- Qu Using the total derivative of a vector in a rotating system relationship, derive the equation of momentum in the dynamic meteorology. $\rightarrow 01$

$$
\frac{d \vec{A}}{d t}=\frac{d \vec{A}}{d t}+\vec{\Omega} \times \vec{A}
$$

(1) Total Der of a vector in a Rot. sys.
$\frac{d_{a} \vec{V}_{a}}{d t}=\sum \vec{F}$
…(2) Newton's 2nd law of motion in an absolute reference
Now, Apply egn 1 to a position vector (\vec{r})

$$
\begin{equation*}
\frac{d_{a} \vec{r}}{d t}=\frac{d \vec{r}}{d t}+\vec{\Omega} \times \vec{r} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \quad \vec{v}_{a}=\overrightarrow{r_{r}}+\overrightarrow{\Omega_{2}} \times \vec{r} \tag{4}
\end{equation*}
$$

Now Apply equine *eratition to the velocity vector \vec{V}_{a}

$$
\begin{equation*}
\left(\frac{d_{a} \vec{V}_{a}}{d t}\right)=\left(\frac{d \vec{V}_{a}}{d t}\right)+\vec{\Omega} \times \vec{V}_{a} \tag{5}
\end{equation*}
$$

Substitute eon 4 in egn5,

$$
\begin{aligned}
&\left(\frac{d_{a} \vec{V}_{a}}{d t}\right)=\frac{d}{d t}[\vec{V}+\vec{\Omega} \times \vec{r}]+\vec{\Omega} \times[\vec{V}+\vec{\Omega} \times \vec{r}] \\
&=\left(\frac{d \vec{V}}{d t}\right)+\frac{d}{d t}(\vec{\Omega} \times \vec{r})+\vec{\Omega} \times \vec{V}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r}) \\
&=\left(\frac{d \vec{v}}{d t}\right)+\left(\frac{d \vec{\Omega}}{d t} \times \vec{r}\right)+\left(\vec{\Omega} \times \frac{d \vec{r}}{d t}\right)+\vec{\Omega} \times \vec{V} \\
& \therefore \text { (why?)}+\vec{\Omega} \times\left(\frac{d_{a}}{d t} \times \overrightarrow{V_{a}}\right)=\left(\frac{d \vec{V}}{d t}\right)+\left(\vec{\Omega} \times \frac{d \vec{r}}{d t}\right)+\vec{\Omega} \times \overrightarrow{V_{E}}+\vec{\Omega} \times(\vec{\Omega} \times \vec{r}) \\
& \text { Thus } \\
&=\left(\frac{d \vec{V}}{d t}\right)+2(\vec{\Omega} \times \vec{V})+\vec{\Omega} \times(\vec{\Omega} \times \vec{r})
\end{aligned}
$$

By using a vector triple product:

$$
\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}
$$

Thus $\vec{\Omega} \times(\vec{\Omega} \times \vec{r})=(\vec{\Omega} \cdot \vec{r}) \vec{\Omega}-(\vec{\Omega} \cdot \vec{\Omega}) \vec{r}$

$$
\therefore\left(\frac{d_{a} \vec{V}_{a}}{d t}\right)=\left(\frac{d \vec{v}}{d t}\right)+2(\vec{\Omega} \times \vec{v})=\Omega^{2} \vec{R}
$$

Using egn 2

$$
\therefore \frac{d \vec{V} a}{d t}=\frac{d \vec{V}}{d t}+2(\vec{\Omega} \times \vec{V})-\Omega^{2} \vec{R}=\sum \vec{F}
$$

If the only forces acting on the atmosphere are:

1. pg Tangetide $\vec{V}_{T}=\vec{\Omega} \times \vec{r}$
2. gravitation
3. Friction

We rewrite Newton's and law with

$$
\begin{aligned}
\vec{V}_{T} \mid & =\mid \vec{\Omega} / R \\
& =|\vec{\Omega}||\vec{r}| \sin \alpha \\
& =|\vec{\Omega} \times \vec{r}|
\end{aligned}
$$

The aid of 6 .

This form of the momentum equation is the basic to most work in dynamic meteorlogy.
(2)

