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Lecture 2 

Rotating Coordinate Systems 

2.1  Frame of Reference 

In order to look at particle dynamics in the context of the atmosphere, we must 

deal with the fact that we live and observe the weather in a non-inertial reference 

frame.  

2.2  Rotating and Non-rotating Frames of References  

There are two coordinate systems when dealing with problems related to the earth: 

a) One fixed to the earth that rotates and is thus accelerating (non-inertial), our real 

life frame of reference 

b) One fixed with respect to the remote "star", i.e., an inertial frame where the 

Newton's laws are valid. 

2.3  Atmospheric Forces 

There are five atmospheric forces that drive the motion of the atmosphere: 

1. Real forces: {The horizontal and vertical gradient pressure force, the 

gravitational force, the friction force}, 

2. Apparent forces: {Coriolis force, centrifugal force}. 

2.4  Total Derivative of a Vector in a Rotating System 

For most applications in meteorology it is desirable to refer the motion to a 

reference frame rotating with the earth. Transformation of the momentum equation 

(Newton’s second law of motion) to a rotating coordinate system requires a 

This force does not arise from any 

physical interaction between two objects, 

but rather from the acceleration a of the 

non-inertial reference frame itself. 
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relationship between the total derivative of a vector in an inertial reference frame 

and the corresponding total derivative in a rotating system. 

To derive this relationship, we let 𝐴 be an arbitrary vector whose Cartesian 

components in an inertial frame are given by: 

𝐴 = 𝑖′𝐴𝑥
′ + 𝑗′𝐴𝑦

′ + 𝑘′𝐴𝑧
′      (𝑖𝑛 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)                   

And whose components in a frame rotating with an angular velocity Ω⃑⃑⃑ are: 

𝐴 = 𝑖𝐴𝑥 + 𝑗𝐴𝑦 + 𝑘𝐴𝑧     (𝑖𝑛 𝑛𝑜𝑛 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠)              (2.1) 

Letting 𝑑𝑎𝐴 𝑑𝑡 ⁄ be the total derivative of 𝐴 in the inertial frame, we can write 

𝑑𝑎𝐴

𝑑𝑡
= 𝑖′

𝑑𝐴𝑥
′

𝑑𝑡
+ 𝑗′

𝑑𝐴𝑦
′

𝑑𝑡
+ 𝑘′

𝑑𝐴𝑧
′

𝑑𝑡
 

= 𝑖
𝑑𝐴𝑥

𝑑𝑡
+ 𝑗

𝑑𝐴𝑦

𝑑𝑡
+ 𝑘

𝑑𝐴𝑧

𝑑𝑡
+

𝑑𝑎𝑖

𝑑𝑡
𝐴𝑥 +

𝑑𝑎𝑗

𝑑𝑡
𝐴𝑦 +

𝑑𝑎𝑘

𝑑𝑡
𝐴𝑧 

 
𝑑�⃑�

𝑑𝑡
≡ 𝑖

𝑑𝐴𝑥

𝑑𝑡
+ 𝑗

𝑑𝐴𝑦

𝑑𝑡
+ 𝑘

𝑑𝐴𝑧

𝑑𝑡
 

which is just the total derivative of 𝐴 as viewed in the rotating coordinates (i.e., 

the rate of change of 𝐴 following the relative motion). 

The last three terms arise because the directions of the unit vectors (i, j, k) change 

their orientation in space as the earth rotates.  

For example, considering the eastward directed unit vector: 

𝑑𝑖 =
𝜕𝑖

𝜕𝜆
𝑑𝜆 +

𝜕𝑖

𝜕𝜙
𝑑𝜙 +

𝜕𝑖

𝜕𝑧
𝑑𝑧 

For solid body rotation,  𝑑𝜆 = Ω𝑑𝑡,   𝑑𝜙 = 0, 𝑑𝑧 = 0, so that:  

𝑑𝑖

𝑑𝑡
= (

𝜕𝑖

𝜕𝜆
) (

𝑑𝜆

𝑑𝑡
)      then        

𝑑𝑎𝑖

𝑑𝑡
= Ω (

𝜕𝑖

𝜕𝜆
) 
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         Fig. 2.1 Longitudinal dependence of i       Fig. 2.2 Resolution of δi  in Fig. 2.1 

   into northward and vertical components                              

From Figs. 2.1 and 2.2, the longitudinal derivative of i can be expressed as: 

