
52 
 

CSS for presentation 

Cascading Style Sheet Orientation 

CSS Cascading Style Sheet is a language that allows the user to change the appearance or 

presentation of elements on the page: the size, style, and color of text; background colors; border 

styles and colors; even the position of elements on the page.   Presentation, again, refers to the 

way the document is displayed or delivered to the user, whether on a computer screen, a cell 

phone display, or printed on paper. With style sheets handling the presentation, HTML can 

handle the business of defining document structure and meaning, as intended. 

Advantages of CSS: 

 CSS saves time - You can write CSS once and then reuse same sheet in multiple HTML            

pages. You can define a style for each HTML element and apply it to as many Web pages             

as you want. 

 Pages load faster - If you are using CSS, you do not need to write HTML tag attributes 

every time. Just write one CSS rule of a tag and apply to all the occurrences of that tag. 

So less code means faster download times. 

 Easy maintenance - To make a global change, simply change the style, and all elements 

in all the web pages will be updated automatically. 

 Superior styles to HTML - CSS has a much wider array of attributes than HTML so you 

can give far better look to your HTML page in comparison of HTML attributes. 

 Global web standards - Now HTML attributes are being deprecated and it is being 

recommended to use CSS. So its a good idea to start using CSS in all the HTML pages to 

make them compatible to future browsers. 

How style sheets Work 

    It’s as easy as 1-2-3! 1. 

1. Start with a document that has been marked up in HTML.  

2. Write style rules for how you’d like certain elements to look.  



53 
 

3. Attach the style rules to the document. When the browser displays the document, it follows 

your rules for rendering elements.  

Writing the rules  

 A style sheet is made up of one or more style instructions (called rules or rule sets) that 

describe how an element or group of elements should be displayed. The first step in learning 

CSS is to get familiar with the parts of a rule. Each rule selects an element and declares how it 

should look.  

The following example contains two rules. The first makes all the h1 elements in the document 

green; the second specifies that the paragraphs should be in a small, sans-serif font.  

h1 { color: green; }  

p  { font-size: small; font-family: sans-serif; } 

  In CSS terminology, the two main sections of a rule are the selector that identifies the 

element or elements to be affected, and the declaration that provides the rendering instructions. 

The declaration, in turn, is made up of a property (such as color) and its value (green), separated 

by a colon and a space. One or more declarations are placed inside curly brackets, as shown in 

following example: 

 

Selector   { property: value;  }               selector { 

                                                                                Property1: value1; 

                                                                               Property2: value2; 

                                                                               Property3: value3; 

                                                                                } 

Selectors 

 In the previous small style sheet example, the h1 and p elements are used as selectors. 

This is called an element type selector, and it is the most basic type of selector. The properties 

defined for each rule will apply to every h1 and p element in the document, respectively. More 

sophisticated selectors can be used to target elements, including ways to select groups of 

declaration Declaration block 



54 
 

elements and elements that appear in a particular context. Choosing the best type of selector and 

using it strategically—is an important step in using a CSS in appropriate way. 

Declarations   

The declaration is made up of a property/value pair. There can be more than one 

declaration in a single rule; for example, the rule for the p element shown earlier in the code 

example has both the font-size and font-family properties. Each declaration must end with a 

semicolon to keep it separate from the following declaration. If you omit the semicolon, the 

declaration and the one following it will be ignored. The curly brackets and the declarations they 

contain are often referred to as the declaration block.  Because CSS ignores whitespace and line 

returns within the declaration block, authors typically write each declaration in the block on its 

own line, as shown in the following example. This makes it easier to find the properties applied 

to the selector and to tell when the style rule ends. 

 p  {   

   font-size: small;   

  font-family: sans-serif; 

 }  

Note that nothing has really changed here—there is still one set of curly brackets, 

semicolons after each declaration, etc. The only difference is the insertion of line returns and 

some character spaces for alignment. The heart of style sheets lies in the collection of standard 

properties that can be applied to selected elements. 

Adding comments within a style sheet   

You can add comments within a style sheet by using the /* characters to start the 

comment and the */ characters to end the comment. Comments may also span multiple lines, as 

shown in the following example.  

 

 

 

 



55 
 

  /* This is the style       

  for the body element */  

 body {     

     background-color: white; /* The rgb value is #ffffff */        

 color: gray; /* This is the font color */ 

  }  

 

Providing measurement values 

 When providing measurement values, the unit must immediately follow the number like 

this: 

{margin: 2em; } 

Adding a space before the unit will cause the property not to work. 

