

Foundation of Mathematics I

Chapter 4 Functions

Dr. Bassam AL-Asadi and Dr. Emad Al-Zangana

Mustansiriyah University-College of Science-Department of Mathematics 2018-2019

Chapter Four

Functions

Definition 4.1. A function or a mapping from A to B, denoted by $f: A \rightarrow B$ is a relation f from A to B in which every element from A appears exactly once as the first component of an ordered pair in the relation. That is, each $a \in A$ the relation f contains exactly one ordered pair of form (a, b).

Equivalent statements to the function definition.
(i) A relation f from A to B is function iff
$\forall x \in A \exists!y \in B$ such that $(x, y) \in f$
(ii) A relation f from A to B is function iff

$$
\forall x \in A \forall y, z \in B, \text { if }(x, y) \in f \wedge(x, z) \in f, \text { then } y=z
$$

(iii) A relation f from A to B is function iff

$$
\left(x_{1}, y_{1}\right) \text { and }\left(x_{2}, y_{2}\right) \in f \text { such that if } x_{1}=x_{2} \text {, then } y_{1}=y_{2} .
$$

This property called the well-defined relation.

Example 4.2.

(i) Let $A=\{1,2,3,4\}$ and $B=\{2,4,5\}$.
(1) $R_{1}=\{(1,2),(2,4),(3,4),(4,5)\}$ function from A to B.
(2) $R_{2}=\{(1,2),(2,4),(2,5),(4,5)\}$ not a function.
(3) $R_{3}=\{(1,2),(2,4),(4,5)\}$ function from $\{1,2,4\}$ to B.
(4) $R_{4}=A \times B$ not a function.
(ii) Consider the relations described below.

Relation	Orderd pairs	Sample Relation
1	(person, month)	$\{(\mathrm{A}$, May $),(\mathrm{B}, \mathrm{Dec}),(\mathrm{C}, \mathrm{Oct}), \ldots\}$
2	(hours, pay)	$\{(12,84),(4,28),(6,42),(15,105), \ldots\}$
3	(instructor, course)	$\{(\mathrm{A}$, MATH001),(A, MATH002),...\}
4	(time, temperature)	$\left\{\left(8,70^{\circ}\right),\left(10,78^{\circ}\right),\left(12,78^{\circ}\right), \ldots\right\}$

The first relation is a function because each person has only one birth month. The second relation is a function because the number of hours worked at a particular job can yield only one paycheck amount.
The third relation is not a function because an instructor can teach more than one course.
The fourth relation is a function. Note that the ordered pairs $\left(10,78^{\circ}\right),\left(12,78^{\circ}\right)$ do not violate the definition of a function.
(iii) Decide whether each relation represents a function.
a. Input: a, b, c
Output: 2, 3, 4
$\{(a, 2),(b, 3),(c, 4)\}$
b.

c.

Input \boldsymbol{x}	Output \boldsymbol{y}	(x, y)
3	1	$(3,1)$
4	3	$(4,3)$
5	4	$(5,4)$
3	2	$(3,2)$

Solution.

a. This set of ordered pairs does represent a function. No first component has two different second components.
b. This diagram does represent a function. No first component has two different second components.
c. This table does not represent a function. The first component 3 is paired with two different second components, 1 and 2 .

Notation 4.3. We write $f(a)=b$ when $(a, b) \in f$ where f is a function. We say that b is the image of a under f, and a is a preimage of b.

Definition 4.4. Let $f: A \rightarrow B$ be a function from A to B.
(i) The set A is called the domain of $f,(\boldsymbol{D}(\boldsymbol{f}))$, and the set B is called the codomain of f.
(ii) The set $f(A)=\{f(x) \mid x \in A\}$ is called the range of $f,(\boldsymbol{R}(\boldsymbol{f}))$.

Remark 4.5.

(i) Think of the domain as the set of possible "input values" for f.
(ii) Think of the range as the set of all possible "output values" for f.

Example 4.6.