𝜕𝑖

𝜕𝜆
= 𝑗 𝑠𝑖𝑛 𝜙 − 𝑘 𝑐𝑜𝑠 𝜙 

However, Ω⃑⃑⃑ = (0, Ω sin 𝜙 , Ω cos 𝜙) so that:  

𝑑𝑎𝐴

𝑑𝑡
=

𝑑𝐴

𝑑𝑡
+ Ω⃑⃑⃑ × 𝐴                           (2.2) 

 

2.5  The Vectorial Form of the Momentum Equation in Rotating Coordinates 

In an inertial reference frame, Newton’s second law of motion may be written 

symbolically as: 

𝑑𝑎�⃑⃑�𝑎

𝑑𝑡
= ∑ �⃑�                               (2.3) 

The left-hand side represents the rate of change of the absolute velocity �⃑⃑�𝑎 , following 

the motion as viewed in an inertial system. The right-hand side represents the sum of 

the real forces acting per unit mass. Now to find a relationship for the rotating system 

we apply Equation (2.2) to position vector 𝑟 for an air parcel on the rotating earth: 

𝑑𝑎𝑟

𝑑𝑡
=

𝑑𝑟

𝑑𝑡
+ Ω⃑⃑⃑ × 𝑟                                 (2.4) 

�⃑⃑�𝑎 = �⃑⃑� + Ω⃑⃑⃑ × 𝑟                                       (2.5) 
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which states simply that the absolute velocity of an object on the rotating earth is 

equal to its velocity relative to the earth plus the velocity due to the rotation of the 

earth. 

Now we apply (Equation 2.2) to the velocity vector �⃑⃑�𝑎 and obtain: 

𝑑𝑎 �⃑⃑�𝑎

𝑑𝑡
=

𝑑�⃑⃑�𝑎

𝑑𝑡
+ Ω⃑⃑⃑ × �⃑⃑�𝑎                                 (2.6) 

Substituting from (Equation 2.5) into the right-hand side of (Equation 2.6) gives 

𝑑𝑎�⃑⃑�𝑎

𝑑𝑡
=

𝑑

𝑑𝑡
(�⃑⃑� + Ω⃑⃑⃑ × 𝑟 ) + Ω⃑⃑⃑  × (�⃑⃑� + Ω⃑⃑⃑ × 𝑟 )         (2.7𝑎)                  

=
𝑑�⃑⃑�

𝑑𝑡
+ 2Ω⃑⃑⃑  × �⃑⃑� − Ω2�⃑⃑�                                          (2.7𝑏)              

where Ω⃑⃑⃑ is assumed to be constant. Here �⃑⃑� is a vector perpendicular to the axis of 

rotation, with magnitude equal to the distance to the axis of rotation, so that with the 

aid of a vector identity, 

Ω⃑⃑⃑ × (Ω⃑⃑⃑  × 𝑟 ) = Ω⃑⃑⃑ × ( Ω⃑⃑⃑ × �⃑⃑� ) =  −Ω2�⃑⃑�                           

Equation (2.7) states that the acceleration following the motion in an inertial system 

equals the rate of change of relative velocity following the relative motion in the 

rotating frame plus the Coriolis acceleration due to relative motion in the rotating 

frame plus the centripetal acceleration caused by the rotation of the coordinates. 

If we assume that the only real forces acting on the atmosphere are the pressure 

gradient force, gravitation, and friction, we can rewrite Newton’s second law (2.3) 

with the aid of (2.7) as: 

𝑑�⃑⃑�

𝑑𝑡
= −2Ω⃑⃑⃑  × �⃑⃑� −

1

𝜌
∇p + g⃑⃑ + F⃑⃑𝑟                       (2.8) 

where F⃑⃑𝑟 designates the frictional force, and the centrifugal force has been combined 

with gravitation in the gravity term g. Equation (2.8) is the statement of Newton’s 

second law for motion relative to a rotating coordinate frame. It states that the 

acceleration following the relative motion in the rotating frame equals the sum of the 

Coriolis force, the pressure gradient force, effective gravity, and friction. This form 

of the momentum equation is basic to most work in dynamic meteorology.  


