e. spin and space wavefunctions must remain the same. Strong 
two-body interaction must be the same for pp, pn and nn if nucleons are in the same 
quantum state. However by Pauli exclusion principle there are bound state of pn but not pp 
or nn, this is because the strong force is spin dependent and the most strongly bound spin-
space configurations (deuteron) are not available to nn or pp. Just like 22

11Na on the 
previous triplet level schema. 
 
 
Volume and Surface Term: 
 
Now we have all we need to trust that we can apply the liquid drop model to a nucleus - 
constant density and same binding energy for all constituents. Since we are building a 
phenomenological model in which the coefficients a and b will be determined by a fit to 
measured nuclear binding energies we must include any further terms we may find with the 
same A dependence together. 

(2.4) 
 
 
 
Asymmetry Term: 
 

Neutrons and protons are spin ½ fermions and hence 
must obey Pauli exclusion principle. If all other factors 
were equal nuclear ground state would have equal 
numbers of n & p. 
    In the diagram n and p states are with same spacing ∆. 
Crosses represent initially occupied states in ground 
state. If 3 protons were turned into neutrons, the extra 
energy required would be 3×3∆. In general if there are  
Z – N excess protons over neutrons the extra energy is 
((Z – N)/2)2∆  relative to Z = N. 
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Assume: 
o p and n form two independent, non-interacting gases occupying their own square 

Fermi wells 
o kT << ∆ so we can neglect kT and assume T=0, this should to be obvious as nuclei 

don’t suddenly change state at room temperature 
o Nucleons move non-relativistically (check later if this makes sense) 

 
Fermi Gas Model 
 
Define the momentum associated with the Fermi level through   
 
    
 
 
Where m is the mass of a nucleon. Ignoring the presence of fermions beyond the Fermi 
level, we can write the volume for states in momentum space as 
 

 24
3FP FV pπ

=  (2.6) 

If V denotes the physical nuclear volume, then the total volume for the states in what can be 
called ‘phase space’ will be given by the product 
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which is proportional to the total number of quantum states of the system. The Heisenberg 
uncertainty principle provides the restriction on the minimum volume that can be 
associated with any physical state of the system, which can be shown to be 
 
 ( )3 32stateV hπ= =  (2.8) 
it follows that the number of fermions that can fill states up to and including the Fermi 
level is 
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where the factor of 2 arises because each state can be occupied by 2 fermions with opposite 
spins. Considering for simplicity a nucleus with N = Z = A/2 and assume that all the states 
up to and including the Fermi level are filled, then 
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In this case, the Fermi momentum is constant and independent of the nucleon number. This 
leads to the equation for the Fermi energy 
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From statistical mechanics, know that 
 

 3
5 FE E〈 〉 =  (2.12) 

Return to equation (2.10) and rearrange for Fermi momentum to find Fermi energy 
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Therefore can now calculate the total energy of protons and neutrons 
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Introduce new variable y = N – Z and substitute into the above equation 
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The first term of equation (2.16) is only proportional to A, it has already been captured by 
the volume term of the liquid drop model. Therefore the Fermi gas model leads to the 
Asymmetry term: 

(2.18) 
 
 
Pairing Term: 
 
From observation, nuclei with even Z and N are more tightly bound than when Z and/or N 
are odd. This is due to 2 protons or 2 neutrons in the same energy level having opposite 
spin, this results in having to have a symmetric wavefunction which is more likely for the 
particle to have a maximum overlap and therefore be more bound. Empirical fit gives 

(2.19) 
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Putting the results for the Semi Empirical Mass Formula together, find 
 

(2.20) 
  
 
Please note that the Coulomb term has been changed from Z(Z – 1) to just Z2 as the formula 
is only applicable for A > 20 and for heavy atoms a difference of 1 nucleon is not going to 
be significant.  
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Lecture 3 (,8 & 9) 
 
Stability of Atoms 
 
• From observation, stable nuclei do not lie on a straight line in N-Z plane. The SEMF 

predicts this: 
• Coulomb term pulls them down (prefers Z<N) and 
• wins with increasing Z over Asymmetry term (prefers Z=N) 

• Rich structure in location of stable elements 
• more stable isotopes of e-e then o-o nuclei (see β-decay) 
• No “life” beyond Z=92 (U) and a big gap from Z=82 to 92 (the region of 

natural radio activity) 
• Funny magic numbers for Z and N (see SEMF limitations) 

 
α-decay:  

• emission of Helium nucleus 
• Z Z – 2  
• N N – 2  
• A A – 4  

4
2 2

A A
Z N Z NX Y α−

− −→ +  
 
β- decay 

• emission of e- and n 
• Z Z + 1 
• N N – 1  
• A=const 

1

e
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Z Z e

n p e

X Y e

υ

υ
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−
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β+ decay 

• emission of e+ and n 
• Z  Z – 1 
• N  N + 1 
• A=const 

1

e
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Z Z e

p n e

X Y e

υ
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+

+
−

→ + +

→ + +
 

 
electron capture (EC) 

• absorption of e- and emission  of ν  
• Z Z – 1  
• N N + 1 
• A=const 

1

e
A A
Z Z e

p e n

X Y

υ

υ

−

−

+ → +

→ +
 

 
γ decay 

• emission of gamma ray 
• Z,N,A all constant 
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α decay (Cottingham 2nd Ed. pg. 74; Williams pg. 83; Krane pg. 251) 
 

• α decay is due to the emission of a 4
2 He  nucleus 

• 4
2 He  is doubly magic and very tightly bound 

• α decay is energetically favourable for almost all nuclei having A ≥ 190 and for 
many A ≥ 150 

• but the world is full of isotopes with A > 151 
• and only 7 natural α-emitters observed with A < 206 because 

o barrier penetration has τ ~ exp(-Q) 
o energies are too low to get τ << age of earth (4×10

9
 years) 

• Note: Shell effects O(1 MeV) make the life times of a-emitters deviate by several 
orders of magnitude from SEMF predictions 

• The kinetic energy release, Q(A, Z) in an α decay of a nucleus (A, Z) is given in 
terms of binding energies of the parent and daughter nuclei by: 

 
 ( , ) ( 4, 2) ( , ) 28.3Q A Z B A Z B A Z MeV= − − − +  (3.1) 
 
where 28.3 MeV is the experimental binding energy of a 4

2 He nucleus. Negative values of 
Q imply absolute stability against α decay. 
 

 
 
Consider decay of Thorium: 

• 232
90Th emits α with Q ≈ 4 MeV 

• RTh ≈ 1.2×232
1/3 fm = 7.36 fm 

• α has V(RTh) = 24 MeV  
• Classically the α particle cannot penetrate the barrier 

Conclusion: 
• α must tunnel out of the nucleus 
• half lives should have exp(-Q) dependence (true over 24 orders) 
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Figure above shows the relative potential energy of α particle, daughter nucleus system as a 
function of their separation. Inside the nuclear surface at r = a, the potential is represented 
as a square well; beyond the surface, only the Coulomb repulsion operates. The α particle 
must tunnel through the Coulomb barrier from a to b. The horizontal line, Q is the 
disintegration energy. 
 
In the theory developed in 1928 simultaneously by Gamow and Gurney an α particle is 
assumed to move in a spherical region determined by the daughter nucleus. The central 
feature of this one-body model is that the α particle is preformed inside the parent nucleus. 
Actually there is not much reason to believe that α particles exist separately within heavy 
nuclei; nonetheless the theory works quite well, especially for even-even nuclei. This 
success of the theory does not prove that α particles are preformed, merely that they behave 
as if they were. 
 
Consider a rectangular potential barrier that a particle of energy Q (< V0) incident from x = 
- ∞ experiences. 
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Setting the boundary condition on the equations that ψ and dψ/dx are continuous at x = 0 
and x = t, find the transmission coefficient, T = |F|2/|A|2 as: 
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From the figure on page 12, the Coulomb barrier has height B at r = a, such that: 
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where the α particle has charge ze and the daughter nucleus, which provides the Coulomb 
repulsion, has charge Z’e = (Z – z)e. The height of the barrier thus varies from (B – Q) 
above the particle energy at r = a to zero at r = b. A representative average height is then 
½(B – Q). Similarly the average step size is ½(b – a). The factor of k2 in Eq. (3.2) then 
becomes ( )( )22 / / 2m B Q− . For a typical heavy nucleus (Z = 90, a = 7.5 fm), the barrier 
height, B ~ 34 MeV, so k2 is approximately 1.6 fm-1.  
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For typical values of Q ~ 6 MeV, b ~ 42 fm, ∴k2t ~ k2½(b – a) >> 1. Eq. (3.3) can then be 
approximated as 
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The actual Coulomb potential varies with r and therefore k2 changes. Dividing the potential 
into small strips and multiplying together the exponents leads to: 
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where G is the Gamow factor which can be evaluated as: 
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b
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b
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mQ b
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θ θ

θ θ θ

−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎡ ⎤= − −⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

∫

 (3.10) 

for the case where a << b: 
 

 
1/ 2 2

2
0

2 '
4 2

m zZ eG
Q

π
πε

⎛ ⎞
≈ ⎜ ⎟
⎝ ⎠

 (3.11) 

 
Thus the result of the quantum mechanical calculation for the lifetime of α decay: 
 

 1 1
fP

τ
λ

= =  (3.12) 

 
where λ is the disintegration constant and f is the frequency at which the α particle strikes 
the barrier with probability of transmission of P. The time between collisions is 2a/v (v is 
the velocity ~ ( )1/ 22 /Q m ). 

 

2

1/ 2 2

2
0

2

2 2 'exp
4

Ga e
v

a m zZ e
v Q

τ

π
πε

≈

⎧ ⎫⎛ ⎞⎪ ⎪≈ ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 (3.13) 

Experimental tests: 
 

• Predict exponential decay rate proportional to (Q)
1/2 

• Agrees approximately with data for even-even nuclei. 
• The approximation that the nucleus is spherical with mean radius of 1.25A1/3 has a 

substantial influence on the half-lives. The nuclei with A ≥ 230 have strongly 
deformed shapes and the calculated half-lives are extremely sensitive to small 
changes in assumed radius. 

• Assumed the existence of one α particle in nucleus and have not taken into account 
the probability of formation. 

• Assumed “semi-classical” estimate for escape frequency, f. 
• Also angular momentum effects complicate the picture:  

o Additional angular momentum barrier (as in atomic physics) 
 

 
2

2 2

( 1)( )
2l

l l cE
mc r
+

=  (3.14) 

o El is small compared to ECoulomb  
o E.g. l = 1, R = 15 fm  El ~ 0.05 MeV compared to  
o Z = 90  ECoulomb~17 MeV. 
o The emission of α particles is suppressed for high l states. 
o but still generates noticeable extra exponential suppression.  

• Spin (∆J) and parity (∆P) change from parent to daughter 
∆J=Lα    ∆P=(-1)

L 
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β decay 
 
The continuous energy distribution of β decay electrons was confusing experimental result 
in the 1920’s. Alpha particles are emitted with sharp, well defined energies, equal to the 
difference in mass energy between the initial and final states (less recoil corrections). Beta 
particles have a continuous distribution of energies, from zero up to an upper limit which is 
equal to the energy difference between the initial and final states. If β were like α decay, a 
two body process, we would expect all β particles to have a unique energy. The neutrino 
proposed by Fermi carries away the ‘missing’ energy and because it is highly penetrating 
radiation, it is not stopped within the calorimeter. 
 