(i) Let $A=\{p, q, r, s\}$ and $B=\{0,1,2\}$ and

$$
f=\{(p, 0),(q, 1),(r, 2),(s, 2)\} \subseteq A \times B
$$

This is a function $f: A \rightarrow B$ because each element of A occurs exactly once as a first coordinate of an ordered pair in f.
We have $f(p)=0, f(q)=1, f(r)=2$ and $f(s)=2$. The domain of f is A, and the codomain and range are both B.

(a)

(b)

Figure. Two ways of drawing the function $f=\{(p, 0),(q, 1),(r, 2),(s, 2)\}$
(ii) Say a function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is defined as $f(m, n)=6 m-9 n$.

Note that as a set, this function is

$$
f=\{((m, n), 6 m-9 n):(m, n) \in \mathbb{Z} \times \mathbb{Z}\} \subseteq(\mathbb{Z} \times \mathbb{Z}) \times \mathbb{Z}
$$

What is the range of ?

To answer this, first observe that for any $(m, n) \in \mathbb{Z} \times \mathbb{Z}$, the value

$$
f(m, n)=6 m-9 n=3(2 m-3 n)
$$

is a multiple of 3 . Thus every number in the range is a multiple of 3 , so

$$
\begin{equation*}
R(f) \subseteq\{3 k: k \in \mathbb{Z}\} . \tag{1}
\end{equation*}
$$

On the other hand if $b=3 k$ is a multiple of 3 we have

$$
f(-k,-k)=6(-k)-9(-k)=-6 k+9 k=3 k
$$

which means any multiple of 3 is in the range of f, so

$$
\begin{equation*}
\{3 k: k \in \mathbb{Z}\} \subseteq R(f) \tag{2}
\end{equation*}
$$

Therefore, from (1) and (2) we get

$$
R(f)=\{3 k: k \in \mathbb{Z}\}
$$

Definition 4.7. Two functions $f: A \rightarrow B$ and $g: C \rightarrow D$ are equal if $A=C, B=D$ and $f(x)=g(x)$ for every $x \in A$.

Example 4.8.

(i) Suppose that $A=\{1,2,3\}$ and $B=\{a, b\}$. The two functions $f=\{(1, a),(2, a),(3, b)\}$ and $g=\{(3, b),(2, a),(1, a)\}$ from A to B are equal because the sets f and g are equal. Observe that the equality $f=g$ means $f(x)=g(x)$ for every $x \in A$.
(ii) Let $f(x)=\left(x^{2}-1\right) /(x-1)$ and $g(x)=x+1$, where $x \in \mathbb{R}$.
$f(x)=(x-1)(x+1) /(x-1)=(x+1)$.
$D(f)=\mathbb{R}-\{1\}, R(f)=\mathbb{R}-\{2\}$.
$D(g)=\mathbb{R}, R(f)=\mathbb{R}$.
$f \neq g$.

Definition 4.9.

(i) A function $f: A \rightarrow B$ is one-to-one or injective if each element of B appears at most once as the image of an element of A. That is, a function $f: A \rightarrow B$ is injective if $\forall x, y \in A, f(x)=f(y) \Rightarrow x=y$ or $\forall x, y \in A, x \neq y \Rightarrow f(x) \neq f(y)$.
(ii) A function $f: A \rightarrow B$ is onto or surjective if $f(A)=B$, that is, each element of B appears at least once as the image of an element of A. That is, a function $f: A \rightarrow B$ is surjective if $\forall y \in B \exists x \in A$ such that $f(x)=y$.
(iii) A function $f: A \rightarrow B$ is bijective iff it is one-to-one and onto.

Example 4.10. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=3 x+7$.

$$
f=\{\ldots,(-3,-2),(-2,1),(-1,4),(0,7),(1,10),(2,13), \ldots\} .
$$

(i) f is injective. Suppose otherwise; that is,

$$
f(x)=f(y) \Rightarrow 3 x+7=3 y+7 \Rightarrow 3 x=3 y \Rightarrow x=y
$$

(ii) f is not surjective. For $b=2$ there is no a such that $f(a)=b$; that is, $2=3 a+7$ holds for $a=-\frac{5}{3}$ which is not in $\mathbb{Z}=D(f)$.

