
Introduction to Compiler

 قسن علوم الحاسوب -كلية العلوم -ألوستنصريه ةالجاهع اق طالة ــهيث : الدكتورعدادأ

1

Compiler and Translators
Introduction:

The purpose of these lectures is to get the acquainted with the

compiler construction basics and to study the algorithms required to

design a compiler.

Translator is a program that takes as input a program written in one

programming language (the source language) and produces as output

a program in another language (the object or target language).

Compiler is a translator that translates a high-level language

program such as FORTRAN, PASCAL, C
++

, to low-level language

program such as an assembly language or machine language.

Note: The translation process should also report the presence of

errors in the source program.

Others Translators:

There are another kinds of translators including:

1- An Interpreter is a translator that effectively accepts a source

program and executes it directly, without, producing any object

code first. It does this by fetching the source program

instructions one by one, analyzing them one by one, and then

"executing" them one by one. It is need smaller space

(advantage), but it is slower (disadvantage).

Translator
Source

Program

Object

Program

Compiler

High-Level

Language

Low-Level Language

Language (Assembly

Code)

Introduction to Compiler

 قسن علوم الحاسوب -كلية العلوم -ألوستنصريه ةالجاهع اق طالة ــهيث : الدكتورعدادأ

2

2- An Assembler is a translator that translates the assembly

language program (mnemonic program) to machine language

program.

3- A Linker or Link editor is a computer program that takes one or

more object files generated by a compiler and combines them

into a single executable program.

4- A Loader is the part of an operating system that is responsible for

loading programs. It is one of the essential stages in the process

of starting a program, as it places programs into memory and

prepares them for execution. Loading a program involves reading

the contents of the executable file containing the program

instructions into memory, and then carrying out other required

preparatory tasks to prepare the executable for running.

The cousins of compilers are assemblers, and loaders and link

editors.

Assembler
Assembly

Program

Machine

Program

Low-level language Low-level language

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Object_file
http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Executable

Introduction to Compiler

 قسن علوم الحاسوب -كلية العلوم -ألوستنصريه ةالجاهع اق طالة ــهيث : الدكتورعدادأ

3

Why do we Need Translations?

If there are no translators then we must programming in machine

language. With machine language we must be communicate directly

with a computer in terms of bits, registers, and very primitive

machine operations. Since a machine language program is nothing

more than a sequence of 0's and 1's, programming a complex

algorithm in such a language is terribly tedious and fraught with

mistakes.

Why we Write Programs in High-Level Language?

We write programs in high-level language (advantages of high-level

language) because it is:

1) Readability: high-level language will allow programs to be

written in the same ways that used in description of the

algorithms.

2) Portability: High-level languages can be run without

changing on a variety of different computers.

3) Generality: Most high-level languages allow the writing of a

wide variety of programs, thus relieving the programmer of the

need to become expert in many languages.

4) Brevity: Programs expressed in high-level languages are often

considerably shorter (in terms of their number of source lines)

than their low-level equivalents.

5) It's easy in the Error checking process.

Introduction to Compiler

 قسن علوم الحاسوب -كلية العلوم -ألوستنصريه ةالجاهع اق طالة ــهيث : الدكتورعدادأ

4

The Structure of Compiler

The process of compilation is so complex to be achieved in one

single step, either from a logical point of view or from an

implementation point of view. For this reason it is partition into a

series of subprocesses called Phases. The typical compiler consists

of several phases each of which passes its output to the next phase

plus symbol table manager and an error handler as shown below:

Lexical

Analysis

Syntax

Analysis

Semantic

Analysis

Intermediate

Code Generating

Code

Optimization

Code

Generating

Table

Management

Error

Handling

Source Program

Target Program

Phases of a Compiler.

Introduction to Compiler

 قسن علوم الحاسوب -كلية العلوم -ألوستنصريه ةالجاهع اق طالة ــهيث : الدكتورعدادأ

5

Lexical Analyzer (Scanner): Separates characters of the source

language program into groups (sets) that logically belong together.

These groups are called Tokens. Tokens are Keywords, Identifiers,

Operator Symbols, and Punctuation Symbols. The output of the

analyzer is stream of tokens, which is passed to the syntax analyzer.

Tokens: groups of characters of source language program logically

belong together. For example:

Syntax Analyzer (Parser): Groups tokens together into syntactic

structures called Expressions. Expressions might further be

combined to form Statements. Often the syntactic structure can be

regarded as a Tree whose leaves are the tokens. The interior nodes of

the tree represent strings of tokens that logically belong together.

Semantics: is a term used to describe "meaning", and so the

constraint analyzer is often called the static semantic analyzer, or

simply the semantic analyzer. The output of the syntax analyzer and

semantic analyzer phases is sometimes expressed in the form of a

Abstract Syntax Tree (AST). This is a very useful representation,

as it can be used in clever ways to optimize code generation at a later

phase.

For, If, Do {Keyword}

x, a1, sum {Identifiers}

3, 44.2, -53 , "Book" {Constants}

>, +, = {Operator Symbols}

; , . ,' {Punctuation Symbols}

Tokens =

Introduction to Compiler

 قسن علوم الحاسوب -كلية العلوم -ألوستنصريه ةالجاهع اق طالة ــهيث : الدكتورعدادأ

6

Intermediate Code Generator: Create a stream of simple

instructions. Many style of intermediate code are possible. One

common style uses instructions with one operator and a small

number of operands.

Code Optimization: Is an optional phase designed to improve the

intermediate code so that the ultimate object program runs faster

and/or takes less space.

Code Generation: In a real compiler this phase takes the output

from the previous phase and produces the object code, by deciding

on the memory locations for data, generating code to access such

locations, selecting registers for intermediate calculations and

indexing, and so on.

Table Management: Portion of the compiler keeps tracks of the

name used by the program and records essential information about

each, such as its type integer, real, … etc. the data structure used to

record this information is called a Symbolic Table.

Error Handler: One of the most important functions of a compiler

is the detection and reporting of errors in the source program. The

error messages should allow the programmer to determine exactly

where the errors have occurred. Whenever a phase of the compiler

discovers an error, it must report the error to the error handler, which

issues an appropriate diagnostic message.

Example of the Compilation Process

Consider the following sentence is segment from source program:

x := y + z ×60.0

Introduction to Compiler

 قسن علوم الحاسوب -كلية العلوم -ألوستنصريه ةالجاهع اق طالة ــهيث : الدكتورعدادأ

7

Lexical Analyzer

Syntax Analyzer

Intermediate Code Generating

Semantic Analyzer

Code Optimization

Code Generating

Id1:= Id2+ Id3* 60.0

 x := y + z × 60.0

:=

+

*

60.0 Id3

Id2

Id1

realtoint

:=

+

*

Id3

Id2

Id1

60

Temp1:= Id3*60

Temp2:=Id2+Temp1

Id1:= Temp2

Temp1:= Id3*60

Id1:=Id2+Temp1

MOV Id3, R1

MUL #60, R1

MOV Id2, R2

ADD R2, R1

MOV R1, Id1

Object

Program