In all there are 3 processes that are refered to as β decay: 
 

 

1

1

1

:                      

:                       

:                      

A A
e Z Z e

A A
e Z Z e

A A
e Z Z e

n p e X Y e

p n e X Y e

EC p e n X Y

β υ υ

β υ υ

υ υ

− − −
+

+ + +
−

−
−

→ + + → + +

→ + + → + +

+ → + → +
 

A nucleus with overabundance of neutrons or protons can become more stable isotope by 
emitting and electron/positron or absorbing one. 

 
  
Beta decay energetics: 
Consider: 
 en p e υ−→ + +  
Define the Q value as follows: 
 

 

2

2

2

( )

939.573 938.280 0.511

0.782

n p eQ m m m m c

Mev Mev Mev m c

MeV m c

υ

υ

υ

= − − −

= − − −

= −

 (3.15) 

For decay of neutron at rest: 
 
 p eQ T T Tυ= + +  (3.16) 
 
The proton recoil energy can be considered as negligible, which gives the maximum energy 
electrons, Q ~ (Te)max = 0.782 ± 0.013 MeV (according to measurements) in agreement with 
Eq. (3.15). 
 
Valley of stability 
 
Can use SEMF to find a stable value of Z for a given A. The mass of a neutral atom is given 
by Eq. (3.17) with nucleus of Z protons and electrons and (A – Z) neutrons. 
 
 2( , ) ( ) ( ) ( , ) /p e nM Z A Z m m A Z m B Z A c= + + − −  (3.17) 

 W-  

 e-  

(    )  νe  

 d  

 u  
 u  
 d  

 u  
 d  

n 

p 

en p e υ−→ + +
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From SEMF have: 
 

 
2 2

2 / 3
1/ 3 1/ 2

( 2 )( , ) A Z ZB Z A aA bA s d
A A A

δ−
= − − − −  (3.18) 

 

( )
( )
( )

2 2 2 / 3 1/ 2

2

1 1/ 3 2

2 2

( , )

                       4 ( )

                       4

      ( , )

n

n p e

M Z A c Am c aA bA sA A

s m m m c Z

sA dA Z

M Z A c Z Z

δ

α β γ

−

− −

⇒ = − + + +

− + − −

+ +

≡ − +

 (3.19) 

Minimum found at: 

 

( )
( )

min

2

2 / 3

0

2

4 ( )
           

2 4

A

n p e

M
Z

Z

s m m m c A

s dA

β
γ

∂⎛ ⎞ =⎜ ⎟∂⎝ ⎠

⇒ =

+ − −
=

+

 (3.20) 

 
The plots of the parabolae of Eq. (3.19) are shown below for odd and even A:  

 
• Due to the pairing term, for even A there are 2 parabolae 
• β decay is a weak interaction mediated by the W boson 
• Angular momentum consideration influence whether β decay occurs readily or not 

 
Fermi theory of β decay (Cottingham 2nd Ed. pg 166; Krane pg 277; Williams pg 294) 
 
Assumptions: 
 

• Not considering parity non-conservation 
• Nucleons in closed shells do not take part in the decay by Pauli’s exclusion 

principle 
• Ignoring spin states of particles 
• Neglecting recoil of nucleus 
• Lifetime of W boson is of short range and therefore at the moment of interaction all 

particles can be considered at the same point in space 
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• Described by Fermi’s Golden Rule which is from non-relativistic perturbation 
theory 

 
The transition rate, λ from initial state of the system Ψi to final state, Ψf is given by Fermi’s 
golden rule: 
 

 
( )2

1

2
fi fH E

λ
τ
π ρ

Γ
= =

=
 (3.21) 

 
where Hfi is the matrix element linking the initial and final quasi-stationary states and ρ(Ef) 
is the density of specified Ψf  states. For β+ decay have: 
 

 
( ),
( ) ( ) ( )

i p p

f n n e e υ υ

ψ

ψ ψ ψ

Ψ =

Ψ =

r

r r r
 (3.22) 

 

 
( )3 3 3 3

fi f i

n p e

H dv H

dv d d d d υ

∗= Ψ Ψ

=

∫
r r r r

 (3.23) 

 
Eq. (3.23) could be of the form: 
 
 ( )3 ( ) ( ) ( ) ( )fi W n e pH G d υψ ψ ψ ψ∗= ∫ r r r r r  (3.24) 
 
where Gw is the strength of the weak interaction. The constant Gw is given in terms of more 
fundamental constants of particle physics by: 
 
 W F udG G V=  (3.25) 
 
where GF is the Fermi constant and Vud is an element of the ‘Kobayashi-Maskawa matrix’ 
their values are found to be experimentally as: 
 

 
11 3 21.16639(2) 10 ( )  

0.9744(10)
F

ud

G c MeV
V

− −= ×
=

 

 
Taking neutrino and positron to have plane wave states, normalised in a volume V. 
 

 . .
1/ 2 1/ 2

1 1( ) ,  ( ) e ei i
ee e

V V
υ υ

υψ ψ= =k r k rr r  (3.26) 

 
Therefore matrix element Hfi of Eq. (3.24) becomes: 
 

 ( ).3 ( ) ( ) eiW W
fi F n p

G GH M d e
V V

υψ ψ − +∗= = ∫ k k rr r r  (3.27) 

 
Energies in β decay are generally of order ~ MeV and the corresponding wavevectors are ~ 
MeV/ c ~ 10-2 fm-1. To a good approximation can expand the integral (3.27) such that: 
 

 ( )3 3( ) ( ) . ( ) ( ) ...W W
fi n p e n p

G iGH d d
V V υψ ψ ψ ψ∗ ∗= − + +∫ ∫r r r k k r r r r  (3.28) 
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The density of states factor determines (to lowest order) the shape of the beta energy 
spectrum. To find the density of states, we need to know the number of final states 
accessible to the decay products. Consider the locus of points representing momenta in the 
range dp at p is a spherical shell of radius p and thickness dp thus having volume 4πp2dp. If 
the electron is confined to a box of volume V, then the number of final electron states dne, 
corresponding to momenta in the range [p, p + dp] is: 
 

 
2

3

4
e

p dpVdn
h

π
=  (3.29) 

 
And similarly for the neutrino states: 
 

 
2

3

4 q dqVdn
hυ

π
=  (3.30) 

 
where q is the neutrino momentum. The available spatial and momentum states are counted 
in 6-dimensioal (x, y, z, px, py, pz) phase space; the unit volume in phase space is h3. The 
final number of states which have simultaneously an electron and a neutrino with proper 
momenta is: 
 

 ( )2 2 2 2
2

6

4
e e

V p q dpdq
d n dn dn

h
π

= =  (3.31) 

 
To find the differential decay rate, dλ/dp need to find d2n/dpdEf. The total energy of the 
final state, Ef, assuming the neutron and proton do not recoil in the decay is given by the 
sum of the neutrino and electron energies: Ef = Ee + Eυ = Ee + qc. Now p is fixed as want 
to find the dλ/dp for a given p, therefore: 
 
 fdE dE cdq= =  (3.32) 
 
Eq. (3.31) then becomes: 
 

 ( )2 2 2 22

6

4

f

V p qd n
dpdE h c

π
=  (3.33) 

 
Differentiating Eq. (3.21) wrt p 
 

 ( ) 22 22 2f
fi fi

f

Ed d nH H
dp dp dpdE

ρλ π π
= =  (3.34) 

 
Now substitute Eq. (3.33) and (3.27): 
 

 ( )22 2 2 2

6

42 W
F

V p qd G M
dp V h c

πλ π ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.35) 

 
4

22 2 2
7 3

64   ( )W F f eG M p E E
h c
π

= −  (3.36) 
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Using the relativistic energy-mass relation can rewrite Eq. (3.36) in the usual form. 
 

 
( )2 2 2 4

2

2

1
e e

e

e

p E m c
c

dp E
dE pc

= −

=
 (3.37) 

 

 
( )

4
22 2 2

7 3

4
22

07 6

64 ( )

64

W F f e
e e

W F e

d dp G M p E E
dE dE h c

G M S E
h c

λ π

π

= −

=

 (3.38) 

 ( ) ( )1/ 22 2 4 2
0 ( )e e e e f eS E E m c E E E= − −  (3.39) 

 
As expected the arbitrary normalisation volume, V cancels out from the final result.  The 
formula can be improved by allowing for the interaction between the electron and the 
Coulomb field of the daughter nucleus of charge Zd. Since only the electron (positron) 
wavefunction at the nucleus is important, S0(Ee) is modified to 
 

 
( ) ( ) ( )

( ) ( )
( )

0

2

,

,0
,

0,0

c e d e e

e d
d e

e

S E F Z E S E

Z
F Z E

ψ
ψ

=

=
 (3.40) 

 
where ψe(Zd, r) is the electron wavefunction at energy Ee in the Coulomb potential 
±Zde2/4πε0r. 
 
 
Selection Rules in β decay 
 
From Fermi theory, cf Eq.(3.27). 
 
Superallowed transitions: 
 
 3~ 1F p nM dψ ψ∗ ≈∫ r  (3.41) 
 
Allowed transitions: 

• Angular momentum of e,υ pair relative to nucleus, l = 0. 
 
 ( ). ~ 1eie υ− +k k r  (3.42) 
 
There are two types of allowed/superallowed transitions depending on the relative spin 
states of the emitted e and υ. If both have spin ½ then the total spin of eυ system is Seυ = 0 
or 1. 
 
Fermi transitions Sev = 0: 
 

 0

;  0      
e

e

S

x y

n p e

J J J
υ

υ−

=

↑→ ↑ + ↑ + ↓

= ∆ =
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Gamow-Teller transitions Seυ = 1 
 

 

1

1

;  1

1;  0  (0 0 forbidden)          

e

e

e

S

x y

e

S

x y

n p e

J J J

n p e

J J J

υ

υ

υ

υ

−

=±

−

=±

↑→ ↑ + ↑ + ↑

= ∆ = ±

↑→ ↑ + ↑ + ↑

= ± ∆ = →

 

 
• Total number of spin states of eυ is 4 (3 G-T and 1 Fermi) 
• No change in angular momentum of the eυ pair relative to the nucleus, l = 0 → 

parity is unchanged. 
 
Forbidden transitions: 
 

• Angular momentum of eυ pair relative to the nucleus l > 0 
 

 

[ ]2( ).            1 ( ). ( ). ...
                              0          1                     2           ...

( 1)               even       odd                even
            

ei
e e

l

e i
l
P

υ
υ υ

− + = − + + + −

= −

k k r k k r k k r

st nd            Allowed; 1  forbidden;   2  forbidden

 

 
Transition probabilities for larger l are small → forbidden transitions. Forbidden transitions 
are only competitive if an allowed transition cannot occur (selection rules). The lowest 
permitted order of ‘forbiddeness’ will dominate. 
 