{ margin: 2 em;} Incorrect 

Also, it is acceptable to omit the unit of measurement for zero values: 

{margin: 0; } 

Note that 1em is equal to the current font size. 2em means 2 times the size of the current 

font. E.g., if an element is displayed with a font of 12pt, then 2em is 24 pt. the em is a very 

useful in CSS, it can adept automatically to the font that the reader uses. 

Attaching the styles to the document  

There are three ways to style information that can be applied to an HTML document: 

Inline styles. 

  The user can apply properties and values to a single element using the style attribute in 

the element itself by using the generic syntax:  

 

<element style="...style rules...."> 



56 
 

For example 

<h1 style="color: red">Introduction</h1> 

To add multiple properties, just separate them with semicolons, like this:  

<h1 style="color: red; margin-top: 2em">Introduction</h1>  

Because an inline style is applied only to the particular element to which you wish to add 

styling, you don’t need a selector; you just need to specify the declaration block. Inline styles 

should be avoided, unless it is absolutely necessary to override styles from an embedded or 

external style sheet. An advantage of using an inline style is that it always overrides styles that 

are defined elsewhere because the inline styles are specific to the element on which the inline 

style is defined. This specificity can solve isolated problems when a style is applied globally in 

an external style sheet, but one element needs to be styled differently.  

<p style="color: red;">The quick brown fox jumps over  the lazy dog.</p> 

 In the example above, we use a style attribute inside the opening tag. Applying a style to a 

specific HTML element in this way is known as using an inline style. 

<p style="color: red; font-weight: bold;">The quick brown fox  jumps over the lazy dog.</p> 

Notice that a semicolon separates the two declarations. You could carry on adding styles in this 

way, but beware, this approach can be messy.  

Embedded style sheets.  

Inline styles offer a simple and quick method to apply some CSS effects to specific 

sections of a document, but there are better ways to style a page. After all, it would be more ideal 

if you could set styles in just one place, rather than having to type them out every time you 

wanted to use them. An embedded style sheet is a section that the user add to the start of a web 

page that sets out all the styles that will be used on that page. To do this, the style element must 

be placed in the head of the document and it must contain a type attribute that identifies the 

content of the style element as “text/css”.  

 

 



57 
 

<head> 

     <title> Simple example of embedded style </title> 

                     <style type="text/css"> 

       p { 

              font-weight: bold; 

           } 

              </style> 

</head> 

  

In the markup shown above, the embedded style sheet starts with a tag. The actual style 

declarations are enclosed in a set of curly braces: { and }. The p that appears before the first 

curly brace tells the browser what elements the style rules are for; in this case, the text inside 

every p will marking as bold. The p is called the selector, and it’s a great tool for quickly and 

easily changing the appearance of lots of elements on the web page. The selector instructs the 

browser to apply all the declarations between the curly braces to certain elements. The selector, 

curly braces, and declarations combine to form what’s called a rule. In this case, our style sheet 

contains one rule: “Style all the paragraphs on this page so that the text appears in a bold font.” 

Also it could add more declarations to the rule. For instance, to make the text bold and green, the 

declaration color: green to the rule: 

<style type="text/css"> 

p { 

font-weight: bold; 

color: green; 

} 

In the example provided, text in all paragraphs will display in bold, green type. This saves the 

user from typing every time when start a new paragraph—a clear benefit over inline styles. If the 

user wanted to change the color of all paragraph text to red, only change it in the style sheet at 

the top of the page is needed. For this reason, an embedded style sheet is a marked improvement 

over inline styles.  

External style sheets.  

If the website comprising many pages and the user want to make the changes across the 

whole site, embedded style sheets falls for a perfect solution because this required to edit the 



58 
 

embedded style sheet on every single page of that site. An external style sheet provides a 

location where you can place styles to be applied on all your web pages.  

An external style sheet is a separate, text-only document that contains a number of style 

rules. It must be named with the CSS suffix. The CSS document is then linked to importe into 

one or more HTML documents. In this way, all the files in a website may share the same style 

sheet. This is the most powerful and preferred method for attaching style sheets to content.  

To make use of all the benefits of an external style sheet, first need to create a CSS file 

that can be shared among the pages of the website. Open your text editor and enter the following 

in a new document: 

/* 

External CSS example 

*/ 

p { 

    font-weight: bold; 

    color: green; 

} 

Save the file in the same folder as your HTML files, naming it style1.css; you can save a 

CSS file in the same way you saved your HTML files. Note that the first few lines we typed into 

our CSS file won’t actually do anything. Like HTML comments where they allow the user to 

make notes about your work without affecting the onscreen display.  For the external CSS 

example. a rule is added so that all the type in the paragraphs is now bold and green. 

The Concepts  

There are a few big ideas that need to get a head around to be comfortable with how 

Cascading Style Sheets behave.  