Example 4.11.

(i) Show that the function $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ defined as $f(x)=(1 / x)+1$ is injective but not surjective.

Solution.

We will use the contrapositive approach to show that f is injective.
Suppose $x, y \in \mathbb{R}-\{0\}$ and $f(x)=f(y)$. This means
$\frac{1}{x}+1=\frac{1}{y}+1 \rightarrow x=y$. Therefore f is injective.
Function f is not surjective because there exists an element $b=1 \in \mathbb{R}$ for which $f(x)=(1 / x)+1 \neq 1$ for every $x \in \mathbb{R}$.
(ii) Show that the function $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ defined by the
formula $f(m, n)=(m+n, m+2 n)$, is both injective and surjective.
Solution.
Injective: Let $(m, n),(r, s) \in \mathbb{Z} \times \mathbb{Z}=D(f)$ such that $f(m, n)=f(r, s)$. To prove $(m, n)=(r, s)$.
$1-f(m, n)=f(r, s) \Rightarrow(m+n, m+2 n)=(r+s, r+2 s)$ Hypothesis
2- $m+n=r+s$ Def. of \times
3- $m+2 n=r+2 s$ Def. of x
4- $m=r+2 s-2 n$ Inf. (3)
5- $n=s$ and $m=r$ Inf. (2),(4)
6- $(m, n)=(r, s)$
Def. of x
Surjective: Let $(x, y)=\mathbb{Z} \times \mathbb{Z}=R(f)$. To prove $\exists(m, n) \in \mathbb{Z} \times \mathbb{Z}=D(f) \ni$ $f(m, n)=(x, y)$.
$1-f(m, n)=(m+n, m+2 n)=(x, y)$
Def. of f
2- $m+n=x$
3- $m+2 n=y$
Def. of \times

4- $m=x-n$
Def. of \times
5- $n=y-x$
Inf. (2)
6- $m=-x$
Inf. (3),(4)
7- $(-x, y-x) \in \mathbb{Z} \times \mathbb{Z}=D(f), f(-x, y-x)=(x, y)$
Definition 4.12. The composition of functions $f: X \rightarrow Y$ with $g: Y \rightarrow Z$ is the function $g \circ f: X \rightarrow Z$ defined by $(g \circ f)(x)=g(f(x))$.

Remark 4.13.

(i) The composition $g \circ f$ can only be defined if the domain of g includes the range of f; that is, $R(f) \subseteq D(g)$, and the existence of $g \circ f$ does not imply that $f \circ g$ even makes sense.
(ii) The order of application of the functions in a composition is crucial and is read from from right to left.

Example 4.14.

(i) Let $A=\{0,1,2,3\}, B=\{1,2,3\}, C=\{4,5,6,7\}$. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are the functions defined as follows.

$$
f=\{(0,2),(1,3),(2,2),(3,3)\}, g=\{(1,7),(2,4),(3,5)\} .
$$

$g \circ f=\{(0,4),(1,5),(2,4),(3,5)\}$

(ii) If $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are functions defined as follows.
$f(x)=x^{2}$ and $g(x)=\sqrt{x}$. Then $(g \circ f)(x)=g(f(x))=g\left(x^{2}\right)=\sqrt{x^{2}}$.
Here $R(f)=[0, \infty) \subseteq D(g)=\mathbb{R}$.

Theorem 4.15.

(i) Suppose $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions. If both f and g are injective, then $g \circ f$ is injective. If both f and g are surjective, then $g \circ f$ is surjective.
(ii) Composition of functions is associative. That is, if $f: A \rightarrow B, g: B \rightarrow C$ and $h: C \rightarrow D$, then $(g \circ f) \circ h=f \circ(g \circ h)$.
Proof.
(i) To prove $g \circ f$ is $1-1$. Let $x, y \in A$ and $(g \circ f)(x)=(g \circ f)(y)$.