 
Electron capture 
 
The initial state is: 
 
 ( ) ( )i p p e eψ ψΨ = r r  (3.43) 
 
To a good approximation the electron is most likely to be in the K-shell, since the K-shell 
wavefunction has the greatest overlap with the nucleus. This wavefunction can be 
considered as hydrogen-like: 
 

 0

3 / 2

0

1( )
Zr
a

e e
Z e
a

ψ
π

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
r  (3.44) 

 
where a0 is the Bohr radius (= mee2/( 2

04πε )). Final state is: 
 
 ( ) ( )f n n υ υψ ψΨ = r r  (3.45) 
 
The neutrino wavefunction is the same as in Eq. (3.26) that takes form of a plane wave 
state. The appropriate equation now for the matrix element is: 
 
 3 ( ) ( ) ( ) ( )fi W n n p p e eH G d υ υψ ψ ψ ψ∗ ∗= ∫ r r r r r  (3.46) 
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which for an allowed transition reduces to: 
 

 

3

3/ 2

0

(0) ( ) ( )W
fi e n n p p

W
F

GH d
V

G Z M
aV

ψ ψ ψ

π

∗=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∫ r r r

 (3.47) 

 
where have treated the electron and neutrino wavefunctions as constant over the nuclear 
volume. Once again neglecting nuclear recoil, the emitted neutrino has energy Eυ: 
 
 2

f eE E m cυ ≈ +  (3.48) 
 
To find the density of neutrino states, ρυ, use result from Eq. (3.30) and the following 
property from statistical mechanics: 
 

 
( )

dn dndq dE
dq dE

dn dqE
dq dE

υ υ
υ

υ

υ
υ υ

υ

ρ

=

∴ =
 (3.49) 

 
( )

2

3

2
3 3

4 1

4

V EE
h c c

V E
h c

υ
υ υ

υ

πρ

π

⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

 (3.50) 

 
The decay rate, λEC for electron capture using Fermi’s golden rule in Eq. (3.21) and 
inserting Eq. (3.47) and (3.50) becomes: 
 

 

( )2

23/ 2
2 2

3 3
0

322 2 2

2 4 3 2
0

2

2 4

4

EC fi

W
F

W F e

H E

G Z VM E
a h cV

G M E Zm e
c

υ υ

υ

υ

πλ ρ

π π
π

π πε

=

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 (3.51) 

 
Since have neglected electron spin, only one K electron is included in the calculation. At 
high Z, the Z3 factor and increasing Coulomb barrier for positron emission will make 
electron capture the dominant process. 
   
 
Inverse β decay (Krane pg. 296) 
 

 
 decay:           

.  decay:    
e

e

n pe

inv p ne

β υ

β υ

− −

− +

→

→
 

 
Define the reaction cross section for the inverse β decay as: 
 

 probability/target atom for reaction to occur
incident flux of e

σ
υ

=  (3.52) 
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The reaction probability can be again calculated from Fermi’s golden rule. The matrix 
element, Hfi is again as in Eq. (3.27), Gw|MF|/V. The neutron recoil is neglected and the 
density of final states comes only from the positron. Eq. (3.52) becomes: 
 

 

22
2

2 3

42

/

W e e
F

e

Vp dpG M
V h dE

c V

ππ

σ

+ +

+

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠=  (3.53) 

 
From Eq. (3.37): dp/dE = E/c2p using which gives the result: 
 

 23 2
4 316 e e

W F

p E
G M

h c
σ π + +
=  (3.54) 

 
γ decay 
 

• Very similar to atomic physics transitions 
• When do they occur? 

o Nuclei have excited states similar to atoms (need a proper shell model to 
understand). 

o when there is not enough energy to emit a strongly interacting particle 
(nucleon), often after other nuclear decays 

o E γ
 atomic

<  100 keV ; E γ
 nuclear

 < O(1 MeV) 

o Heavy nuclear rotational states can have  E γ
 nuclear, rot

< O(10 keV) 
o EM interaction less strong then the strong (nuclear) interaction 
o Low energy excited states E < 6 MeV above ground state can’t usually 

decay by nuclear interaction  γ -decays 
• γ decays important in cascade decays following α and β decays. 
• Practical consequences 

o Fission. Significant energy released in γ decays  
o Radiotherapy: γ from Co60 decays 
o Medical imaging eg Tc 
o Studying γ emission and its competing process, internal conversion, allows 

to deduce the spins and parities of the excited states of the nucleus  
 
Mössbauer effect (Eisberg 2nd ed. pg 584; Krane pg 328/361) 
 
A source nucleus in an excited state makes a transition to its ground state, emitting a γ ray. 
The γ ray could be subsequently absorbed by another nucleus (previously in ground state) 
which is excited. Small changes to the source energy, absorber energy or γ ray energy will 
destroy the resonance. The problem has to do with the recoil of the nuclei upon emission 
and absorption of the γ ray.  
 

 
 
The total linear momentum of the decay is zero before emission. The nuclear recoil 
momentum is pn after the emission and equal to momentum carried away by the γ ray, pγ.  
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If the nuclear mass, M is high and the recoil velocity is low, may use the classical 
expression for kinetic energy of the nuclear recoil, K as: 
 

 
2

2
npK

M
=  (3.55) 

 
For the γ ray, pγ = Eγ /c, therefore from conservation of angular momentum have 
 

 
2

1
2

E
K

M c
γ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (3.56) 

 
For γ emission have: 
 

 2 2

2 22 2

E E K

E EE E E
Mc Mc

γ

γ
γ

∆ = +

∆
= ∆ − ≈ ∆ −

 (3.57) 

 
For absorption: 

 
2

22
EE E

Mcγ
∆

≈ ∆ +  (3.58) 

 

 
 

• Eγ varies due to natural width of energy levels. 
• If initial state is in thermal motion, need to consider Doppler shift. 
• Absorption of γ rays can only occur for energies in the overlap region shown above 
• If the atoms are put into a lattice, the strong bonding allows the recoil of a nucleus 

from emission/absorption to be distributed between many atoms. Effectively this 
corresponds to greater value of mass in Eq. (3.56). If mass is very large, the 
energies of emission/absorption will be approximately the same. 

• The above will be true in a lattice provided the recoil energy is smaller than the 
phonon energy – such that there is insufficient energy to excite the lattice to a 
higher vibrational energy state. 
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Lecture 4 & 5 
 
Shortcomings of the SEMF: 

o spin & parity of nuclei do not fit into a drop model 
o magnetic moments of nuclei are incompatible with drops  
o actual value of nuclear density is unpredicted  
o values of the SEMF coefficients except Coulomb and Asymmetry are completely 

empirical 
o Magic numbers unaccounted for 

 
Magic numbers 
 
Nuclei with values of 
 

 
 
are very stable and show significant departures from the average nucleus behaviour. They 
represent the effects of the filled major shells analogous to the atomic shell model. The 
binding energy per nucleon is large for magic numbers.  
 

 
 

• Doubly magic nuclei extremely stable (where Z and N are magic) 
• Energies in alpha and beta decay high when daughter nucleus is magic 
• Nuclear radius is not changed much with Z, N at magic numbers 
• 1st excited states for magic numbers higher than neighbours 
• Spontaneous neutron emitters have magic number +1 
• Terrestrial nuclear abundances for Z or N magic are greater than those for non-

magic elements. 
• Elements with Z/N magic have many more isotopes than with Z/N non-magic 
• Odd A nuclei have small quadrupole moment when magic, etc, etc 

 
 
Shell model (Williams pg. 131; Cottingham 2nd ed. pg. 56; Krane pg. 116) 
 
The atomic theory based on the shell model has provided remarkable clarification of the 
complicated details of the atomic structure. Nuclear physicists therefore attempted to use a 
similar theory to solve the problem of nuclear structure. A major difference is that in the 
atomic case the potential is supplied by the Coulomb field of the nucleus; the orbits are 
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established by external agent. In nucleus there is no such external agent; the nucleons move 
in a potential that they themselves create. This is overcome by the fundamental assumption 
of the shell model: the motion of a single nucleon is governed by a potential caused by all 
of the other nucleons. Treating each nucleon individually allows for the nucleons to be 
occupying the energy levels of a series of sub-shells. 
    Another difficulty is that electrons move in orbits free of collisions with other electrons. 
Nucleons on the other hand have relatively large diameter compared to the size of the 
nucleus. However, the existence of spatial orbits depends on the Pauli principle. For 
example in a heavy nucleus a collision between nucleons in a state near the bottom of the 
potential well will result in a transfer of energy to one another. But if all the energy levels 
are filled up the level of the valence nucleon, there is no way for one of the nucleons to 
gain energy except to move to the valence level as other low lying levels are filled. The 
transition thus requires more energy than the nucleons are likely to transfer in a collision. 
Thus collisions cannot occur and nucleons orbit as if they were transparent to one another. 
 
Assumptions: 

o Each nucleon moves in an averaged potential 
 neutrons see average of all nucleon-nucleon nuclear interactions 
 protons see same as neutrons plus proton-proton electric repulsion 
 the two potentials for n and p are wells of some form (nucleons are bound) 

o Each nucleon moves in single particle orbit corresponding to its state in the 
potential 

  We are making a single particle shell model 
 Q: why does this make sense if nucleus full of nucleons and typical mean free 

paths of nuclear scattering projectiles = O(2fm) 
 A: Because nucleons are fermions and stack up. They can not loose energy in 

collisions since there is no state to drop into after collision 
o Use Schrödinger Equation to compute energies (i.e. non-relativistic), justified by 

simple infinite square well energy estimates 
o Aim to get the correct magic numbers (shell closures) 

 
The Saxon-Woods potential can be used to approximate the potential as experienced by an 
individual nucleon. 
 

 0
( ) /( )

1 r R a

VV r
e −

−
=

+
 (4.1) 

 
The parameters R and a give, respectively, the mean radius and skin thickness. Their values 
are chosen with accordance to measurements such that: R = 1.25A1/3 fm and a = 0.524 fm. 
V0 is adjusted to give the proper separation energies and is of order 50 MeV. This potential 
is then substituted into the Schroedinger Equation and the energy levels found. However 
the central potential alone cannot reproduce the magic numbers, need to account for the 
spin-orbit interactions. 
 
 
Spin-orbit potential 
 
In atomic physics, the spin-orbit interaction causes the observed fine structure of spectral 
lines, comes about because of the electromagnetic interaction of the electron’s magnetic 
moment with the magnetic field generated by its motion about the nucleus. This concept is 
adopted in nuclear physics. From scattering experiments there is strong evidence of 
nucleon-nucleon spin-orbit force. The potential is altered such that: 
 ( ) ( ) ( )V r V r W r→ + L.S  (4.2) 
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where L and S are orbital and spin angular momentum operators and W(r) is a function of 
radial position. 
 