Document structure  

This is where an understanding of your document’s structure becomes important. In 

HTML documents have an implicit structure or hierarchy. For example, the sample article that 

have been playing with has an html root element that contains a head and a body, and the body 



59 
 

contains heading and paragraph elements. A few of the paragraphs, in turn, contain inline 

elements such as images (img) and emphasized text (em). You can visualize the structure as an 

upside-down tree, branching out from the root, as shown in the following figure. 

 

 

 

 

 

 

 

Inheritance 

The HTML elements pass down certain style properties to the elements they contain. For 

example, when the style of the p elements in a small, sans-serif font, the em element in the 

second paragraph became small and sans-serif as well, even though we didn’t write a rule for it 

specifically. That is because it inherited the styles from the paragraph it is in. 

Parents and children  

The document tree becomes a family tree when it comes to referring to the relationship 

between elements.   

1- All the elements contained within a given element are said to be its descendants. For 

example, the h1, h2, p, em, and img elements in the document in previous Figure are all 

descendants of the body element.  

2- An element that is directly contained within another element (with no intervening 

hierarchical levels) is said to be the child of that element.  

3- Conversely, the containing element is the parent. For example, the em element is the 

child of the p element, and the p element is its parent. 

4-  All of the elements higher than a particular element in the hierarchy are its ancestors.  

5- Two elements with the same parent are siblings.  



60 
 

Pass it on  

When you write a font-related style rule using the p element as a selector, the rule applies 

to all of the paragraphs in the document as well as the inline text elements they contain. We’ve 

seen the evidence of the em element inheriting the style properties applied to its parent (p). Also, 

the figure demonstrates what’s happening in terms of the document structure diagram. Note that 

the img element is excluded because font-related properties do not apply to images 

 

 

 

 

    

 

 

 

 

 

It’s important to note that some style sheet properties inherit and others do not. 

 In general, properties related to the styling of text—font size, color, style, etc.—are 

passed down. 

  Properties such as borders, margins, backgrounds, and so on, that affect the boxed area 

around the element tend not to be passed down.   

You can use inheritance to your advantage when writing style sheets. For example, if you 

want all text elements to be rendered in the Verdana font face, you could write separate style 

rules for every element in the document and set the font-face to Verdana. A better way would be 

to write a single style rule that applies the font-face property to the body element, and let all the 

text elements contained in the body inherit that style as in the following figure. 

P { font-size: small; font-family: sans-serif; } 

Certain properties applied to the p element are inherited by their children 



61 
 

 

   

 

 

 

 

 

 

 

 

Conflicting styles: the cascade 

CSS allows the user to apply several style sheets to the same document, which means 

there are bound to be conflicts. For example, what should the browser do if a document’s 

imported style sheet says that h1 elements should be red, but its embedded style sheet has a rule 

that makes h1s purple?  

The designer who wrote the style sheet specification anticipated this problem and devised 

a hierarchical system that assigns different weights to the various sources of style information. 

The cascade refers to what happens when several sources of style information vie for control of 

the elements on a page: style information is passed down (“cascades” down) until it is overridden 

by a style command with more weight. For example: 

 If user don’t apply any style information to a web page, it will be rendered according to 

the browser’s internal style sheet (calling this the default rendering) 

 If the web page designer provides a style sheet for the document that has more weight 

and overrides the browsers styles. 

 

 

P { font-size: small; font-family: sans-serif; } 

All the elements in the document inherit certain properties applied to the body 

element. 



62 
 

Rule order  

If there are conflicts within style rules of identical weight, whichever one comes last in 

the list “wins.” Take these three rules, for example:  

 <style>   

p { color: red; }   

p { color: blue; }  

 p { color: green; }   

</style>  

In this scenario, paragraph text will be green because the last rule in the style sheet—that 

is, the one closest to the content in the document—overrides the earlier ones. The same thing 

happens when conflicting styles occur within a single declaration stack: 

 <style>  

 p { color: red;        color: blue;       color: green; } 

 </style>  

The resulting color will be green because the last declaration overrides the previous two. 

It is easy to accidentally override previous declarations within a rule when you get into 

compound properties, so this is an important behavior to keep in mind. 

The box model 

The easiest way to think of the box model is that browsers see every element on the page 

(both block and inline) as being contained in a little rectangular box. The user can apply 

properties such as borders, margins, padding, and backgrounds to these boxes, and even 

reposition them on the page.  

To see the elements roughly the way the browser sees them, I’ve written style rules that 

add borders around every content element in our sample article. 

 h1 { border: 1px solid blue; }  

 h2 { border: 1px solid blue; } 

 p { border: 1px solid blue; }  

 em { border: 1px solid blue; } 

 img { border: 1px solid blue; } 

 