To prove $x=y$.
$(g \circ f)(x)=g(f(x))=g(f(y)) \quad$ Def. of \circ
$f(x)=f(y) \quad$ Since g is 1-1 and Def. of 1-1on g
$x=y$ Since f is $1-1$ and Def. of $1-1$ on f
$\therefore g \circ f$ is 1-1.
To prove $g \circ f$ is onto. Let $z \in D$, to prove $\exists x \in A$ such that $(g \circ f)(x)=z$.
(1) $\exists y \in B$ such that $g(y)=z$
(2) $\exists x \in A$ such that $f(x)=y$
$g(f(x))=z$
$(g \circ f)(x)=z$
$\therefore g \circ f$ is onto.

Since g is onto and Def. of onto on g
Since f is onto and Def. of onto on f
Inf. (1), (2)
Def. of 。
(ii) Exercise.

Theorem 4.16. Let $f: X \rightarrow Y$ be a function. Then f is bijective iff the inverse relation f^{-1} is a function from B to A.
Proof.
Suppose $f: X \rightarrow Y$ is bijective. To prove f^{-1} is a function from B to A. (*) Let $\left(y_{1}, x_{1}\right)$ and $\left(y_{2}, x_{2}\right) \in f^{-1}$ such that $y_{1}=y_{2}$, to prove $x_{1}=x_{2}$.
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right) \in f \quad$ Def. of f^{-1}
$\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{1}\right) \in f \quad$ By hypothesis $(*)$
$x_{1}=x_{2} \quad$ Def. of 1-1 on f
$\therefore f^{-1}$ is a function from B to A.
Conversely, suppose f^{-1} is a function from B to A, to prove $f: X \rightarrow Y$ is bijective; that is, 1-1 and onto.

1-1: Let $a, b \in X$ and $f(a)=f(b)$. To prove $a=b$.
$(a, f(a))$ and $(b, f(b)) \in f$
$(a, f(a))$ and $(b, f(a)) \in f$
$(f(a), a)$ and $(f(a), b) \in f^{-1}$
$a=b$
$\therefore f$ is 1-1.
onto: Let $b \in Y$. To prove $\exists a \in A$ such that $f(a)=b$.
$\left(b, f^{-1}(b)\right) \in f^{-1}$
$\left(f^{-1}(b), b\right) \in f$
Hypothesis (f^{-1} is a function from B to A)
Def. of inverse relation f^{-1}
Put $a=f^{-1}(b)$.
$a \in A$ and $f(a)=b$
$\therefore f$ is onto.

Hypothesis (f is function)
Hypothesis $(f(a)=f(b))$
Def. of inverse relation f^{-1}
Since f^{-1} is function

Hypothesis (f is function)

Definition 4.17.

(i) A function $I_{A}: A \rightarrow A$ defined by $I_{A}(x)=x$, for every $x \in A$ is called the identity function on A. $I_{A}=\{(x, x): x \in A\}$.
(ii) Let $A \subseteq X$. A function $i_{A}: A \rightarrow X$ defined by $i_{A}(x)=x$, for every $x \in A$ is called the inclusion function on A.

Definition 4.18. (Inverse function)

If $f: X \rightarrow Y$ is a bijective function, then its inverse is the function $f^{-1}: Y \rightarrow X$ such that $f \circ f^{-1}=I_{Y}$ and $f^{-1} \circ f=I_{X}$.