 
( )

2
1where:                ( )

and                        

LS

LS LS nucleon

dVW r V
m c r dr

V V E
π

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
=

 (4.3) 

 
V(r) is the Saxon-Woods potential of Eq. (4.1). As with atomic physics, the total angular 
momentum operator is defined below: 
 
 = +J L S  (4.4) 
 
The eigenvalue of L.S for a stationary state with good quantum numbers l, j and s (=1/2) is 
 

 ( ) ( ) ( )
2

1 1 1
2

j j l l s s+ − + − +⎡ ⎤⎣ ⎦  (4.5) 

 
Therefore, the potential for j = l + ½ is: 
 

 21( ) ( )
2

V r l W r+  (4.6) 

 
and for j = l  - ½ : 
 

 21( ) ( 1) ( )
2

V r l l W r− +  (4.7) 

 
Since W(r) is negative (to obtain agreement with observation), the j = l + ½ level will be 
below that with j = l – ½. The resultant energy structure is shown below. 
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Summary of successful predictions of the Shell model: 
 

• Origin of magic numbers 
• Spins and parities of ground states 
• Trend in magnetic moments 
• Some excited states near closed shells, small excitations in odd A nuclei 
• In general not good far from closed shells and non-spherically symmetric potentials 
• Collective properties of nuclei can be incorporated into the nuclear shell model by 

replacing the spherically symmetric potential by a deformed one. This improves 
description for  
• Even A excited states 
• Electric quadrupole and magnetic dipole moments 

 
Shortcomings of the Shell model: 
 

• Cannot predict spin or parity for odd-odd nuclei – do not have a very good model 
for the LS interactions 

• A consequence of the above is that the shell model predictions for nuclear magnetic 
moments are very imprecise 

• Cannot predict accurate energy levels because: 
o we only use one “well” to suit all nuclei 
o we ignore the fact that n and p should have separate wells of different shape 

• As a consequence of the above we cannot reliably predict much (configuration, 
excitation energy) about excited states other then an educated guess of the 
configuration of the lowest excitation 

 
 
Lecture 6 & 7 
 
Partial decay widths 
 
Particles can often decay with more than one decay mode, each with its own transition rate, 
λ as given by Fermi’s golden rule (cf lecture 3): 
 

 ( )22
fi fH Eπλ ρ=  (5.1) 

 
The total decay rate is given by:    i

i

λ λ= ∑  

This determines the average lifetime:   1τ
λ

=  

The total width of particle state is:    i
i

λ λΓ = = ∑  

Define the partial widths:     i i i
i

λΓ = ⇒ Γ = Γ∑  

The proportion of decays to a particular  

decay mode is called the branching fraction:            1i
i i

i

B BΓ
= =
Γ ∑  

 
Cross section 
 
The strength of a particular reaction between two particles is specified by the interaction 
cross-section. A cross-section is an effective target area presented to the incoming particle 
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for it to cause the reaction. Often use units of ‘barns’ defined as 1 barn (b) = 10-28 m2. The 
cross-section, σ is defined as the reaction rate per target particle, λ per incident flux, Φ that 
is the number of beam particles passing through unit area per second. 
 
 λ σ= Φ  (5.2) 
 
Consider a beam of N particles/sec of area A incident upon a target width dx and n 
nuclei/unit volume.  
 

• Number of target particles, NT in area A,  = nAdx 
• Effective area for absorption     = σnAdx 
• Rate at which particles are removed from the beam = - dN = (N/A)σnAdx 

 

 dN ndx
N

σ∴− =  (5.3) 

 
oN  scattered particles/sec

Nndx
σ =  (5.4) 

 
For a thick target (σnL>>1) the Eq. (5.3) can be integrated such that: 
 

 0

f

i

N L

N

nL
f i

dN ndx
N

N N e σ

σ

−

− =

⇒ =

∫ ∫  (5.5) 

The mean free path between interaction is then 1/nσ. For a thin target (σnL<<1): 
 
 ( )1f iN N nLσ= −  (5.6) 
 
The total reaction rate per unit surface area in the thin target will be = σnLΦ. To rewrite the 
cross-section in terms of incident flux use the relation, Φ = N/A. Eq. (5.4) can then be 
rewritten as: 
 

 
( )( )

oN  scattered particles/sec
/( )TA N Adx dx

σ =
Φ

 (5.7) 

 
oN  scattered particles/sec

Flux Number target particles
σ

λ σ

=
×

⇒ = Φ

 (5.8) 

 
There are usually several reaction channels that incident particle can sustain: 
 

1) elastic scattering by the target 
2) inelastic scattering or 
3) absorption by the target 

 
Given that a reaction occurs, each reaction channel, ‘i’ has definite probability pi, the 
partial cross-section σi is defined as σi=piσtot. The incident particle in general can scatter at 
any angle with respect to the incident direction. The elastic differential cross-section, σe for 
a particle scattering into solid angle dΩ is defined as: 
 

 e
e

d d
d
σ σΩ =
Ω∫  (5.9) 
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Breit-Wigner Line Shape (Cottingham 2nd ed. pg. 103/236) 
 

 
Figure to the left shows the total cross-
section for neutron to interact with 16

8O as a 
function of kinetic energy (in the centre of 
mass frame). The principal features are 
narrow resonance peaks, superposed on a 
slowly varying background. These peaks are 
due to the formation of excited states of 17O 
from the neutron and 16O at resonance 
energies. When the energy of the incident 
neutron is such that the total energy of the 
system matches to within width Γ one of the 
excited states of 17O, the neutron is readily 
accepted. The shape of peaks at resonance is 

described by the Breit-Wigner formula whose derivation is outlined below. 
 
The wavefunction of the unstable state is denoted by 0  and it decays to states 
1 , 2 ,... m where m > 0. The states can be chosen to be orthonormal. The state of the 

system, which is 0  at t = 0 can be expressed as a superposition of states m . 
 

 /

0

( ) ( ) miE t
m

m

t a t e m
∞

−

=

Ψ = ∑  (5.10) 

 
where 
 m mmE H m H m= =  (5.11) 

 
Assume: 
• The Hamiltonian, H is known that perturbs the resonance and lets it decay 
• Dealing with a spinless resonance 

 
Now insert Eq. (5.10) into the Schrödinger equation: 
 

 di H
dt
Ψ

= Ψ  (5.12) 

which gives, 

 ( ) / /m miE t iE t
m m m m

m m

i a E a e m a He m− −+ =∑ ∑  (5.13) 

 
Multiplying by n , the orthogonality picks out the time dependence of an.  
 

 

( )

( )

( )

/ /

/ / /

/

m m

n m n

m n

iE t iE t
m m m m

m m

iE t iE t iE t
n n n m n n

m n

i E E t
n m nm

m n

n i a E a e m n a He m

i a E a e a n H m e E a e

i a a H e

− −

− − −

≠

− −

≠

+ =

+ = +

=

∑ ∑

∑

∑

 (5.14) 
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The initial conditions at t = 0 are a0(0) = 1, am(0) = 0 for m ≥ a. To first order the 
quantities Hnm can be regarded as small when n ≠ m, then for n ≥ 1 have 
 
 ( )0 /

0 0
ni E E t

n ni a a H e− −≈  (5.15) 
 
The state 0  is unstable, so make the following ansatz 
 

 
/ 2

0
2 /

0

( )

( )

t

t

a t e

a t e τ

−Γ

−

=

=
 (5.16) 

 
where Γ is the energetic width (uncertainty) of our initial resonance. The probability of 
finding the system in 0  state decays exponentially with time. Eq. (5.15) can now be 
integrated to give 
 

 

( ){ }
( )

( )

0

0

/ 2 '/
0

0

/ 2 /

0
0

( ) '

1
/ 2

n

n

t
i E E i t

n n

i E E i t

n
n

i a t H dt e

eH
i E E i

− − − Γ⎡ ⎤⎣ ⎦

− − − Γ⎡ ⎤⎣ ⎦

=

⎡ ⎤−
= ⎢ ⎥

− + Γ⎢ ⎥⎣ ⎦

∫
 (5.17) 

 
For times t >> τ, the probability of decay to the state n  is: 
 

 ( )2 2
0 0

2( )n n na t H P E Eπτ = −
Γ

 (5.18) 

where 

 ( )
( )0 2 2

0

1
2 / 4n

n

P E E
E Eπ

Γ
− =

− + Γ
 (5.19) 

 
The function in Eq. (5.19) is normalised and is 
regarded as the probability distribution in 
energy of the state 0  it is shown in figure 
below. The energy of the final state En is not 
identically equal to E0 and is not absolutely 
determined. This is an consequence that the 
state 0  does not have definite energy. The 
instability implies that it has a small spread of 
energy Γ about the mean energy E0.  
 
 

 
 
 
Breit-Wigner cross-sections 
 
Consider a channel i which consists of two particles, for example a neutron interacting with 
nucleus, I at an energy close to an energy at which the two can combine to form the 
unstable excited state X*. The X* then decays into one of its decay channels f. 
 
 (  ) (  )channel i X channel f∗→ →  
 



 32

Use the result obtained in Eq. (5.18): 
 

 
2

2 0
2 2

0

( )
( ) / 4

n
n

n

H
a t

E E
Γ =

− + Γ
 (5.20) 

 
The probability that X* is formed from i is: 
 

 

2
,

2

2 2
,

( ) ( )

                 
( ) / 4

x x tot

xi

x i x tot

P i X a t

H
E E

∗→ = Γ

=
− + Γ

 (5.21) 

 
Use Fermi’s golden rule to substitute for |Hxi|2. Since H is hermitian; |Hxi|2 = |Hix|2. 
 

 2 2 22 ( )      
2 ( )

x i x i
ix i x ix xi

i x

H E H H
E

π ρ
πρ

→ →Γ Γ
= ⇔ = =  (5.22) 

 

 2 2
,

1( )
2 ( ) ( ) / 4

x i

i x x i x tot

P i X
E E Eπρ

∗ →Γ
→ =

− + Γ
 (5.23) 

 
The rate of the reaction from channel i to channel f , λ(i → x → f) is: 
 
 ( )i f x fP i Xλ λ∗

→ →= →  (5.24) 
 

 2 2
,

1
2 ( ) ( ) / 4

x f x i
i f

i x x i x totE E E
λ

π ρ
→ →

→

Γ Γ
=

− + Γ
 (5.25) 

 
Using the reaction rate can find the cross-section using the relation in Eq. (5.2). For a free 
particle in initial state i. Where wavefunction is normalised to 1 particle per volume V and v 
is the velocity of the particle. 

 

.1

1

ie
V

v
V

Ψ =

Φ =

k r

 (5.26) 

 
The density of states in the ith channel is given by: 
 

 2
3( ) 4

(2 )i
V dkE dE k dE

dE
ρ π

π
=  (5.27) 

 

 
2dE k v

dk m
= =  (5.28) 

 
where m is the reduced mass of the particles. And have made use of the relation p = mv = 

v. Eq. (5.27) is then: 
 

 
2

3

4( )
(2 )i

V kE dE dE
v

πρ
π

=  (5.29) 
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 2 2
,

3

2 2 2
,

1 1 1           
( ) 2 ( ) / 4

(2 ) 1   
4 2 ( ) / 4

i f
i f

x f x i

i x x i x tot

x f x i

x i x tot

E E E

V v
V k E E

λ
σ

ρ π

π
ν π π

→
→

→ →

→ →

=
Φ

Γ Γ
=
Φ − + Γ

Γ Γ
=

− + Γ

 

 

 
2 2 2

,

2

2 2
,

( ) / 4

2 ( ) / 4

i x

x f x i
i f

i x i x totE E

x f x i

x x i x tot

k E E

mE E E

πσ

π

→ →
→

=

→ →

Γ Γ
=

− + Γ

Γ Γ
=

− + Γ

 (5.30) 

 
This result is the Breit-Wigner formula for the special case when the incoming and the 
compound nucleus have zero spin. For small Γ, the cross-section peaks sharply at Ex = Ei. 
The phenomenon is known as resonance scattering and is common in nuclear physics; 
experimental resonance peaks can often be well fitted by an expression of this form. 
 
 
Rutherford scattering (Sakurai pg. 386) 
 
What do we want to describe: 

o Scattering between two spin less nuclei due to Coulomb interactions 
o Non relativistic scattering energies (Ecm << smallest of the two nuclear masses) 
o The correct approach to Rutherford scattering is by use of quantum mechanics, 

although classically would get the same result it is only accidental 
o Use the Born approximation  

 plane waves going into and coming out of scattering 
 no disturbance of wave functions during the scattering 
 acceleration happens at one instance in time 
 nuclei stay what they were (no break-up or emission of other particles etc.) 

o First nucleus, denoted by i1 and f1 
 is light compared to the first one to guarantee no recoil 
 has charge Z1  

o Second nucleus denoted by i2 and f2 
 is heavy  no recoil 
 is stationary in the lab frame before collision 
 has charge Z2   

 
The scattering potential, V(r) is the Coulomb potential which has been modified to allow 
for solutions to the integration 

 

/1 2

2

0

( )

4

r aZ Z cV r e
r

e
c

α

α
πε

−=

=
 (5.31) 

 
The wavefunctions of the incoming and outgoing first nucleus are: 
 

 11 ..1 1e ;            e fi ii
i fV V

ψ ψ= = k rk r  (5.32) 
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The matrix element of the Coulomb interaction Hamiltonian as in Eq. (3.23) is: 
 

 11 ..

 

1 e ( ) e fi ii
fi

all space

H V r dv
V

−= ∫ k rk r  (5.33) 

 
Use K = ki1 – kf1 such that the above is rewritten as 
 

 .

 

1 ( ) i
fi

all space

H V r e dv
V

= ∫ K r  (5.34) 

 
Choose z-axis to be parallel to K 
 

 
( )

( )
1 /

cos 21 2

0 0 1

cos
r a

iKr
fi

Z Z c eH e r d d dr
V r

π
θα θ φ

∞ −

−

= ∫ ∫ ∫  (5.35) 
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Z Z c e e dr
iKV

Z Z c
iKV iK iK

a a
Z Z c iK

iKV K
a

απ

απ

απ

απ

∞ −−

⎛ ⎞ ⎛ ⎞∞ − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−
=

= −

⎡ ⎤
⎢ ⎥

= −⎢ ⎥
− + − −⎢ ⎥
⎣ ⎦

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

∫

∫

 (5.36) 

 
Now taking the limit as a → ∞ find the matrix element as 
 

 1 2
24fi

Z Z cH
K V
απ=  (5.37) 

 
Using Fermi’s golden rule have the expression for cross-section: 
 

 
22 ( )fi f f
Vd H d E
v

πσ ρ=  (5.38) 

 
where v is the velocity of the incident particles. Now need to find the density of states in 
solid angle dΩ. The number of states between p and p + dp in solid angle dΩ is: 
 

 
2 2

3

2
3

Vd N p dpd
h

V dpd p d
h dE

ρ

= Ω

= Ω
 (5.39) 

 
where p and E are centre of mass momentum of one of the final state particles and total 
energy in the final state respectively. In the non-relativistic limit, Eq. (3.37) becomes dp/dE 
= 1/v. Now substitute the results Eq. (5.37) and (5.39) into (5.38).  
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2

21 2
2 3

2 4 Z Z c V V dd p
K V v h v

π ασ π Ω
=  (5.40) 

 
22

1 2
2 4 2

4d p Z Z c
d v K
σ α⎛ ⎞ =⎜ ⎟Ω⎝ ⎠

 (5.41) 

 
By energy conservation, |ki1| = |kf1|: 

 1 1 12 sin
2i fK k θ⎛ ⎞= − = ⎜ ⎟

⎝ ⎠
k k  (5.42) 

 

 ( ) ( )
( )

2 2
1 2

4 4 4
1

2
16 sin 2

m Z Z cd
d k

ασ
θ

⎛ ⎞ =⎜ ⎟Ω⎝ ⎠
  (5.43) 

 
Lecture 9 & 10 
 
Interaction with matter 
 
• Measure properties of nuclei through decay products 
• Measure energy, momentum, mass & charge of particles with 

o M  ∈ [0 (γ) ; few 100 GeV (fission fragment)] 
o Ekin  ∈ [keV (Radioactivity) ; few GeV (accelerator experiments)] 
o Q/e  ∈ [0 (γ,n); O(100) (fission fragments)] 

• Need to translate microscopic particle properties into quantitatively measurable 
macroscopic signals 

• Do this by interactions between particles and matter 
• Which interactions would be useful? 

o Weak?  Too weak at low (nuclear) interaction energies 
o Strong?  Some times useful but often noisy (strong fluctuations, few 

interactions per distance) 
o EM?  Underlies most nuclear and particle physics detectors (L9&10) 

• Energies released ≤ Ekin (particle) often too small for direct detection  need 
amplification of signals (see detector section L11)  

 
• Particle Ranges 

a) If smooth energy loss via many steps (i.e. ionisation from light ions)  
sharply defined range, useful for rough energy measurement 

b) If a few or a single event can stop the particle (i.e. photo-effect)  
 exponential decay of particle beam intensity,  
 decay constant can have useful energy dependence  
 No range but mean free path defined 

 
c) Sometimes several types of processes happen (i.e. high energy electrons)  

mixed curves, extrapolated maximum range 
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Particles we are interested in 
o photons 

 exponential attenuation at low E, often get absorbed in single events 
 detect secondary electrons and ions liberated in absorption process. 

o charged particles 
 sharper range (continuously loose energy via ionisation) 
 leave tracks of ionisation in matter  measure momentum in B field 
 sometimes radiate photons  can be used to identify particle type  

o neutrons 
 electrically neutral  no first-order em-interaction  difficult to detect 
 react only via strong force (at nuclear energies) 
 long exponential range (lots of nuclear scattering events followed by absorption 

or decay) 
 need specific nuclear reactions to convert them into photons and/or charged 

particles when captured by a target nucleus 
 if stopped, measure decay products, e- + p + υ 

 
Charged particles in matter 
 

• If particle or medium emit photons, coherent with incoming particle  radiation 
process  

o Bremsstrahlung, Synchrotron-radiation: emitted by particle 
o Cherenkov-radiation: emitted by medium 

• If no coherent radiation  non-radiating process  
o Ionisation, scattering of nuclei or atoms 

• Note: Scintillation is a secondary process in which the light is emitted after 
ionisation or atomic excitation. It is NOT a radiation process 

 
Charged particle can collide with: 

Atomic electrons (“free”) 
• large energy loss ∆E ≈ q2/2me (small me, q = momentum transfer) 
• small scattering angle 

Nuclei 
• small energy loss (∆E ≈ q2/2mnucleus) 
• large scattering angle  

Unresolved atoms (predominant at low energies) 
• medium energy loss ∆E < q2/2me

eff because: me
eff(bound) > me(free) 

• medium scattering angle 
• atoms get excited and will later emit photons (scintillation) 
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Bethe-Bloch formula (Williams pg. 234; Das pg. 114) 
 
Charged particle ionises or excites the atoms as it transverses through a material. The mean 
rate of energy loss is given by the Bethe-Bloch formula the derivation of which is outlined 
below. The Mott scattering formula for differential cross-section for an electron of 
momentum p and velocity V by a heavy nucleus of charge z|e| is given by: 
 

 
( ) ( )

2 2
2

4

Mott termRutherford term

1 1 sin 2
2 sin 2

d z c V
d pV c
σ α θ

θ

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎢ ⎥Ω ⎝ ⎠⎝ ⎠ ⎢ ⎥
⎣ ⎦

 (6.1) 

 
Now want to change variables from dΩ to q2, where q is the momentum transferred to the 
scattered electron. 
 

 2 2 2

              '
             ' 2 'cosq p p pp θ

= −

= + −

q p p
 (6.2) 

For elastic scattering: 

 2 2 24 sin
2
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⎝ ⎠

 (6.3) 
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If have no φ dependence: 
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d
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θ

π θ
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 (6.5) 

Putting it together gives: 
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 (6.6) 

 
Substitute Eq. (6.1) and (6.3) into (6.6) 
 

 
2 4 2

2 2

2 1
2 2

d z c p Vq
dq p pV q cp
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 (6.7) 

 
2 2

2 24 1
2

d z c Vq
dq q V cp
σ απ

⎡ ⎤⎛ ⎞ ⎛ ⎞
= −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (6.8) 

 
Now change frame from one where nucleus is at rest and electron is moving to the frame in 
which the heavy nucleus of mass M is moving with velocity V towards collision with 
stationary electron. The momentum p in Eq. (6.8) is still the momentum of the electron, p = 
γmeV. Here q2 is the same in both frames. This is true non-relativistically and if it is 
correctly defined also relativistically. For an electron initially at rest, the energy transfer, v 
to the electron is 2mev = q2. 
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If this nucleus loses energy –dT in a distance dx in a material containing n atoms of 
atomic number Z per unit volume, then 

 

 
max

min
n.  of collisions with

 in length  per
unit cross-sectional cross-section weighted
area average energy lost per

collision

v

v
e dx
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 (6.10) 
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where vmax amd vmin are the maximum and minimum values of energy transfer. For a heavy 
incident particle: 

 
2

max 2

2

2

1

em Vv
V
c

=
⎛ ⎞
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 (6.12) 

 
Although vmax is much greater than vmin, do not know the latter. At large v the bound 
electrons can be assumed to be free, but at low v that assumption is no longer valid. It 
becomes possible to have an energy, v and momentum, q transfer that do not satisfy the 
constraint (2mev = q2) imposed if those quantities impact on a free electron. The 
momentum and energy transfer can now lead not only to ionisation but also excitation of an 
atom. Thus the integral is not correct and has to be done over variables v and q for 
differential cross-sections that depend on the detailed atomic structure. This gives an 
important contribution to the whole energy loss and expect it to differ by some factor from 
the result that has been obtained thus far. The Bethe-Bloch formula parameterises these 
problems by defining a quantity I, the mean excitation potential, for all Z atomic electrons – 
this is an element dependant parameter which has to be determined from experimental data. 
The correct result is thus (note a correction factor of 2 has been added, but will not be 
justified here): 
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24 ln
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e
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z cdT m V VnZ
dx m V cI V c

α
π
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δ = density correction: dielectric properties of medium shield growing range of Lorentz-
compacted E field that would reach more atoms laterally. Without this the stopping power 
would logarithmically diverge at large projectile velocities. Only relevant at very large βγ. 
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 1 ,  called the stopping powerdT
dxρ

−  (6.15) 

where ρ is mass density of material, A is the atomic weight, NA, Avogadro’s number. 
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Limitations: 
o totally wrong for very low V (ln goes negative  particle gains energy) 
o correct but not useful for very large V (particle starts radiating) 

 

 
Figure to show the ionization and Bethe-Bloch formula variation with βγ 
 

• Broad minimum at βγ  ≈ 3.0 (3.5)  for Z = 100(7)  
• At minimum, stopping power is nearly independent of particle type and material  
• Stopping Power at minimum varies from 1.1 to 1.8 MeV g-1 cm2)  
• Particle is called minimum ionising (MIP) when at minimum 

 
 

• variation in dT/dx is useful 
for particle identification 

• variation is most pronounced 
in low energy falling part of 
curve 

• if determine momentum, p 
and dT/dx you can determine 
the particle mass and thus its 
type 
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Cherenkov radiation (Das pg. 148; Shaw 2nd ed. pg. 64) 
 

 
• Source of E-field (charge) passing through medium at a v > vphase (light in medium) 

creates conical shock wave. Similar to a sonic boom. 
• Not possible in vacuum since v < c. Possible in a medium when βn > 1.  
o The Cherenkov threshold at β = 1/n can be used to measure β and thus to identify 

particles if measure the momentum as well.  
• Huygens secondary wavelet construction gives angle of shockwave as  
 

 1cos c

ct
n
ct n

θ
β β

= =  (6.16) 

 
this can be used to measure particle direction and β. 