Example 4.19. Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be a function defined as

$$
f(m, n)=(m+n, m+2 n)
$$

f is bijective as shown in Example 4.11(ii).
To find the inverse f^{-1} formula, let $f(n, m)=(x, y)$. Then
$(m+n, m+2 n)=(x, y)$. So, the we get the following system

$$
\begin{align*}
m+n= & x \ldots .(1) \tag{1}\\
m+2 n= & y \ldots .(2) \tag{2}\\
& \text { Inf. (1) } \tag{3}\\
& \text { Inf. (2),(3) } \tag{4}
\end{align*}
$$

$m=x-n$
$n=y-x$
$m=2 x-y$
Inf. (4),(3)
Define f^{-1} as follows

$$
f^{-1}(x, y)=(2 x-y, y-x)
$$

We can check our work by confirming that $f \circ f^{-1}=I_{Y}$.

$$
\begin{aligned}
\left(f \circ f^{-1}\right)(x, y) & =f(2 x-y, y-x) \\
& =((2 x-y)+(y-x),(2 x-y)+2(y-x)) \\
& =(x, 2 x-y+2 y-2 x)=(x, y)=I_{Y}(x, y)
\end{aligned}
$$

Remark 4.20.

(i) If $f: X \rightarrow Y$ is oneto-one but not onto, then one can still define an inverse function $f^{-1}: R(f) \rightarrow X$ whose domain in the range of f.
(ii) If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijective functions, then
(a) $\left(f^{-1}\right)^{-1}=f$.
(b) $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Theorem 4.21. Let $f: X \rightarrow Y$ be a function.
(i) If $\left\{Y_{j} \subset Y: j \in J\right\}$ is a collection of subsets of Y, then

$$
f^{-1}\left(\cup_{j \in J} Y_{j}\right)=\bigcup_{j \in J} f^{-1}\left(Y_{j}\right) \text { and } f^{-1}\left(\bigcap_{j \in J} Y_{j}\right)=\bigcap_{j \in J} f^{-1}\left(Y_{j}\right)
$$

(ii) If $\left\{X_{i} \subset X: i \in I\right\}$ is a collection of subsets of X, then
$f\left(\cup_{i \in I} X_{i}\right)=\bigcup_{i \in I} f\left(X_{i}\right)$ and $f\left(\bigcap_{i \in I} X_{i}\right) \subseteq \bigcap_{i \in I} f\left(X_{i}\right)$.
Proof: Let $x \in f^{-1}\left(\cup_{j \in J} Y_{j}\right)$.
$\exists y \in \bigcup_{j \in J} Y_{j}$ such that $f(x)=y \quad$ Def. of inverse relation f^{-1}
$y \in Y_{j}$ for some $j \in J$
Def. of U
$x \in f^{-1}\left(Y_{j}\right)$
Def. of inverse f^{-1}
so $x \in \cup_{j \in J} f^{-1}\left(Y_{j}\right)$
Def. of U
It follow that $f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right) \subseteq \mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right) \quad$ Def. of $\subseteq \ldots . .(*)$
Conversely, If $x \in \cup_{j \in J} f^{-1}\left(Y_{j}\right)$, then $x \in f^{-1}\left(Y_{j}\right)$, for some $j \in J \quad$ Def. of U

So $f(x) \in Y_{j}$ and $f(x) \in \cup_{j \in J} Y_{j}$
$x \in f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)$
It follow that $\cup_{j \in J} f^{-1}\left(Y_{j}\right) \subseteq f^{-1}\left(\cup_{j \in J} Y_{j}\right)$

$$
f^{-1}\left(\mathrm{U}_{j \in J} Y_{j}\right)=\mathrm{U}_{j \in J} f^{-1}\left(Y_{j}\right)
$$

Def. of inverse and U
Def. of inverse f^{-1}
Def. of $\subseteq \ldots . .(* *)$
From (*), (**) and Def. of $=$

Example 4.22. Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be a function defined as $f(x)=1, \forall x \in \mathbb{Z}$.
$\mathbb{Z}_{e} \cap \mathbb{Z}_{o}=\emptyset . f\left(\mathbb{Z}_{e} \cap \mathbb{Z}_{o}\right)=f(\emptyset)=\emptyset$. But $f\left(\mathbb{Z}_{e}\right) \cap f\left(\mathbb{Z}_{o}\right)=1$.