• In time that the particle goes from O to P, light goes from O to A. 
• Cherenkov radiation first used in discovery of antiproton (1954).  
• Now often used in large water-filled neutrino detectors and for other particle physics 

detectors 
• Total energy emitted as Cherenkov Radiation is ~0.1% of other dT/dx. 
 
 
Bremsstrahlung (Williams pg. 247; Shaw 2nd ed. pg. 55) 

 
 
• Due to acceleration of incident charged particle in 

nuclear Coulomb field                 
• Radiative correction to Rutherford Scattering.  
• Continuum part of x-ray emission spectra.  
• The intensity is proportional to inverse mass 

squared 
• Lorentz transformation of dipole radiation from 

incident particle frame to laboratory frame gives “narrow” (not sharp) cone of blue-
shifted radiation centred around cone angle of θ = 1/γ. 

• Radiation spectrum falls as 1/E (E = photon energy) because particles loose many low-
E photons and few high-E photons. i.e. it is rare to hit nuclei with small impact 
parameter because most of matter is vacuum 

• Photon energy limits: 
o low energy (large impact parameter) limited through shielding of nuclear charge 

by atomic electrons.  
o high energy limited by maximum incident particle energy. 

 
 
 
 

 Ze  

 e-   e-  
 γ  

 e-*  
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Energy loss due to bremsstrahlung is: 
 

 
brem

dT T
dx
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where L0 is the radiation length, n is the number per unit volume of the nuclei, atomic 
number Z. 
 
• dT/dx|brem ~ T dominates over dT/dx|ionise  ~ ln(T) at high T. 
• Ecrit is the energy at which bremsstrahlung losses exceed ionization losses 
• For electrons Bremsstrahlung dominates in nearly all materials above few 10 MeV.  

Ecrit (e-) ≈ 600 MeV/Z 
• Radiation Length L0 of a medium is defined as: 

o distance over which electron energy reduced to 1/e via many small bremsstrahlung-
losses  

o LB ~ Z-2  approximately as it is the charge that particles interact with 
• Bremsstrahlung photon can produce e+e- -pair and start an em-shower 
• The development of em-showers, whether started by primary e or γ is measured in LB. 
 

 
 
• Simple shower model assumes: 

o e ≈ 2 
o E0 >> Ecrit 
o only single Brem-γ or pair production per LB 

• The model predicts: 
o after 1 LB, ½ of E0 lost by primary via Bremsstrahlung 
o after next LB both primary and photon loose ½ E again  
o until E of generation drops below Ecrit 
o At this stage remaining Energy lost via ionisation (for e+/-) or Compton scattering, 

photo-effect (for γ) etc. 
o Abrupt end of shower happens at E0 = Ecrit, when LB

max = ln(E0/Ecrit)/ln2 
o Indeed observe logarithmic dependence of shower depth on E0  
o The main features of this model are observed experimentally.  
o The physical sizes of calorimeters need increase only slowly with the maximum 

energies of particles to be detected.  
o The energy resolution of calorimeter depends on statistical fluctuations which are 

neglected in this model, for em calorimeter they are typically: ∆E/E = 0.05E-1/2 GeV 
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Synchrotron Radiation (Das pg. 163; Shaw 2nd ed. pg. 46) 
 
• Appears mainly in circular accelerators (mainly to electrons) and limits maximum 

energy achievable. 
• Similar to Bremsstrahlung 
• Replace microscopic force from E-field in Bremsstrahlung with macroscopic force 

from v×B to keep electron on circular orbit 
• Electrons radiate only to the outside of circle because they are accelerated inward 
• Angle of maximum intensity of synchrotron radiation with tangent of ring θ = 1/γ 
• Synchrotron radiation = very bright source of broad range of photon energies up to few 

10 keV used in many areas of science 
• Many astrophysical objects emit synchrotron radiation from relativistic electrons in 

strong magnetic fields 
 
For relativistic energies, the equation of motion for a charged particle mass, m and charge e 
in a magnetic field B becomes: 
 

 d e
dt c

×
=

p v B  (6.19) 

 
Equating to the centripetal force with |v| ~ c: 
 

 dm m e
dt c

γ γ ×
= × =

v v Bv ω  (6.20) 

 
For magnetic field and axis of circular motion perpendicular to the direction of motion: 
 

 eB
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γ

=  (6.21) 

or 
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For this relation to hold during an acceleration cycle either the alternating frequency has to 
decrease or the magnetic field to increase, or both must happen as v → c.  
 

• Synchrocyclotrons – magnetic field kept constant, frequency varied. 
• Synchrotrons – magnetic field changed, irrespective of whether the frequency is 

changed. In electron synchrotrons, the frequency is held constant and magnetic field 
varied, whereas in proton synchrotrons, both frequency and magnetic field are 
altered. 

 
With relativistic effects taken into account, Eq. (6.22) can be used to obtain the parameters 
for accelerating particles to any desired energy. Rewrite Eq. (6.22) in terms of momentum 
and radius of final orbit. For v → c, frequency of the motion can be expressed as: 
 

 1 1
2 2

v cf
R Rπ π

= ≈  (6.23) 

Eq. (6.22) is then: 
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let p = mγv ≈ mγc, the equation for radius, R is: 
 

 pcR
eB

=  (6.25) 

 
The above equation is often written in mixed units of accelerator science as: 
 

 
0.3

pR
B

≈  (6.26) 

 
where R is in meters, p in GeV/c and e has magnitude corresponding to charge on an 
electron. 
 
 
Photons in matter (Das pg. 124; Cottingham 2nd ed. pg. 207; Shaw 2nd ed. pg. 56; Krane pg. 
198) 
 
• Rayleigh scattering  

o Coherent, elastic scattering on the entire atom (the blue sky) 
o γ + atom  γ + atom 
o dominant at λγ > size of atoms 

• Compton scattering 
o Incoherent scattering on electron from atom  
o γ + e-

bound  γ + e-
free 

o possible at all Eγ > min(Ebind) 
o to properly call it Compton requires Eγ >> Ebind (e-) to approximate free e- 
o Consider an incident photon striking an electron, initially at rest, mass m. The 

photon’s energy after collision is Eγ’ travelling in the exact opposite direction to 
incidence and electron gains momentum, p. From energy (6.27) and momentum 
(6.28) conservation have (in natural units): 

 
 '

0 0

eE

E m E mγ γ γ+ = +  (6.27) 

 'E p Eγ γ= −  (6.28) 
 Use invariant: 
 2 2 2

eE p m= +  (6.29) 
  

Substitute into (6.29) Eq. (6.27) for Ee and Eq. (6.28) for p: 
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• Photoelectric effect 
o absorption of photon and ejection of single atomic electron 
o γ + atom  γ + e-

free + ion 
o possible for Eγ  < max(Ebind) + dE(Eatomic-recoil, line width) (just above K-edge) 
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o Free electrons cannot absorb a photon and recoil. Energy and momentum cannot 
both be conserved in such a process; a heavy atom is necessary to absorb the 
momentum at little cost to the energy.  

o This can be shown as follows. Consider an electron at rest colliding with a photon, 
the rest mass of the electron cannot change (otherwise would not be an electron). 
By energy and momentum conservation have the following: 

 
 2 2

e em c hf m cγ+ =  (6.31) 
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therefore must have scattering rather than absorption by a free electron. 

o The kinetic energy of the electron is equal to the photon energy less the binding 
energy of the electron: 

 
 e eT E Bγ= −  (6.33) 

o The absorption of a photon for photoelectric effect is most significant for low 
energy photons (~ 100 keV), it increases rapidly with atomic number Z of absorber 
atoms (as Z4) and decreases rapidly with increasing photon energy (of order Eγ-3). 
There are discontinuous jumps in the probability for photoelectric absorption at 
energies corresponding to binding energies of particular electronic shells. 

• Pair production 
o absorption of γ in atom and emission of e+e- pair 
o The energy balance is: 

 2 2
e eE T m c T m cγ + −= + + +  (6.34) 

 
o Two varieties: 

 a) dominant: γ + nucleus  e+ + e- + nucleusrecoil  
 b) weak: γ + Z*atomic e-  e+ + e- + Z *atomic e-

recoil 
o Both variants need: Eγ >2mec2 + Erecoil  

 bigger Mrecoil gives lower threshold because Erecoil = Precoil
2/2Mrecoil  type a) has lower threshold then type b) because Mnucl>>Me

eff 
o Nucleus/atom has to recoil to conserve momentum  coupling to nucleus/atom 

needed  strongly charge-dependent cross-section (i.e. growing with Z) 
 type a) has approximately Z times larger coupling  dominant 

o Like photoelectric absorption require the presence of a nearby atom for momentum 
conservation. 

o The threshold for this process is 2mec2, or 1.022 MeV and in general pair 
production is important for high energy photons. 

o Pair production becomes dominant only for energies above 5 MeV. 
o At very high energies (>100 MeV) the e+e- pair cross-section saturates and can be 

characterised by a constant mean free path for conversion (or by constant 
absorption coefficient. The mean free path is given by, where LB is the radiation 
length: 

 9
7pair BL L  (6.35) 



 45

o After pair production, the positrons transverse the medium much like electrons and 
deposit their energies through ionisation or bremsstrahlung. Once a positron loses 
most of its kinetic energy, it captures and electron to form a hydrogen-like system, 
refered to as positronium, where proton is replaced by positron. However this 
system is unstable and decays (annihilate) with lifetimes of ~ 10-10 sec to form two 
photons: 

 2e e γ+ − →  
  

to conserve momentum-energy, each photon carries away 0.511 MeV. Thus pair 
production provides a very clean signal for detecting positrons as well as calibrating 
the low energy response of the detector. 
 
 

The three main processes – photoelectric effect, Compton scattering and pair production 
provide independent contributions to the absorption of photons in any medium. The total 
absorption coefficient is given as the sum of the three separate coefficients: 
 
 pe comp pairµ µ µ µ= + +  (6.36) 
 
The sum of this is shown in the figure below as a function of photon energy 
 

 
 
• As Z increases 

o PE extends to higher E due to stronger atomic e- binding 
o PP & PPE extend to lower E due to stronger coupling of projectile to target 
o Threshold for PPE decreases as nucleus contributes more to recoil via stronger 

atomic electron-nucleus bond 
• As A increases Erecoil (nucleus) decreases and threshold for PP gets closer to minimum 

of 2mec2 
 
The fractional loss in intensity in crossing any thickness dx of material is 
 

 dI dx
I

µ= −  (6.37) 

 
 0

xI I e µ−=  (6.38) 
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Lecture 11 – Detectors 
 
Photomultiplier, PMT (photons only) (Das pg. 143) 

 
o primary electrons liberated by photon from photo-cathode (low work function, high 

photo-effect cross-section, metal) 
o visible photons have sufficiently large photo-effect cross-section 
o acceleration of electron in electric field 100 – 200 eV per stage 
o create secondary electrons upon impact onto dynode surface (low work function 

metal)  multiplication factor 3 to 5 
o 6 to 14 such stages give total gain of  104 to 107 (electron amplification factor) 
o fast amplification times (few ns, due to differing electron transit times – different 

paths/velocities)  good for triggers or veto’s 
o signal on last dynode proportional to number of photons impacting 
o can have large area photo-cathode with smaller acceleration tube  large area 

applications 
 
Avalanche Photo Diode, APD (photons only) 
 

o solid state alternative to PMT for photons up to λ < 1600 nm 
o strongly reverse biased (30-70 V) photo diode gives “limited” avalanche when hit 

by photon 
o Avalanche in APD: 

 electrons and holes accelerated by high E-filed inside photo diode 
 in one mean free path electrons gain enough energy to generate another electron 

hole pair in their next collision 
 Multiplication of electrons (and holes) every time an electron collides   
 Dynode separation in PMT corresponds to mean free path in APD 

o advantages over PMT’s - very much smaller, relatively low voltage, cheap 
o often gets used for amplification of light delivered via fibres because this suits their 

small area 
o multiple diodes in one chip for imaging applications 

 
Scintillators (em interacting particles) 
 

o Particle (charged or γ) excites atom through ionisation or photo-effect or Compton 
scattering 

o Observe photon from de-excitation of atomic electron using eye or PMT or APD 
o Takes approximately 10 times more energy to produce a scintillation photon then 

one electron-ion pair in the same material because there are many other ways of 
loosing energy. Typical 1 photon per 100eV of dT/dx 

o Very old style: Zinc sulphite screens viewed by eye (Rutherford) 
o Scintillators today on the front of every CRT TV-tube. 
o Problem: normally materials re-absorb their own scintillation light 
o Two solutions to this problem exists 
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Solution 1: Organic scintillators 
 

o Naphthalene, anthracene are organic molecules, low density (ρ ≈ 1.3) 
o excitation  non-radiating de-excitation to first excited state  scintillating 

transition to one of many vibrational sub-states of the ground state (direct transition 
to ground state is forbidden) 

o low cross-section to re-absorbing this photon unless molecule already in this 
particular vibrational state 

o often used together with wavelength shifters to further reduce re-absorption and 
attenuation in light guides  

o Wavelength shifter: low concentration of absorber which absorbs one high Ein γ and 
emit 2 or more low Eout γ in cascade decay which can not be re-absorbed by bulk of 
scintillator 

o Organic scintillators give fast scintillation light, de-excitation time O(10-8 s) 
o Organic scintillators are cheap  large area panels 

 
Solution 2: Inorganic scintillators 
 

o NaI activated (doped) with Thallium, semi-conductor, high density: ρ(NaI) = 3.6, 
ρ(PbWO4) = 8.3  high stopping power 

o Dopant atom creates energy level (luminescence centre) in band-gap of the semi-
conductor 

o Electron excited by passing particle into conduction band can fall into luminescence 
level (non radiative, phonon emission) 

o Note: electron must live long enough (not recombine with holes) to reach 
luminescence centre 

o From luminescence level falls back into valence band under photon emission 
o this photon can only be re-absorbed by another dopant atom  crystal remains 

transparent to the scintillation light 
o High density of inorganic crystals  good for totally absorbing calorimetry even at 

very high particle energies (many 100 GeV) 
o de-excitation time O(10-6 s) slower then organic scintillators 

 
 
Gas-filled counters (em interacting particles) (Das pg. 136; Krane pg. 204) 
 

 
o 6 MeV α particle stopped in gas 

gives typically 2×105 ion pairs (30 
eV/ion pair – for air) = 3.2×10-14 C 
negative charge 

o Release into C = 10 pF  3.2 mV 
>> Vnoise (typ. ampl.)  small, but 
detectable 

o Amount of collected charge depends 
on collection voltage 

o Low voltage  Ionisation chamber, 
collect only primary ionisation 

o Medium voltage  proportional 
counter  avalanche (secondary collision ionisation)  signal is proportional to 
primary ionisation 

o High voltage  Geiger counter  each particle produces the same amount of 
charge in an unlimited avalanche 

o Too high voltage  continuous spark (breakdown)  
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• Ionisation Chambers – now obsolete 
 

o Essentially a parallel plate capacitor in which 
region between plates is filled by gas, often air. 

o Used for single particle and flux measurements 
o Can be used to measure particle energy up to few 

MeV. At higher energies the particle will not be 
stopped in the gas. 

o Measure energy with accuracy of 0.5% (mediocre), 
limited due to fluctuations of energy loss 

o In the gas electrons are more mobile then ions  
detect electrons earlier then ions. Collection time = 
O(µs) 

o Slow recovery from ion drift  
o The amplitude of the signal is proportional to the number of ions formed (and thus 

to the energy deposited by the radiation), and is independent of the voltage between 
the plates. The applied voltage determines the speed at which the electron and ion 
clouds drift to their respective electrodes. 

o Replaced by solid state detectors  
 
• Proportional chambers (Krane pg. 205; Das pg. 138) 
 

o To use gas-filled detectors to observe 
individual pulses, must provide considerable 
amplification. 

o A large electric field is able to accelerate the 
electrons that result from ionisation 
processes; rather than drifting slowly 
towards the anode, making occasional elastic 
collisions with gas atoms, the accelerate 
electrons can acquire enough energy to make 
inelastic collisions and even create new 
ionised atoms – this is known as Townsend 
avalanche.  

o Even though there is a large number (~ 103 – 
105) of secondary events for each original 

ion, the chamber is always operated such that the number of secondary events is 
proportional to the number of primary events and hence the name of the device. 

o Geometry of a proportional chamber/counter is usually cylindrical as shown in 
figure above. 

o Use small wire as positive electrode (anode) 
o E = V/[rln(b/a)] high field close to wire  

o local avalanche near wire 
o most electrons released close to wire 
o short average drift distance 
o fast signal rise time O(µs) 

o Use avalanche amplification to measure small ionisation 
o Problem: uv-photons from recombination spread through volume  catch them on 

large organic molecules (quencher)  quenchers vibrationally de-excite  
o Many such detectors (MWPC – multiwire proportional chamber) used as large-area 

position sensitive device 
o Can add drift time measurement to increase position resolution  Drift chamber 
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• Geiger counters (Das pg. 141; Krane pg. 206) 
 

o If the electric field is increased to even larger values, secondary avalanches can 
occur. These can be triggered by photons emitted by atoms excited in the original 
(or in subsequent) avalanche. These photons can travel relatively far from the 
region of original avalanche, and sooon the entire tube is participating in the 
process. 

o Amplification factor as large as 1010. 
o Because entire tube participates for every incident event, there is no information on 

the energy of the original radiation – all incident radiations produce identical output 
pulses. 

o ‘Voltage pulse is large and easily detectable ~ 1 V. 
o The cycle would be completed once the positive ions have drifted to the cathode 

and become neutralised, but during their travel they can be accelerated and strike 
the cathode with enough energy to release the electrons from the cathode to begin 
the process again (it takes only one electron to create an output pulse). To avoid 
this, a second type of gas – quenching gas is added to the tube. As charge consisting 
mainly of argon ions begins to drift towards the cathode, collisions occur with 
quenching gas in which there is high probability of transfer of an electron so that 
the argon is neutralised and the ionised quenching gas (such as ethanol) drifts back 
to the cathode. It is neutralised at the cathode. The quenching gas is gradually used 
up and has to be replaced. 

o Geiger counter is advantageous in the simplicity of construction and its insensitivity 
to small voltage fluctuations. 

o Construction nearly same as proportional counter 
o Operate with Vg < V < Vdischarge 
o Detection here means counting of particles 
o Long recovery time limits counting rage O(100Hz) 
o Not used much for nuclear physics  
o Some use in radiation protection where you only want to know whether or not there 

is radiation of any sort 
 
 
Set-up 1 – Scintillator  

 
 

o Scintillator makes number of visible photons proportional to energy lost by γ-ray 
o Light guide collects them to PMT photo cathode 
o PMT makes electron pulse for each photon 
o Counter counts pulses 
o Number of pulses in short time window is proportional to γ-ray Energy 
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Set-up 2 – Germanium detector 
 

 
o Move electrons from valence to conduction band via collision with particle  

electron-hole pair 
o Band gaps O(eV)  Energy per electron-hole pair = typical 3-4 eV  1 MeV lost 

by particle  3×105 pairs  only 0.2% statistical fluctuation according to √n  
excellent energy resolution 

o Lowest band gap for Ge = 0.64 eV per pair 
o Ge detectors have highest energy resolution (few keV) 
o Ge-Li detector generates electron hole pairs proportional to energy lost by γ-ray and 

acts as a source of current pulses 
o One pulse per γ-ray 
o Amplifier measures integrated charge of the pulse which is proportional to energy 

of γ-ray 
 
• Source contains 24

11Na, ρ(Na) ~ 1 g/cm3 
• β -decay of 24

11Na goes to excited state of 24
12Mg 

• Ekin(β) = 1.391 MeV and the β is stuck in the source because according to Bethe-Bloch 
formula electron will loose O(10 MeV/cm) and thus only has a range of O(1mm) 

• Daughter nucleus 24
12Mg decays in two steps via γ-decay 

• Gamma rays escape from source and are observed by the two different detectors 
• 1 22.754 MeV;         1.368 MeVE Eγ γ∆ = ∆ =  

 

 
• Example γ-ray spectra from the two detectors 
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• Scintillator: 
o approx. 100eV/scintillation photon 
o O(10%) of photons reach photo detector 
o O(10%) quantum efficiency of photo detector 
o 27000 photons for Eγ1 = 2.754 MeV 
o 270 reach detector 
o √270≈16.4 ↔ 6% of E γ1 
o consistent with poorly resolved peak width of 7% 
 

• Ge-Li detector 
o 0.64 eV per e-hole pair 
o 4.3×106 pairs for E γ1 = 2.754 MeV 
o O(10%) of pairs make it across large detector to the electrodes 
o √4.3×105 ≈ 656 ↔ 0.1% of E γ1 
o consistent with observed peak width of 0.14% 

 
 
Response of a Ge-Li detector (Krane pg. 220) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When a γ-ray photon enters a solid detector, the photon can Compton scatter several times; 
after each scattering, the photon loses some energy and a free electron is produced. 
Gradually the photon either continues the repeated Compton scattering, eventually 
becoming so low in energy that photoelectric absorption occurs and the photon vanishes, or 
it wanders too close to the edge of the crystal and scatters out of the detector. The energy of 
the photon is converted into electrons (photoelectrons or Compton scattered electrons), 
which have a very short range in the crystal (by Bethe-Bloch formulation), lose energy 
rapidly by creating light photons in a scintillator or electron-hole pairs in semiconductor 
detector. If the original photon eventually suffers photoelectric absorption, the energy 
deposited is equal to the original γ-ray energy. If it scatters out of the crystal, the energy 
deposited is less than the original photon energy. 
    In a single Compton scattering event, the electron gains the following amount of kinetic 
energy, Te (by generalised derivation as Eq. (6.30)): 
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Since all scattering angles can occur in the detector, the scattered electron ranges in energy 
from 0 for θ = 0o and to 2Eγ2/(mc2 + 2Eγ) for θ = 180o (Eq. (6.30)). These electrons will 
normally be totally absorbed in the detector, and (if the scattered photons escape) the 
contribute to the energy response of the detector a continuum called the Compton 

C 
B C’ 

 
  D 

 D’ 

Te
max(γ1) =  

2.520 MeV 

Te
max(γ2) =  

1.153 MeV 

 A 



 52

continuum ranging from zero to a maximum known as the Compton edge (due to Compton 
scattering probability varying with angle, the continuum is not flat). This can be seen on the 
figure above as features C and C’ corresponding to the Compton edges for 2 different Eγ’s. 
This gives Te

max(γ1 = 2.754 MeV) = 2.520 MeV and Te
max(γ2 = 1.368 MeV) = 1.153 MeV. 

These peaks are slightly rounded as electrons are not exactly free but slightly bound. 
    The peaks at E = Eγ1 and E = Eγ2 (D’ and D) correspond to complete photoelectric 
absorption. 
    The final process is that of pair production by the γ-ray photon. The electron-positron 
pair are created with total kinetic energy of Eγ – 2mec2, by Eq. (6.34). The loss of this 
energy in the detector would result in a peak at full energy. However, once the positron 
slows down to energy near to that of atomic electron, annihilation takes place and e+e- → 
2γ with the new photons each of energy mec2, 0.511 MeV. Should both photons escape 
would except to have peaks at Eγ – 2mec2 (peak A for γ1) if one escapes and the other is 
absorbed then peaks at Eγ –mec2 (peak B for γ1) and finally peaks at Eγ if both are absorbed 
(photopeaks – D and D’). 
    The relative amplitudes of the photopeak, Compton continuum and escape peaks depend 
on the size and shape of the detector. In general, the larger the detector, the smaller the 
Compton continuum relative to the photopeak, for there is a smaller chance of Compton 
scattered photon surviving from the center to the surface without interacting again. 
Similarly the annihilation photons are more likely to be captured in a larger detector. 
 
 
Radiation units (Krane pg. 184) 
 

 
• Activity of a source  

o Becquerel (Bq) is the number of 
disintegrations per second.  

o 1 Bq = 2.7 × 1011 Curie (Ci) 
o radiation levels sometimes quoted in 

Bq m-3.  
• Absorbed Dose 

o 1 Gray (Gy) = 1 joule of deposited 
energy per kg of irradiated mass 

o 1 Gy = 100 rad = 6.24 × 1012 MeV/kg.  
• Equivalent Dose for biological damage 

o 1 Sievert (Sv) = absorbed dose equivalent in damage to 1 Gy of x-rays, β or γ. 
o per unit energy deposited:  
• some particles have larger dT/dx then β or γ & strong interactions  localised 

damage  more long term biological risk  higher weight wR then β or γ 
o 1 Sv = 100 rem (Roentgen equivalent for man)  
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14%14%
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other
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• Examples of Sv 
o Lethal whole-body dose 2.5 - 3.0 Sv  death in 30 days without treatment 
o Limit for radiation workers: 15 mSv yr-1 (UK) or 50 mSv yr-1 (US) 
o Chest x-ray 0.04 mSv 
o CT scan 8 mSv 
o Average UK whole body dose rate 2.6 mSv yr-1 (world from 0.4 – 4 mSv yr-1) 

• Weight expresses risk from low levels of chronic exposure        
• Main consequences in risk evaluation are cancer and leukaemia  
• Average breakdown of 2.6 mSv yr-1 taken from NRPB report (1995).        
• Internally released = (40K, 14C)  
• Cosmic flux at sea level, Φcosmic ≈ 1 min-1 cm-2 sr-1 
 
 
Lecture 12 
 
Fission (Cottingham 2nd ed. pg. 115; Krane pg. 501; Williams pg. 123) 
 
The Coulomb barriers inhibiting spontaneous fission are in the range 5 – 6 MeV for nuclei 
with A ~ 240. If a neutron of zero kinetic energy enters a nucleus to form a compound 
nucleus, the compound nucleus will have excitation energy above its ground state equal to 
the neutron’s binding energy in that ground state. For example, a zero energy neutron 
entering 235U forms a state of 236U with an excitation energy of 6.46 MeV. This energy is 
above the fission barrier and the compound nucleus quickly undergoes fission. To induce 
fission in 238U on the other hand requires a neutron with a kinetic energy of approximately 
1.4 MeV.  
    The differences in binding energy of the last neutron in even-A and odd-A nuclei are 
incorporated in the SEMF in the pairing term. The odd-A nuclei:  
 
 233 235 239 241

92 92 94 94,    ,    ,    U U Pu Pu  
 
are fissile nuclei – the fission can be induced by zero energy neutron. The even-A nuclei: 
 
 232 238 240 242

90 92 94 94,    ,    ,       Th U Pu Pu  
 
require an energetic neutron to induce fission. Note that all Pu isotopes are manmade.  
 
 
Neutron cross-sections for 235U and 238U 
 
The principal isotopes of naturally occurring uranium are 238U (99.27%) and 235U (0.72%).  
 

 
Total cross-section σtot and fission cross-section σf as function of neutron energy. 
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The figure on page 53 shows the total cross-sections of 235U and 238U for incident neutrons 
of energy E from 0.01 eV to 10 MeV. At very low energies, below 0.1 eV in 235U the law 
1/v can be observed and the total and fission cross-sections are large because of an excited 
state of 236U lying just below E = 0. The fission fraction σf/σtot ~ 84%, the remaining 16% 
of σtot corresponds mostly to radiative capture. In contrast, the cross-section for 238U is very 
much smaller and nearly constant in this region and is due almost entirely to elastic 
scattering. 
    Region between 1 eV and 1 keV, resonances are prominent in both isotopes. These 
resonances are very narrow and radiative capture gives a significant fraction of the total 
widths. This is particularly true of resonances in 238U, which are below the fission 
threshold. For example, γ-decays account for 95% of the width of the resonance at 6.68 eV. 
    In the final region, between 1 keV and 3 MeV, the resonances are not resolved by 
measured cross-sections. Compound nuclear states at these energies are more dense and 
wider. The fission cross-section for 238U appears above 1.4 MeV and the 235U fission 
fraction σf/σtot remains significant. However in both isotopes at these higher energies the 
result of a neutron interaction is predominantly scattering, either elastic or at higher 
energies inelastic with neutron energy lost in exciting the nucleus. 
 
 
Fission process  
 
A single fission event of 235U will on average produce 2.5 neutrons. This number will 
depend somewhat on the energy of the incident neutron. In addition there are on average 
0.02 delayed neutrons produced per fission, emitted following chains of β- decays of 
neutron-rich fission products. Each of these ‘second-generation’ neutrons is capable of 
producing another fission event and so on. This is known as a chain reaction. The total 
energy release on the induced fission of a 235U nucleus, is on average 205 MeV. The break 
down of which is: 
 

 MeV 
Prompt:   
       Kinetic energy of fission fragments  167 
       Kinetic energy of fission neutrons  5 
       Energy of prompt γ-rays  6 
Delayed:   
       Electrons from subsequent β decays 8  
       γ-rays following β decays 7  
Neutrino Energy  12 
 205 

 
The delayed energy release is regarded as a nuisance, some of it is delayed by decades or 
more and presents potential biological hazard in discarded nuclear waste. The radiative 
capture yields a further 3 – 12 MeV of useful energy in emitted γ-rays, which are not 
included in the table. 
    Consider a sample of pure 235U on which a neutron of energy 2 MeV is incident. The 
nuclear number density, n of uranium metal is 4.8 × 1028 nuclei/m3. The mean free path of 
a neutron in the mixture is 
 

 1

totn
λ

σ
=  (7.2) 

 
For 2 MeV neutron, the total cross-section from figure a) on page 53 is ~ 7 barns and so λ ~ 
3 cm. Not all neutrons will induce fission. The 2 MeV neutron has an 18% chance of 
inducing fission (again from figure a)). The probable number of collisions before fission is 
induced is therefore ~ 6. For a random walk, the neutron will travel ~ λ√6 = 7 cm from its 
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starting point. The time for it to travel this distance, tp is approximately 10-8 s. Some will 
escape from the surface and some will undergo radiative capture. Let probability that a 
neutron will induce fission be q and average number of prompt neutrons be v, then on 
average addition (vq – 1) neutrons will be created in time tp. If number of neutrons at time t 
is n(t), then at t + δt there will be: 
 

 

( ) ( ) ( 1) ( )

( 1)   ( )

p

p

tn t t n t vq n t
t

dn vq n t
dt t

δδ+ = + −

−
⇒ =

 (7.3) 

 
 ( )1 /( ) (0) pvq t tn t n e −=  (7.4) 
 
For 235U, v = 2.5, therefore if q > 0.4, there will be an exponential increase in number of 
neutrons and hence the reaction becomes supercritical. For a small amount of 235U, much 
less than 7 cm, there will be a good chance of escape and therefore q will be small and 
chain reaction will be damped out. If sufficiently large mass of uranium is brought together 
at t = 0 will have q > 0.4. There will be neutrons present at t = 0 due to spontaneous 
fission, a large amount of energy will be released even in a microsecond. The bare sphere 
of 235U will have critical radius of 8.7 cm and critical mass of 52 kg for this to occur. 
    For nuclear reactors need to control the chain reaction, to maintain a steady state release 
of energy would like for the pile (lattice of blocks of uranium alternating with graphite) to 
be exactly critical (vq = 1). In a fission process after fragmentation, the neutrons will have 
energy ~ MeV, such neutrons have a relatively low probability of inducing new fissions, 
they will scatter rather than be absorbed therefore they must be slowed using a moderator – 
where neutrons can scatter and reduce their energy to thermal energies ~ 0.1 eV, where the 
235U cross-section is much larger than of 238U. These thermal neutrons, if captured in the 
fuel rods are predominantly captured by 235U, the large cross-section compensates for the 
low number density. The neutrons are slowed to thermal energies in the moderator rather 
than in the fuel rods, capture into 238U resonances is avoided. The captures into 235U lead to 
fission with a probability of σf

235/σtot
235 ~ 84% at thermal energies and the chain reaction 

can be sustained in this way. 
    The neutrons are most effectively slowed down by using light elements/materials as 
moderator – as the atoms will recoil more and energy of neutrons will be reduced more 
efficiently. Most effective moderator would be hydrogen; however neutrons are likely to be 
captured: p + n → 2

1H + γ in hydrogen and water. Deuterium is better as a moderator as it 
has a very low neutron absorption cross-section. Therefore deuterium can use ordinary 
uranium as fuel as more neutrons are available. Carbon is a light material which is solid, 
stable and abundant; it too has a low neutron absorption cross-section. 




